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Abstract— Accurately localizing 1-D signal patterns, such as
Gamma-ray well-log depth matching, is crucial in the oilfield
service industry as it directly affects the quality of oil and gas
exploration. However, traditional methods such as well-log curve
analysis and pattern hand-picking matching are labor-intensive
and heavily rely on human expertise, leading to inconsistent
results. Although attempts have been made to automate this
process, challenges such as low computational performance, non-
robustness, and nongeneralization remain unsolved. To address
these challenges, we have developed a data-driven Al system that
learns an active signal pattern localization strategy inspired by
human attention. Our artificial intelligence system uses an offline
reinforcement learning (RL) framework as its central component,
which solves a highly abstracted Markov decision process (MDP)
problem via offline training on human-labeled historical data.
The RL agent uses top-down reasoning to determine the location
of target signal fragments by deforming a bounding window using
simple transformation actions. To overcome distribution shifts
between logged data and real and ensure generalization, we pro-
pose a discrete distributionally robust soft actor-critic (SAC) RL
framework (DRSAC-Discrete) to solve the MDP problem under
uncertainty. By exploring unfamiliar environments in a restrictive
manner, the DRSAC-Discrete algorithm provides a safe solution
that can be used when data is limited during the early stage of this
industrial application. We evaluated the RL-based localization
system on augmented field Gamma-ray well-log datasets, and the
results showed promising localization capability. Furthermore,
the DRSAC-Discrete algorithm demonstrated relatively robust
performance guarantees when facing data shortage.

Index Terms— Distributionally robustness, gamma-ray log,
Markov decision processes (MDPs), signal localization.

NOMENCLATURE
s €S States.

s’ Next state after taking action.
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Actions.

Discount factor.

Transition probability from current state to
next state with action a and reward r.
State, action and reward at time step ¢ of one
trajectory.

Stochastic policy (agent behavior strategy);
mp(.) is a policy parameterized by 6.
Indicator for location i that first detects
event e

State-value function measuring the expected
return of state s.

Value function with parameter 6.

Value function V7(s) =
Ea n[ZZi() )’th+/<+1 |Sl = S]-

Action-value function.

Q value function with parameter 6.

Value of (state, action) pair under a policy
m; Q7(s,a) = E, ﬂ[zzio VkRz+k+l IS: =
s, A, =al.

Weights of neural network.

Data buffer.

Normal distribution.

Entropy measure.

Temperature parameter to control
important the entropy term is.

Action step ratio.

Left end of the sequence.

Right end of the sequence.

Rescale operator.

Represents the coordinates of the observa-
tion window.

Stop reward.

Localization threshold.

Bellman operator.

Number of actions

Uncertainty set.

Uncertainty ball’s radius.

Hyperparameters control the size of the
uncertainty set.

Visiting times of state s

Approximated Fenchel conjugate of the
KL-divergence-based regularized Bellman
operator.

Regularization parameter.

Action distribution.
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I. INTRODUCTION

EOPHYSICAL well-logging interpretation is an essen-

tial technique to identify subsurface properties [1]. This
information guides reservoir identification, drilling, and devel-
opment monitoring. The Gamma-ray log is one of many
well-log measurements that shows distinct disruptions in phys-
ical parameters of subsurface strata. Aligning Gamma-ray data
to well depths is crucial by recognizing signal fragments with
similar patterns from similar geological formations.

Traditionally, depth alignment is done manually by picking
visual patterns within log curves based on human expertise.
However, this method is time-consuming. Automatic signal
pattern localization has been discussed for a decade, but certain
hurdles need to be overcome to implement it, such as follows.

1) Complex Patterns: Abstract patterns associated with
unknown subsurface conditions are too complex for
simple threshold-based methods to classify and locate.
The rocks being inspected vary in curvature, size, shape,
and material, with different physical characteristics. Typ-
ically, experts rely on geological and physical priors
to analyze the entire signal curve and the relationship
between peaky and concave shapes to determine which
signal indicates which rock. The absolute value of the
measurement is not meaningful for analysis; instead,
the relative value and pattern of value change provide
information for human analysis.

Blur, Shift, and Noise: Measuring signals while inspect-
ing the characteristics of rocks at different depths in
a well is challenging due to the motion and extreme
subsurface environments, such as high temperatures,
which can cause vibrations and noise. These factors
make it difficult to accurately profile the subsurface.
Traditional automatic localization techniques, like cross-
correlations, are not suitable for practical projects due
to these challenges.

Generalization: A generalized localization process is
essential to fit any oil field environment. Cross corre-
lation methods delicately designed for one oil field may
fail in another location.

