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Optimal Data Center Energy Management with
Hybrid Quantum-Classical Multi-Cuts Benders’

Decomposition Method
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Abstract—The flourishing of the data era has led to a higher
demand for hyper-scale data centers, resulting in a great energy
gap. It is necessary to comprehensively analyze the energy
management in data centers to minimize the operation cost. In
this paper, we first propose a new optimal energy management
model for data centers by considering energy consumers such
as heating, ventilation, air conditioning (HVAC), server, solar,
and battery. Then, inspired by the great computation power
of quantum computing techniques, we propose a new hybrid
quantum-classical multi-cuts Benders’ decomposition algorithm,
which utilizes quantum advantages in parallel computing for
generating multi-cuts in a single iteration. Finally, experiments
are conducted to verify the effectiveness and efficiency of the
novel model and algorithms.
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Quantum Computing, Benders’ Decomposition

NOMENCLATURE

Abbreviation
AC Air conditioning
CT Condense tower
DC Data center
HVAC Heating, ventilation, and air conditioning
LB Lower-bound
Max Maximum
Min Mimimum
TL Thermal load
UB Upper-bound
Indices
i Index for zones
j Index for chillers or cooling towers
t Index for time periods
Sets
I Set of zones
J chiller Set of chillers
J tower Set of cooling towers
N (i) Set of neighbor nodes of zone i
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T Set of time periods
Parameters

βchiller
m Coefficient of mth item in chiller power

βe,g
t Electricity price of the local grid at time t

βpump
m Coefficient of mth item in pump power

βtower
m Coefficient of mth item in cooling tower power

βvent
m Coefficient of mth item in ventilation power

χi Weight factor for zone i in the data center
ṁZone

i Air mass flow into the zone i
ηchar Battery charging efficiency
ηdis Battery discharging efficiency
ξB Max energy requirement of battery
pchr
t Max charging power to battery at time t

pdis
t Max discharging power from battery at time t

ρair Density of air
θi,t Heat dissipation to zone i at time t
ξB Minimum energy reserve of battery
vvent
t Minimum ventilation airflow speed at time t

ca,s Air specific heat capacity
cw,s Water specific heat capacity
CZone

i Air heat capacity of Zone i
EB,state

inital Energy stored in Battery at time 0
EDC

t Energy demands by servers at time t
Emisc

t Energy demands by miscellaneous at time t
ES

t Energy generated by solar system at time t
hi Height of data center
mchiller

j jth chiller water flow rate
mtower

j jth condense tower water flow rate
RZone

i,i′ Total resistance between adjacent zones (i, i′)
SZone
i Area of zone i

TAC,+
i,t UB of zone i’s AC temperature at time t

TAC,−
i,t LB of zone i’s AC temperature at time t

T chwr
t Return chilled water temperature t

T chws
t Supply chilled water temperature t

T conwr
t Return condense water temperature at time t

T conws
t Supply condense water temperature at time t

T out
t Outside ambient temperature at time t

T Zone,+
i,t Upper-bound of zone i’s temperature at time t

T Zone,-
i,t Lower-bound of zone i’s temperature at time t

T Zone
i,inital Zone temperature of zone i at time 0

vAC
t Supply airflow rate at time t
vout
t Outside ambient airflow rate at time t
Binary Decision Variables

uchar
t Charging mode of battery at time t

udis
t Discharging mode of battery at time t
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xchiller
j,t Status of chiller j at time t

xtower
j,t Status of cooling tower j at time t

Integer Decision Variables
echiller
t Energy demands by all chillers at time t
etower
t Energy demands by all CTs at time t

Continuous Decision Variables
∆EB

t Battery level changes at time t
EB,state

t Energy stored in battery at time t
EG

t Energy demands of data-center at time t
EHVAC

t Energy demands by HVAC at time t
epump
t Energy demands by pump at time t
event
t Energy demands by ventilation at time t
Lheat
t Total TL that needs to be removed from DC

pchar
t Charging power to battery at time t

pdis
t Discharging power from battery at time t

TAC
i,t AC temperature of zone i at time t

T Zone
i,t Ambient air temperature of zone i at time t

vreturn
t Returning airflow rate at time t
vvent
t Ventilation airflow rate at time t

I. INTRODUCTION

W ITH the proliferation of technologies such as cloud
computing, the Internet of Things (IoT), 5G, aug-

mented reality/virtual reality (AR/VR), and others, massive
data centers have been built to meet the tremendous demand
for computing resources. In data center operations, energy
cost is a critical concern for the sustainable development of
data centers. According to a recent study, many individual-
operated data centers worldwide, such as Google in Council
Bluffs, Iowa, and China Mobile in Hohhot, Inner Mongolia,
consume more than 1 megawatt. As data centers are energy-
intensive businesses that are anticipated to use 1% or more of
the world’s electricity, these trends have a significant impact
on the world’s energy demand and need to be investigated
carefully and thoroughly [1], [2].

Concerns about running expenses at data centers have been
exacerbated by recent changes in energy prices and carbon tax
regulations. Data centers must manage their energy consump-
tion wisely as the energy cost does take up a great portion
of operation expenses. [3] has shown the importance of the
HVAC units and IT units to the data center’s energy gap. As
it is illustrated in the paper, 75% of the total electric energy
consumed by data centers was used by the rack critical loads
(IT units), 11% by chillers, 9% by computer room air handler
(CRAH) units, 1% by the lighting system, and around 4% by
pumps. Stable operation is critical to data centers and the main
energy source must be protected from interference.

