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Abstract—The coordinated operations of power distribution
systems with networked microgrids can provide several benefits,
such as improved reliability and resiliency of the power system,
and the ability to incorporate renewable energy sources. However,
limited communication bandwidth or privacy concerns can pose
challenges to the operation of microgrids in power distribution
systems. In this paper, we present a decentralized model and algo-
rithm for the coordinated operation of power distribution systems
with networked microgrids. The proposed approaches are based
on distributed optimization and communication networks to
exchange limited information among the different agents of the
power system. Simulation results demonstrate the effectiveness
of the proposed methods.

Index Terms—Coordinated Operation, Power Distribution Sys-
tems, Networked Microgrids, Distributed Algorithms

I. INTRODUCTION

The power industry is actively embracing networked mi-
crogrids as a promising solution to enhance the efficiency
and resilience of power distribution grids. Microgrids, when
interconnected with each other and the main power distribution
system, enable resource sharing and dynamic balancing of
supply and demand, leading to improved utilization of re-
newable energy, efficient energy storage, smart inverters [1]
and enhanced grid reliability. Moreover, networked microgrids
facilitate the seamless integration of decentralized energy
sources like solar panels and electric vehicles into the power
distribution system, as highlighted in previous research [2].

However, the coordinated operation of power distribution
systems with networked microgrids poses challenges. Firstly,
due to the increasing uncertainty of both the demand response
and the availability of renewable energy sources, the operation
of the power distribution system needs to be optimized in
real-time. The increasing adoption of electric vehicles (EVs)
has the potential to strain the existing distribution network,
as the charging of EVs can lead to higher demand for elec-
tricity, particularly during peak hours. While renewable energy
sources are dependent on weather conditions and are therefore
not always available when needed due to the intermittent
nature [3].

Secondly, limited communication bandwidth or privacy con-
cerns can pose challenges to the multi-agent system. Distribu-
tion networks usually have a very limited amount of data that
can be transmitted in a given period of time. In a microgrid,

communication bandwidth may be limited due to the size and
scale of the grid, or due to the availability of communication
infrastructure. Limited communication bandwidth can make it
difficult for microgrid control systems to exchange data and
make decisions in real time, which can affect the stability
and efficiency of the power grid. It can also make it difficult
for microgrid users to access information about their energy
usage or to participate in demand response programs. Privacy
concerns can also impact the operation of a microgrid. Most
microgrid hardware and software are proprietary, and the data
collected by the microgrid is often owned by the microgrid
operator. Microgrids usually refuse to disclose their data
to other agents, such as the distribution system operators
(DSOs). It is therefore important to develop a decentralized
optimization framework to coordinate the operation of the
power distribution system while not having access to the data
of the other components of the power distribution system.

In this context, decentralized models and algorithms are
preferred to optimize the operation of the power distribution
system while taking into account the different objectives and
constraints of the different components. An effective and
robust communication framework is needed to exchange infor-
mation among the different components of the power system,
and to ensure the security and privacy of the data exchanged.
Many existing works have focused on the coordinated opera-
tion of power distribution systems with networked microgrids.
We refer to the survey paper [4] for a comprehensive review
of the literature. [5] proposed a distributed sub-gradient based
algorithm for the coordination of renewable generators in a
microgrid. [6] proposed a fully distributed scalable multiple
agent algorithm for optimal reactive control. [7] proposed
a distributed algorithm for the voltage regulation in power
distribution systems with high penetration of renewable energy
sources and battery energy storage systems (BESS). [8] pro-
posed a distributed algorithm based on the alternative direction
method of multipliers (ADMM) for the optimal power flow
problem in a radial distribution system. The prior works
discussed several important aspects of distributed algorithms
for power distribution systems, however, the coordination
of BESSs, renewable energy sources and power distribution
systems networks can be further enhanced by considering
the microgrid integration, which is rarely investigated in the
literature.