Several methods have been proposed to assist in matching
signal patterns. While cross correlation methods, such as
those described in [2], [3] have provided a feasible way
to address simple tasks, they are sensitive to perturbations
such as distortion and noise. This sensitivity prevents their
application to geophysical signals, which commonly exhibit
distortion factors such as shifting, deformation, and miss-
ing data. In contrast, dynamic time warping (DTW) [3]
and [4] provide a distortion-tolerant approach for measur-
ing similarity between two temporal sequences of different
lengths. However, DTW has restrictions and high computa-
tional costs, making it unsuitable for matching field geophys-
ical signal patterns, such as those observed in Gamma-ray
logs.

Researchers are using data-driven machine learning to over-
come the challenges mentioned above. Promising applica-
tions [5], [6] have been developed, and some attempts [7], [8]
have been made to address the Gamma-ray signal matching
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problem using supervised learning. These methods use neural
networks to predict how to move a fixed-size sliding window
to mimic the way humans perform manual depth matching
of two Gamma-ray logs. However, all of these methods have
limitations, such as assuming that the signal is partially located
inside the initial window. The problem of pattern localization
is also a popular and challenging topic in the computer vision
community. They have used reinforcement learning (RL) [9]
to address image pattern localization, inspired by a human
attention mimic object [10].

We propose a new method for Gamma-ray pattern
localization inspired by previous works mentioned above.
Our approach uses state-of-the-art safe RL to create a
pattern-specific active detection model that learns to localize
the target signal object using RL [11], [12] and distributionally
robust RL [13]. Our model follows a top-down search strat-
egy, applying a sequence of transformations to progressively
reduce the window size while keeping the target signal pat-
tern inside and minimizing background noise. This dynamic
attention-action strategy is based on the observation that
humans use a global-to-local attention pattern for localization.
Our method formulates the 1-D signal pattern localization
problem as a Markov decision process (MDP) that maximizes
information value at each search step. Unlike traditional cor-
relation and supervised learning methods with fixed windows,
our approach searches regions using a high-level reasoning
strategy that processes global features first and adapts to local
features at the end of searching, reducing redundant searching
actions. Each search action guides the next step and provides
significant guidance for the following search actions.

Modern RL algorithms are capable of solving abstract
decision-making problems, but their performance heavily
relies on the quality of training data. However, the agent’s
solutions can be vulnerable if it encounters a new or shifted
environment or dataset. This is due to two types of uncertainty:
epistemic and aleatoric uncertainty. Epistemic uncertainty
arises from the neural network’s nature of finding local optima,
leading to estimated errors. Aleatoric uncertainty is prevalent
in real-world industry problems, where noise and unexpected
events can occur. Building a model that can tolerate all
types of noise and disturbance is impossible, but having a
risk-free model may lead to low returns. Therefore, balanc-
ing robustness and acceptable performance is essential. The
distributionally robust optimization (DRO) method has gained
popularity in research as it ensures the system’s robustness
without sacrificing too much performance.

After considering uncertainty and analyzing robust methods,
we explored an algorithm that integrates DRO and RL to
maximize performance and tolerance to uncertainty. DRO [14]
is a data-driven method that can efficiently utilize limited data
and provide safe solutions for problems under uncertainty. The
actor-critic RL algorithm, originally developed from the policy
iteration method, includes policy evaluation and improvement
steps. In the absence of uncertainty, the algorithm can converge
to the optimal solution, but when uncertainty exists, the final
policy is at high risk due to the algorithm’s greed for the
highest reward without considering uncertainty. To address
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this, we propose building an uncertainty set centered around
the current policy according to DRO’s instructions. The size
of the uncertainty set is determined by the level of uncertainty
measured from real-time observed data. The default updated
policy is then replaced with the most conservative policy
from this uncertainty set to pivot from a greedy policy to
a safe one. This is similar to the safe RL method based
on robust optimization (RO) [15], which replaces the default
policy with the most conservative policy from the entire policy
space to avoid the worst outcome. The DRO method’s major
advantage over robust-optimization-based RL is its ability to
adaptively balance performance and robustness based on data
understanding and avoid overly conservative policies. We refer
to this as the risk-aware policy update step, which represents
a significant improvement in our proposed method compared
to previous safe RL research.

The article is structured as follows: Section II covers the
problem formulation, RL, and related work on uncertainty.
Section III provides a detailed explanation of our approach.
Section IV presents the localization results of our method
using an augmented field dataset. Section V concludes the arti-
cle and highlights current concerns in class methods and RL.
Nomenclature summarizes the notation used in the problem.