Many papers have studied the energy management problem
in data centers’ battery systems, HAVC systems, and chillers.
For the battery system, [4], [5] proposed an optimization to
the battery with cutting-edge technology to ensure the steady
functioning of the data center but also help data centers lower
operating expenses in accordance with the energy distribution
of time domains in the market’s energy price optimization.
For the HVAC system, [6] proposed a model for the HVAC
system and utilized deep reinforcement learning to optimize
the HVAC system operation. Ultimately, it realizes the capabil-
ity to schedule data center workloads in mixed-use buildings

jointly. For the chiller, [7] proposed a data center chiller system
model. It adopted deep reinforcement learning to manage the
electricity cost while prevent from overheating in the server
zone. For the overall cost management of a data center,
[8] proposed a model predictive control (MPC) formulation
that contains some of the electrical load components in the
data center and HVAC loads. Besides that, the model also
considers solar energy and battery storage and it performs
well to some extent. However, these works did not establish
a comprehensive model for the energy system optimization
problem of multiple HVAC equipment (e.g., chillers and
cooling towers), batteries, renewable energies, and electrical
loads. Accordingly, we proposed a detailed cost-driven data
center energy management model in this paper that includes
every component listed above.

In recent years, quantum computing (QC) has emerged as a
powerful optimization tool, as it is a new paradigm for comput-
ing that has enormous potential, using quantum superposition
and entanglement. QC has demonstrated quantum supremacy
in problems like Grover’s Algorithm [9] that allow for parallel
computing. With advances in theory and manufacturing, many
high-tech companies are competing in two quantum comput-
ing methods: the analog quantum model and the universal
quantum gate model. In the universal quantum gate model,
the quantum approximate optimization algorithm (QAOA)
has been proposed and has shown promise for overcoming
classical computers’ barriers [10]. On the other track, papers
[11] and [12] have shown decent results for job scheduling
and classical optimization problems using quantum annealing.
There is optimism about the potential applications of QC
in the future, including machine learning, cloud computing,
networking, communication, and more [13], [14]. D-Wave
currently offers the quantum adiabatic annealer computer on
the market with the most qubits of all the candidates. Inspired
by the Ising model, D-Wave’s quantum annealer computer
is able to solve integer linear programming (ILP) problems
by converting an ILP into a quadratic unconstrained binary
optimization (QUBO) model, which depicts the energy state
with coupling qubits interaction and externally applied fields.

As a result, some researchers are aware of QC’s potential
in solving large-scale complex systems and investigate the
possibility of whether it could be applied in energy fields.
It emphasizes the QC’s potential in unit commitment (UC),
resource planning, and load scheduling [15]. Then, as noted
above, the QAOA becomes a novel resolution to the UC
problem. Paper [16] introduced the hybrid quantum distributed
algorithm, which is the distributed quantum surrogate La-
grangian relaxation (D-QSLR), and used it to solve a number
of common UC problems. It demonstrates D-QSLR’s compu-
tational effectiveness and demonstrates its enormous potential
in UC optimization by observing that the algorithm maintains
powerful convergence abilities and accurate output even as the
system scale increases. Besides that, thanks to the researcher
in [17], we can convert an NP-hard mixed integer linear
programming (MILP) problem into a two-stage model to solve
the question while the master problem has a shape close to
ILP. This provides an opportunity for researchers in [18] to
employ quantum computers in the ILP stage of solving MILP
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problems. There are some pioneers who have applied this idea
in the energy field. On the basis of Benders’ decomposition
and QAOA, paper [19] provides a hybrid quantum-classical
optimization algorithm for the UC problem. The paper intro-
duces a method for employing various cut selection criteria
and tactics to control the size of the master problem (MAP)
by using quantum computing to elicit and optimize a subset of
cuts that will be introduced in each iteration of the Benders’
decomposition (BD) scheme.

Because we recognize the importance of modeling for data
centers and the powerful parallel computing capabilities of
quantum computers, we developed a MILP model for a data
center that is compatible with quantum computers and used a
QC-assisted algorithm to investigate the possibilities of data
center energy distribution and optimize operating costs. In
the field of energy optimization, BD is widely employed for
solving MILP problems in microgrids ( [20], [21]), UC ( [22],
[23]). As a result, we aim to enhance the BD algorithm so that
it can utilize the powerful computing capabilities of quantum
computers and has better performance.

However, there are several obstacles in building the model,
designing the algorithm, and simulation. The first difficulty
is how to build a general linear model that covers as much
data center equipment as possible. The second challenge is
how to design a hybrid quantum-classical algorithm that takes
fewer iterations to solve the corresponding problem above.
In addition, the third difficulty is how to investigate how
different multi-cuts strategies would affect the iteration of
hybrid quantum-classical multi-cuts Benders’ decomposition
(HQCMBD). Research on this topic is currently lacking and
has no predecessor. To overcome the above challenges, this
paper presents a MILP model for a normal data center that
contains every essential electric load, battery, and renewable
energy. Especially in HVAC, for the universality of the prob-
lem, we consider each chiller and cooling tower as an individ-
ual to consider the final scheduling. For the second challenge,
we overcome this issue by proposing a two-stage HQCMBD
algorithm with the D-Wave quantum annealer computer. We
employ quantum computers in solving the master problem,
which can provide multiple feasible solutions. Then multiple
subproblems are generated based on these feasible solutions.
Each subproblem will return a cut for the master problem.
Then we will have multi-cuts at each iteration which further
leads to a speedup of the solving process. Finally, we set up
some cases to investigate how different multi-cuts strategies
would affect the iteration of HQCMBD. The contributions of
this paper are summarized as follows:

• We propose a novel, detailed model for the data center
in a MILP formulation. It contains every essential part
of a data center, including electric loads, batteries, and
renewable energy.

• We propose a hybrid quantum-classical multi-cuts Ben-
ders’ decomposition algorithm to find the solution for the
MILP problem of our data center model.

• In the context of hybrid quantum-classical multi-cuts
classical Benders’ decomposition, we look into iterations
belonging to several multi-cuts strategies with various
cases. Our experiments demonstrate that while increasing

the number of cuts every iteration will result in improved
iteration results, there is an ideal saddle point for the
number of cuts per iteration with the defined iteration
efficiency.

