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Abstract—The solar power plant is a large-scale photovoltaic
(PV) system aimed to generate solar power for the electricity
grid. It includes PV arrays (PVAs), cables, and other electrical
accessories. Moreover, the solar power plant builder must
consider various parameters and design regulations. The cable
routing problem (CRP) is critical in large-scale solar power
plant design. The objective of our CRP is to minimize the
installation cost of the cable by determining the partition of the
photovoltaic array and the cable routing. In this study, we use
the quantum computer to solve the CRP, an NP-hard integer
linear programming (ILP) problem, and show its advantages
over classic computers. We transfer the ILP CRP into the
quadratic unconstrained binary optimization (QUBO) model
and solve it by the advanced quantum annealer. Finally, we
analyze the computational results and discuss the advantages
of our approach to solving the CRP.

Index Terms—Cable Routing, Integer Linear Programming,
Optimization, Quadratic Unconstrained Binary Optimization,
Quantum Computing, Solar Power Plant

I. INTRODUCTION

The massive consumption of fossil fuels such as oil, natural
gas, and coal has caused various environmental problems,
such as the rise of greenhouse gas (GHG) emissions. As a
promising source of clean energy to decline the GHG, the
adoption of photovoltaic (PV) power worldwide has been
rocketing, increasing for more than two decades from a global
capacity of 40 gigawatts (GW) in 2010 to at least 760.4 GW
in 2020, which takes up about 3.7% of global electricity
demand [1]. Among all countries, the US market increases
to 19.2 GW. It is a new record with utility-scale installations
accounting for about 73% of the new additions [2]. By the
end of 2050, solar power is projected to become the world’s
second-largest source of electricity, exceeding 8,000 GW in
cumulative installed capacity [3].

In order to advance the growth of renewable energy, it is
crucial to minimize investment expenses, particularly con-
struction costs. An effective blueprint layout can potentially
lower the budget by 5%-10% [4]. For example, the cable-
routing problem (CRP) as an essential component in the
blueprint layout can minimize the building cost in the initial
construction period. Some researchers have investigated CRP
applications in wind farms and solar plants. [5] proposed a
basic mixed integer linear programming (MILP) model for
a real-world offshore wind park CRP and compared solution

quality versus computing time with their heuristic algorithms.
[6] proposed a genetic algorithm to optimize CRP that could
beat the Dijkstra method. [4] proposed a general integer linear
programming (ILP) model for solar plants. They proved
the efficiency of their proposed Branch-and-Price-and-Cut
algorithm by analyzing the computing time and solution
quality. Previous research papers have proven that CRP is a
time-consuming task when the problem size becomes larger,
and finding a better way to reduce the computing time is
worthwhile.

In this paper, we adopt [4]’s concept and focus on a solar
plant construction project of a constrained CRP in which
the PV arrays (PVAs) location is given. We address the
CRP and get a feasible solution for a given zone by routing
the cables to connect the necessary components. Then, the
CRP aims to minimize the total cable cost while satisfying
several constraints regularized by the safety requirements,
the physical characteristics of components, and other special
needs. There are two basic constraints required as follows:

1) Capacity Rule: The number of PVAs allocated to each
combiner box is related to the capacity of the combiner
box. We usually connect as many PVAs as possible to
each combiner box to save costs.

2) Connectivity Rule: Each PVA must be connected by
a cable to its corresponding combiner box for safety
considerations. Cable intersection is forbidden in the
PV system [7]. As a result, the distance between each
PVA and the corresponding combiner box is defined
by the Manhattan distance.

Thanks to parallel computing capability, quantum com-
puters are reckoned to have better computational time than
classical computers. Quantum Monte Carlo simulation is a
well-known example [8].

With the technique of the Ising model, the quantum
annealer can solve the quadratic unconstrained binary op-
timization (QUBO) problem. Researchers in [9] have shown
that quantum computing is able to solve ILP optimization
problems in Benders’ decomposition. [10] discusses the chal-
lenges and opportunities in the fields of energy systems, and
[11] points out the quantum computing speed-up potential in
renewable energy topic.

