2023 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-2365-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICRA48891.2023.10161502

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)

May 29 - June 2, 2023. London, UK

Collaborative Scheduling with Adaptation to Failure
for Heterogeneous Robot Teams

Peng Gaol, Sriram Siva2, Anthony Micciche3, and Hao Zhang?

Abstract— Collaborative scheduling is an essential ability for
a team of heterogeneous robots to collaboratively complete com-
plex tasks, e.g., in a multi-robot assembly application. To enable
collaborative scheduling, two key problems should be addressed,
including allocating tasks to heterogeneous robots and adapting
to robot failures in order to guarantee the completion of all tasks.
In this paper, we introduce a novel approach that integrates
deep bipartite graph matching and imitation learning for het-
erogeneous robots to complete complex tasks as a team. Specif-
ically, we use a graph attention network to represent attributes
and relationships of the tasks. Then, we formulate collaborative
scheduling with failure adaptation as a new deep learning-based
bipartite graph matching problem, which learns a policy by
imitation to determine task scheduling based on the reward of
potential task schedules. During normal execution, our approach
generates robot-task pairs as potential allocations. When a robot
fails, our approach identifies not only individual robots but also
subteams to replace the failed robot. We conduct extensive exper-
iments to evaluate our approach in the scenarios of collaborative
scheduling with robot failures. Experimental results show that
our approach achieves promising, generalizable and scalable
results on collaborative scheduling with robot failure adaptation.

I. INTRODUCTION

Collaborative multi-robot systems have been widely stud-
ied over the past few decades due to their scalability, ro-
bustness, and effectiveness [1], [2]. For a multi-robot system,
collaborative scheduling is a fundamental ability for multiple
robots to collaboratively complete complex tasks and adapt to
dynamic changes such as robot failures. It is widely studied in
a wide range of robotics applications, such as multi-robot
search and rescue [3], [4], [5], human-robot collaboration [6],
[7], [8], and intelligent manufacturing [9], [10], [11].

To realize collaborative scheduling, two essential problems
must be addressed. First, during normal execution, a sequence
of tasks should be optimally scheduled to a team of robots
that may have heterogeneous capabilities. Second, robots may
fail, and the team of robots should autonomously adapt to
such failures during collaborative scheduling. For example, as
shown in Figure 1, when a team of heterogeneous robots col-
laboratively assembles a helicopter, a policy needs to schedule
assembling tasks to individual robots with the best resource
use and shortest completion time until all tasks are completed.
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Fig. 1. A motivating scenario for heterogeneous multi-robot collaborative
scheduling with failure adaptation in an assembly application. When a robot
fails, the scheduling policy should identify alternative individual robots and
subteams to replace the failed robot in order to complete the tasks (e.g., pick or
transport).

Additionally, when a robot fails, the policy must identify
alternative individual robots or subteams to replace the failed
robot to complete the tasks.

Due to the importance of collaborative scheduling, a variety
of methods were proposed. Traditional methods typically use
heuristics [12], [13] or integer linear programming [14], [15],
[16] to address this problem. However, they cannot run in real
time to address real-world problems with complex constraints
(e.g., task dependency or complex resource limitation). Very
recently, learning-based methods demonstrate promising per-
formance in terms of effectiveness and efficiency on collab-
orative scheduling [17], [18]. However, they still face several
difficulties. First, previous learning-based approaches cannot
identify subteams as alternatives to adapt as a team to failures,
but generally consider individual robots only. Second, during
task scheduling, most methods do not encode complex states
of both tasks and robots, such as task dependencies and robot
resource constraints. Third, the policy learned by the previous
methods often do not generalize well to new robots, tasks and
application scenarios.