II. PRELIMINARIES
A. Gamma-Ray Pattern Matching

The oil and gas industry employs underground sensor log-
ging to continuously obtain 1-D records of rock properties
in formations. One type of well-logging commonly used is
the Gamma-ray well-log [16], which records variations in
Gamma radiation with depth. Rocks at different depths emit
varying amounts of Gamma Ray, which can indicate changes
in lithology with specific patterns in the logging signal. Human
experts typically interpret well-logging data using their domain
knowledge. However, identifying repetitive patterns in new
loggings with the same physical properties is a labor-intensive
task, and manual interpretation can lead to errors. Automating
the pattern-matching workflow can significantly reduce human
errors and labor costs, thereby improving efficiency.

B. Soft Actor-Critic

RL is a machine learning subfield that aims to teach
machines decision-making techniques by letting them inter-
act with their environment using a trial-and-error learning
approach. The decision-maker is modeled as an agent that
interacts with the environment, receiving feedback in the form
of rewards. The soft actor-critic (SAC) algorithm is a state-of-
the-art RL method that aims to solve an MDP and includes
several fundamental components, as shown in Nomenclature,
from the current state s to the action-value function Q7 (s, a).

The problem of localizing 1-D signal patterns can be viewed
as a RL task, where an agent observes a reference pattern and
an initial localization window within a longer signal record and
takes actions to move the window closer to the target pattern.
Each action leads to a better or worse localization state, which
is rewarded or punished accordingly to encourage the agent
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to achieve better localization performance. In this way, the
problem can be framed in the classic RL framework, with
state s, action a, and reward r.

The SAC algorithm is an instance of actor-critic type
algorithms and includes two models: the actor and the critic.
The actor model is a function that maps states to actions, while
the critic is a Q value function that maps state-action pairs
to Q values. Both models utilize deep neural networks for
representation.

During training, the agent interacts with the environment
and collects episode samples (s, a, s’, r), where s is the current
state, a is the action taken, s’ is the next state reached
after the action, and r is the reward obtained. The SAC
algorithm updates the critic and actor models alternatively to
produce two prediction models, where the critic can accurately
evaluate the state value, and the actor can take actions based
on the current state observation, resulting in a substantial
accumulated reward.

The critic’s objective function can be expressed as follows:

1
JQ )= ]E(s,,a,,r,,s,H,a,+1)~D{2 [Qé) (8¢, ar)

- [”(St, a;)+yQo(Se+1, atH)HZ}‘
1

The critic estimates the value of a state by predicting the Q
value of the current state and the subsequent state following
an action. The neural network incorporates the reward signal
to enhance the precision of its predictions. Both the current Q
network and the target Q network estimate the Q function
of the current state and the Q value function of the next
state. During the training process, the weights of the target
Q network remain unchanged while the current Q network is
updated. After a specific number of iterations, the weights of
the current Q network are migrated to the target Q network.

Entropy regularization is a crucial aspect of SAC, which
allows the policy to balance exploration and exploitation.
Specifically, the policy is trained to optimize the tradeoff
between maximizing the return and maximizing the entropy,
which measures the diversity of the policy. A diverse policy
can improve final performance by accelerating learning and
preventing premature convergence to a bad local optimum.
The objective function of SAC includes an entropy term that
encourages exploration and is defined as follows:

T (@) = Egnp eon [0H (7 (arls) = Qolsiyan)]. (2)

The objective function for the policy network is denoted by
J=(¢) and incorporates the entropy measure H(-). The tem-
perature parameter « controls the importance of the entropy
term. When the action space is continuous and the action
distribution is assumed to be Gaussian, the mean errors of
the actions cannot be backpropagated. To address this issue,
a reparameterization trick was introduced by Kingma and
Welling [17] that utilizes € as a latent variation of the action
a; = fe(€,s:), where ¢, ~ N(0,1). The maximization
of entropy encourages policies to explore more and capture
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multiple modes of near-optimal strategies, which can prevent
premature convergence to a suboptimal solution.

Additionally, to address the issue of the sensitiv-
ity of the SAC to the temperature hyperparameter set-
ting, Haarnoja et al. [18] proposed an automatic temperature
parameter tuning mechanism that updates the parameter during
the training process. The temperature parameter loss can be
expressed as follows:

J(@) = Egn |—a(logm(a;ls,) + 7:‘)] 3)

where ﬂ is a constant vector representing the target entropy.

