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ABSTRACT: Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques
essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis work-
flows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec Processing Pipeline (UPP)
for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast
processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that con-
tains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and
analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure correct
pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates.
Moreover, because the software is free and open-source, users can easily build on this platform to create customized work-
flows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range

of biotherapeutic applications.

INTRODUCTION

Native and intact protein mass spectrometry (MS) have
become indispensable tools for analysis of therapeutic anti-
bodies and other therapeutic modalities.3 By measuring
the masses of intact antibodies, MS quickly reveals the dis-
tribution of proteoforms and can detect changes to the ex-
pected species. Importantly, as therapeutic modalities have
become more complex, the mass distributions also confirm
correct assembly of the products. For example, native/in-
tact MS is useful for elucidating the correct pairing of
bispecific antibodies and correct assembly of more complex
structures.*? Over the past decade, the demand for
bispecific antibody analysis has increased to thousands of
samples per year. New modalities and antibody formats are
often developed, leading to a variety of projects for intact
mass analysis, which may include light chain ratio optimiza-
tion, antibody pairing combinations, CDR swapping panels,
and purification strategies. In developing and optimizing
bispecific antibody pairing strategies, minimizing unde-
sired species, including mis-paired antibodies and homodi-
mers, is crucial in any bispecific therapeutic platform.

Native/intact MS is also useful for measuring the drug-
to-antibody ratio for antibody-drug conjugates (ADCs) and
in characterizing other covalently modified antibodies.8-1?
In designing ADCs, determining the drug payload is essen-
tial in improving potency as well as enhancing the function-
ality of the ADC as a whole.!3 Thus, the ability to character-
ize bispecific antibodies and ADCs in a high-throughput
manner is highly beneficial in evaluating these therapeutic
strategies.

Unlike denatured intact protein MS, which has conven-
tionally used a range of online injection strategies to enable

higher throughput analysis, native MS initially relied on
manual injection with single-use borosilicate needles for
each sample. However, recent work has advanced auto-
mated online injections and sample preparation.! For exam-
ple, using online buffer exchange!* or online size-exclusion
chromatography'®> enables automated native MS analysis
with very little user intervention at a rate of minutes per
sample. Native MS is thus catching up with denatured intact
protein MS in data acquisition throughput. At the same time,
faster high-throughput methods are also being developed
for denatured intact protein analysis, with rates as fast as a
sample per second.'6 17

Together, these advances in data collection throughput
have driven a need for higher throughput data analysis
methods. In addition to computational time to process the
data, manual work collecting metadata and organizing files
can greatly increase the total time needed for analysis. Re-
porting/export options with limited customization or func-
tionality further exacerbate the data turnaround time. As
one reviewer noted, data analysis is currently the critical
bottleneck for LC-MS workflows in biotherapeutic analysis.

A range of open source and commercial packages are
available, which have been reviewed previously.!® Among
the open-source options, UniDec has become widely used in
academic and industrial settings due to its speed and flexi-
bility.?° Prior publications have developed scoring meth-
0ds,?0 algorithm improvements,?! and new modules to help
support high-throughput data analysis with collections of
related data.?? However, there was previously not a simple
workflow for analysis of a large number of independent
samples in the peer-reviewed literature, especially applied
to biotherapeutic settings.



Here, we describe the UniDec Processing Pipeline
(UPP), a new module in the UniDec software package de-
signed to streamline analysis and reporting of large, inde-
pendent data sets. We discuss the key components of UPP
and demonstrate its use for rapid analysis of a dataset of
bispecific antibody pairing and calculating drug-to-anti-
body ratios (DARs). We also discuss additional applications
that could be built on this flexible open-source platform.

CODE AND SOFTWARE AVAILABILITY

UPP is part of the UniDec software package, which is
distributed free and open source on GitHub:
https://github.com/michaelmarty/UniDec. It has a modi-
fied BSD 3-clause license that permits unlimited use (in-
cluding for commercial purposes and with modifications),
unlimited numbers of downloads and installations, and very
permissive redistribution, including allowing commercial
redistribution with proper attribution (detailed in the li-
cense). Thus, UPP is readily customizable and can be de-
ployed in a wide range of settings.