Since the CRP belongs to the NP-hard ILP problem under
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(a) A CRP Instance
Fig. 1: A CRP Instance

the renewable energy topic, the power of quantum computers
in the energy field and challenges in ILP problems inspire
us to use quantum computing techniques to solve the CRP.
However, there is an obstacle when we try to use quantum
computing. The difficulty is converting the ILP problem into
a QUBO recognized by the quantum computer and solving
it quickly. This paper converts the CRP into a QUBO to
overcome these challenges and validates the solution.
Contributions of this paper are summarized as follows:

o« We propose a quantum computing approach to find
the solution for the CRP, which is an ILP problem.
Our quantum computing approach employs the quantum
computer provided by D-Wave to solve the CRP with
their Leap™ quantum cloud service.

e We set up several cases with different grid sizes to
evaluate the performance of our quantum computing
approach. Our quantum computing approach returns
the optimal solution faster and more robust than the
classical computer solver. It proves quantum supremacy
in solving ILP problems

The rest of this paper is organized as follows. Section II in-
troduces the basics of the CRP problem and the model setup.
Section III illustrates our quantum formulation and QUBO
setup. Section IV validates our algorithm using experiments.
Finally, Section V concludes the whole paper.

II. PROBLEM DEFINITION AND FORMULATIONS

In this section, we first introduce the problem setup and
notations in our research. Then, we provide a classical arc-
flow formulation inspired by [4] and explain the objective
function and each constraint.

A. Problem Setup and Notations

The problem setup is shown in Figure 1. In our problem
setup, we assume the location of every solar panel is given
and fixed. Then, the realistic layout of solar panels is trans-
ferred to a grid-like map Figure la.

Therefore, the CRP grid-like map can be described by
a directed graph G = (V,E) in Figure 1b, where V =
{0,1,...,n} represents the whole set of vertex including the

(c) A Solution to the CRP
Instance

of a Solar Plant with PVAs

(d) Spanning Tree Corresponding
to the Solution

energy collection spot (V). Then, the rest of the grid nodes
(denoted as V' = {1, 2, ...,n}) represent the rest of the PVAs.
If the V; and V; are adjacent to each other, there is a pair of
edges (7,7) and (7,4) that connect two vertices. The edge set
E includes every edge in the network. Moreover, each PVA
vertex in V' has a directed edge connecting the corresponding
vertex to Vp (energy collection spot), namely (i,0) € E\E’,
Vi € V'. These edges are called the bus edges of the network.

Figure 1c shows an example of a solution of a CRP with
two bus edges dividing PVAs into two sub-groups. V;; and
Vg collect all PVAs’ energy from their subset to itself and
send the energy to V4 (energy collection spot).

Figure 1d provides a spanning treemap visualization of
Figure 1c. Assuming a unit of supply needs to be sent from
each i € V' to Vj (energy collection spot).

We use the following notation throughout the paper:

e G = (V,E): The CRP grid-like graph; V' is the whole
set of vertex including the energy collection spot (Vj);
FE is the set of edges between every vertex including Vj.

o ' = {(i,5) | (4,j) € E, i,5 € V'}: the set of edges
between panel vertices. E\E' are bus edges (¢,0), i €
v’

e 67 = {(i,j) | (i,§) € E}: the set of outgoing edges
from the vertex ;

e 0, ={(j,%) | (4,4) € E}: the set of incoming edges of
the vertex 7;

e c.: the cost of edge e € E;

o T: the set of capacity levels (types), T C {1,2,...,Q};

o m: the total bus edges amount of sub-trees with a
capacity equal to ¢t € T

o m!: the minimum number of sub-trees with a capacity
equaltot € T}

e my': the maximum number of sub-trees with a capacity
equal tot € T}

e @ =|V’|: the maximum capacity of the solar grid;

o p: the coefficient controlling the flow cost;

e ()a, ()¢ a sub-notation to show its capacity level; d is
used when we choose every capacity level {1,2,...,Q}.
t is used when we choose the capacity level in T7;

o T.q/¢ binary decision variable that equals 1 if d/t
unit(s) of flow traverse the edge e € E, and 0 otherwise.
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B. Classical Arc-flow Formulation