The ADMM is a distributed optimization algorithm widely
used in the literature to solve distributed optimization prob-979-8-3503-3540-8/23/$31.00 ©2023 IEEE
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lems [9]. In [10], a self-adaptive penalty parameter update
scheme for ADMM was proposed. This paper presents decen-
tralized models and algorithms for the coordinated operation
of power distribution systems with networked microgrids. The
proposed approaches are based on optimization techniques
and use communication networks to exchange information
among the different components of the power distribution
system. ADMM is incorporated into the proposed framework
to effectively solve the decentralized optimization problem.
The effectiveness of the proposed methods is demonstrated
through simulation results.

Our main contributions are summarized as follows:

• We proposed a distributed optimization framework for
the coordinated operation of power distribution systems
with microgrids. The proposed strategy is based on a
consensus-based optimization algorithm and is designed
to handle the complexity of such systems under the
assumption of limited communication.

• We incorporated the ADMM algorithm into the proposed
framework to effectively solve the optimization problem
in a distributed manner.

• We studied the impact of increasing penetration of renew-
able energy resources on the effectiveness of the proposed
approach through simulation results.

The remainder of this paper is organized as follows. Section
II presents the system model and the problem formulation.
Section III presents the decentralized algorithms for the co-
ordinated operation of the power distribution system. Section
IV shows the simulation results and Section V discusses the
conclusions and future work.

II. MATHEMATICAL MODEL OF DECENTRALIZED POWER
DISTRIBUTION SYSTEM COORDINATION

In this section, we first present a centralized coordination
model for the power distribution system, then we present
decentralized models for the coordinated operation model by
considering the tree structure of the power distribution system.

A. Coordinated Model of Power Distribution System

In this section, we describe the centralized coordination
model (CCM) for the power distribution system, where the
DSO collects all the information from the microgrids and then
makes the decision for the coordinated operation of the power
distribution system.

Assume N is the set of nodes on the main branch of the
DSO. With out loss of generality, let n = 1 be the root node.
let Mg be the set of nodes of MG g, where g = 1, 2, · · · , G,
and let M =

⋃
g∈G

Mg . Let J ⊂ N be the nodes connected

to a MG. B = N
∐

M is the set of all buses. We consider
a power distribution system with |G| microgrids connected to
the main branch as subtrees. Each microgrid g is equipped
with several renewable energy sources, an energy storage
system, and a load demand. The objective is to optimize the
operation of the power distribution system while taking into

account the different objectives and constraints of the different
components.

The CCM model in (1) is a centralized operation model
considering the coordination of DSO and MGs to minimize the
total generation cost while satisfying the active and reactive
power balance constraints. In model (1), T denotes index set
of operation time span. T = |T |. B denotes index set of
buses. W denotes index set of renewable energy sources. G
denotes index set of thermal units. D denotes index set of
loads. S denotes index set of storage units. Variables p and
q denote the active and reactive power, respectively. Variables
u denotes the voltage magnitude. Variables f denotes the line
flow. Linear functions cWit and cGit denote the generation cost
of renewable energy sources and thermal units, respectively.
λt is the electricity price in the bulk power system.

In model (1), objective function is the minimization of
the total generation cost of the power distribution system,
including the BESSs charging/discharging cost, fixed and per
unit of capacity cost of BESSs, and the generation cost of
thermal units. (1b) and (1c) represent the active and reactive
power balance constraints of the DSO. (1d) and (1e) represent
the voltage constraints of the DSO. (1f) represents the line
capacity constraint. (1g) - (1r) represent the box constraints of
the variables. (1s) represents the BESS trajectory constraint.

min
∑
t∈T

(
∑
i∈W

cWit (p
W
it ) +

∑
i∈G

cGit(p
G
it)−

∑
b∈B

uD
b,t(p

D
b,t)