The rest of this paper is organized as follows: Section II
introduces our system model for the data center. Section III
illustrates our hybrid quantum-classical multi-cuts Benders’
decomposition algorithm. Section IV first validates our al-
gorithm and model by showing the corresponding simulation
and then demonstrates and analysis how different multi-cuts
strategies affect the final iteration outcomes. Finally, Section
V concludes the whole paper and gives a brief overview of
future work.

II. OPTIMAL ENERGY MANAGEMENT MODEL

A. Data Center Energy Modeling Overview

The data center energy management system problem is to
minimize the operation cost of a data center’s energy consump-
tion The data center energy management system problem is
to minimize the operation cost of a data center’s energy con-
sumption within a time interval t ∈ T and T = {1, 2, ...., T}.
∆t is the length of time interval, and T∆t is the full-time
period that we are interested in. In addition, t = 0 is just a
notation for the device’s or ambient initial status, and it will not
account for cost objective calculation. Assume EG

t represents
the electricity demand of the data center at time t, and βe,g

t is
the real-time electricity price on the main grid. The cost can
be calculated as follows:

f(·) =
∑
t∈T

βe,g
t · EG

t , (1a)

EG
t = EHVAC

t + EDC
t +∆EB

t − ES
t + Emisc

t ∀t ∈ T , (1b)

EHVAC
t =

∑
name∈list

ename
t ∀t ∈ T , (1c)

list = {AC, vent, pump, chiller, tower} .

Figure 1 visualizes an overview of our energy system
modeling of a data center. Here, (1a) states that the total
cost is a sum of the product of real-time electricity price βe,g

t

and external energy demand EG
t . (1b) show what is external

energy demand made of. (1c) list every energy consumer under
EHVAC

t . Besides the battery, these terms consume energy at
every time interval.

• EDC: Energy demand from data center operations, in-
cluding energy consumed by servers, is one of the large
energy demands in data center operations. It includes
the energy consumed by servers for data processing,
storage, transmission, and I/O operation. This term is
either forecast or scheduled, and it is a known value in
every time interval.

• EHVAC: In (1c), multiple electrical loads make up the
energy demand of the HVAC system. These fractions
include energy consumed by some fans in air conditioners
for producing a specific amount of airflow (eAC), and
other fans for delivering ventilation air (event). In addition,
cooling equipment such as water pumps (epump), chillers
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Fig. 1: Energy system model overview for a data center

(echiller) and cooling towers (etower) also contribute to
the energy demand from the HVAC system. This term
is varied, and it is a variable that we need to optimize
within the period.

• Emisc: It is the energy demand from other load instances,
such as lighting systems and surveillance appliances. In
our model, we take it as miscellaneous demand and it is
a constant number in every time interval.

Besides that, there are various electricity sources coming
from both privately-owned hybrid solar systems and the main
electricity grid. In addition, we use the symbol EB to represent
battery blocks connected to both the solar system and the main
electricity grid.

• EG: the energy provided by the main electricity grid,
which belongs to the model’s variables.

• ES: the energy provided by the privately-owned hybrid
solar system. This term is either forecast or a known value
in every time interval.

• ∆EB: Energy level changes of the battery energy system
EB owned by the data center. In this system, the data
center network only purchases energy from the main grid
and will not sell energy to the main grid. It belongs to
the model’s variables.

B. Battery Energy System

An uninterruptible power supply (UPS) is essential for data
centers as it is a reliable backup or alternative energy source
that can increase the system’s reliability. It can fill the demand
gap when local grid or solar energy input drops significantly
and can also store energy when grid prices are low. The initial
status of the battery energy system can be represented as

EB,state
0 = EB,state

initial . (2)

1) Dynamic charging and discharging model: The charging
and discharging of our battery energy system can be modeled
as follows:

EB,state
t = EB,state

t−1 +∆EB
t , ∀t ∈ T ,

where ∆EB
t =

(
pchr
t ηchr − pdis

t · (ηdis)−1
)
∆t.

(3)

The battery reserves will change based on the amount of
charging or discharging that occurred during the previous time
interval.

2) Battery reserves, discharging and charging restrictions:

ξB ≤ EB,state
t ≤ ξB, ∀t ∈ T , (4)

0 ≤ pchr
t ≤ pchr

t · uchr
t , ∀t ∈ T , (5)

0 ≤ pdis
t ≤ pdis

t · udis
t , ∀t ∈ T , (6)

udis
t + uchr

t ≤ 1, ∀t ∈ T . (7)

Constraint (4) represents the bounds for the energy capacity
of the battery system. Constraints (5) and (6) regulate the
maximum and minimum charging and discharging energy
during the time interval t. Constraint (7) ensures the battery is
choosing only a state from idling, charging, and discharging
mode during the time interval t.

C. Space Temperature Model

The ambient temperature within the data center is important,
as an abnormal temperature can damage electrical devices. Hot
air can make it difficult for circuits to dissipate internal heat,
and cold temperatures can cause short circuits due to frost
and dew. Therefore, we need to use a dynamic temperature
estimation model and impose restrictions to predict future
ambient temperature. The initial temperature of every zone
is represented as

T Zone
i,0 = T Zone

i,initial, ∀i ∈ I. (8)

1) Dynamic Temperature Model: We use a space temper-
ature model with multiple air conditioning units (AHUs) and
calculate the energy demand of the HVAC system based on
the amount of needed supply air. We adopt the idea from
[24] and use an RC (resistor-capacitor) network model to
estimate the future temperature of the data center zone at every
time interval. We have simplified the equation from [8] and
introduced a linearized dynamics model near its equilibrium
operating points (temperature) as follows:

T Zone
i,t = T Zone

i,t−1 +
∑

i′∈N (i)

(
T Zone
i′,t−1 − T Zone

i,t−1

Cheat
i RZone

i′i

)
+

θi,t
Cheat

i

+
ṁZone

i,t ca,s
(
TAC
i,t − T Zone

i,t−1

)
Cheat

i

, ∀i ∈ I, ∀t ∈ T ,

where Cheat
i = ca,s · ρair · SZone

i · hi,

ṁZone
i,t = kAC

i · vAC
t .