A compiled, stand-alone Windows graphical user inter-
face (GUI) can be downloaded from GitHub:
https://github.com /michaelmarty/UniDec/releases. Sup-
port for Mac and Linux operating systems is available
through Python distribution described below. UPP can be
run through the GUI (Figure 1) by selecting UPP from the
main Launcher. Additional documentation and a wiki page
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with video tutorials can also be found on the GitHub page
(https://github.com /michaelmarty/UniDec/wiki).

UniDec is written primarily in Python with the core
UniDec algorithm in C. All changes to implement UPP were
added to the Python code and relied on the existing UniDec
application programming interface (API). In addition to
GitHub, UniDec is also available from the Python Packaging
Index (PyP], https://pypi.org) and can be installed with “pip
install unidec”. After installing UniDec, the main GUI can be
launched with the command: “python -m unidec.Launcher”.
With Python, the UniDec GUI can be run on Linux and Mac
computers. However, it can also be run through the com-
mand line and scripted. Binaries of the C code are provided
for Linux and Mac, but users may need to run the compiling
scripts on their own machine.

Finally, to facilitate use in high-throughput settings, a
UniDec Docker image has been built. Freely available for
download and deployment from DockerHub
(https://hub.docker.com/r/michaeltmarty/unidec), this
image allows for instant access to UPP analysis using
Docker or Singularity on any system, from personal laptops
to high-performance computing clusters and cloud provid-
ers such as Amazon Web Services. Between the GUI for
desktop use, the PyPI distribution for easy Python scripting
and direct integration into custom data processing pipe-
lines, and the container for large scale deployment, UPP is
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Figure 1: Overview of UPP showing the selected parts of the spreadsheet GUI and key steps of the workflow, including (A)
loading the data into the GUI, (B) batch processing through the key steps, and (C) displaying the results with reports.
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Figure 2: Example HTML report for a bispecific antibody data file. The report includes the table of peaks (top), deconvolved

mass spectrum (left), and annotated m/z spectrum (right).

easily accessible and interoperable with a variety of sys-
tems.

COMPUTATIONAL DESIGN AND METHODS
Overall Design and GUI

The primary data structure in UPP is a simple data ta-
ble, imported from either an Excel spreadsheet or CSV file
into a Pandas DataFrame?3 (Figure 1A). UPP operates by it-
erating over each row of the table (Figure 1B), applying dif-
ferent options specified in the input to the deconvolution
and analysis, and writing outputs from the analysis into a
results spreadsheet, which can be displayed in the GUI (Fig-
ure 1C). As described below, these outputs can include peak
intensities for specific mass combinations or DAR calcula-
tions, depending on the input values in the spreadsheet. The
default for the software is to use peaks heights, but peak ar-
eas can also be returned by setting a “Quant Mode” column
in the spreadsheet. Users can deconvolve and analyze a set
of data automatically without viewing any spectra. How-
ever, HTML reports are generated for each file and linked in
the results spreadsheet (Figure 2). Each of these individual
reports is also concatenated into a larger combined HTML
report viewable in any web browser. Examples of input

spreadsheets, HTML reports, and results spreadsheets are
provided in the supporting information.

UPP consists of three main Python modules. First, the
UPP.py file provides the GUI. The UPP GUI is a simple
spreadsheet interface that allows spreadsheet files to be
opened, saved, and manipulated (Figure 1). Users can select
specific rows to run through UniDec or run the entire
spreadsheet. A limited set of run options are present, but
specific deconvolution settings are entered into the spread-
sheet, not in the GUI, to enable automated analysis at scale.

Batch Processing Engine

Second, the batch.py file provides the core engine of the
UPP workflow. The UniDecBatchProcessor object can either
read a spreadsheet file or a Pandas DataFrame object. The
batch processer is called by the GUI, but it can also be run
through scripting or command line inputs (for example with
a command “python -m unidec.batch file.xlsx”).

The engine iterates over each row in the spectrum and
reads the values specified by different column keywords
present in the spreadsheet (Figure 1B). The complete list of
recognized column keywords is detailed in the help menu,
and a copy of the help page is provided in the supporting
information. The only required keyword is “Sample name”.