+
∑
b∈B

λt(p
root
b,t +

∑
i∈Sb

pS,ci,t −
∑
i∈Sb

pS,di,t )) (1a)

s.t.
∑

(b,n)∈L

fP
b,n,t −

∑
(m,b)∈L

fP
m,b,t = 1b∈Rproot

b,t +

∑
i∈Wb

pWi,t −
∑
i∈Sb

pS,ci,t +
∑
i∈Sb

pS,di,t +
∑
i∈Gb

pGi,t − pDb,t,

∀b ∈ B, ∀t ∈ T ; (1b)∑
(b,n)∈L

fQ
b,n,t −

∑
(m,b)∈L

fQ
m,b,t = 1b∈Rqroot

b,t +

∑
i∈Wb

qWi,t −
∑
i∈Sb

qS,ci,t +
∑
i∈Sb

qS,di,t +
∑
i∈Gb

qGi,t − qDb,t,

∀b ∈ B, ∀t ∈ T ; (1c)

um,t − un,t = 2
(
rm,n · fP

m,n,t + xm,n · fQ
m,n,t

)
− (r2m,n + x2

m,n) · lm,n,t, ∀(m,n) ∈ L, ∀t ∈ T ; (1d)

lm,n,tum,t = (fP
m,n,t)

2 + (fQ
m,n,t)

2,

∀(m,n) ∈ L, ∀t ∈ T ; (1e)

fP2
m,n,t + fQ2

m,n,t ≤ Sm,n, ∀(m,n) ∈ L, ∀t ∈ T ; (1f)

V 2
b ≤ ub,t ≤ V

2

b , ∀b ∈ B, ∀t ∈ T ; (1g)

PD
b ≤ pDb,t ≤ PD

b , ∀b ∈ B, ∀t ∈ T ; (1h)

QD
b ≤ qDb,t ≤ QD

b , ∀b ∈ B, ∀t ∈ T ; (1i)

PW
i ≤ pWi,t ≤ PW

i , ∀i ∈ W , ∀t ∈ T ; (1j)

QW
i ≤ qWi,t ≤ QW

i , ∀i ∈ W , ∀t ∈ T ; (1k)
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PG
i ≤ pGi,t ≤ PG

i , ∀i ∈ G, ∀t ∈ T ; (1l)

QG
i ≤ qGi,t ≤ QG

i , ∀i ∈ G, ∀t ∈ T ; (1m)

PS,c
i ≤ pS,ci,t ≤ P

S,c

i , ∀i ∈ S, ∀t ∈ T ; (1n)

QS,c

i
≤ qS,ci,t ≤ Q

S,c

i , ∀i ∈ S, ∀t ∈ T ; (1o)

PS,d
i ≤ pS,di,t ≤ P

S,d

i , ∀i ∈ S, ∀t ∈ T ; (1p)

QS,d

i
≤ qS,di,t ≤ Q

S,d

i , ∀i ∈ S, ∀t ∈ T ; (1q)

Si ≤ si,t ≤ Si, ∀t ∈ T ; (1r)

si,t+1=si,t+pS,ci,t η
c
t

∆

E
−
pS,di,t ∆

ηdtE
, ∀i ∈ S, ∀t ∈ T . (1s)

III. ALGORITHM

In this section, we present a decentralized consensus algo-
rithm to solve the CCM problem.

We first present a algorithm to solve the CCM problem
without BESS, and then we present a algorithm to solve the
CCM problem with BESS by replicating the algorithm for the
CCM problem without BESS. We first decompose the CCM
problem into local problems of the DSO and the MGs.

Subproblem for DSO:

min
∑
t∈T

(
∑

i∈G(DSO)

cGit(p
G
it)−

∑
b∈B(DSO)

uD
b,t(p

D
b,t)+λt(p

root
1,t ))

(2a)

s.t. fP
1,2,t = proot

1,t − pD1,t, ∀t ∈ T ; (2b)

fQ
1,2,t = qroot

1,t − qD1,t, ∀t ∈ T ; (2c)∑
(n,m)∈L

fP
n,m,t −

∑
(m,n)∈L

fP
m,n,t = pGn,t − pDn,t,

∀n ∈ N \ (J ∪ {1}), ∀t ∈ T ; (2d)∑
(n,m)∈L

fQ
n,m,t −

∑
(m,n)∈L

fQ
m,n,t = qGn,t − qDn,t,

∀n ∈ N \ (J ∪ {1}), ∀t ∈ T ; (2e)∑
(n,m)∈L

fP
n,m,t + fP

n,j(n),t −
∑

(m,n)∈L

fP
m,n,t = pGn,t − pDn,t,

∀n ∈ J, ∀t ∈ T ; (2f)∑
(n,m)∈L

fQ
n,m,t + fQ

n,j(n),t −
∑

(m,n)∈L

fQ
m,n,t = qGn,t − qDn,t,

∀n ∈ J, ∀t ∈ T ; (2g)