(9)

T Zone
i,t is the zone’s temperature at time t. Meanwhile, Cheat

i ,
and ṁZone

i denotes the heat capacity of zone i, and the supply
cooling air mass flow into zone i, respectively. kAC

i is the
coefficient that converts the supply cooling airflow rate to the
supply cooling air mass flow into the zone and we provide a
detailed function for calculating kAC

i in [25]. θi,t represents
the internal heat generation (e.g., heat from servers) at time
t. RZone

i′i stands for the total resistance between zone i and an
adjacent zone i′. Cheat

i is a product of the following parameters,
where cair

p is the specific heat capacity at room temperature;
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Fig. 2: Airflow demand and supply in AHUs

ρair is the density at room temperature; SZone
i is the area of

each zone in the data center; hi is the height of each zone.
2) Temperature restriction: It is important to operate a data

center at a cooler ambient air temperature and to regulate the
temperature of each zone within a certain range to prevent
servers from overheating or reaching dew point temperature
i.e.,

T Zone,−
i,t ≤ T Zone

i,t ≤ T Zone,+
i,t , ∀i ∈ I, ∀t ∈ T , (10)

TAC,−
i,t ≤ TAC

i,t ≤ TAC,+
i,t , ∀i ∈ I, ∀t ∈ T . (11)

The previous goal can be achieved by controlling the temper-
ature of the cooling air delivered to the corresponding zone i
at time t, as shown in (11). The zone temperature range is set
in (10).

D. HVAC System Model

The HVAC system is a major energy consumer in a data cen-
ter. It has to meet the temperature and ventilation requirements
in each data center space. In this study, we focus on HVAC
cooling systems and aggregated AHUs with shared water
pumps but distinct chillers and cooling towers, as opposed
to the conventional approach of viewing chillers and cooling
towers as a single entity [26] [27].

1) AHUs model: Figure 1 shows our airflow demand and
supply model for AHUs. The AHUs use a mixture of return
and outside air to cool the air before supplying it as the cooled
supply air to building rooms for temperature control. In order
to provide the appropriate amount of indoor airflow, the AHUs
must also absorb a certain amount of outside air for ventilation
purposes. We use vvent

t , vout
t , vreturn

t , and vAC
t to represent the

ventilation airflow rate, outside (ambient) airflow rate, return
airflow rate, and supply cooling airflow rate at time t. vvent

t and
vreturn
t are decision variables, while the rest are parameters.

Constraints (12) and (13) enforce the requirements for
ventilation and the bounds on the supply cooling airflow rate
in every AHU.

vvent
t + vout

t ≥ vvent
t , ∀t ∈ T . (12)

vAC
t = vout

t + vreturn
t , ∀t ∈ T . (13)

Constraint (12) fixes the minimum ventilation airflow rate for
the data center. Equation (13) states the return air and outside

air are blended and cooled through AHUs before becoming
the cooling air to zones. The airflow that comes out from the
cooling coil is renamed as the supply cooling air vAC

t to data
center zones.

2) Chiller and cooling tower heating constraints: A heat
exchange system between the supply air and chilled water
absorbs the thermal (heat) load in the data center zone. Addi-
tionally, the cooling tower’s condensed water will exhaust the
thermal (heat) load. AHUs are used to process such media, and
the medium circulates in a loop between the endothermic and
exothermic sides. We use Lheat

t to represent the total thermal
load that needs to be removed from the data center by our
HVAC system as shown in (14). We can use constraints (15)
and (16) to explain the relationship between heat exchange
from three perspectives: indoor, chiller, and cooling tower.

Lheat
t =

(
T out
t −

∑
i∈I

χiT
AC
i,t

)
· vout

t ca,s

+
∑

i∈IZone

χi

(
T Zone
i,t − TAC

i,t

)
vreturn
t ca,s, ∀t ∈ T .

(14)

∑
j∈J chiller

αchiller
j,t xchiller

j,t ≥ Lheat
t , ∀t ∈ T , (15)

where αchiller
j,t = mchiller

j,t

(
T chwr
t − T chws

t

)
cw,s.∑

j∈J tower

αtower
j,t xtower

j,t ≥ Lheat
t , ∀t ∈ T , (16)

where αtower
j,t = mtower

j,t (T conwr
t − T conws

t ) cw,s.

Equation (14) calculates the total thermal load Lheat
t . Then,

constraints (15) and (16) calculate the amount of chilled
water and condensed water demand for removing the internal
thermal load. cair

p and cwater
p denote the heat capacity of air and

water at the operating temperature. T out
t denotes the outside

air temperature at time t. T Zone
i,t and TAC

i,t represent the air
temperature and supply air temperature in zone i at time t,
respectively. χi is the weight of temperature for zone i. T chws

t

and T chwr
t are the supply and return chilled water temperatures.

T conws
t and T conwr

t denote the supply and return condensed
water temperatures. Similarly, mchiller

t and mconw
t represent

the chilled water flow rate and the condensed water flow
rate. Among all notations of temperature, TAC

i,t is the only
continuous decision variable among all temperature symbols.

E. Energy Consumption
This section presents a collection of models that calculate

the energy consumption of every electrical load.
1) Air conditioners’ fan energy consumption: Air condi-

tioners’ fan energy consumption is a model as

eAC
t = βACvAC

t , ∀t ∈ T . (17)

βAC is a coefficient to the air conditioner’s fan airflow rate.
2) Ventilation energy consumption: Ventilation energy con-

sumption is a model as

event
t = βvent

0 + βvent
1

(
vvent
t − vvent) , ∀t ∈ T . (18)

βvent
0 is a constant energy consumption for ventilation and βvent

1

is a coefficient to modified ventilation airflow rate.
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3) Air chiller coil energy consumption: Air chiller coil
energy consumption is a model as

echiller
t =

∑
j∈J chiller

γchiller
j,t xchiller

j,t , ∀t ∈ T , (19)

where γchiller
j,t = βchiller

0,j + βchiller
1,j mchiller

j,t .

