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Kagome-lattice magnets RMn6Sn6 recently emerged as a new platform to exploit the interplay between
magnetism and topological electronic states. Some of the most exciting features of this family are the dramatic
dependence of the easy magnetization direction on the rare-earth specie, despite other magnetic and electronic
properties being essentially unchanged, and the kagome geometry of the Mn planes that in principle can generate
flat bands and Dirac points; gapping of the Dirac points by spin-orbit coupling has been suggested recently to be
responsible for the observed anomalous Hall response in the member TbMn6Sn6. In this paper, we address both
issues with ab initio calculations. We have discovered the significant role played by higher-order crystal-field
parameters and rare-earth magnetic anisotropy constants in these systems. We demonstrate that the microscopic
origin of rare-earth magnetic anisotropy can also be quantified and understood at various levels: ab initio,
phenomenological, and analytical. In particular, using a simple and physically transparent analytical model
based on perturbation theory, we are able to explain, with full quantitative agreement, the evolution of rare-earth
magnetic anisotropy across the series. We analyze in detail the topological properties of Mn-dominated bands
and demonstrate how they emerge from the multiorbital planar kagome model. We further show that, despite
this fact, most of the topological features at the Brillouin zone corner K are strongly 3D and therefore cannot
explain the observed quasi-2D anomalous Hall effect, while the most pronounced quasi-2D dispersion are too far
removed from the Fermi level. By employing self-consistent calculations with ab initio many-body approaches,
we demonstrate that the exchange-correlation effects beyond the density functional theory for itinerant Mn-d
electrons do not significantly alter the obtained electronic and magnetic structure. Therefore, we conclude
that, contrary to previous claims, the most pronounced 2D kagome-derived topological band features bear little
relevance to transport in RMn6Sn6, albeit they may possibly be brought to focus by electron or hole doping.

DOI: 10.1103/PhysRevB.108.045132

I. INTRODUCTION

Two-dimensional (2D) kagome-lattices of 3d ions have
initially attracted considerable attention due to their excep-
tionally strong magnetic frustration. The first experimental re-
alizations were in systems featuring correlated Mott insulators
based, for instance, on Cu2+, with strong nearest-neighbor an-
tiferromagnetic exchange. These materials were investigated
for potential spin liquid behavior [1] and fluctuation-driven
phenomena such as unconventional superconductivity [2]. A
relatively newer development is metallic kagome materials
with unusual magnetic and topological properties [3]. In
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particular, a 2D single-orbital kagome model exhibits such
features as flat band and Dirac crossing (DC). As we discuss
later in the paper, the same features survive in the 2D five-
orbital nearest-neighbor hopping kagome planes, but not all
of them retain their 2D character in real 3D materials like the
family considered in this paper. Spin-polarized DCs may be
gapped by the spin-orbit coupling (SOC) in quasi-2D ferro-
magnetic (FM) metals, resulting in Chern gaps [4–6]. When
these topological electronic states are near the Fermi level,
large Berry curvatures are manifested, resulting in novel quan-
tum properties such as the quantum anomalous Hall effect.

An especially popular lately family of FM kagome metals
is RMn6Sn6, with the rare earth R = Gd, Tb, Dy, Ho, or Er
(the structure also forms with nonmagnetic rare earths but in
that case the lack of the transferred FM interaction between
the Mn layers bridged by a magnetic rare earth leads to
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FIG. 1. Easy-axis angle θ , with respect to the crystallographic c
direction, in RMn6Sn6 at low temperature, with R = Gd, Tb, Dy, Ho,
Er, and Tm [7–12]. At low temperatures, the anisotropy is easy-axis
when R = Tb, easy-plane when R = Gd, Er, and Tm, and easy-cone
with θ = 40–50 degrees when R = Dy and Ho.

complex antiferromagnetic spiral structures). Intriguingly, and
importantly, all of them form collinear ferrimagnets, but the
direction of the ordered moments varies, seemingly randomly,
as shown in Fig. 1, from material to material. Given that SOC,
as well as such properties as an anomalous Hall effect (AHE)
or magnetooptical Kerr effect (MOKE), are intimately related
to the direction of magnetization, understanding this interest-
ing variation of the magnetocrystalline anisotropy (MA) is of
utmost importance.

Another hot topic, prominently featured in the recent liter-
ature [13], is the possibility of Chern topological magnetism.
In principle, Chern physics can be triggered by the DCs genet-
ically related to the kagome geometry. In that case, the size of
the Chern gap is determined by the orbital characters of corre-
sponding bands, as well as the size of the spin projection along
the direction normal to the kagome layer [4]. The prerequisites
are (i) out-of-plane spin alignment, which is necessary for
generating the Chern gap; (ii) minimal kz dispersion of the
relevant DCs; and (iii) proximity of the DC in question to the
Fermi level.

The first condition is satisfied in, and only in, the Tb
compound in the RMn6Sn6 family. This has motivated intense
research of this compound [13–18]. The main challenge here
is establishing a connection between surface probes such as
tunneling and bulk properties controlling effects like AHE
and MOKE. Recently, Yin and coworkers, using tunneling
spectroscopy, identified a feature that could be interpreted
in terms of a DC located ∼130 meV above the Fermi level,
and conjectured that this DC is a source of the observed bulk
AHE. The intriguing observation depends on these quasi-2D
DCs lying close to the Fermi level, and warrants a closer
inspection, which is done in a companion paper [18].

In this work, we investigate the electronic structures and
intrinsic magnetic properties of RMn6Sn6 with R = Gd, Tb,
Dy, Ho, and Er. Besides the excellent agreement of magnetic
results with existing experiments, our ab initio calculations
also uncover the higher-order nature of crystal field (CF)
parameters and MA constants in these systems. We further
demonstrate that this discovery can be understood quali-

tatively in the phenomenological model and quantitatively
within a simple analytical model based on the CF at the
rare-earth site, which is also calculated from first principles.
We then address the topological aspect of the electronic struc-
ture, paying particular attention to the DCs, their location and
origin, and their potential impact upon the bulk topological
properties, and how they can be affected by spin-reorientation,
surface effects, and electron correlation.

II. AB INITIOMETHODS

The density functional theory (DFT) calculations are per-
formed using a full-potential linear augmented plane wave
(FP-LAPW) method, as implemented in WIEN2K [19]. The
generalized gradient approximation of Perdew, Burke, and
Ernzerhof [20] is used for the correlation and exchange poten-
tials. Unless specified, low-temperature experimental lattice
parameters [7] are adopted in all bulk calculations. SOC is
included using a second variational method.