The formulation that is inspired by [12] and as follows:

Q Q
mianer@d—i—p Z Z(d— 1)cee,d, (1a)
d=1

ecE = ecE’ d=1
Q
SUY Y mea=1, VieV, (1b)
665:— d=1
Q Q
S dwea— YD dweg=1,VieV', (lo
ecs; d=1 ées; d=1
mi < Z Ter <my, VteT, (1d)
ecE\E'
Q
SN zea=m, (le)
e€EE\E’ d=1
Ter =0, Yee E\E' Vt¢T, (1f)
zer € {0,1}, Ve€e E, te{1,2,...Q}.

The objective function (la) aims to minimize the cable
connection’s total cost. Constraints (1b) guarantee that each
vertex has exactly one outgoing edge with a certain flow level.
Constraints (1c) represent that the flow difference between
the outgoing and incoming edges of each vertex must equal
a single flow unit. Constraints (1d) ensure that the solution
has certain sub-trees within a range from [mj, m{] in level
t € T. Constraint (le) ensures that the solution has 7 bus
edges. Constraints (1f) remove the certain bus edges we do
not use. Note that the problem is still valid if it discards
these decision variables. However, we decided to keep this
constraint to generalize the proposed model. Since the model
is an ILP, the set of decision variables is {x. .} with a length
of E-Q. The rest of the symbols in the problem are the known
parameters.

III. QUANTUM FORMULATION

Quantum annealers can solve optimization problems with
QUBO formulation [13]. The QUBO problem aims to find a
corresponding binary vector x* that minimizes xTQx. The
optimal solution can be written as follows.

x* = argmin, x ' Qx, )

where x is a binary variable vector of a length n. Q
is a symmetric matrix. It is required to reformulate the
constrained ILP to a QUBO with penalties since (2) is
an unconstrained optimization model. The detailed process
is introduced in III-A. Researchers in [13] proposed some
rules for transforming classical constraints to their equivalent
penalty pairs, as shown in TABLE I. Here z; are binary
variables. A is either a matrix or a horizontal vector. b is
a constant vector. For the general inequality in 1, we derive
its corresponding QUBO form according to the guidance of

TABLE I: Commonly Used Constraint-Penalty Pairs

Constraint Equivalent Penalty

1 +x22>1 P(l—z1 — 22 + 2122)2

z1+x2+x3 <1 | Plrize + z123 + 2223)

Ax=b P(Ax —b)?

[9]. P is a user-defined penalty coefficient. For now, there is
no specific route explained in the literature. It often requires
a combination of theoretical understanding, experimentation,
and intuition. Adjusting and refining penalties based on
results and feedback is a crucial part of the process. In
general, the quantum annealer computer is designed to solve
(2) and provide the user with a list of answers and their
corresponding energy (objective function values). We reckon
the answer with the lowest objective function value is the
optimal solution.

A. Quantum Formulation

Now consider the CRP problem (1). We deal with the
objective function and constraints separately.

1) Objective Function: Following the principle of the
QUBO formulation. Objective Function (1a) is reformulated
as a quadratic term (3), which is the initial objective function.

Q Q
deed weatp Yy, > (d—1)ceweq
d=1

ecE = ecE’ d=1
Q
= Qo= (Z TedCeTed+ Y Tealpd— p)cexe,d> .
d=1 \ecFE eckE’
3)

2) Single Outgoing Edge: The single outgoing edge con-
straints (1b) can be reformulated as a quadratic penalty term
(4) and added to the objective function.