The “Sample name” column provides the location of the file
to deconvolve. Note, the capitalization of the keywords
should match exactly. An additional optional keyword of
“Data Directory” can be provided to specify the data location
if a full path is not provided in the “Sample name”. A wide
range of file types are currently supported by UniDec, in-
cluding text, csv, mzML (using pymzml?*), mzXML (using
pyteomics?> 26), and raw data formats from Agilent (using
multiplierz?7), Waters, and Thermo. Note, the vendor raw
data formats use libraries that are only available on Win-
dows. We welcome support from other file types from any-
one willing to contribute Python libraries for conversion.

For each row iteration, UniDec will open the specified
file, process the data, run the deconvolution, perform peak
picking, and generate an HTML report. The UniDec pro-
cessing, deconvolution, and peak picking have been de-
scribed previously,!? 28 and more information can be found
in the online wiki and tutorial videos linked above. Briefly,
UniDec uses a Bayesian deconvolution approach that com-
bines smoothing of charge and/or mass distributions with a
Richardson-Lucy deconvolution of peak shapes. Iterating
between these two processes, it assigns the charge state dis-
tribution for each m/z data point. This matrix of m/z vs z is
then transformed into a matrix of mass vs z, which is
summed across the charge dimension to yield the zero-
charge mass distribution. Peaks are then selected from this
mass distribution based on a user-defined relative intensity
threshold and a user-defined local mass window, where
peaks are local maxima within the window that exceed the
intensity threshold.

Each reporthas a sortable list of peaks, plots of both the
deconvolved mass and raw data, and a list of parameters
used. An example is provided in the supporting information
and shown in Figure 2. The HTML format makes reports
easily shareable, and they can be opened directly in a
browser by clicking on the GUI. The individual report loca-
tions are added to the output results spreadsheet, which is
saved at the end of the run. For simple deconvolution, the
only required field is the file location, and the only output
will be the “Reports” column. A global HTML report is also
saved alongside the results spreadsheet. This global report
concatenates the individual HTML reports into a combined
document for easy browsing, and an example is provided in
the supporting information for the DAR dataset.

Settings for the deconvolution can be adjusted by add-
ing additional columns to the spreadsheet. For example, in-
cluding “Start Time” and “End Time” as keywords will select
specific time ranges from the data to analyze (assuming re-
tention time is present in the original data format). All scans
between the start time and end time will be summed to-
gether into a single spectrum. To deconvolve distinct time
regions in a single data file, multiple rows can be added with
different retention time settings in each row.

Various deconvolution settings can also be adjusted.
For example, adding columns like “Config Low Mass” and
“Config High Mass” can be used to set the minimum and
maximum masses for the deconvolution. An external “Con-
fig File” location can also be added as a column to override
the default parameters with a new config parameter set. In
contrast with MetaUniDec?? and other UniDec batch pro-
cessing features,!® UPP enables each row of the spreadsheet

to have different, customizable deconvolution parameters if
needed. An example input spreadsheet is provided in the
supporting information.

In addition to modifying config parameters in the
spreadsheet, users can open the main UniDec GUI on any in-
dividual file to manually fine tune settings (either directly
from the UPP GUI or by opening the file separately with the
main UniDec GUI). During data conversion, a fresh config
file is created for each file. However, if the “Use Converted
Data” option is selected, the existing config file (with any
manual changes) will be used. In all cases, the config file will
still be overwritten by settings in the spreadsheet, so the
spreadsheet must be updated to reflect the manual adjust-
ments.

Matching Workflow

The third primary Python module used in UPP is
matchtools.py, which provides an extensible library of mod-
ules that analyze the peaks that are detected in the decon-
volution step. These libraries have been designed to provide
a framework for custom peak analysis, and users are wel-
come to design their own recipes for analyzing the peaks
and reporting the results back to the output spreadsheet. To
demonstrate the potential for these recipes, we designed
two analysis workflows. The first checks for correct combi-
nations of masses from a list of provided masses and/or se-
quences. The second calculates DARs for antibody-drug
conjugates (ADCs). Each recipe can be loaded into the sys-
tem at runtime and can be activated by required keywords
in the column names of the input data table.