um,t − un,t = 2
(
rm,n · fP

m,n,t + xm,n · fQ
m,n,t

)
− (r2m,n + x2

m,n) · lm,n,t, ∀(m,n) ∈ L, ∀t ∈ T ; (2h)

lm,n,tum,t = (fP
m,n,t)

2 + (fQ
m,n,t)

2,

∀(m,n) ∈ L, ∀t ∈ T ; (2i)

fP2
m,n,t + fQ2

m,n,t ≤ Sm,n, ∀(m,n) ∈ L, ∀t ∈ T . (2j)

Subproblem for MG g:

min
∑
t∈T

(
∑
i∈W

cWit (p
W
it ) +

∑
i∈G

cGit(p
G
it)−

∑
b∈B

uD
b,t(p

D
b,t)) (3a)

s.t.
∑

(n,m)∈L

fP
n,m,t −

∑
(m,n)∈L

fP
m,n,t =

∑
i∈Wn

pWi,t

+
∑
i∈Gn

pGi,t − pDn,t, ∀n ∈ Mg, ∀t ∈ T ; (3b)∑
(n,m)∈L

fQ
n,m,t −

∑
(m,n)∈L

fQ
m,n,t =

∑
i∈Wn

qWi,t

+
∑
i∈Gn

qGi,t − qDn,t, ∀n ∈ Mg, ∀t ∈ T ; (3c)

um,t − un,t = 2
(
rm,n · fP

m,n,t + xm,n · fQ
m,n,t

)
− (r2m,n + x2

m,n) · lm,n,t, ∀(m,n) ∈ L, ∀t ∈ T ; (3d)

lm,n,tum,t = (fP
m,n,t)

2 + (fQ
m,n,t)

2,

∀(m,n) ∈ L, ∀t ∈ T ; (3e)

fP2
m,n,t + fQ2

m,n,t ≤ Sm,n, ∀(m,n) ∈ L, ∀t ∈ T . (3f)

Now we are ready to present the proposed algorithm. In our
algorithm, we assume DSO and each MG have a copy of all
the variables of the CCM problem 1. In order to distinguish
the variables of the DSO and the MG, we use the superscript
(DSO) and (MG) to denote the variables of the DSO and the
MG, respectively. We apply the ADMM method to solve them.
We add a regularization term to (2a) and (3a). Assume λ is the
Lagrange multiplier of the constraint x(DSO)

i = x
(MG)
i , ∀i ∈

X , where X is the set of all variables of the CCM problem
that DSO and MG share in common. In particular, in this
algorithm, X includes fP

n,j(n),t, f
Q
n,j(n),t, uj(n),t, where j(n)

is the connection node of the connected MG. The augmented
Lagrangian function of the DSO problem is given by

min
∑
t∈T

(
∑

i∈G(DSO)

cGit(p
G
it)−

∑
b∈B(DSO)

uD
b,t(p

D
b,t) + λt(p

root
1,t ))

+ (λP
n,j(n))((f

P
n,j(n))

(DSO) − (fP
n,j(n))

(MG))

+
ρ

2
((fP

n,j(n))
(DSO) − (fP

n,j(n))
(MG))2

+ (λQ
n,j(n))((f

Q
n,j(n))

(DSO) − (fQ
n,j(n))

(MG))

+
ρ

2
((fQ

n,j(n))
(DSO) − (fQ

n,j(n))
(MG))2

+ (λu
n,j(n))((un,j(n))

(DSO) − (un,j(n))
(MG))

+
ρ

2
((un,j(n))

(DSO) − (un,j(n))
(MG))2 (4)