The strongly correlated R-4 f electrons are treated using
the DFT +U method with the fully-localized-limit (FLL)
double-counting scheme and the so-called open-core ap-
proach. The ground states of the heavy-R 4 f shell are
generally expected to satisfy Hund’s rules due to the dom-
inance of SOC over CF. However, it is well-known that
DFT +U can have many metastable solutions, and worse
still, the ground state may appear as a metastable state in
DFT +U . Therefore, the initial orbital occupancy of 4 f states
should be controlled to ensure that the self-consistent electron
configurations satisfy Hund’s rules. This is the only constraint
we enforced in our DFT +U calculations. As long as it is
enforced (which itself requires that U cannot be too small),
we found that the calculated magnetic properties are not very
sensitive to the U value. Therefore, in this work, we only
present DFT +U results withU = 0.52Ry, which falls within
the typical range ofU values used for R-4 f elements. Without
adjusting U parameters for each R element, our calculations,
as demonstrated later, can capture the essence of anisotropy
evolution in this entire series of compounds. In contrast to
DFT +U , the open-core approach incorporates the occupied
4 f electrons as core states. This approximation is reasonable
when describing band structures near the Fermi level with
minimal contributions from the 4 f electrons. Additionally, the
open-core approach allows us to examine the contributions of
non-4 f electrons to MA.

We also explore the effects of electronic correlation of
non-4 f electrons beyond DFT by employing the quasipar-
ticle self-consistent GW (QSGW) method [21,22], which is
based on many-body theory. While the QSGW method rep-
resents a simplification (from a technical standpoint) of the
more general fully self-consistent GW (scGW) approximation
[23], it is typically more accurate [24,25]. In the QSGW, the
fully frequency-dependent self-energy of the scGW method
is replaced with a static (frequency-independent) self-energy.
However, this replacement is performed in a special way to en-
sure the so-called Z-factor cancellation [22]. This cancellation
guarantees that the QSGW method, unlike the scGW method,
satisfies the Ward Identity in an important long-wave and
zero-bosonic frequency limit. Compared to the DFT approxi-
mation, the QSGW method considerably improves the calcu-
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FIG. 2. Crystal structure of RMn6Sn6 (a) and its top view (b).
Atomic layers are stacked in the order of [Mn-Sn1-Sn3-Sn1-Mn]-
[R-Sn2]-[Mn-Sn1-Sn3-Sn1-Mn] along the c axis. The kagome Mn
bilayers that sandwich the Sn3 layer, denoted by the square brackets,
are ferromagnetically strongly coupled, while the coupling between
two Mn-bilayer blocks is weak. The antiferromagnetic coupling be-
tween the heavy rare-earth atoms R and neighboring Mn atoms, JRM,
is crucial to maintain the ferromagnetic Mn ordering in RMn6Sn6 at
low temperature.

lated electronic structure in both simple sp-materials [22,26]
and materials with strong electron correlations involving d- or
f -electrons [22,27–30]. Unlike the DFT +U approximation,
the QSGW method has the advantage of being fully ab initio,
without any adjustable parameters [31]. In this study, we em-
ploy the QSGW method [32] to investigate the non-4 f band
structures near the Fermi level in these compounds.

III. MAGNETIC ORDERING AND EXCHANGE COUPLING

RMn6Sn6 with heavy R elements crystallizes in the
hexagonal HfFe6Ge6-type (P6/mmm, space group no. 191)
structure, as shown in Fig. 2. R atoms (D6h, or 6/mmm) forms

a triangular lattice with each R atom neighboring with six Sn2

atoms in the basal plane. The nearest neighbor of R atoms is
the Sn1 atoms, which are along the axial direction and pushed
slightly off the Mn kagome plane by R atoms. The six Mn
atoms (2mm) in the unit cell form two FM kagome layers
that sandwich the Sn3 honeycomb layer and are ferromagnet-
ically coupled via the Mn-Sn3-Mn superexchange [16]. Mn
sublattices prefer easy-plane spin orientation. The couplings
between neighboring Mn-bilayers blocks across the R-Sn1

layer are weaker or even antiferromagnetic (AFM), depending
on the R element type. As a result, the AFM R-Mn exchange
coupling JRM and R magnetic anisotropy are essential to de-
termine the overall magnetic structure and band topology.

The lattice parameters and atomic coordinates slightly vary
with different element types of R. To separate the chemical
and structural effects on magnetic properties, we also perform
calculations for all RMn6Sn6 compounds using the lattice
parameters of GdMn6Sn6.

A. Spin and orbital magnetic moments

Table I summarizes the magnetic moments and their com-
ponents in RMn6Sn6 calculated in DFT +U and compared
with experimental values and the corresponding values ex-
pected for 4 f shells from Hund’s rules. Reported experimental
spin-reorientation temperatures TSR and Curie temperatures
TC are also listed for comparison. The calculations adopt
the experimental low-temperature collinear magnetic struc-
ture and corresponding easy directions.

The deviation of the spin and orbital magnetic moments of
R from the integer values expected for 4 f electrons, as dic-
tated by Hund’s rules, is attributed to the contributions from
R-5d electrons. The R-5d states are primarily spin-polarized
by the neighboring 12 magnetic Mn atoms through 3d-5d
hybridization. They are further polarized by the onsite 4 f
moment. The Mn-3d spin aligns antiferromagnetically with
the R-5d spin, which is parallel with the R-4 f spin, resulting
in R-Mn ferrimagnetic (FI) ordering in RMn6Sn6 for heavy
R atoms. Without considering the variation of structural pa-
rameters with R, we found that the induced 5d spin moment
of various R atoms, calculated using the GdMn6Sn6 crystal

TABLE I. The spin magnetic moment ms
R and orbital magnetic moment ml

R of R atom (in μB/R), the total magnetic moment of Mn atom
mMn (in μB/Mn), and magnetization M (in μB/f.u.) in RMn6Sn6 and compared to experiments. R-4 f orbitals are treated within DFT+U . The
calculated mMn, consisting of ∼1% orbital magnetic moment, is antiparallel with R moment. Sn atoms have a moment of ∼0.11μB/Sn, and
the interstitial has a moment of ∼0.5μB/f.u.; both align antiparallelly with respect to the Mn moments. Electron occupancy in the minority
R-4 f channel n↓

f , spin magnetic moment ms
4 f , orbital magnetic moment ml

4 f , and total magnetic moment m4 f of R-4 f electrons, according to
Hund’s rules, are also shown. Onsite spin and orbital magnetic moments are in units of μB/atom. Experimental spin-reorientation temperature
TSR (in K) and Curie temperature TC (in K) values are also listed.