Checking for Correct Pairing of Bispecific Antibodies

The goal of this recipe is to extract the peak intensities
for predicted masses. Within this general framework, there
are a number of ways to accomplish the overarching goal,
depending on the column keyword and cell values provided.
In the most basic case, users can provide the masses directly
in cells and include either “Correct”, “Incorrect”, or “Ignore”
in the column labels. Only the correct column is required.
There can be multiple columns of each type, as long as they
include the “Correct”, “Incorrect”, and “Ignore” keywords
somewhere in the column header. For our bispecific anti-
body example, we set “LC1 Mispair (Incorrect)” and “LC2
Mispair (Incorrect)” as two possible incorrect species.

Beyond the basic case of directly providing masses, us-
ers can also match with combinations of masses/sequences.
Here, columns are provided in the spreadsheet with the
keyword “Sequence” plus some unique identifier. For exam-
ple, we use “Sequence LC1” for the first light chain value.
Currently, the values provided in each sequence cell can ei-
ther be the mass of the species or the amino acid sequence
of the protein, which UniDec will automatically use to calcu-
late the mass. However, it would be possible in the future to
convert SMILES, nucleic acid sequences, or other similar
codes to mass if a suitable function can be provided in Py-
thon. Custom code could also be written to query a database
based on identifiers in the cell and retrieve a mass value.

In our example of bispecific antibody analysis, we spec-
ify the predicted masses for “Sequence LC1”, “Sequence
HC1”, “Sequence LC2”, and “Sequence HC2”. Additional col-
umns can also be provided to apply fixed modifications and
disulfide oxidation, which requires an amino acid sequence.



All of these adjust the masses that UniDec will generate to
match with the detected peaks.

After defining sequences, users can then specify the se-
quence combinations under the correct, incorrect, or ignore
columns. Here, the cell uses “Seq” with the unique identifier
as a code to specify the “Sequence” species in a string with
“+” separating the species. For example, the “LC1 Mispair
(Incorrect)” column has a cell value of “SeqLC1+Se-
qHC1+SeqLC1+SeqHC2”. This combination tells the soft-
ware to combine the masses of the columns with “Sequence
LC1” + “Sequence HC1” + “Sequence LC1” + “Sequence HC2”.
As a reminder, correct capitalization of the keywords is re-
quired. Also, it is possible to only have a single species (“Se-
gProtein” for example) in the cell. An example input file is
provided in the supporting information.

For each correct, incorrect, or ignored column
(whether defined directly or as sequence combinations),
this recipe will calculate the potential mass for this species,
apply any variable modifications, and generate a list of po-
tential species. It will then match this list with peaks found
in the data, subject to the defined tolerance. For each com-
bination, it will return the peak intensities (as defined by
the quant mode, both absolute and relative) to the results
file. It will also sum all the correct, incorrect, and ignored
peaks to generate the total peak intensities (both absolute
and relative) of the correct, incorrect, and ignored species.
Finally, it will calculate the percentage correct vs. incorrect
after ignored species are removed and report which
matches are found. In the HTML reports, peaks are colored
based on their status of correct (green), incorrect (red), ig-
nored (blue), or unknown (yellow), as shown in Figure 2
and in the example report in the supporting information. An
example results spreadsheet is also provided in the sup-
porting information. Overall, this workflow allows users to
quickly extract the absolute and relative intensities of com-
binations of potential species.

Although we have illustrated this for bispecific antibod-
ies, it would be straightforward to use this same workflow
for measuring protein-ligand binding or covalent protein
modifications. Here, users would specify “Sequence Pro-
tein” and “Sequence Ligand” with the necessary masses.
Correct binding stoichiometries could be defined as “Se-
gProtein+SeqLigand”. Incorrect binding could be defined as

“SeqProtein”. UPP would then return the percentage of pro-
tein that is bound to the ligand versus unbound. Additional
custom calculations or other binding stoichiometries could
be added as needed.

Drug-to-Antibody Ratio Calculations

In addition to the correct pairing workflow described
above, we also developed a matching workflow for calculat-
ing DARs. Here, the spreadsheet requires the “Protein
Mass”, which can be either 1) the predicted mass, 2) the
amino acid sequence of the protein, 3) or a “Seq” code word
combination, using the same nomenclature described
above. Fixed modifications can be applied in several ways,
as described in the help documentation.