C. Uncertainty and Overestimation Bias

In industrial RL applications, the performance of the RL
algorithms is often hindered by two types of uncertainty. The
first is epistemic uncertainty, which stems from limited training
data samples. Since the agent only learns from a subset
of the real environment, policy state values are computed
inexactly. In testing, the agent may overestimate the value of
certain wrong actions when encountering a new state, thereby
introducing risks to decision-making [19], [20]. The second
type of uncertainty is aleatoric uncertainty, which refers to
noise from the industrial environment [21], [22]. This type of
uncertainty can also cause observations of a new state to differ
from those in training. Both types of uncertainty can shift the
distribution of the testing environment from the distribution
learned by the agent, resulting in a performance-dropping issue
known as the generalization challenge. To address these issues,
we propose a risk-averse strategy in this article to lower the
risk of catastrophic outcome estimation errors.

D. Related Works

RL algorithms have achieved human-level performance in
games like AlphaGo [23] and Atari Games [24]. However,
there is still a significant gap between game environments
and real-world RL applications due to high uncertainty. Col-
lecting a dataset with all situation information is impractical,
and there is often a shift in distribution between training
and testing datasets. Therefore, building a robust AI model
with incomplete observation is a crucial topic in the field.
To address uncertainty challenges, previous work such as [15]
and [25] introduced perturbations during training to achieve
safe RL procedures. For instance, [26] added random force
to a robotic agent while training it to walk, simulating the
unpredicted forces applied by the environment’s uncertainty.
These methods show promising results, but designing an
optimal perturbation strategy that mimics real-world scenar-
ios is nearly impossible. Moreover, the data shortage is a
more severe challenge in the early stage of RL real-world
applications, leading to estimation errors in the policy state
values computation. Recently, modern offline RL researchers
have developed new strategies to tackle uncertainty challenges.
The first category involves introducing policy constraints [27]
that control the policy distribution based on safe constraints
and policy learned from training, presenting promising results.
The second category, called value function regularization
methods [28], [29], modifies Q-function training objectives
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by introducing a safe regularizer, such as subtracting different
formed uncertainty terms from Q value or reward to obtain a
safe and robust performance. Uncertainty has been discussed
in the mathematical community for decades, and there are
three optimization approaches: RO, stochastic programming
(SP), and DRO. The RO method considers worst case scenarios
as constraints, which have extremely low probabilities of
happening in practice. Although it provides a safe guarantee,
it leads to conservative decisions with moderate performance.
The SP method assumes the decision-maker has complete
information on the uncertainty distribution, which is too
extreme since it usually does not hold. The DRO method [14]
bridges the gap between RO and SP by building an uncertainty
set of the distribution for uncertainty parameters based on the
data. This data-driven method efficiently utilizes the limited
dataset and provides a robust solution with a safer guarantee
than traditional methods that do not consider uncertainty.
In short, the DRO method adaptively considers the uncertainty
constraints level of the project’s needs based on historical
data [30] and has the potential to provide a safe and robust
guarantee [31].

III. METHOD

Section III-A introduces a flexible approach that applies
offline RL to solve 1-D signal pattern matching problems. The
signal pattern localization problem is formulated as a MDP,
with actions A, states S, and reward function R. An agent is
trained in the environment (i.e., a signal sequence) to locate a
relatively narrow window that includes the target signal frag-
ment. Section III-A presents details of these three components.
To solve this problem, Section III-B presents a unique and
effective solution that has not been previously explored in
the literature. We demonstrate how the uncertainty estimation
technique from [13] can be combined with the discrete SAC
algorithm [32] to tackle problems in real-world applications
like data shortage. This proposed method represents one of
the earliest attempts to use offline RL in this domain, and
it offers a new and effective approach to solving the 1-D
Gamma Ray signal pattern matching problem. In the testing
set, the optimal policy of the agent is evaluated using the
proposed method. By combining the uncertainty estimation
technique and the discrete SAC algorithm, our approach offers
a significant improvement in solving robust prediction under
the data shortage problem. Section III-B presents technical
details of the algorithm.

A. Signal Pattern Localization as a Dynamic Decision
Process

1) Action:  Following the seven-actions design [10]
of the 2-D image pattern matching method, we pro-
posed five-actions designs for this 1-D problem. a €
{left, right, expand, shrink, stop} as illustrated in Fig. 1 top
five icons. The action is represented by a single hot code.
The left movement, for instance, is a vector with a length
of five: [1; 0; 0; 0; 0]. The distribution of the probability of
action is likewise represented by the vector. The collection of
action A consists of four changes done to the window and
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Fig. 1. Actions: left, right, expand, shrink, stop. Signals: the upper figure is
signal; (blue line), and the bottom figure is signal, (black line). The target
signal object is the signal section (red box), where the associated section exists
in signal; (green section). The black bounding box is the signal section of
the agent’s observation after taking action in each time step.