Hund’s Rules Calculations Experiments

R Z n↓
4 f ms

4 f ml
4 f m4 f ms

R ml
R mR mMn M mR mMn M TSR TC References

Gd 64 0 7 0 7 7.33 −0.02 7.31 2.38 5.83 6.5 2.5 8.5 435–445 [8,34,35]
Tb 65 1 6 3 9 6.26 2.96 9.23 2.42 4.10 9.2 2.39 5.77 310–330 423–450 [8,17,34,35]
Dy 66 2 5 5 10 5.21 4.96 10.18 2.40 3.05 9.97 2.11 2.69 270–320 393–410 [8,34,35]
Ho 67 3 4 6 10 4.17 5.97 10.14 2.39 3.07 8.43 2.39 3.26–5.91 175–200 376–400 [8,35]
Er 68 4 3 6 9 3.19 5.93 9.12 2.38 4.03 8.40 2.21 4.86 75 340–352 [8,34,36]
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structure parameters, can be approximately written as

ms
R-5d = 12αms

Mn-3d + β ms
R-4 f , (1)

with α ≈ 0.007 and β ≈ 0.02. When considering the R de-
pendence of structural parameters, we found that the 5d spin
moment decreases with the 4 f spin moment by approximately
40% as R progresses from Gd to Er.

The calculated magnetic moments, as summarized in Ta-
ble I, show good overall agreement with previously reported
experimental values. Mn moments are calculated to have
values of 2.38–2.42 μB/Mn, consistent with the reported ex-
perimental values of 2.11–2.5 μB/Mn in various RMn6Sn6

compounds. For the magnetic moment of R atoms, exper-
imental magnetic moments agree reasonably well with the
calculated ones, suggesting that the orbital occupancy of 4 f
electrons in these compounds respects Hund’s rule as ex-
pected for heavy R atoms. The calculated value of mTb =
9.23μB/Tb is nearly identical to the very recent experimen-
tal value measured by Mielke and coworkers [17] at 2 K.
The calculated mDy also agrees well with neutron diffraction
measurements [7,17,33]. For other R elements, the calculated
mR values are somewhat larger than reported experimental
ones. For example, Ho in HoMn6Sn6 has the largest differ-
ence between the calculated and experimental values, 10.14
and 8.43 μB/Ho, respectively. However, the calculated over-
all magnetization agree better with experiments; Clatterbuck
et al. [34] estimated the net magnetic moment of HoMn6Sn6

from the magnetization curve at 10K and obtained 3.26
μB/f.u., agreeing fairly well with the calculated value of 3.0
μB/f.u. Furthermore, larger experimental Ho moment mea-
sured by the neutron diffraction had been reported in doped
HoMn6Sn6 compounds [12], e.g., with mHo = 9.53 μB/Ho in
HoMn6Sn5In. The difference between the experiments and
theory may be relevant to the easy-cone orientation and the
fact that we also partition magnetization into interstitial and
Sn sites, which are slightly AFM with respect to Mn.

B. Intersublattice R-Mn exchange coupling

The intersublattice magnetic couplings between R and Mn
sublattice play an essential role in aligning the FM Mn-
bilayers and stabilizing long-range Mn ordering. It also affects
TSR as a larger JRM suppresses the thermal activation of 4 f
electrons into excited multiplet, which ultimately makes the
thermal average of the 4 f charge cloud more spherical and
isotropic. We estimate the R-Mn coupling JRM by mapping
the total energies of FM and FI R-Mn spin configurations into
a Heisenberg model defined as

HRM =
∑

i∈R, j∈Mn

JRMSi · S j . (2)

Here, Si = |Si| = ms
i /2 and ms

i is the spin magnetic moment
on site i. A positive JRM corresponds to the AFM R-Mn cou-
pling.

Figure 3 shows the R-Mn magnetic energy �E and ex-
change parameter JRM, normalized with respect to the values
of GdMn6Sn6, as functions of the electron occupancy in the
minority R-4 f spin channel. The R-Mn magnetic interac-
tion energy �E = EFM − EAFM = 24JRMSRSMn is calculated
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FIG. 3. Normalized intersublattice R-Mn exchange coupling pa-
rameter JRM and magnetic energy �E as functions of the electron
occupancy in R-4 f minority spin channel n↓

4 f in RMn6Sn6 with R =
Gd, Tb, Dy, Ho, and Er. �E = EFM − EAFM is calculated as the
energy difference between the FM and AFM spin configurations
of R and Mn sublattices. To separate the structural and chemical
effects, calculations using the lattice parameters of GdMn6Sn6 are
also carried out and denoted as open triangles and circles. The values
of �E and JRM are normalized with respect to the values of Gd
compounds, �EGd = 299 meV and JGd

RM = 2.96 meV.

as the energy difference between the FM and AFM spin
configurations of the R and Mn sublattices. The R-Mn inter-
sublattice couplings are AFM for all R elements, consistent
with experiments. The corresponding magnetic energy �E
and exchange parameter JRM decrease by ∼70% and ∼30%,
respectively, when R goes from Gd to Er. The abnormality of
JRM at R = Tb is related to the structural change, considering
that the calculations that use the Gd lattice parameters give a
smooth curve, as shown in Fig. 3.

In addition to the decrease in the R spin moment, the
reduction of the R-Mn exchange energy from Gd to Er is also
caused by the weakening of the JRM. A similar decrease of
JRM with increasing atomic number has also been observed
in other rare-earth transition-metal alloys. This trend is es-
pecially pronounced in the light rare-earth series [37–39].
However, the mechanism behind the decreasing JRM is not
apparent, as one might assume that JRM should remain the
same considering the similarities of band structures through-
out the series. The exchange coupling between the R-4 f spin
and Mn-3d spin primarily occurs through the R-5d electrons.
The decrease in JRM with increasing atomic number may be
due to the lanthanide contraction, which reduces the overlap
between the 4 f and 5d charge densities [40,41]. The change
in lattice parameters can also affect the 4 f -5d overlap and
5d-3d hybridization, thus influencing JRM, as demonstrated
by the abnormality of JRM at R = Tb in Fig. 3.
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FIG. 4. Variation of magnetic energy (in meV/f.u.) as a function
of spin-axis rotation in RMn6Sn6, with R = Gd, Tb, Dy, Ho, and
Er, calculated (a) with and (b) without R-4 f contributions. θ is
the angle between the spin direction and the out-of-plane direction.
The experimental easy directions for each compound are denoted
by arrows in panel (a). The lines are fittings of E (θ ) = K1 sin2 θ +
K2 sin4 θ + K3 sin6 θ in panel (a) and E (θ ) = K1 sin2 θ in panel (b),
respectively.