In this paper, we introduce a novel approach that integrates
deep bipartite graph matching and imitation learning (IL) in a
unified framework for heterogeneous multi-robot collabora-
tive scheduling with failure adaptation. Specifically, we use a
graph to represent all tasks: each node represents a task and
is associated with a vector to encode its required robot
capability and resource capacity; an edge between two nodes
denotes dependency of the tasks. We use a graph attention
network [19] to encode task relationships. Then, we formulate
collaborative scheduling as a novel learning-based bipartite
graph matching problem that learns a policy to determine task
scheduling based on the reward of potential task schedules.
When a robot fails during task execution, our approach gener-
ates a pool of subteams and uses a reward function learned by
IL to evaluate the subteams to replace the failed robot.
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Our key contribution is the introduction of the novel unified
learning-based approach that addresses heterogeneous multi-
robot collaborative scheduling with robot failure adaptation.
Specific novelties of the paper include:

- We design a new graph attention network (GAT) with a
graph-based representation to encode complex relation-
ships among tasks. As the embedding vector computed
by GAT has a fixed length, our approach is agnostic to the
changing number of tasks, thus improving the approach’s
generalizability.

« We propose a novel deep learning-based bipartite graph
matching method for heterogeneous multi-robot collab-
orative scheduling with failure adaptation. Our approach
learns a policy via bipartite graph matching that is trained
using IL and is able to identify not only individual robots
but also subteams to replace failed robots.

Il. RELATED WORK

In this section, we provide a review of related works in both
problem and solution domains.

In the problem domain, heterogeneous multi-robot collab-
orative scheduling is mainly related to two research problems
[20], including single-task robots, single-robot tasks (ST-SR)
and the single-task robots, multi-robot tasks (ST-MR). ST-SR
approaches require that each robot only executes one task and
one task can only be executed by one robot at a time, e.g., to
address the Traveling Salesman Problem (TSP) [17], [21] and
the Vehicle Routing Problem (VRP) [22], [23]. ST-MR
allows each single task to be executed by a team of robots,
which is also known as coalition formation [24], [25], e.g., to
address the Multi-mode Multi-Processor Machine Scheduling
Problem [26]. The number of robots is assumed to be known
to execute each task in ST-MR. Additional constraints consid-
ered in these problems also include heterogeneity [27], [28],
capacity [23], [29], task dependency [30], [31], and spatial
[32], [33] and temporal constraints [34], [35].

In the solution domain, existing methods for multi-robot
collaborative scheduling can be categorized into three groups,
including integer linear programming (ILP) [14], [15], [16],
heuristic-based scheduling [12], [13], and deep learning [17],
[18]. ILP-based methods often have an exponential com-
plexity and therefore it is not usually practical to deploy
them on a real-time system solving large problems. Heuristic
scheduling techniques accelerate task scheduling by integrat-
ing heuristics, including using colony [36], genetic [37] and
simulated annealing algorithms [38]. However, these methods
often cannot deal with complex constraints [39]. Recently,
deep learning-based methods have been implemented to some
success, e.g., addressing TSP by reinforcement learning (RL)
[17], [40], location coverage by behavior cloning [41], and
multi-robot coordination via inverse RL [39], [42].

Although deep learning-based approaches achieve promis-
ing efficiency (compared to ILP techniques) and effectiveness
(compared to heuristic methods), previous learning methods
cannot encode the complex relationship of tasks and robots,
or identify subteams for failure adaptation.

I11. APPROACH

Notation. Matrices are represented as boldface capital let-
ters,e.g.,, M = {M;,j} BR"*™. M;,; denotes the elementin
the i-th row and j-th column of M, and M. ; denoting the i-th
column of M. Vectors are denoted as boldface lowercase
letters v @ R" and scalars are denoted as lowercase letters.

A. Problem Definition

Given a team of N heterogeneous robots and M tasks, we
represent the problem of collaborating scheduling as a tuple
M = {R, T, P}, where R = {r;}"V is a set robot states,
T = {t;}M is a set of task states, and P is a task dependency
matrix. Each robot state ri = [c[, w/'] has two attributes. The
binary vector c| & {0, 1}* denotes the capabilities of the i-th
robot and K is the number of possible capabilities. Each
variable in ¢ indicates whether a robot has the corresponding
capability. For example, given a set of capabilities [Ground
Navigating, Grasping, Flying], cir = [1,0, 0] indicates that the
i-th robot can navigate on the ground, but cannot grasp or fly.
The scalar w" B R represents resource capacities (e.g., robot
payload).