one action to end the search procedure. These transformation
actions can be divided into two sub-sets: actions to move the
window in the horizontal axes: left and right, and actions to
change the window scale: expand, shrink. In this way, the
agent has two degrees of freedom to transform the box during
any interaction with the environment. w = [x1, x;] denotes a
window in the order of its two edges. Where w represents the
coordinates of the observation window, x; is the left boundary,
and x; is the right boundary. Any of the transformation actions
produces a discrete change to the size of the window by a
factor proportional to its current size

Kw = K (X2 — X1) “4)

where « € [0, 1] is a action scale ratio. The transformations
are then achieved by adding or subtracting «, from the x
coordinates, depending on the effect required. For example,
the horizontal move left/right action operator subtracts/adds
Ky to x; and x;

X1 =X Ky, X=Xy T Ky 5

While scale expand/shrink action adds/subtracts (k,/2) from
X7, and adds it to x|

X3 :=xz:I:K7w; X1 ::xlzl:(—%”). (6)

Note that the initial observation window is located at the
start to the end of the whole signal sequence. The stop-action
does not transform the window as a trigger to indicate that
the current window correctly localizes a signal object. This
action terminates the current search sequence and restarts the
window in an initial position to begin the search for a new
object.

2) State: Fig. 1 shows two signal sequences signal;, signal,
(blue line, black line). The target signal object is the signal
section signaly,,, = signal, (x;:x,) (red box), where the asso-
ciated section exists in signal; (green section). Initial the whole
signal, as the observation in time step 0: x;(0) = 0, x2(0) =
length(signal;). And define the attend section (black box)
as the signal section of observation after taking action in
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each time step ¢: x;(t + 1), x2(t + 1) = T(x1(2), x2(2), a);
signal,.nq = signal, (x;(¢):x2(¢)). T is the transition operator.
For instance, the action of shrink is taken at time 0, «(0) =
k[x2(0) — x1(0)]; x1(1), x2(1) = x1(0) + (k(0)/2), x2(0) —
(€ (0)/2), signal,.nq(1) = signal, (x;(1):x2(1)). Finally, define
the state representation as rescaled observed region and target
signal fragment

s = [D(signalyyenq) . D(signal ) |- (7)

D is the rescale operator, which downsamples/upsamples
signal to a size of 512 by using bi-linear interpolation. This
operator matches the arbitrary size observation and target of
signals with the fixed network’s input (2 x 512). This design is
an effective state representation for enormous attend or target
signal scenarios from a large set of signals.

3) Reward Function: The reward function R is proportional
to the agent’s improvement to localize the signal object after
selecting a particular action. Improvement is measured using
the intersection-over-union (IoU) between the target signal
object and the predicted window at any given time. Like
the computer vision task of object detection, we propose to
use human-labeled annotations as ground truth for evaluation
localization methods. IoU differences between the present and
next states are used to calculate the reward function. w, is the
ground truth window for the target signal object, as stated in
Section III-Al. Then, IoU between w and w, are defined as
IoU(w, wg) = ((area(w N wy))/(area(w U w,))). The reward
function R, (s, s") is awarded to the agent when it chooses the
action to move from state s to s’. Each state s has an associated
window w that contains the attended section. Then, the reward
is as follows:

R.(s.s") =sign(IoU(w', wg) — IoU(w, wy)).  (8)

If ToU progresses from state s to state s’, then the reward
will be positive; otherwise, it will be negative. This reward
system is binary R € {—1,+1}, and is employed for any
action that transforms the box. Without quantization, the
difference in IoU might be too small to guide the agent in
accessing the actions. Binary rewards clearly communicate
which transformations keep the object inside the window and
take the window away from the target. In this way, the agent
is penalized for taking the window away from the target and
is rewarded for keeping the target object in the visible region
until no other transformation improves localization. In that
case, the best action to choose should be the stop trigger. The
stop action has a different reward scheme because it leads to
a terminal state that does not change the window, and thus,
the differential of IoU will always be zero for this action. The
reward for the trigger is a thresholding function of IoU as
follows:

+n, if IoU(w, wg) >71

Ryiop (S’ S/) = —n, otherwise B ®

where Ry, is the reward for stop action, 7 is the stop reward,
which is much higher than the improvement reward, and t
is a threshold that indicates the minimum IoU, which can
be considered as a positive detection. The standard threshold
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for object detection evaluation is 0.5, but T = 0.6 is used in
our training process to obtain a better localization. A larger
value for 7 has a negative effect on the performance because
it leads the agent to learn only to detect clearly visible objects,
which will cause the neglect of truncated or naturally occluded
objects. Finally, the proposed reward scheme implicitly con-
siders the number of steps as a cost because all RL algorithms,
like SAC, already consider the discount of future rewards
(positive and negative).