This workflow also requires the “Drug Mass” and “Max
Drugs”, which specifies the maximum number of potential
drug conjugations to consider. A “Min Drugs” column, spec-
ifying the minimum number of potential drug conjugations
to consider, can also be supplied, but it will default to 0.
UniDec then combines different numbers of the drug mass,
ranging from the minimum to the maximum number of po-
tential conjugations, with the total protein mass. These
masses are matched with peaks from the spectrum to deter-
mine the peakintensities. The DAR is then calculated?® from
the peak intensities and added as a new column on the re-
port. An example report is provided in the supporting infor-
mation, and a screenshot of the outputs and select inputs is
shown in Figure 3.

RESULTS AND DISCUSSION
Application to Bispecific Antibodies

To demonstrate the use of UPP, we first tested it against
a dataset of bispecific antibodies containing 115 independ-
ent denatured LC/MS runs that had been previously pub-
lished.* Example data for this BsAb workflow and the DAR
workflow described below are posted at MassIVE
(MSV000092242, DOI: 10.25345/C52Z13069). In the
spreadsheet (see example in the supporting information),
we specified the file names and the data directory. Data was
provided as Thermo Raw format and converted using the
internal libraries in UniDec. The time range was specified to
capture the antibody peak eluting from the column. Simple
deconvolution settings were provided to limit the m/z and
mass range and specify peak picking settings.

w
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2 20221027_EMR_SEC_Native_OBJ42236_2_biotin_A_degly.raw 146050 339 15 0 4.417904206936531  C:\Data\UPPDemo\DAR\20221027_EMR
3 20221027_EMR_SEC_Native_OBJ42236_3_biotin_B_degly.raw 146050 339 15 0 4.131094423510705  C:\Data\UPPDemo\DAR\20221027_EMR
4 20221027_EMR_SEC_Native_0BJ42236_4_DIG_C_degly.raw 146050 an 15 0 4.334316306977574  C:\Data\UPPDemo\DAR\20221027_EMR
5 20221027_EMR_SEC_Native_0OBJ42236_5_DIG_D_degly.raw 146050 4an 15 0 4.140988051846604  C:\Data\UPPDemo\DAR\20221027_EMR
6 20221027_EMR_SEC_Native_OBJ42236_6_degly.raw 144360 47 15 0 0.0 C:\Data\UPPDemo\DAR\20221027_EMR
7 20221027_EMR_SEC_Native_OBJ42236_7_biotin_E_degly.raw 144360 339 15 0 3.9620650834689424  C:\Data\UPPDemo\DAR\20221027_EMR
8 20221104_EMR_SEC_Native_OBJ42236_8_biotin_F_degly.raw 144360 339 15 0 3.6914268426750807 C:\Data\UPPDemo\DAR\20221104_EMR
9 20221027_EMR_SEC_Native_OBJ42236_10_DIG_G_degly.raw 144360 an 15 0 3.9874336375126322 C:\Data\UPPDemo\DAR\20221027_EMR
10 20221027_EMR_SEC_Native_OBJ42236_9_DIG_H_degly_2.raw 144360 47 15 0 4.057583950490218  C:\Data\UPPDemo\DAR\20221027_EMR

Figure 3: Screenshot of the output and select inputs from the DAR calculation mode.



For the match settings, a match tolerance of 20 Da was
chosen. Two files did not match within this tolerance and
were expanded to 50 Da. A global fixed modification of -32
Da was applied to account for disulfides. Predicted masses
were supplied for each of the four “Sequences”: LC1, LC2,
HC1, and HC2. The “BsAb (Correct)” column was specified
as SeqLC1+SeqHC1+SeqLC2+SeqHC2. The “LC1 Mispair (In-
correct)” column was SeqLC1l+SeqHC1+SeqLC1+SeqHC2,
and the “LC2 Mispair (Incorrect)” column was SeqLC2+Se-
gqHC1+SeqLC2+SeqHC2. Species are annotated in Figure 4A
and 4B.
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Figure 4: Deconvolved data for bispecific antibody (BsAb)
with high (A) and low (B) correct pairing percentages. (C)
Comparison of published BsAb pairing percent (ref. 4) ver-
sus the UPP results. The dashed line shows perfect agree-
ment. Residuals shown below indicate the difference be-
tween published and UPP.