IV. MAGNETOCRYSTALLINE ANISOTROPY

MA in RMn6Sn6 consists of contributions from both
the R and Mn sublattices. These contributions have differ-
ent temperature dependencies and dominate at lower and
higher temperatures, respectively. MA becomes essential in
maintaining long-range magnetic ordering in low-dimensional
materials or bulk materials composed of weakly coupled mag-
netic layers, in accordance with the Mermin-Wagner theorem
[42,43].

Although the easy directions of RMn6Sn6 have been well
established experimentally, the anisotropy amplitudes, the en-
tire E (θ ) profile, the constituent sublattice contributions, and
the underlying microscopic origin of these anisotropies re-
main largely unknown. In this section, we demonstrate the
evolution of the easy axis in this series of compounds can
be well described theoretically. Moreover, by decomposing
the anisotropy into sublattice contributions, we discover the
significant role played by higher-order CF parameters and MA
constants in these systems. In this section, we demonstrate
that the MA mechanism in RMn6Sn6 can be quantified and
understood at various levels: ab initio, phenomenological, and
analytical.

A. Ab initio calculations

At lower temperatures, as shown in Fig. 1, experi-
ments found that TbMn6Sn6 has an easy-axis anisotropy and
ErMn6Sn6 has an easy-plane anisotropy, while the HoMn6Sn6

and DyMn6Sn6 have an easy-cone anisotropy with the quan-
tization axis along the θ = 40–50◦ directions. Figure 4(a)
shows the calculated total energies E (θ ) as functions of spin-
quantization direction, characterized by the angle θ deviated
from the c axis. The calculated large easy-axis anisotropy in
TbMn6Sn6 is comparable to the experimental value of 23.1

meV/f.u. estimated from recent inelastic neutron scattering
(INS) measurements [16]. This value is also comparable to
the well-studied SmCo5 magnet [44]. The calculated easy
directions for all five compounds agree well with experiments.
GdMn6Sn6 shows a cosinelike E (θ ) dependence, and the am-
plitude is one order of magnitude smaller than other RMn6Sn6

compounds. In contrast, all four other compounds show a non-
monotonic dependence of E on θ with an energy minimum
or maximum near 45◦, suggesting substantial higher-order CF
parameters (CFP) and MA constants.

Mn sublattice contribution dominates MA at temperatures
above TSR; experiments [7,8,33] found that all compounds
have an easy axis within the basal plane with TSR < T < TC.
Here, we theoretically confirm the easy-plane contribution
of Mn sublattice by calculating the MA contributions from
non-4 f electrons. This is achieved by treating R-4 f electrons
in the open-core approach, in which R-4 f charges are treated
as spherical and do not contribute to MA.

Figure 4(b) shows the non-4 f contributions to MA. Unlike
the total MA, the non-4 f MA energy (MAE) can be perfectly
fitted as E (θ ) = K1 sin2 θ , without higher-order terms (K2 and
K3), as generally expected. Moreover, remarkably, all com-
pounds have a similar amplitude as calculated in GdMn6Sn6.
Overall, the non-4 f MAE is generally weaker than the R-Mn
exchange coupling in RMn6Sn6, which maintains a collinear
spin configuration between R and Mn sublattices. As a result,
at lower temperatures, the easy direction is dictated by the
R sublattice. Furthermore, it is worth noting that although
we often associate the non-4 f MA contribution with the Mn
sublattice, in fact it is a combined effect of the Mn-3d spin
polarization and the large Sn-4p SOC. This MA mechanism
is rather general in many systems that consist of strongly
spin-polarized atoms and large-SOC heavier atoms, such as
permanent magnet FePt [45], topologcial materials MnBi2Te4

[46], and magnetic 2D van der Waals matrials CrI3 [47]. Mn
sublattice MA can be further resolved into single-ion and
two-ion [45] (anisotropic exchange) contributions. Ghimire
et al. found that the MA in YMn6Sn6 consists of an easy-
axis single-ion MA and a stronger easy-plane anisotropic
exchange, resulting in an overall easy-plane MA [48].

The mechanism of the easy-cone MA in DyMn6Sn6 and
HoMn6Sn6 is not well understood. It has been argued that
the easy-cone directions in DyMn6Sn6 and HoMn6Sn6 result
from the competition between easy-plane Mn anisotropy and
easy-axis (weaker than those of Tb) anisotropy from the Dy or
Ho sublattice [7,33]. However, considering the Mn sublattice
contribution is much smaller than the total MAE, as shown in
our calculations, we argue that Dy and Ho MAE themselves
prefer the easy direction off the z axis. To verify, we turn
off the SOC on Mn and Sn sites in HoMn6Sn6 and find
that the calculated easy direction remains the same. Thus, we
conclude that the easy-cone axis results from the dominant Dy
or Ho MA itself instead of the competition between easy-axis
R MA and easy-plane Mn MA. This can be verified by future
measurements of the easy directions of Dy or Ho compounds
in other R166 compounds with a nonmagnetic transition metal
sublattice, such as V.

While the easy directions calculated in DFT agrees well
with experiments for all RMn6Sn6 compounds we studied
here, it is desirable to understand the evolution of rare-earth
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anisotropy further. In the following two sections, we elucidate
the microscopic origin of this computational R anisotropy
using simple and physically transparent analytical models.