In short, about the reward function, once the agent moves
closer to the target, we reward it 1. If they move away from
the target, we punish it with a reward of —1. After the search
is complete, the agent will make a determination regarding the
ultimate target. If the agent is successful in locating the target,
it will be rewarded with ten points, the value of which will be
determined empirically. In addition to this, the discount ratio
takes into account the passage of time. It is imperative that
it locate the target in the shortest amount of time feasible so
that it may maximize its reward.

B. Distributionally Robust SAC for Signal Object
Localization

1) Distributionally Robust RL Theory: The DRSAC [13]
risk-averse strategy first uses the experience data to model the
errors of underestimation. Then provide a modified policy to
avoid catastrophic results. The Bellman equation in the RL
algorithm can be written as follows:

[TV](S) = Ea'\«ﬂ(ﬂs) {V(S, a) + V]Ex"vl)(x’\x,a) [V (S/)] }

where 7 is the bellman operator.

Under the policy iteration algorithm theory, the policy
evaluation step is subject to an estimation error §; due to a
finite sample of transitions used to perform evaluation

Ti+1 € g(‘;t-i—l)
VH—I =7 ‘71 + 6

(10)

(1)
(12)

where G is the greedy strategy based on the value observations.
Given a policy 7 and an error function € € RS, define the
uncertainty set U, () by

Uc(m) == {7 € Ay Dk (7(Is)||m (. 5) < €(s)) Vs € S}
(13)
A% is the function space mapping from state space to action
space, and e(s) is the uncertainty ball’s radius. Then we can
calculate the most conservative policy associated with this

uncertainty set through the most conservative value estimation
regards the uncertainty set mentioned before

TV := min T7V.
TeU ()

(14)

The uncertainty size can be determined by the following
equation:

t
Cn (s)~%, if 5 Sm®
07

where constants C and £ control the size of the uncertainty set.
n,(s) denotes the visiting times of state s visited by the agent.

&(s) = 15)

otherwise
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This equation determined the size of uncertainty based on the
agent’s familiarity level with the current state. This familiarity
level is quantified by using visiting times.

After a series of derivations using the Fenchal duality and
Taylor approximation, the core perspective of distributionally
robust RL can be described with the following equation that
achieves the robustness by encouraging or penalizing the
variance of Q value under action distribution w induced by
the prior policy, i.e.,

Q Qv (s, )] = an{Qv(S, a)

1 1
+ﬁvara~/l,[QV(sv a)]} +0 ()\2)
(16)
where Q* is the approximated Fenchel conjugate of the
KL-divergence-based regularized Bellman operator, and X is
the regularization parameter. For derivation detail or conver-
gence and lower bound proof, please check the [13].

Finally, the reward shaping method is implemented for a
combination of DRO and RL algorithms SAC

1
D(s) == ﬁVaraNM[Qv(s,a)]
r¢ (s.a,s") ==r(s,a)+y®(s') — ®(s)

Q

A7)
(18)

where the r** is the regularized reward. There are further
derivatives for the continued robotic control problem for r
calculation because the variance of the Q value is not tractable.
Accordingly, we designed the discrete action space for our
task to make the regularized reward explicitly calculated. More
detail will be discussed in the sequel.

2) Discrete Distributionally Robust SAC for Signal Object
Localization: As with all recent actor-critic algorithms,
we proposed to use neural networks to serve as the actor
and critic. Inspired by discrete SAC in [32] and DRSAC
in [13], this article proposes a discrete DRSAC by discretizing
the action space. This discrete setting brings five important
changes as mentioned in SAC-Discrete work [32] as follows.

1) Q function moves from Q : S x A - Rto Q: S —
Rl When there are infinitely possible actions, it is
impossible to give the exact Q table for each action.
However, the discrete setting can achieve it.

The discrete algorithm does not require that the action
distribution is a Gaussian distribution. The neural net-
work can provide the action distribution as output.

The soft state-value function can be directly calculated
instead of using the Monte Carlo estimation. This change
can reduce the variance involved in the estimate of the
objective. The soft state-value function can be written
as follows:

V(s) :=m(s)" [Q(s) — alog(m (s,))].