A task state t; = [s', ¢, w'] includes three attributes. s
R3 represents the state of the i-th task, which consists of three
variables to indicate whether the task is schedulable, assigned,
and incomplete, respectively. For example, if the i-th task is
schedulable and incomplete, then sf = [1,0,1]. ¢' @R Klisa
one-hot vector that encodes the required robot capabilities to
execute the i-th task. The scalar wit R denotes the required
resource to execute the task. Task dependency is defined as
matrix P @ {0, 1}M*N , with P; ; = 1 encoding that the j-th
task must be executed after the i-th task.

Given the above representations, our objective is to address
the following problems by a unified approach:

« During normal execution with no failure, we aim to learn a

policy that optimally assign tasks to robots. The policy
can be denoted as a scheduling matrix A = {A;,;}N*M,
A;,; @{0, 1}, where A;,; = 1ifthej-th taskis assigned to
the i-th robot.

« When a robot fails, we aim to adapt robots to the failure as

a team by identifying alternative individual robots or
subteams to replace the failed robot in order to ensure all
tasks to be completed.

The overview of our approach is illustrated in Figure 2.

B. Bipartite Graph Matching for Collaborative Scheduling

We formulate collaborative scheduling as a deep bipartite
graph matching (DBGM) problem. We represent the problem
as a bipartite graph G = {R, T, A} [43], and design DBGM
methods to identify schedules between the robot set R and the
task set T by choosing edges A of the bipartite graph G.

We further represent the task set as a directed graph G! =
{T %, P'}, where the edge set P! encodes task dependencies.
Then, we use a graph attention network (GAT) [19] to encode
attributes of the tasks. Node embeddings of the graph Gt are
computedas H' = {h{} = W(G'), where h is the embedding
vector of the i-th task and W is the GAT. h® encodes not only

1415

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 14,2024 at 13:50:53 UTC from IEEE Xplore. Restrictions apply.



Representation

Environment

Normal Execution

Scheduling Policy Execution

—>| Task Dependencies and Robot Capabilities/Resources

Individual Robots

Encoding X Fc1 Fc2

&

Subteams

S

Imitation Learning

Rewards

Schedules

Graph Attention QNetwork [ Concatenation

"& S
- < 1
f'& L —
w W
Robot Team Task Graph @
£
" & Failure £
>
z W~ -
= |
3 y ]
= (=)
LA | Subteams Uncompletable Tasks
Stats [  ExpertAcii
2 1 Expert Demonstration I Hl o

|. Jpdat I
{ Reward Maximization [

Fig. 2. Overview of our approach that integrates deep bipartite graph matching and imitation learning in a unified framework for heterogeneous multi-robot
collaborative scheduling with failure adaptation. In normal execution, our policy is able to determine task scheduling based on the reward of potential robot-task
pairs. In failure cases, our policy is also able to evaluate the subteams to replace the failed robot.

the i-th task’s attributes, but also the attributes of its depending

tasks. hf is computed using W by:

hit'I+1 = ai,iWeh‘i" + LeakyRelLUR ai,jweh"j' (1)

Pi,j=0

where W € denotes the trainable parameter of W, LeakyRelLU
is a non-linear activation function, | {1,2,...,L} is the
number of layers in the forward process of W. Each task
embedding vector does not just encode its own attributes
but also consider its dependent tasks attributes. a,; is the
attention of the j-th task to the i-th task, which is defined as:

exp LeakyReLU(Weh"'Bweht')
i j

t,1 t,1 2)
P, =0 €XP LeakyReLU(W K™BW K"})

Qij =

where exp(-) is the exponential function, & is the concatena-
tion operation. Eq. (2) uses SoftMax to normalize the impacts
of dependent tasks on the i-th task. The embedding vectors are
agnostic to the number of tasks, thus improving our method’s
generalizability.