B. Rare-earth anisotropy I: Phenomenological
crystal-field model

The dominant rare-earth contribution to MA reflects the CF
interaction of the 4 f electrons. This interaction was first de-
scribed in terms of electrostatic interaction in insulators [49],
but the theory also applies to covalent solids and metals, where
it is often called ligand-field theory [50,51]. Up to fourth
order, the CF interaction of hexagonal crystals is described
by the CFP A0

2 and A0
4 [49,50,52–54]. The anisotropy energy

is, up to fourth order,

Ea = K1 sin2(θ ) + K2 sin4(θ ), (3)

where

K1 = − 3
2A

0
2Q2 − 5A0

4Q4, (4)

K2 = 35
8 A

0
4Q4. (5)

In these equations, the Ql = �l〈rl〉4 fO0
l are the electrostatic

multipole moments of the rare-earth 4 f shells; quadrupole
moment Q2 = aJ〈r2〉4 fO0

2 and hexadecapole moment Q4 =
bJ〈r4〉4 fO0

4. Here, the Stevens coefficients aJ = �2 and bJ =
�4, the operator equivalents O0

l , and the rare-earth radii 〈rl〉4 f

are well-known [52,55], and low-temperature values of Q2

and Q4 have been tabulated in Ref. [53]. The distinguishing
behavior of RMn6Sn6 is the large fourth-order CFP (A0

4) and
anisotropy (K2) and the corresponding big energy minimum
or maximum near 45◦.

In isostructural compounds, A0
2 and A0

4 exhibit little change
across the lanthanide series, because they reflect the crys-
talline environment of the rare-earth atoms. The fact that
TbMn6Sn6 (Q2 < 0 and Q4 > 0) has the largest easy-axis
anisotropy among the series suggests A0

2 > 0 and A0
4 < 0

(Indeed, we also confirmed A0
2 > 0 and A0

4 < 0 in DFT;
see Supplemental Material [56]). The striking differences in
Fig. 4(a) reflect the multipole moments. Physically, the 4 f
electrons mostly confined within the Muffin-Tin sphere and
the hybridization between 4 f and ligands are small; the domi-
nation of 4 f SOC over the weak CF yields a rigid coupling
between the spin and the orbital moments of the R atom,
so that the magnetic anisotropy is mainly determined by the
electrostatic interaction of the R-4 f charge clouds with the
crystalline environment [53,54]. The charge distribution of the
Gd-4 f electrons is spherical (half-filled 4 f shell), but other
lanthanides have aspherical charge distributions and exhibit
nonzero anisotropy contributions. This asphericity provides a
qualitative explanation of the curves in Fig. 4(a). Lowest-order
interactions (Q2) determine the basic spin orientation (easy-
axis versus easy-plane), but to understand easy-cone behavior,
one needs Q4 [54].

The R elements considered in this paper have Q4 > 0 (Tb,
Er) and Q4 < 0 (Dy, Ho), as schematically shown in Fig. 5.
CF charges in both metals and nonmetals are usually neg-
ative [51,53], so that the Mn coordination of the R atoms
in RMn6Sn6 (about 50◦) yields a negative A0

4 and realizes
the situation outlined in Fig. 5. In a nutshell, for Dy and

FIG. 5. Crystal-field origin of easy-axis (Tb), easy-cone (Dy,
Ho), and easy-plane (Er) anisotropies in RMn6Sn6. The magneti-
zation of free ions can point in any direction, so a small magnetic
field H = +Hzêz has been added to create a unique spin direction. In
the crystal, symbolized by Mn ligands (blue, red), the spin direction
is determined by the electrostatic interaction between the rare-earth
4 f shell (yellow) and the Mn atoms. Crystal-field charges are neg-
ative, so the crystal-field interaction is repulsive. The right column
focuses on the fourth-order interaction (Q4 → K2), the dashed red
line showing how the repulsive interaction with Mn stabilizes the
spin structure. The green lines are the equators of the uniaxial 4 f
charge distribution, which is always perpendicular to the spin direc-
tion (arrows).

Ho, the combination of Q2 and Q4 creates a bone-like 4 f
charge distribution, and the electrostatic repulsion between
the CF charges (Mn) and the negatively charged 4 f electrons
causes the magnetization direction to deviate from the c-axis.
This repulsion is exemplified, in Fig. 5, by dashed red lines
near red-colored regions. In contrast, Q4 > 0 in Tb and Er
results in an energy maximum near θ ≈ 45◦. Moreover, Tb
and Er have similar fourth-order Stevens coefficients and their
opposite Q2 (oblate versus prolate shape, respectively) pro-
duce easy-axis and easy-plane anisotropy, respectively. Note
that Ql/〈rl〉(Ho) = −Ql/〈rl〉(Er), resulting in the roughly
opposite E (θ ) in ErMn6Sn6 and HoMn6Sn6. This can be un-
derstood considering that the total seven 4 f electrons from Ho
and Er will produce a nearly (or exactly, if we ignore element
dependence of 〈rl〉) spherical charge cloud with vanishing
anisotropy.

Note that rare-earth anisotropy constants of order n >

2 are normally much smaller than second-order anisotropy
constants [53], which explains the relatively rare overall
occurrence of easy-cone magnetism. The high fourth-order
anisotropy is a unique consequence of the Mn-coordination of
the rare-earth atoms in the structure, which have 12 nearby
Mn atoms in adjacent planes. CFP are proportional to the
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number of neighbors, each contributing an intrinsic CF contri-
bution A′

n, and these intrinsic contributions are multiplied by
coordination factors [51,53]. For A0

4, the coordination factor is
P4(cos �) = (35 cos4(�) − 30 cos2(�) + 3)/8, which has an
extreme of −0.429 at 49.1◦ (see Fig. S6 [56]). Moreover, it
is worth comparing RMn6Sn6 and the well-studied RCo5 sys-
tem. Despite the great structural similarity between RMn6Sn6

and RCo5 systems [44], A0
2 is smaller in RMn6Sn6 compared

to RCo5, because there are Sn near neighbors both axially
and in the plane, while in RCo5, without the axial Sn and the
dissimilarity between transition metal atom and Sn, the large
2nd-order anisotropy (K1) dictates the anisotropy.

The above phenomenological CF model provides an in-
tuitive understanding of the easy directions in RMn6Sn6. To
better quantify the CF model of the anisotropy, in the fol-
lowing we present a more quantitative analytical model of
anisotropy using the CF energies from DFT.