The augmented Lagrangian function of the MG problem is
given by

min
∑
t∈T

(
∑
i∈W

cWit (p
W
it ) +

∑
i∈G

cGit(p
G
it)−

∑
b∈B

uD
b,t(p

D
b,t))

+ (λP
n,j(n))((f

P
n,j(n))

(DSO) − (fP
n,j(n))

(MG))

+
ρ

2
((fP

n,j(n))
(DSO) − (fP

n,j(n))
(MG))2

+ (λQ
n,j(n))((f

Q
n,j(n))

(DSO) − (fQ
n,j(n))

(MG))

+
ρ

2
((fQ

n,j(n))
(DSO) − (fQ

n,j(n))
(MG))2

+ (λu
n,j(n))((un,j(n))

(DSO) − (un,j(n))
(MG))
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+
ρ

2
((un,j(n))

(DSO) − (un,j(n))
(MG))2 (5)

Algorithm 1 Consensus Algorithm
Begin

DSO solves the subproblem (2).
DSO broadcasts (fP

n,j(n))
(DSO) and (fQ

n,j(n))
(DSO) and

(un,j(n))
(DSO) to all MGs;

Each MG solves the subproblem (3) with (fP
n,j(n))

(DSO)

and (fQ
n,j(n))

(DSO) and (un,j(n))
(DSO);

while Not Converged do
Update ρ as described in [10].
MG sends (fP

n,j(n))
(MG) and (fQ

n,j(n))
(MG) and

(un,j(n))
(MG) and λ to DSO;

DSO solves the subproblem (2) with (fP
n,j(n))

(MG)

and (fQ
n,j(n))

(MG) and (un,j(n))
(MG) and λ with subgradi-

ent method;
DSO broadcasts (fP

n,j(n))
(DSO) and (fQ

n,j(n))
(DSO)

and (un,j(n))
(DSO) to all MGs;

Each MG solves the subproblem (3) with
(fP

n,j(n))
(DSO) and (fQ

n,j(n))
(DSO) and (un,j(n))

(DSO);
end while

End

We use the adaptive penalty parameter update scheme
proposed in [10].

In order to generalize the proposed algorithm to the case
of including BESSs, assume the schedule period of BESSs
is TBESS , it suffices to solve the subproblems (2) and (3)
for TBESS time periods. In addition, the information shared
between the DSO and the MGs should be replicated as a vector
of length TBESS .

IV. NUMERICAL EXPERIMENTS

We test proposed algorithms on the IEEE 33-bus and IEEE
123-bus distribution systems. The performance of both decen-
tralized and centralized approaches are evaluated to demon-
strate the advantages of proposed approach. All optimization
problems are solving by IPOPT with i7-8750H core and 32GB
RAM. To study a system with renewable energy, we modified
the IEEE 33-bus and 123-bus systems. Several solar stations
are connected to provide renewable energy, and several BESSs
are connected to the system for peak shaving.

Table I-II compare the computing efficiency and commu-
nication cost of the centralized and decentralized algorithms
on the 33-bus and 123-bus test systems, respectively. We use
different numbers of solar stations and BESSs to test the
scalability of the algorithms. Moreover, we use high and low
wholesale electricity price volatility scenarios to test the ro-
bustness of the algorithms, which is denoted by PV-H and PV-
L, respectively. The tables show that the decentralized algo-
rithm can solve the CCM problem as the centralized algorithm
with much lower computing time and limited communication
resources. Moreover, higher price volatility can reduce the
computing efficiency of the centralized algorithm, but has

TABLE I
COMPUTING EFFICIENCY AND COMMUNICATION INDICES OF IEEE 33-BUS

SYSTEM

Model Centralized Decentralized

#PV #BESS CPU Time (s) CPU Time (s) Communication (KB)
PV-H PV-L PV-H PV-L PV-H PV-L

3 0 98.15 92.74 53.57 58.21 10.6 10.5
3 3 174.35 168.24 72.23 71.69 11.5 11.7
3 5 272.37 266.08 115.52 110.26 13.1 12.9
4 0 103.36 109.87 70.12 69.97 11.5 11.2
4 3 185.83 182.24 77.84 76.56 12.4 12.6
4 5 249.50 262.63 123.57 119.95 14.2 13.6
5 0 115.49 128.69 79.54 68.11 11.5 11.6
5 3 203.95 205.24 98.61 86.59 12.3 12.2
5 5 303.69 278.31 152.46 132.24 14.1 13.8