Similarly, the temperature parameter changes from
(3)—(20) and reduces the variance of estimation

2)

3)

19)
4)

J(@) =7 (s)" [~alogm(s;) +H)]. (20)
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Algorithm 1 Distributionally Robust Soft Actor-Critic
With Discrete Actions (DRSAC-Discrete)

Initialise actor-network: my : S — [0, 11'A[;
Initialise local critic networks: Qg,, Qg, : S — RIAL
Initialise target critic networks: Q(’,], Q’e2 1§ — RIAL
Initialize an empty replay buffer: D;
Update target network weights: 6§ — 6’;
Set uncertainty level: C, n > 0;
for each iteration do
for each time step do
Sample action from the policy: a, ~ 74 (a;|s;);
Sample transition from the environment:
Se1 ~ P(sipalse, ar);
Store the transition in the replay buffer:
D < DU (s, a;,7(81, A1), S41)

end
for each gradient step do
Sample (s,a,r,s’) ~ D;
Update regularized reward: r& <«

r(s, @) + 5 ely Var(Q(sh) = Var(Q@));
Update the critic:

0; < 6; —vVeJ(6;)Vi € {1,2};
Update actor network: ¢ <— ¢ — v VyJ (¢);
Update temperature: o <— o — vV, J (®);
Update target critic networks:

Qi < BO; +(1—pQ; fori € (1,2}

end
end
Result: 9, 0, ¢

5) Instead of using reparameterization, the discrete setting
allows the loss function of policy can be calculated
directly by using the exact action distribution. The policy
objective function changes from (2) to

Jr (@) = Egp{m(s)” [aH (p(arls)) — Qo(sr.an)]}.
1)

Except for those innovative improvements and modifications,
the core idea of the introduction of the discrete action space
is that the equation of @ in (18) can be calculated by the
following equation directly:

SM (06, a) - Q)
M

where Q is the mean of Q distribution and M is the number
of actions in our setting: M = 5. This change makes the
calculation of a distributionally robust regularizer becomes
feasible and directly reduces the approximating error.

The algorithm for DRSAC with discrete actions (DRSAC-
Discrete) is given by Algorithm 1.

Vara~7r¢[Q(Sv a)] =

(22)

IV. EXPERIMENTS

1) Neutral Network  Architecture: ~ Many  previous
actor-critic methods with a convolutional network show
their effectiveness on different tasks, such as human activity
classification [33], fault recognition [34], and elevator group
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control [35]. The architecture of the neural network used in
this article to represent the actor and critic is shown in Fig. 2.
The network is built utilizing exactly three convolutional
layers and two fully connected layers of network structure
as proposed in the original SAC-discrete [32] article. The
only difference is that the proposed network in our article
has modified input and hidden layer sizes. The fixed-size
2 x 512 state matrix mentioned in Section III-A is the input
of both actor and critic. Both actor and critic networks extract
the features of the state by a stack of convolutional layers
followed by two fully-connected layers. Firstly, the input is
passed through two 1-D convolutional layers, the first one
with kernel size 8 and stride 4, and the connected second 1-D
convolutional layer has kernel size 4 and stride 2. Then, two
same convolutional layers with kernel size 3 and stride 1 are
concatenated to the first two layers. Finally, the flattened
feature map output of convolutional layers is passed through
two fully connected layers with 3712 and 517 neurons,
respectively. All convolutional layers and fully connected
layers have the ReLU active function except for the last fully
connected layers. Finally, the actor network using the softmax
active layer at the output end outputs a vector with length
5 to predict the distribution of the probability of action in
this state. Critics straightforwardly output a vector of the last
fully connected layer with length five to provide the Q value
of these five actions in this state.

A. Dataset

After applying elastic distortion, [36] and random shifting,
177 synthetic Gamma-ray log pairings were produced from
59 genuine logs in order to enlarge the training set. For each
data sample, there are two series. We define one segment
of this series as the pattern’s reference. Because the other
series is generated by distorting the first series, it contains
the same pattern, but the location of this pattern is different
from the one in the first series. We define it as the search
object. Because known elastic transformations generate this
dataset, the ground truth location of the target signal series
of each sample is known and can be used for training and
evaluation. In the first experiment, the logs are divided into
two categories: training and testing, with 83% and 17%,
respectively. Experiment 2 involves removing 13% of the data
from the training dataset in order to simulate a data shortage
condition typical of early-stage RL applications.

B. Training, Evaluation

For evaluation of algorithms’ performance, we define accu-
racy as the same as object detection: accuracy = (TP/(TP +
FP)), where TP stands for True Positive and FP stands for
False Positive. Then we test both implemented SAC-discrete
and DRSAC-discrete to compare with the baseline FastDTW.

In experiment 1, we train agents in a no-data shortage
setting by using both implemented SAC-discrete and DRSAC-
discrete algorithms on the whole training dataset. Then we
test both algorithms on the testing dataset. We also conduct
the baseline algorithm FastDTW on the same dataset. But
we find mismatching case like Fig. 1 is shown. For quantity
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Fig. 2. Neural network architecture as actor and critic: the fixed-size 2 x 512 state matrix is the input of both actor and critic. Both actor and critic networks
extract the features of the state by a stack of convolutional layers followed by two fully-connected layers. Critics straightforwardly output a vector of the last
fully connected layer with length five to provide the Q value of these five actions in this state.