C. Rare-earth anisotropy II: Analytical modeling using Crystal
field levels

In the case of SOC dominating the CF energy (ξ � d),
one can assume that, in the first approximation, when the spin
rotates, the angular moment follows it; for example, if the spin
is rotated by θ , so is the angular moment, and the SOC energy
remains the same during the rotation. Then, for instance, in
the case of Tb, the wave function of its one f -electron is
described by the complex spherical harmonic Ỹ l

m = Ỹ 3
3 with

the z̃ axis is rotated by θ from the crystallographic c axis.
To calculate the CF energy of this rotated state, we need to
re-expand this harmonic in terms of the original ones, namely,
Ỹ 3

3 = ∑
m D3

3m(θ )Y 3
m , where D are the reduced Wigner coeffi-

cients.
In the absence of SOC, CF splits the 4 f states into five

quenched levels characterized by real spherical harmonics
Y l
m, which are linear combinations ofY l

±m. Explicitly, [Y l
m]ᵀ =

U[Y l
m]ᵀ, with m = −3 · · · 3:

a2u e1u e2u b1u b2u

z3 z2(x ± iy) z(x ± iy)2 x(x2 − 3y2 ) y(3x2 − y2)

Y3
0 Y3

±1 Y3
±2 Y3

−3 Y3
3

Then the CF Hamiltonian becomes

〈Ỹm|HCF|Ỹm′ 〉 = (D†U†EUD)mm′ . (6)

Here, E is the diagonal matrix of CF levels em, and D =
D(θ ) is the Wigner coefficient matrix corresponding to the
Euler angles (0, θ, 0). Note that e0 = E (a2u), e±1 = E (e1u),
e±2 = E (e2u), e−3 = E (b1u) and e3 = E (b2u). The contribu-
tion to E (θ ) from orbital m can be expanded in cos(iθ ) with
i = 0, 2, 4, 6:

Em(θ ) =
∑

i=0,2,4,6

Cm
i cos(iθ ). (7)

For the second half of the lanthanide series with configura-
tions f n↓ , we have

E ( f n↓ , θ ) =
n↓−4∑
m=−3

Em(θ ) =
∑

i=0,2,4,6

Cn↓
i cos(iθ ). (8)

0 15 30 45 60 75 90
-15

-10

-5

0

5

10

15

20

0 15 30 45 60 75 90
-30

-20

-10

0

10

20

30

40

θ (deg) θ (deg)

FIG. 6. R-4 f only single-ion anisotropy in RMn6Sn6 calculated
in (a) DFT and (b) an analytic model Eq. (8)

Coefficients Cm
i and C f n↓

i (with i = 2, 4, 6) are linear combi-
nations of em (see details in Table S1 [56]).

We next extract CF levels em in GdMn6Sn6 within DFT +
U and use them for all four R elements for simplicity, although
CF splitting should decrease in heavier R compounds. Most
importantly, the unphysical self-interaction contribution to CF
in DFT is mostly avoided in GdMn6Sn6, thanks to a half-filled
f shell. Using the calculated em, the modeled E (θ ) are calcu-
lated and compared to DFT results in Fig. 6. The modeled
MA somewhat overestimates the calculated MA, partly due
to using the larger CF splittings of GdMn6Sn6. However, as
crude as this approximation (ξ � d ) is, it captures the key
features of first-principles calculations quantitatively: (i) the
scale of the quartic term is comparable with the scale of the
quadratic term, (ii) the sextic term is negligible in Tb, but
becomes increasingly more important toward Ho and Er, and
(iii) the magnetic anisotropy energy as a function of the angle
is approximately opposite in Er and Ho.

V. BAND TOPOLOGY

One of the most enticing features of the kagome lattice
is the fact that, in the single-orbital nearest-neighbor tight-
binding (TB) model, the electronic structures show a flat band
and a DC at the K point in the Brillouin zone, where the latter
is topologically protected while the former is not. In Chern-
gapped insulators, edge states may significantly contribute to
the transport properties by avoiding backscattering when EF

is located within the Chern gap.
TbMn6Sn6 is metallic. In the work of Yin et al. [13], the

anomalous Hall effects were observed and related to possible
2D-like (weak kz-dependent) SOC-gapped DC, mainly con-
sisting of Mn inplane orbitals, slightly above EF at the K
point. However, Jones et al. [18] directly calculate the Berry
curvatures and found that AHE actually comes from other
parts of the BZ. To understand this discrepancy, we should
analyze the nature and characters of multiple Dirac bands in
the systems.

Here, we systematically investigate how the band struc-
tures near the Fermi level in RMn6Sn6 evolve with R, electron
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correlations, and spin reorientation. As we shown below, we
found that the only quasi 2D DC is located about 0.7eV above
EF, much higher than the value reported in the work of Yin
et al. [13], which explains why Jones et al. [18] do not find
significant contributions to AHE at the K point.

A. Dirac crossings and gap openings

It is instructive to expand the single-orbital kagome model
Hamiltonian onto a more realistic five d-orbital model. In a
hexagonal CF, the d-orbitals split into three levels: a1g ∝ Y2

0 ,
e′
g ∝ {Y2

1 ,Y2
−1}, and e′′

g ∝ {Y2
2 ,Y2

−2}. The e′
g orbital is odd

with respect to mirror reflection about the kagome plane,
while the others are even. At the � point, they are orthog-
onal and protected by the six-fold rotation symmetry. At a
generic quasimomentum, the bands from different orbitals can
hybridize due to the absence of mirror symmetry about the
kagome plane. Nevertheless, it is instructive to examine the
energy bands of these orbitals on the kagome lattice.

We focus on the 2D momentum space with kz = 0, where
the DCs appear and the system is invariant under mirror oper-
ations about the ab plane. Thus, we can simplify the model to
a 2D kagome lattice without loss of generality. Since the a1g

state is rotation invariant about the c-axis, the hopping is the
same along all three bonds characterized by vectors a1, a2, and
a3. Considering only the nearest hopping, the Hamiltonian can
be written as

Ĥ0 = t0Ĥ = t0

⎛
⎜⎜⎝

0 cos(k · a1) cos(k · a2)

cos(k · a1) 0 cos(k · a3)

cos(k · a2) cos(k · a3) 0

⎞
⎟⎟⎠,

(9)

which gives the well-known band structure with one flat band
and one DC at the K point.

The complex e′
g orbitals can combine to form real dyz

and dzx orbitals. The TB energy bands of these orbitals on
a kagome lattice, along with two Dirac cones (DCs) at the K
point, can be found in the Supplemental Material [56]. Simi-
larly, another two DCs at the K point can be attributed to the e′′

g
orbitals, corresponding to the dxy and dx2−y2 orbitals. Conse-
quently, without considering hybridization between them, we
anticipate a total of five DCs per spin, per layer, resulting in
five kz-dependent Dirac lines.

The hybridizations between the five d orbitals do not affect
the existence of DCs. It is noted that the high symmetric K
point has C3v symmetry, which guarantees the decoupling
among the a1g, e′

g, and e′′
g orbitals in the absence of SOC.