βchiller
0,j is a constant energy consumption for chiller j and βchiller

1,j

is a coefficient to chiller j’s coolant liquid flow rate at time t.
4) Condense tower energy consumption: Condense tower

energy consumption is modeled as

etower
t =

∑
j∈J tower

γtower
j,t xtower

j,t , ∀t ∈ T , (20)

where γtower
j,t = βtower

0,j + βtower
1,j mtower

j,t .

βtower
0,j is a constant energy consumption for condense tower j

and βtower
1,j is a coefficient to tower j’s coolant liquid flow rate.

5) Pump energy consumption: Pump energy consumption
is modeled as

epump
t = βpump

0 + βpump
1

κtL
heat
t

ca,s , ∀t ∈ T , (21)

where κt =
ca,s(

T chwr
t − T chws

t

)
· cw,s

.

βpump
0 is a constant energy consumption for operating pumps

and βpump
1 is a coefficient to coolant flow rate in demand.

F. Abstract Energy Management Model

Now, our problem formulation can be presented as follows:

min
z,y

∑
t∈T

βe,g
t · EG

t

s.t. (1b), (1c), (2)− (21).

(22)

We rewrite the above model in an abstract energy management
model as follows:

min
z,y

c⊺z+ d⊺y (23a)

s.t. A1z+G1y ≥ b1, (23b)
A2z+G2y = b2, (23c)
A3z ≥ b3, (23d)

where the binary symbol z =
(
udis
t , uchr

t , xchiller
j,t , xtower

j,t

)
, and

the continuous symbol y =
(
pdis
t , pchr

t , T Zone
i,t , TAC

i,t , v
vent
t

)
. This

problem formulation (23) is considered a MILP problem. Here,
z is the binary variable vector, and An is its corresponding
coefficient matrix in constraints. y is a continuous variable
vector and Gn is a non-zero matrix and its corresponding
coefficient matrix in constraints. bn is the corresponding right-
hand side constant vector. c⊺ is the coefficient vector of
variable z in the objective function (1a). Similarly, d⊺ is the
coefficient vector of variable y in the objective function.

For the constraint part, (23d) contains constraints where
only binary variables are involved, and it is made up of (7).
On the other hand, (23b) contains inequality constraints where
both binary and continuous variables are involved, and it is

obtained by (4)-(6), (10)-(12), and (14)-(16). Similarly, the rest
of the constraints contribute to (23b) and only contain equality
constraints where both binary and continuous variables are
involved. The abstract energy management model is a kind
of MILP problem that belongs to NP-hard problems which
are difficult for classical solvers in practice when the problem
goes large and complex.

III. HYBRID QUANTUM-CLASSICAL MULTI-CUTS
BENDER’S DECOMPOSITION

A. Benders’ Decomposition
We first introduce Benders’ decomposition, a method for

solving MILP problems. It involves expressing the original
MILP problem, such as (23), as a master problem and a
corresponding subproblem. This is done by introducing the
continuous real number variable λ to represent the connection
between the two problems.

(MAP) Master Problem:
min
z,λ

c⊺z+ λ (24a)

s.t. A3z ≥ b3, (24b)

(b∗ −A∗z)
⊺
uk ≥ λ ∀ k ∈ K̂, (24c)

(b∗ −A∗z)
⊺
rj ≥ 0 ∀ j ∈ Ĵ , (24d)

b∗ = [b1,b2]
⊺
,A∗ = [A1,A2]

⊺
,

λ ∈ R.

We denote K̂ and Ĵ as the set of extreme points {uk}
and rays {rk} accumulated by the polyhedron O ={
w ∈ Rm

+ | G∗w ≥ d
}

of the subproblem in every turn we
have gone through so far. The subproblem is as follows:

(SUB) Subproblem:
λ(z) = min

w
(b∗ −A∗z)

⊺
w (25a)

s.t. G∗w ≥ d, (25b)
b∗ = [b1,b2]

⊺
,A∗ = [A1,A2]

⊺
, (25c)

G∗ = [G1,G2] , w ∈ Rm
+ . (25d)

In the subproblem, if the inner product between (b − Az)
and any dual ray rj

′
is negative, the dual problem of (25) is

infeasible and λ(z) = −∞. Therefore, to determine a future
direction, we generate a new feasibility cut for the master
problem (24), i.e.,

(b∗ −A∗z)⊺rj
′
≥ 0, Ĵ∗ = Ĵ ∪ {j′} . (26)

If x satisfies (26), then we obtain an extreme point uk′
and

the value of λ(x) is given by

λ(x) = min
k′∈K

(b∗ −A∗z)
⊺
uk′

⇒ (b∗ −A∗z)
⊺
uk′
≥ λ, K̂∗ = K̂ ∪ {k′} .

(27)

Equation (27) generates a new optimality cut in the master
problem. In addition to the extreme points and extreme rays,
we use K̂ and Ĵ to denote the current known extreme points
and extreme rays of O, respectively. For the next iteration, we
update the set of extreme points uk and rays rk by setting
K̂ = K̂∗ and Ĵ = Ĵ∗.
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Fig. 3: An overview of multi-cuts strategy assisted by the
quantum computer

B. Hybrid Quantum-Classical Benders’ Decomposition

Hybrid quantum-classical Benders’r decomposition has
been shown to be a powerful tool for solving MILP problems
[13], [18]. To solve the master problem in (24), we use a
quantum annealing computer, as it has a special formulation
that can be converted into an ILP problem. The subproblem,
on the other hand, is solved using a classical computer, as
quantum annealing computers have difficulty solving a com-
plete continuous linear programming model, whereas classical
computers can handle it efficiently.