Q
S wea=1, VieV

666:— d=1
4)
0 2
=P Y wea—1) , VieV.
eeéj d=1

3) Unit Flow Difference: The flow difference constraints
(1c) can be reformulated as quadratic penalty terms (5) and
added to the objective function.

Q Q
Z dee,d - Z Zdl’é’d =1, Vje V!

eest d=1 ees; d=1
2
Q Q
=P Y dvea— > > dwea—1| , VjeV
ecsf d=1 ees; d=1
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Fig. 2: A CRP Instance for Numerical Validation

4) Sub-tree Type Regulation: Now let us discuss how to
reformulate the constraints (1d). We deal separately with the
upper and lower bounds in constraints (1d).

a) Upper Bound Constraints:

Z Ter <my, VteT

ecE\E'
Szl,
=P Y weety 2o -m)’, WeT, o
e€E\E' i=0
where S} = |log, | mj — rr;in Z Tet

e€EE\E'

According to [13], we introduce slack variables S? to help
us convert the inequality constraints into equality constraints.
Then, the upper bound of the sub-tree type regulation (1d)
can be reformulated as a quadratic penalty term (6) and added
to the objective function.

TABLE II: Solver Access Time Comparison

Detail

Average Executing Time

Model Var. #: E-Q Unit: millisecond(s)
‘W5HS5 Gurobi {969,1105} 51.9280
W5HS Quantum | 32.0485
b) Lower Bound Constraints:
Z xe7t2mi, VteT
e€E\E'
S
i 1\2
= Pt( Z Tet — Z2Z$i,t — mt) 5 Vi S T, (7)
eCE\E' i=0
where S! = |log, [ max Z e — ml
X
e€E\E'

Similarly, here we introduce slack variables S! to help us
convert the inequality constraints into equality constraints.
Then, the lower bound of the sub-tree type regulation (1d)
can be reformulated as a quadratic penalty term (7) and added
to the objective function.

5) Bus Edge Regulation: The bus edge regulation con-
straint (le) can be reformulated as a quadratic penalty terms
(9) and added to the objective function, i.e.,

Q
>, D Tea=m

cCE\E' d=1
o 2 ®)
(¥ Sauem
cCE\E' d=1

6) Special Regulation: The special regulation constraint
(1f) can be reformulated as a quadratic penalty term (9) at
every certain bus edge we do not use. Then, it is added to
the objective function, i.e.,

Ter =0, Vee E\E', Vt¢T

2 ’ 9)
@Peﬂg (xe,t) Ve € E\E s Vit ¢ T.

7) Final QUBO: We sum all QUBO matrices to the final
QUBO as (10). Following the (2), we take x ' QgumX as the
input to the quantum computer. The x contains the original
decision variables and the slack variables we introduced in
(6) and (7). The quantum annealer computer will give us a
list of answers, and we pick the one with the lowest energy as
the final solution. The detailed analysis is in the next section.

Qoum = (3)+ (4)+ (5) + (6) + (7) + (8) + (9).  (10)
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TABLE III: Standard Deviation Comparison

Detail | Average Standard Deviation Gain
Model Unit: 10—3
WS5HS Gurobi 10.2621
99.79%
WS5HS Quantum 0.0214
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Fig. 3: Histogram and Density Graph of 30 Execution At-
tempts of Gurobi & D-Wave’s Quantum computer in the Case
of W =5, H=25 Grid

IV. NUMERICAL VALIDATION

We validate our proposed approach on a hybrid D-Wave
quantum processing unit. The reason to choose a hybrid
quantum computer is that the hybrid system provides a larger
input size than the direct quantum annealing system. [14]
has more details of the hybrid system. We access the D-
Wave system through their Leap™ quantum cloud service
project. We compare our quantum computing approach with
the commercial solver Gurobi. The hardware platform is
AMD™ 3900X, a high-end CPU on the current market.