Additionally, DCs are also robust against couplings within e′
g

or within e′′
g , although they can affect the position of DCs

and the Dirac velocity. Further details can be found in the
Supplemental Material [56]. The e′′

g orbitals are less extended
along the z direction and are thus closer to a 2D electronic
system. All DCs in the same spin channel are spread over an
energy range of the order of the Mn CF, that is, several eV.

Since two out of the five DCs are more two-dimensional,
it becomes extremely important to identify them in the calcu-
lated band structure. This can be achieved by plotting bands
along the K-H path or by plotting the band structures pro-
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FIG. 7. Band structures projected on surface BZ calculated with-
out (blue) and with (red) SOC in TbMn6Sn6. The k-dependent DOS
are integrated along kz [see Eq. (10)] and are calculated in DFT.

jected onto the surface BZ, where the dispersive (along kz)
band will be washed out and quasi-2D bands will be visible.

Near the Fermi energy, all five compounds share similar
band structures, as the non-4 f electrons dominate in this
energy range. Multiple DCs occur at the K point near EF,
both below and above EF, as expected from the discussion
above for the multiorbital kagome Mn lattice. SOC splits the
crossings and opens gaps of various sizes at the BZ corners if
the spin is along the z direction. However, as expected, most
of them strongly depend on kz, reflecting the 3D nature of the
corresponding bands.

To better illustrate the kz dependence of the band structures,
we project all bands onto the surface BZ by integrating the
k-dependent spectral function over kz, using the equation:

I (k‖, ω) =
∫ 1

0
dkz

∑
i

δ[ω − Ei(k‖, kz )]. (10)

Here, kz is integrated from 0 to 1 r.l.u., while k‖ is in the basal
plane.

Figure 7 compares the projected TbMn6Sn6 bands along
the 2D path �-K-M, calculated without and with SOC in DFT,
shown as blue and red bands, respectively. Two occupied DCs
occur at approximately 0.05 and 0.2 eV below EF, respec-
tively, and their gaps are barely opened by SOC. The most
prominent kz-independent DC lies at around 0.7 eV above EF

and is dominated by Mn-3d characters (see Table S2 in the
Supplemental Material [56]). In contrast to the two occupied
DCs, a much larger gap is induced at this DC when SOC is
included, which is consistent with the previous report [13]. It
should be noted that the position of this DC is much higher
than the previously reported value of ∼0.13 eV above EF (see
the Extended Data Fig. 9 in Ref. [13]), and it is unlikely to play
a significant role in transport properties. The gap size depends
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FIG. 8. The scalar-relativistic band structure near EF in
TbMn6Sn6 calculated within QSGW. The majority-spin and
minority-spin, referred to Mn site, are in blue and red, respectively.

on the band characters at these DCs and how effectively SOC
can couple them. Other RMn6Sn6 compounds show overall
similar band structures (see Fig. S3 in the Supplemental Ma-
terial [56] for comparison of the projected band structure of
RMn6Sn6 with R= Gd, Tb, Dy, Ho, and Er.)

B. Effects of non-4 f electron correlation

TbMn6Sn6 is, as mentioned, a good metal, and Mn elec-
trons are on the itinerant side. Yet, these d electrons are
still considerably, albeit not strongly localized, so correlation
effects may be important. By analogy with such systems as
Sr2RuO4 and Fe-based superconductors, one may expect a
“Hund’s metal” behavior. This is rather hard to capture in
static methods such as DFT +U or hybrid functionals. Even
the dynamical mean-field theory (DMFT), the most common
method to account for fluctuational correlations, faces serious
problems in materials like ours, where long-range correlations
are expected and hybridization with Sn is crucial. In this sub-
section, to go beyond the standard DFT treatment of non-4 f
electrons and better address the electron-correlation effects
in a more unambiguous way, we employ the QSGW method
based on a many-body perturbation approach [21,22,27,28].

Figure 8 shows the scalar-relativistic band structure near
EF of TbMn6Sn6 calculated using QSGW. The overall non-4 f
band structure is similar to that obtained from DFT, although
QSGW slightly lowers the quasi-2D DCs by approximately
0.1 eV. This suggests that non-4 f electron correlations are
not significant in these metallic compounds, and the quasi-2D
DCs are still too far above EF to be related to the observed
anomalous Hall conductivity. It is worth noting that recent
experiments on TbV6Sn6 have also shown that the plain DFT
treatment of V-3d states provides a reasonable description of
the band structures near EF compared to ARPES measure-
ments [57].

C. Effects of spin orientation

It is well known that kagome materials in the presence of
SOC and out-of-plane magnetization effectively realize the
Haldane model for a Chern insulator without Landau lev-
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FIG. 9. Band structure near EF in HoMn6Sn6 calculated (a) with-
out SOC and (b) with SOC. In panel (a), the majority-spin and
minority-spin, referred to Mn site, are in blue and red, respec-
tively. In panel (b), the band structures are calculated with the
spin-quantization axis along the out-of-plane (blue dashed line) and
in-plane (red solid line) directions. Both magnetic sublattices are
ordered. The gap sizes depend on spin orientations.

els [4,5,13,58]. This model describes spin-polarized electrons
hopping in a background of staggered magnetic fluxes on a
lattice that supports Dirac crossings in the absence of a mag-
netic field. In RMn6Sn6, the bands that are mostly localized
in the Mn kagome layer naturally exhibit DCs at the K and
K ′ points near EF, as shown in Fig. 9. Due to the FM order,
these DCs occur within a single spin channel, which can be
Chern-gapped by intrinsic SOC (see Eq. (S2) [56]). In ad-
dition to the itinerant band character, e.g., the 3d-orbital
characters of Mn atoms in the kagome lattice, the size of the
SOC-induced gaps also depends on the spin orientations of the
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magnetic Mn atoms, which can evolve with the R element type
and with temperature [59]. Temperature- and substitution-
induced spin reorientations thus have direct consequences on
topological transport properties, such as the quantum anoma-
lous Hall conductivity, if these (gapped) crossings occur close
to the Fermi energy.