C. Constraints to QUBO Equivalent Penalty Pairs

The focus of this paper is a MILP problem that has con-
straints. While the master problem (24) has a similar structure
to an ILP problem, it is not in a formulation that can be
processed by a quantum annealer computer, known as a QUBO
formulation. One way to transform a constrained ILP into the
corresponding unconstrained QUBO form is to use penalties.
We then find the optimal solution by determining the best
penalty coefficients for the constraints.

D. QUBO Formulation

Quantum annealer computers are able to solve uncon-
strained optimization problems in a QUBO formulation. To
take advantage of state-of-the-art quantum annealers offered
by D-Wave, the ILP problem must be converted to the corre-
sponding QUBO formulation. Following the steps in [18], the
quantum formulation of our problem formulation is as follows:

fQUBO(x) = x⊺Qobjx+ x⊺Qconsx. (28)

The first item in (28) is the QUBO formulation of the objective
function in (24a) and the second item is the QUBO formulation
of constraints (24b), (24c), and (24d).

Initialization of K̂, Ĵ , λ, and λ

Solve the MAP (24) by the

quantum computer with penalty P

Obtain X ′ by multi-cuts

strategy and update λ

Obtain new cut(s) by solving

SUB(s) (25) generated by X ′

Get λ.

Also update K̂, and Ĵ for the MAP (24)

|λ−λ|
|λ|

≤ ϵ?

Retrieve λ, x∗, y∗

Yes

No

Fig. 4: Flowchart of the HQCMBD algorithm

Then, the objective function of the master problem (MAP)
(24a) can be translated to a QUBO model as

x⊺Qobjx = z⊺diag (c) z+ λ(w) (29a)

where λ(w) =

m1∑
i=0

wi2
i−mwi −

M∑
j=m2

wj2
j−m2wj , (29b)

m1 = m+m+, (29c)
m2 = 1 +m+m+, (29d)
M = 1 +m+m+ +m−. (29e)

(29) specifies how we build x⊺Qobjx. We introduce a binary
vector w with a length of M bits to replace and recover the
continuous variable λ in (24). Among all notations, m+ + 1
is the number of bits that are used to represent the positive
integer part of the variable. m is the number of bits that are
used to represent the positive decimal part of the variable, and
m− + 1 is the number of bits that are used to represent the
negative integer part of the variable.

x⊺Qconsx

=f
(24b)
QUBO(z, s) + f

(24c)
QUBO(z,w, s) + f

(24d)
QUBO(z, s).

(30)

(30) specifies how we build x⊺Qconsx. f (i)
QUBO(x) is the cor-

responding constraint penalty, which is made of the decision
variable vector x. In addition, we adopt a slack variable vector
s to solve (30). [18] gives a detailed approach to turning
constraints into corresponding QUBO formulations.

In short, fQUBO:{0, 1}n → R is a quadratic polynomial over
binary variable vector x. In (24), x contains variables of z, w,
and s. For the quantum annealer computers, the QUBO solver
tends to find a binary vector x∗ that minimizes fQUBO among
all other binary vectors. For the matrix, Q can be either an
upper-triangular matrix or a symmetric matrix, and the cost
coefficient for xixj is represented by qij .
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Algorithm 1 Hybrid Quantum-classical Multi-cuts Benders’
Decomposition Algorithm

Require: Initial (Empty) sets of extreme points K̂ & rays Ĵ
1: λ ← +∞, λ ← −∞
2: while |λ−λ|

|λ| ≥ ϵ do
3: P ← Appropriate penalties numbers or arrays
4: Q ← Reformulate both objective and constraints in

(24) and construct the QUBO formulation by using
corresponding rules

5: X ′ = {x′
1,x

′
2, . . . ,x

′
N} ← Solve the (24) by the quan-

tum computer. We pick at most N feasible solutions
with the lowest energies from all readings

6: λ ← Extract w and replace the λ with λ (w)
7: for x ∈ X ′ do
8: λ(x) ← Solve problem (25) by Gurobi with clas-

sical computers
9: λ ← zLP (x)

10: if zLP (x) = −∞ then
11: An extreme ray j of O has been found
12: Ĵ = Ĵ ∪ {j}
13: else if zLP (x) < λ and λ ̸= +∞ then
14: An extreme point k of O has been found
15: K̂ = K̂ ∪ {k}
16: break
17: return λ, x∗, y∗

E. Multi-cuts Strategy

Figure 3 is an overview of our multi-cuts strategy. One
advantage of quantum computing is that it can generate
multiple feasible solutions from solving the master problem
(MAP) (24) in each iteration. This feature allows the hybrid
quantum process to potentially speed up the convergence of the
hybrid quantum-classical Benders’ decomposition compared
to the classical computer. Our algorithm selects the top N
feasible solutions with the lowest energies from the quantum
reading results in each iteration. We use them as seeds to
generate feasibility and optimal cuts for the next iteration on
the classical computer.

F. Algorithm Framework

After we have introduced all the important components in
Section III, then, the entire workflow could be described as
a framework in Figure 4, and we summarize our HQCMBD
method in detail in Algorithm 1. In general, the HQCMBD
algorithm consists of 4 parts:

1) Initialize all necessary parameters and sets;
2) Solve the master problem (MAP) and obtain at most N

solutions with lowest energies on quantum computers
and update λ;

3) Solve the subproblem (SUB) on classical computers and
obtain the corresponding feasibility and optimality cuts
for the master problem (MAP) in the next round and
update λ;

4) If the threshold |λ−λ|
|λ| > ϵ, then go to Step 2. Otherwise,

terminate and return the optimal solution of the master
problem (MAP) and subproblem (SUB). This step means

(a) Case 1 (b) Case 2

Fig. 5: Objective function value of each iteration for different
HQCMBD multi-cuts strategies in different case setups

(a) Case 1 (b) Case 2

Fig. 6: Solver access time of each iteration of the HQCMBD
and the CBD approach in different case setups

the iterative process will get to convergence and it will
be reached until the λ’s gap reaches the tolerance.