A. Experiments Setup

In our simulation, we set up different scenarios to evaluate
our approach. Figure 2a is an example in our test bench. “W”
represents the maximum width of the grid. “H” describes the
maximum height of the grid. Since the qubit of the quantum
computer is limited. We choose the grid with 5 units of width
and 5 units of height maximum. We prepared 10 random
scenarios to prevent creating bias, and each graph guarantees
W =5, H = 5. In addition, the decision variable amount
of every problem is 969 or 1105. Moreover, we execute
both quantum and classical approaches 3 times just in case
of unknown randomness. For the sub-tree type regulation
constraint (1d), we set up a rule that the solution must
have at least a level-7 and a level-4 sub-tree in bus edges
(ml = m% = 1). The maximum number of sub-trees in every
level is 2 (myic(y 5 oy = 2). For the bus edge regulation
constraint (le), we set up a rule that we only want 5 bus
edges (m = 5). For other parameters, p and c, are set to one
unit.

B. Simulation Result

Figure 2b and Figure 2c show the optimal solution de-
rived from the quantum computing and classical computing

Density

approaches. Their solutions have at least a level-4 and a level-
7 bus edges. Both are optimal solutions. The success rate of
the quantum computing and classical computing approach
is promising. Although both approaches achieve finding the
optimal solution for every problem, there is a gap between
the two approaches’ performance in terms of solver access
time and robustness.

1) Average solver access time: As shown in Table II, we
test 10 random scenarios of the W = 5, H = 5 grid with
a decision variable size of either 969 or 1105. Compared to
the classical computing approach, The quantum computing
approach has a better average solver access time with a gain
of 38.28%. In addition to that, quantum computing beat the
classical computing approach in almost every scenario and
test. In general, quantum computing has shown its computing
supremacy over the classical computing approach to solving
the CRP.

2) Robustness: In the histogram Figure 3, both sub-graphs
share an identical axis layout. The x-axis is the bins with a
certain time interval. The interval is automatically chosen by
Seaborn, which is a library for making statistical graphics in
Python. The left y-axis is the frequency of the solver access
time within the corresponding time interval. The right y-axis
is the density probability after fitting the result to bins of
certain time intervals. The curve is the density curve of the
solver access time’s frequency.

The solver access time of the classical computing ap-
proach has more samples of outliers than the quantum
computing approach in both test cases, which means the
classical computing approach’s distribution of solver access
time scatters wider than the quantum computing approach.
As Table III states, the quantum computing approach has a
gain of 99.79% (500 times more robust) over the classical
computing approach, implying that the quantum computing
approach is more robust. What’s more, it means that the
quantum computing approach’s computation performance is
not sensitive to the disturbance of the parameters in the
optimization model. Therefore, histograms, density graphs,
and the standard deviation table support that the quantum
computing approach is more robust than the classical com-
puting approach.

3) Analysis: We believe the quantum computing approach
can replace the classical computing approach to solve CRPs
for the following reasons. First, while both achieve the
100% success rate, the quantum computing approach is better
than the classical computing approach regarding average
solver access time with a 38.28% gain. Second, the classical
computing approach is eminently less robust in dealing with
extreme problems, while the quantum computing approach is
surprisingly way more robust, which yields a gain of 99.79%.

Therefore, compared with the classical computing ap-
proach, we believe the quantum computing approach has
more advantages in solving the ILP CRPs.
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V. CONCLUSION

In this paper, we first propose a QUBO model for the
CRP problem based on the classical computing model.
Then, we solve the QUBO-based CRP model by using
the quantum annealer. The simulation study demonstrates
that quantum computing performs better than the classical
computing approach. From the solution quality perspective,
firstly, our quantum computing approach converges and re-
turns the correct optimal result as the classical computing
algorithm. Secondly, Although limited by the total qubit
amount, the quantum computing approach has a faster solver
access time in solving medium-size CRPs. In addition, our
approach guarantees robustness when it meets extreme CRP
cases. Therefore, we can conclude that the proposed quantum
computing approach is a new tool for solving CRP with great
potential.
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