After loading this spreadsheet file into UPP, the full
“Run All” process took 99 seconds to convert/average the
data, deconvolve the results, and assign the peaks forall 115
files. Thus, a standard laptop was able to process the data
set with less than a second per file. After data has been con-
verted and averaged from raw file into a text file, data con-
version can be removed for subsequent reanalysis, which
shortens the deconvolution and analysis steps to 90 sec-
onds. Removing the deconvolution process shortened the
time needed for peak picking and data analysis to 60 sec-
onds, but shortcuts in the code could shorten that further by
removing optional file imports. Importantly, these results
demonstrate that UPP can process data faster than it can be
collected, even with the highest throughput systems.”

As part of the workflow, UPP calculated the percentage
of correctly paired bispecific antibody from the relative
amounts of BsAb, LC1 Mispair, and LC2 Mispair.* Example
datain Figure 4A illustrates a relatively high correct pairing,
with low amounts of incorrectly paired byproducts. Figure
4B illustrates an example with relatively low correct pairing
with higher amounts of incorrectly paired species. The re-
sults excellently matched prior analysis,* with a root mean
squared deviation of 1.1% (Figure 4C). The maximum abso-
lute difference was 6.7%, and only two files had absolute
differences greater than 3%. Together, these data demon-
strate that UPP can rapidly and accurately process native
MS and intact protein ESI data from large screening studies
and provide valuable quantitative outputs.

Application to DAR Calculations

To test the DAR calculation workflow, we applied UPP
to a set of 10 data files collected on a Thermo Scientific Ex-
active EMR with online SEC with native MS, using a previ-
ously described LC/MS method.” This data set contained
two antibodies with duplicates of either biotin or drug con-
jugation. An unmodified control was included for each anti-
body. The mass of each antibody was supplied along with
the mass of the conjugate. The minimum number of conju-
gates was set to 0 and the maximum was set to 15.

Analysis of these 10 files took around 6 seconds, less
than 1 second per file. After the data had been converted
and deconvolved, reanalysis took only 4 seconds for the
data set. A screenshot of the output is shown in Figure 3, and
example deconvolutions are shown in Figure 5. An example
results file and an example report are provided in the sup-
porting information. All conjugates had DAR values around
4 that matched manual calculations. Unmodified controls
both had DAR values of 0, as expected.

Interestingly, the deglycosylation was partially incom-
plete (Figure 5A), which led to a series of unmatched peaks
(shown in yellow in Figures 54, C, and E). The DAR work-
flow does not currently support variable modifications in
the same way as the BsAb workflow, so to correct for incom-
plete deglycosylation, we used the DoubleDec feature in
UniDec. DoubleDec loads a template mass distribution that
is used to deconvolve the output of the primary UniDec de-
convolution.3? Essentially, it specifies a complex peak shape
pattern (Figure 5A) and then collapses that fixed pattern
into a single peak in a second round of deconvolution (Fig-
ure 5B). Importantly, it assumes that the pattern of post-
translational modification is constant for all drug conju-



gated states. DoubleDec has previously been used to meas-
ure zinc and lipid binding to rhodopsin, which has a com-
plex set of post-translational modifications (PTMs),30 and to
measure tryptophan binding to TRAP, also combining a set
of PTMs into a single peak.3?

To use DoubleDec in UPP, we first manually decon-
volved the unmodified antibodies to obtain a kernel file
(Figure 5A). The deconvolved mass distributions from each
antibody were saved separately, and the paths to those files
were included in the spreadsheet as the “DoubleDec Kernel
File”. After deconvolving with these kernel files in the auto-
mated UPP deconvolution, the second series of peaks was
largely removed (Figure 5B, D, and E).