TABLE II
COMPUTING EFFICIENCY AND COMMUNICATION INDICES OF IEEE

123-BUS SYSTEM

Model Centralized Decentralized

#PV #BESS CPU Time (s) CPU Time (s) Communication (KB)
PV-H PV-L PV-H PV-L PV-H PV-L

3 0 269.04 241.00 146.28 155.46 30.54 31.62
3 3 438.12 435.63 185.08 198.40 35.51 34.70
3 5 699.66 705.23 279.42 299.12 38.93 39.75
4 0 286.47 250.31 166.30 168.33 32.66 32.31
4 3 460.12 446.25 183.91 183.86 35.70 37.65
4 5 776.56 726.84 294.88 297.38 40.21 38.15
5 0 290.22 274.59 187.38 172.13 36.49 35.32
5 3 501.23 498.61 239.36 231.48 36.32 34.77
5 5 790.58 789.01 347.39 334.47 39.84 39.51

less impact on the computing efficiency of the decentralized
algorithm.

Figure 1 shows the computational time of the centralized
and decentralized algorithms on the 33-bus and 123-bus test
systems with different BESS penetration levels. Thicker lines
represent the 123-bus system, and thinner lines represent the
33-bus system. Solid lines represent the centralized algorithm,
and dashed lines represent the decentralized algorithm. The
computational time increases with the increasing BESS pene-
tration, since the BESSs need to be scheduled in a whole time
horizon. The figure shows that the computational efficiency
of the decentralized algorithm is higher than the centralized
algorithm on each test system and BESS penetration level.
Moreover, the computational time of the decentralized algo-
rithm is much shorter than the centralized algorithm when the
BESS penetration is high.

Similar to Figure 1, Figure 2 shows the computational time
of the centralized and decentralized algorithms on the 33-
bus and 123-bus test systems with different solar stations
penetration levels. From the figure, we can observe that
the impact of the increasing solar stations penetration on
the computational efficiency is smaller than the impact of
the BESS penetration. From both Figures 1 and 2, we can
observe that the computational costs on the 123-bus system are
higher than the 33-bus system, since larger test systems have
more buses and microgrids and hence require more iterations
to converge. Both figures also show that the computational
efficiency of the decentralized algorithm is higher than the
centralized algorithm, and spends less time to solve the cases
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Fig. 1. Impact of the BESS Penetration on the Algorithm Efficiency

Fig. 2. Impact of the Solar Stations Penetration on the Algorithm Efficiency

with high solar stations penetration and BESS penetration.
Figure 3 and Figure 4 show the communication cost of

the decentralized algorithms on the 33-bus and 123-bus test
systems with different solar stations and BESS penetration
levels, respectively. We use two bulk power system electricity
price scenarios to test the robustness of the algorithms. The
first scenario is the high wholesale electricity price volatility
scenario, which is denoted by High PV. The second scenario
is the low wholesale electricity price volatility scenario, which
is denoted by Low PV. Figure 3 shows that the communication
cost remains the same when the solar stations penetration
increases. While Figure 4 shows that the communication cost
increases slightly when the BESS penetration increases. As the
communication cost is proportional to the number of iterations,
larger test systems require more iterations to converge and
hence have higher communication cost.

V. CONCLUSION

To address the communication efficiency and privacy con-
cerns of power distributed systems, this paper proposed a de-
centralized algorithm for the operations of distribution power
systems and networked microgrids. Our simulation results
demonstrated that, with limited communication resources, the
proposed approach can maintain the same level of system
performance as the centralized approach. Our future work
will focus on designing asynchronous algorithms to further
improve the computational and communicational efficiency of
the decentralized approach.
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Fig. 3. Impact of the Solar Stations Penetration on the Algorithm Commu-
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Fig. 4. Impact of the BESS Penetration on the Algorithm Communication
Cost
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