This algorithm employs both quantum and classical computers
to accelerate the BD method and the multi-cuts strategy is easy
to modify to deal with other types of MILP problems.

IV. EXPERIMENT

A. Implementation Details

Both the HQCMBD algorithm and classical BD (CBD) were
implemented in Python 3.8. Every iteration of the classical
MILP problems was solved by the Gurobi 9.1.2 solver on a
workstation with AMD 3900X processors (12 cores, 4 GHz)
and 32 GB RAM. The BD master problem (MAP) instances
were solved by the D-Wave hybrid quantum computer, which
has over 5,000 qubits and 35,000 couplers based on the
Pegasus topology. However, due to the high cost of QPU
utilization and time limitations for the developer, we ran test
cases that could be solved in fewer than 200 iterations for the
HQCMBD since increasing numbers of slack variables, which
are introduced from the objective and optimality/feasibility
cuts, will make it too complicated to map itself to Pegasus
topology in a Dwave quantum annealer computer [28].

B. Simulation Setup

Our data setup is available on Github [25]. To make
the model more realistic, we introduced randomness to the
variables T Zone

init , βe,g
t , SZone

i , mchiller
j,t , mtower

j,t , and ES
t . The grid

price profile βe,g
t follows a normal distribution N (µ, σ), where

µ is the average electricity rate and σ is the uncertainty of the
on-grid market price. The other variables above are drawn
from a uniform distribution within their respective ranges.

Table I shows that we evaluate both approaches through
two different cases. The elements in the set-up column are
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TABLE I: Iteration comparison between HQCMBD with different multi-cuts strategies

Set-up |x| Iter. of
CBD

Aver. iter. of
HQCMBD
(N = 3)

Gain Iter. of
HQCMBD
(N = 6)

Aver. iter. of
HQCMBD
(N = 6)

Gain Aver. iter. of
HQCMBD
(N = 9)

Gain

Case 1 {3, 4, 5} 33 117 83.67 −28% 66 74 65 68.33 −42% 56 −52%

Case 2 {4, 2, 2} 24 217 160 −26% 120 125 127 127.33 −41% 100 −54%

TABLE II: Operating cost comparison between models

Set-up Opt. Cost
of model [6]

Opt. Cost
Our MILP model

Saving

Case 1 {3, 4, 5} $ 25, 291.621 $ 23, 147.714 8.48%

Case 2 {4, 2, 2} $ 34, 843.638 $ 30, 990.856 11.06%

{
|T |,J chiller,J tower

}
. |T | represents the number of time inter-

vals, while J chiller and J tower represent the number of chillers
and condense towers, respectively. The first case has 3 time
intervals, 4 chillers, and 5 condense towers; the second has
4 time intervals, 2 chillers, and 2 condense towers. Then,
|x| represents the cardinality of every case’s binary decision
variables set. The fourth column states how many iterations
CBD needs to reach the optimal solution. We will use this
column as our reference to evaluate our proposed algorithm.
After that, columns 5, 10, and 12 provide the average number
of iterations for HQCMBD to solve different problems under
different multi-cut strategies, while columns 6, 11, and 13
show the progress of the average number of iterations of
HQCMBD compared to CBD. To reduce randomness and
prevent bias, we ran each algorithm three times. Columns 7 to
9 in Table I show the number of iterations of the three-time
test of the HQCMD 6-cut algorithm. The time interval was
set to ∆t = 15 minutes, a common time interval in energy
management. In all experiments, the algorithm terminates
itself and returns the result if

(
λ− λ

)
/ λ < 0.1%.

C. Model Comparison

Compared to the model proposed in [6], our model (23)
takes chillers and condense towers as individual devices rather
than recognizing them as one device. The constraints of (19),
(20), (15), and (16) provide detailed modeling for the cooling
system, which is closer to a realistic data center. As shown
in Table II, we calculate the optimal operating cost through
two different models. Our MILP model’s operating cost is
lower than its counterpart in both cases, with improvements
of 8.48% and 11.06%, respectively. It demonstrates that our
detailed model not only depicts a realistic data center system
that contains every essential part of a data center but also
reduces the operating cost significantly compared to the model
in [6].

D. Simulation Result

In this subsection, we present the results of our numerical
experiments. Since both the CBD approach and the HQCMBD
approach had a 100% success rate in finding the global optima
in all test cases, we focus on the average number of iterations,
robustness, time consumption, and multi-cuts strategy of the
HQCMBD approach.

(a) Case 1 (b) Case 2

Fig. 7: Cumulative solver access time of the HQCMBD
compared to the CBD approach in different case setups

1) Average Iteration Rounds: We used the data from the
9-cuts HQCMBD strategy as a comparison to CBD. Figure 5
shows 2 graphs, each representing a case in our test bench.
The x-ticks are the iteration numbers, while the y-axis is
the corresponding objective function value with a unit of
dollars. The curves show how the objective value of the master
problem changes during the iterations of both the CBD and
HQCMCBD approaches. We used four different colors to
label the different algorithms. Among all the poly-lines, there
is one for the objective function of CBD, one for Hybrid
quantum-classical (1-cut) Benders’ Decomposition (HQCBD),
and a line belongs to the HQCMBD algorithm. In addition,
we added the optima line to indicate the position of the
problem’s optimal. It is clear that there are differences in the
performance of the three approaches. Although the HQCBD
does not beat the CBD in terms of iteration number due
to the quantum randomness in generating optimal solutions
from the master problem (MAP), the HQCMBD does a great
job that is beyond the CBD. In each set-up and test shot,
the HQCMBD outperforms the CBD with fewer iterations to
reach the optima. Table I provides a detailed comparison of
the number of iterations required by the classical BD and
HQCMBD algorithms to solve different cases. As the problem
size increases, both CBD and HQCMBD take more iterations
to reach the optima. Although the number of iterations for
HQCMBD varies during different tests, the average number
of iterations is about 40% less than that of CBD. Therefore,
thanks to its multi-cuts strategy, HQCMBD outperforms CBD
in terms of iteration.