We also compute robot embedding vectors by h" = O(r"),
where @ denotes a multi-layer perceptron that consists of one
linear layer. Then, we define a reward matrix R @ RN*M
with Rj,; denoting the reward of assigning the j-th task to the i-
th robot. Ri,j can be computed by Rj,; = Lj)(hrht} using a
Q-network U that consists of two linear layers and a Relu
activation function.

In order to encode task dependencies and robot capabilities
for a heterogeneous team, we mask the rewards as:

O=RoMYoMS® (3)

where ° denotes the element-wise product operator and O
denotes the masked rewards given task dependencies and
robot capabilities. O can also be treated as the weights of
edges A in the bipartite graph G, as O;,; indicates the reward
of the schedule A; ;. The task dependency mask M9 =
{M‘i"j}’\‘"M is defined as:

' (

d 1

M:,j =

M
k=1 Pk,j =10
0 otherwise

(4)

If the j-th task’s all dependent tasks are completed (encoded
by P), then M‘fj = LM = {Mf, }N M denotes the robot
capability mask, defined as:

¢ _ 1 (cf)ey=

T 0 otherwise

c‘1 and w', > w‘j

(5)

If the i-th robot is able to address the j-th task, i.e., the robot’s
capabilities and resources satisfy the task’s requirements, then
M?’j = 1. The final collaborative scheduling policy A? is
computed by bipartite graph matching to maximize the edge
weights O of the bipartite graph G as follows:

X

X X
Ai,jOi,j Ai,j <1, Ai;<1
i,j i j
(6)
The constraints enforce that each robot / subteam can at most
execute one task and each task can be assigned to one robot /
subteam at most.

AP = argmax s.t.

A

C. Adaptation to Robot Failure

Robots may fail in the real world, e.g., because of actuator,
sensor, and computer malfunctions. Robot failure may cause
tasks or the whole mission to fail. For any task that cannot be
completed by individual robots, we name it an uncompletable
task. To address uncompletable tasks due to robot failure, we
introduce an adaptation method that teams up the remaining
available robots as a subteam to replace the failed robot, which
is presented in Algorithm 1.

Algorithm 1 recursively forms a pool of potential subteams
S = {si} that are able to execute each uncompletable task t,.
When a subteam is identified that can satisfy the requirement
of an uncompletable task, it is added to the subteam set (Line
7). In addition, if the remaining available robots cannot form
a subteam with K robots (Line 11), then Algorithm 1 ends the
current iteration and move to the next one. The main function
(Line 1) identifies possible subteams with various numbers of
teammates. The complexity of the algorithm is O (K C) where
C is the combination C = E . Given the subteam set S, we
use the same Q-network ) to compute the reward of assigning
an individually uncompletable task to a subteam.

The DBGM method for collaborative scheduling with adap-
tation to failure is presented in Algorithm 2. Line 2 collects
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Algorithm 1: Generate Subteams

: Individually uncompletable task tu =
Available robot set R = {rj}N where
ri = {c}, w/}
Maximum subteam size K
Output : Subteam set S

Input {ct,, wi}

1. fork < K do

2: Initialize subteam indicator s = [0,...,0] @ RN ;

3: Initialize position pointer p = 1;

4 Update subteam set S < Generate Subteams(p, tu, N,
k, s);

s: end

6: Function Generate Subteams (p, t,, N, k, s):

7: if [s|= kand< c*,ct >= Bc'E1 and w® > w' then

8: Add subteam s to subteam set S ;

9: return;

10: end

11: ifp= N+ lor|s|+ N - p+ 1< K then

12 ‘ return;

13: end

14: sp = 1, Generate Subteams (p+ 1,tu, N, k, s);

15: sp = 0, Generate Subteams (p+ 1,tu, N, k, s);

16: return Subteam set S

available robots and tasks, respectively. Lines 5 checks if an
individually uncompletable task exists. If yes, Lines 6-8 form
subteams and compute the embedding vectors for the task
and the subteams. If there is no individually uncompletable
task, Lines 11-12 compute embedding vectors of the tasks and
robots for normal execution. Lines 14-16 greedily traverse all
robot/subteam-task pairs and choose the pair with the highest
reward as the task scheduling. This scheduling process is
repeated until no robots/subteams or tasks are available.