DoubleDec systematically lowered the calculated DAR
values, as seen in Figure 5. All conjugates had lower DARs
with DoubleDec. The DARs for the 4 biotin conjugates de-
creased by an average of 3.5%, and DARs for the 4 drug con-
jugates decreased by an average of 2%. The biotin conjugate
was more affected because it has a smaller mass difference
(339 Da) than the drug conjugate (471 Da). Thus, the drug
conjugate has more space between the peaks to accommo-
date the incompletely deglycosylated peaks. In contrast, the
second incompletely deglycosylated peak (+331 Da) over-
lapped with the biotin conjugation (+339 Da), and this over-
lap caused slightly higher signal for larger conjugates and
thus a systematically high DAR. DoubleDec corrects this
subtle error and enables accurate DAR calculation.
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Figure 5: UPP results for DAR calculations of an antibody
with UniDec (A, C, E) and DoubleDec (B, D, E) with unmod-
ified forms (A, B), biotin conjugates (C, D), and drug conju-
gates (E, F).

Overall, these results demonstrate the power of UPP for
quickly calculating DAR values for a set of data. Although we
generated the DoubleDec kernel files manually, it would be
possible to semi-automate this process by having a separate
spreadsheet of kernel files that are deconvolved first and

validated. Files from this first spreadsheet could then be en-
tered as kernel files in subsequent spreadsheets. Reviewing
the HTML reports can help to alert the user when Double-
Dec is needed, and a cutoff for the percentage of unknown
peaks could be set up with custom code to automatically
trigger DoubleDec. Moreover, DAR values could be calcu-
lated for multiple species within the same spectrum, such as
dissociated antibody chains or different proteoforms, by us-
ing additional rows for each file with different protein
masses. With flexible scripting and spreadsheet frame-
works, teams can customize their workflow and automate
these complex analyses.

CONCLUSIONS

Here, we described a new module to the UniDec soft-
ware package, the UniDec Processing Pipeline. UPP offers
several advantages for high-throughput data processing.
Because it is open source, labs and companies can develop
custom workflows. The example workflows shown here
demonstrate its potential for biopharmaceutical applica-
tions, but the same framework could be readily applied to
drug discovery?s or protein design32 by simply adjusting the
spreadsheet columns. For example, UPP could be applied to
high-throughput analysis of non-covalent MHCI complexes
to screen for neoantigen candidates by quantifying the
amount of successful peptide exchange.33 Accessible inputs
and outputs make the software easy to interface with other
tools. Finally, because it is free, cross platform, and contain-
erized, it can be run in individual workstations, local serv-
ers, or cloud providers without licensing restrictions or re-
quirements to transfer data offsite or to a 3™ party ecosys-
tem. It can be run in either GUI or command line modes, and
the results can be viewed with standard desktop tools: a
web browser and a spreadsheet application.

Alongside these advantages, several limitations re-
main. First, only a subset of deconvolution settings can be
controlled from the spreadsheet currently. However, be-
cause each parameter takes only a few extra lines of code,
we will add additional settings as needed and requested. If
desired, users can also control all deconvolution settings by
specifying an external config file in each line of the table.

Second, as discussed above, UPP is fast but not perfectly
efficient. Much of the computational time is spent reading
and writing from the hard drive, which could be stream-
lined with future code developments to pass data in the
memory between the Python scripts and the core UniDec bi-
naries, ideally by developing a shared library and Python
wrapper.

Finally, for simple systems and abundant species, de-
convolution with standard parameters is very robust. How-
ever, for complex data or low abundance species, auto-
mated processing with default parameters may not be reli-
able. If deconvolution settings need to be adjusted for each
file, UniDec can be opened for manual deconvolution on
each, but that defeats the purpose of batch processing. In
any case, we recommend that users carefully validate the
tool and regularly check the reports to ensure that the de-
convolution results are correct.

Overall, UPP provides a flexible template to build com-
plex workflows on, presenting a streamlined interface to
batch process, deconvolve, and analyze data. We welcome



users to build custom in-house pipelines, which they can ei-
ther keep private or contribute back to the free and open-
source code base. In future iterations, it would also be pos-
sible to link other UniDec engines for CD-MS analysis3* and
more sophisticated LC/MS analysis with chromatographic
peak picking. Pairing a flexible spreadsheet input with these
deconvolution engines will significantly advance high
throughput biotherapeutic analysis by mass spectrometry.
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