2) Time consumption: In Figure 6, we pick 3 typical meth-
ods, which are CBD, HQCBD, and 9-cuts HQCMBD, to assist
our time consumption analysis. The x-ticks are the iteration
numbers, while the y-axis is each iteration’s corresponding
solver access time with a unit of seconds. We use black,
red, and yellow to represent CBD, HQCBD, and HQCMBD.
For the HQCMBD, apparently, as long as the master goes
complicated enough, the HQCMBD will beat the CBD in
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(a) Case 1 (b) Case 2

Fig. 8: The objective value comparison between the 6-cuts
HQCMBD and the CBD approach in different case setups

processor access time at the mid and late stages. Then, Figure
7 provides each approach’s total solver access time. Although
Figure 6 and 7 share the same x-ticks property, the y-axis of
7 is the cumulative access time of the corresponding solver
over the current iteration round. Thanks to the less iteration
and less processor access time in the mid and late stages, the
HQCMBD approach shows a huge advantage over the CBD
approach. Moreover, the HQCBD also benefits from the fea-
ture of less access time. Although it takes more rounds to reach
the optima, it consumes less processor access time. Therefore,
we can conclude that HQCMBD outperforms CBD regarding
time consumption when encountering complex problems.

3) Robustness: Figure 8 shows 2 graphs, each representing
a case in our test bench. The x-ticks are the iteration numbers,
while the y-axis is the corresponding objective function value
with a unit of dollars. Among all the poly-lines, there is one
for the objective function of the CBD, and the rest belong to
the three attempts of the HQCMBD algorithm. The average of
three attempts’ iteration with the same preset will mitigate the
randomness inside the HQCMBD’s master problem (MAP).
Therefore, we denote those attempts as QC1, QC2, and QC3.
In addition, we added the optima line to indicate the position
of the problem’s optimal. As shown in Table I and Figure 8,
we used the data from the 6-cuts HQCMBD strategy compared
to CBD. Moreover, the number of iterations required by the
HQCMBD approach does not vary too much between tests.
The deviation is less than 10%, which is relatively small.
Regarding the multi-cuts strategy, the comparison of columns
in Table I shows that the gain from the corresponding strategy
does not vary much in different cases.

Besides the number of iterations, we also investigate the
robustness of solver access time by using CBD and 6-cuts
HQCMBD strategy. Figure 9 shows two pairs of graphs,
and each graph represents the solver access time histogram
outcome of a specific algorithm under a case. In the histogram
figures, both sub-graphs share an identical axis layout. The x-
axis has 10 bins with the automatic time interval. The left
y-axis is the frequency of the solver access time within the
corresponding time interval. The right y-axis is the density
probability after fitting the result to bins of certain time
intervals. The curve is the density curve of the solver access
time’s frequency. The solver access time of the CBD has a
distribution that scatters wider than the HQCMBD approach.

(a) Case 1 CBD (b) Case 1 HQCMBD

(c) Case 2 CBD (d) Case 2 HQCMBD

Fig. 9: Solver access time histogram of the 6-cuts HQCMBD
and CBD approach in different case setups

TABLE III: Standard Deviation Comparison

Model
Detail Standard Deviation Gain

Unit: 10−3

Case1 CBD 186.0
96.33%

Case1 HQCMBD 6.8

Case2 CBD 45.2
82.31%

Case2 HQCMBD 8.0

Table III states the HQCMBD’s standard deviation has a gain
of at least 82.31% (5.6 times more robust) over the CBD
approach, which implies that the former method is more robust
in terms of the solver access time. What’s more, it means
the HQCMBD’s computation performance is not sensitive to
the changes in problem settings. Therefore, we can claim the
robustness of the HQCMBD approach.

4) Multi-cuts strategy: We compare the performance of
single-cut and multi-cuts strategies: 1 and 9-maximum-cuts per
iteration. As shown in Figure 5, the x-ticks are the iteration
numbers, while the y-axis is the corresponding objective
function value with a unit of dollars. The number of iterations
increases as the problem size increases. But the HQCMBD
approach performs better with more maximum cuts.

Figure 10 shows the gain progress of each strategy. The
slope of the gain progress becomes less steep as the number
of maximum cuts increases. It suggests a saddle point in
the multi-cuts strategy, beyond which the benefits of adding
more cuts diminish. However, no explicit formula connects the
saddle point to the problem size. The best strategy is problem
dependent and it may change as the problem size increases.
The HQCMBD generally outperforms the CBD approach, and
a good multi-cuts strategy can provide significant benefits.

5) Analysis: The HQCMBD approach performs better than
the CBD approach in data center energy management for
several reasons. First, the HQCMBD approach has a 100%
success rate, ensuring good performance. Second, the average
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Fig. 10: Gain comparison between M-cuts HQCMBD

number of iterations for the HQCMBD approach is much less
than that for the CBD approach, resulting in faster convergence
to the optimal solution. Third, the HQCMBD approach is
highly robust in handling different scenarios.

V. CONCLUSION

In this paper, we propose a MILP model for data center
energy management. We then introduce the HQCMBD ap-
proach, which combines quantum and classical computers to
solve the MILP model for data center energy management.
Our simulation study shows that the HQCMBD approach
outperforms the CBD approach regarding success rate, average
iteration rounds, robustness, and multi-cuts strategy. From a
solution quality perspective, the HQCMBD approach is able
to converge and return correct optimal results similar to the
classical algorithm. Furthermore, our approach demonstrates
robustness with fewer iterations. Overall, we conclude that the
proposed HQCMBD approach is a promising tool for solving
MILP problems in data center energy management. What’s
more, it is a great demonstration of QC’s computational
potential and will propel us to investigate QC’s application
in other energy-related fields.
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