TABLE I
ABLATION STUDY

Method EXP1:Accuracy (no shift) | EXP2:Accuracy (shift) Steps (no shift) Steps (shift) | Pattern length needed | Downsampled pattern
. . Tength of Tog
baseline FastDTW + window search 83% 83% Tength of pattern = 3000 3000 v X
SAC-discrete 949% 64% 6.503 9.03 X v
DRSAC-discrete 85% 71% 8.157 9.95 X v

evaluation, as Table I shows, the agent learned to localize
the target signal object with high accuracy of 94% in the
only average of 6.5 steps. Compared to the SAC-Discrete, the
DRSAC-Discrete has a more conservative performance. More
specifically, its accuracy was lower than SAC but still achieved
85%. Comparing those RL methods with the baseline, Fast-
DTW [37] (83%), both algorithms show superior.

In experiment 2, 15% data are removed from the training
dataset to mimic the data shortage situation, repeat training and
testing of SAC-discrete and DRSAC-discrete with the same
hyperparameters’ setting as experiment 1. The SAC-Discrete
performance dropped rapidly to 64% because the training
dataset no longer provided enough information for learning,
the enlarged uncertainty level, and the distributional shift
between the training and testing dataset confused the agent’s
decision. However, since the conservative policy of DRSAC-
Discrete, it can avoid some risks caused by the difference in
training and testing datasets and still maintain a fine accuracy
of 71% compared to SAC-Discrete.

In summary, both RL algorithms outperform the base-
line algorithm when training dataset distribution can provide
enough information for testing the dataset. Moreover, unlike
the traditional handcraft window searching problem, the RL
algorithms adaptively change the window size to suit the

— Trace X

g — TraceY
DTW
61 Ground Truth
4 -
2 4
0 i
0 2000 4000 6000 8000
Fig. 3. Baseline method (DTW) evaluation.

target and do not need any human involved in searching grid
and window design. But both RL failed when the training
dataset’s qualify degenerated. Therefore, practitioners should
build both model and dataset quality assessment and evaluation
monitoring modules in their deployment pipeline and keep
the traditional method and original model as their backup and
baseline solutions for A/B testing and rollback. The Q value,
the variance of Q, and the parameter of reward regularizer
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Fig. 6. Average reward.

also are good indexes for monitoring the model drift after
deployment, except for the accuracy, prediction mean, or other
statistic indexes. Because the Q value shows us the estimation
value of all actions in the current state, the variance of Q shows
the certainty of the model’s prediction, and the parameter of
the reward regularizer shows the model’s familiar level of the
current state. By combining that information, engineers can
easily troubleshoot and improvement of the system.

The training loss and average reward are shown in
Figs. 4 and 5. The critic loss defines as (1) represents how
good the critic’s assessment regarding each state visited by
the agent is. The X-axis is the training steps; the y-axis
represents the loss value. Moreover, actor loss defines as the
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Fig. 7. Temperature loss.

(2) representing the capability to pick a good action with a
higher Q value. Both losses converge to a stable level during
training. The accumulated reward of a trajectory is the total
gained rewards from initial to stop for one signal object search-
ing. The average reward is the last 100 trajectories, averaged
accumulated rewards. Fig. 6 shows that both SAC-Discrete
and DRSAC-Discrete agents were learning the environment
successfully during training. In the early steps, the training
is low because most steps in the trajectory will not lead to
a searching window closer to the target. In the later stage of
training, almost all steps can improve the location of the search
window and generate a high average reward value.

V. CONCLUSION

This article presents an MDP formulation of the Gamma
Ray log pattern localization problem that draws inspiration
from human attention. Our contributions and conclusions are
summarized as follows: This article represents one of the
earliest attempts to apply offline RL to solve 1-D signal
pattern-matching problems in the oil and gas industry. Our
agent learns pattern-matching decision processes from data,
and the experiments suggest that this method could poten-
tially aid in localizing complex signal patterns. However,
the performance of RL algorithms can be hampered by data
shortages and insufficient sample sizes in the environment.
The proposed DRSAC-Discrete approach’s accuracy result is
lower than that of the traditional RL method because safe
solutions require a tradeoff between accuracy performance
and robustness. Nevertheless, compared to the traditional RL
method, the proposed DRSAC-Discrete approach performs
better with less training data because it takes uncertainty
into account during training. Experimental evaluations with
augmented field logging data [37] demonstrate our method’s
superior performance and generalization ability.
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