For example, the gap size is expected to vary when
RMn6Sn6 goes from the easy-axis TbMn6Sn6 to the easy-cone
HoMn6Sn6 or when RMn6Sn6 is heated above the spin-
reorientation temperatures. Figures 9(a) and 9(b) show the
band structures of HoMn6Sn6 calculated without and with
SOC, respectively. For the simplicity of illustration, here we
focus on the large gap of the DC at 0.7eV, labeled as DC4
in Fig. 9(a). In Fig. 9(b), the gap almost vanishes when the
spin-quantization axis rotates from the out-of-plane direction
to the in-plane direction. This can be understood by starting
from the non-SOC band structures and treating SOC within
perturbation theory.

DC4 mainly consists of Y2
±2 and Y2

0 Mn-3d characters (see
Table S2 [56]) in the minority spin channel. Since the DCs
occur within the same spin channel, the gap size � is propor-
tional to the spin-parallel part of Hso, as shown in Eq. (2), and
can be written as

� ∝ Lz cos(θ ) + f (L+,L−, θ, ϕ). (11)

The second term in Eq. (11) vanishes because L± do not
couple between Y2

±2 and Y2
0 states [60]. Therefore, the gap

size is solely determined by Lz cos(θ ), which vanishes at
θ = 90◦ with in-plane spin orientations. If the DCs near K
are responsible for the observed AHE, one may expect a
significant change in the measurement near TSR.

The band characters of other DCs may consist of orbitals
that can also be coupled by L±. The corresponding SOC-
induced gap can remain open when the spin is in-plane.
Moreover, DCs containing a larger Sn component can have
a larger gap, as Sn has a much larger SOC constant than Mn.
Finally, when DCs are next to each other, multiple DCs can be
coupled by SOC, which complicates the analysis.

D. Surface effects on magnetism and bandstructure

Finally, we investigate the effects of surfaces on the mag-
netism and electronic structures in RMn6Sn6. In experiments,
purely Mn kagome lattices without detectable defects have
been observed over a large field of view in TbMn6Sn6 [13].
Here, we calculate the electronic structures in monolayer and
bilayer TbMn6Sn6 with a terminating Mn surface on one
side and an R-Sn surface on the other side. Each layer has
a thickness of one formula unit, as depicted in Fig. 2, and
consists of two Mn kagome planes. To avoid interactions be-
tween neighboring slabs due to periodic boundary conditions,
a sufficiently large vacuum space is included in the unit cell.
The structure is relaxed to ensure that the force on each atom
is less than 1 mRy/a.u.

Both the monolayer and bilayer structures of TbMn6Sn6

maintain their metallic nature, similar to the bulk material. In
a bilayer TbMn6Sn6, the Tb atom on the surface exhibits a
slightly larger magnetic spin moment compared to the subsur-
face Tb. However, the surface Mn atoms exhibit significantly
larger magnetic moments and stronger exchange splittings

FIG. 10. (a) Band structures and (b) partial density of states
projected on the surface (red solid line) and subsurface (blue dashed
line) Mn sites in monolayer TbMn6Sn6. In panel (b), bulk Mn (green
filled area) DOS is also shown to compare. The calculations were
performed in plain DFT without SOC.

compared to the bulk. In both monolayer and bilayer cases, the
surface Mn atoms have a magnetic moment of ∼3.3μB/Mn,
while the subsurface Mn layers maintain a similar moment
of ∼2.4μB/Mn as in the bulk. Consequently, near the Fermi
level, the spin splitting of the surface Mn states becomes more
pronounced. The band structures and partial density of states
projected on the surface and subsurface Mn layers in mono-
layer TbMn6Sn6 calculated without SOC are shown in Fig. 10.
The band structures exhibit significant changes compared to
the bulk bands, and notably, a DC appears at the K point at EF.
The larger spin splitting observed in the surface Mn states, re-
sulting from their larger moments, is illustrated in Fig. 10(b).
In contrast to 2D van der Waals materials, where the calcu-
lated onsite moment and intralayer magnetic couplings remain
similar between bulk and monolayer forms, RMn6Sn6 exhibits
a distinct behavior. The predicted enhancement of the surface
Mn moment awaits experimental confirmation.

VI. CONCLUSIONS

In summary, we have systematically investigate the
electronic structures and intrinsic magnetic properties of
RMn6Sn6 with R = Gd, Tb, Dy, Ho, and Er.

We have demonstrated how the topological band structures
near the EF, including Dirac crossings and SOC-induced gaps,
evolve with the choice of R atom, electron correlations, spin
reorientation, and surface effects. The presence of multiple
Dirac crossings can be qualitatively understood by solving a
five-d-orbitals tight-binding model. Our DFT calculations re-
veal a prominent SOC-gapped 2D-like Dirac crossing located
approximately 0.7 eV above the EF. The inclusion of addi-
tional electron correlation effects using many-body Green’s
function-based methods only slightly affects the band struc-
ture near the EF. Thus, we have conclusively demonstrated
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that the observed anomalous Hall conductivity has a 3D char-
acter and is not related to the quasi-2D Dirac points.

Our calculations accurately reproduce the experimentally
observed easy directions for all RMn6Sn6 compounds. More
importantly, by combining ab initio, phenomenological, and
analytical methods, we have gained a fundamental under-
standing of the microscopic origin of magnetism in these
materials. Specifically, we have discovered that the unique Mn
coordination with the R atoms leads to significant high-order
crystal-field parameters and magnetic anisotropy constants,
which are particularly relevant in the context of topological
magnets. The higher-order nature of the R anisotropy, other
than the previously believed competition between easy-axis R
MA and easy-plane Mn MA, is the true cause of easy-cone
anisotropy in DyMn6Sn6 and HoMn6Sn6. This can be exper-
imentally validated by measuring the easy directions of other
R166 systems that feature nonmagnetic 3d sublattices, such
as DyV6Sn6 and HoV6Sn6, where one would expect easy-
cone anisotropy instead of easy-axis anisotropy in the ground
state. Additionally, future INS experiments can be employed
to quantify the CF parameters in RMn6Sn6 and validate our
predictions of the E (θ ) profile, including the existence of
a significant barrier between in-plane and out-of-plane spin
orientations in ErMn6Sn6.

Methodologically, our work provides a comprehensive in-
vestigation of anisotropy in a series of rare-earth materials. In
particular, we have demonstrated that the seemingly irregular
variation of the easy direction with different rare-earth ele-
ments can be accurately described analytically, without the

need for adjustable parameters, based on the mathematical
properties of Wigner matrices. In the future, we can apply
our analytical anisotropy modeling approach to other well-
established rare-earth-based systems, such as 1-5, 2-17, and
2-14-1 rare-earth-transition-metal systems, to further demon-
strate its effectiveness.
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