D. Imitation Learning for DBGM Training

Learning the parameters of our DBGM network needs large
amount of training data that is not feasible to manually label.
Inspired by the recent work [39], we design an expert system
to generate synthetic expert demonstrations on collaborative
scheduling for training. The expert system generates schedul-
ing demonstrations by solving the optimi'zation problem:

P r t )
X i-(Wi —Wj)Ai,i
min fi + - 8 LBt BT ,Bri BR
A, X,si,fi i'J.(wi + W )AL
(7
X
s.t. Ai,j= 1,84 BT,Bn @R (8)
r
fi-si=di, BL BT (9)
si— Pijf; 2 0,'ti,tj BT (10)
= Ai,j 20,84t ET,ArREAR (11)
Cj1
(W' - w')Ai;j 20,8 BT,Eri BR (12)
(sj = fi)Ak,iAk,jXi,; 2 0,@t, 4, ET,Ar @R (13)
(si—= fi)Ak,iAk,j(1-Xi,;)20,Bt,t; BT,RArc @R
(14)

where s; and f; are the start and finish times of the i-the task,
w; and wtt are the resources of the r-th robot and the t-th task,
and d; is the expected duration of the i-th task.

Algorithm 2: DBGM for Collaborative Scheduling
with Failure Adaptation

Input : ProblemtupleM = {R, T, P}

Output : Scheduling matrix A®

1: while Not all tasks in T are assigned do
2 Collect available robots A;opot and tasks Atask;

3 while Aropbot = Null and Atask = Null do

a: Check uncompletable tasks tu;

5: iftu = Null then

6 Generate subteam pool S using Algorithm 1;
7 Compute h = W(G"Y);

8 Compute {h{} = ®"(rj),j@S;

9

end
10: else
11: ‘ Compute {h'} = W(G'), t B Atask;

Compute {h{} = ©(rj), ] B Arobot;

13: end

14: Compute masked reward O by Eq. (3);

15: Compute A_J- by Eq. (6) for collaborative
scheduling;

16: Update Atask, Arobot, and T ;

17: end

18: Update dependency matrix P;

19: if Task is completed then

20: ‘ Update P, Atask, and T ;

21: end

22: end

return A®?

N
w

Solving this optimization problem in Egs. (7-14) provides
the optimal A, X, si, and fi, where X;,; = 1 encodes that the
i-th task is completed before the j-th task starts. The objective
functionin Eq. (7) is a sum of two terms. The first term is used to
minimize the overall time to complete all tasks. The second
term is used to minimize the resource use for scheduled tasks,
and the resource use is normalized between [0, 1]. We design
eight constrains to generate high-quality demonstrations. Eq.
(8) enforces that only one robot can be assigned to a task. Eq.
(9) enforces positive task execution time. Eq. (10) enforces
that task execution satisfies the task dependencies encoded by
P. Eq. (11) enforces that, if the j-th task is scheduled to the i-
th robot, the robot must have all the capabilities required by the
task. Eq. (12) enforces that each task must be executable by
the corresponding scheduled robot. Egs. (13-14) enforces that
robots can only perform one task at a time. We use Gurobi [44]
to solve this constrained optimization problem. Although the
optimization in Eqgs. (7-14) cannot be solved in real time (thus
cannot be directly used for task scheduling in practice), it
offers synthetic demonstration data for training DBGM.

We use imitation learning to learn the Q-network { in our
DBGM method to imitate the expert scheduling policy. Given
an expert demonstration, we decompose it into a sequence of
state-action pairs A® > {(r®)i, (t®)j}, which encodes the
expert scheduling of all tasks at different start time. To imitate
demonstrations, we use the imitation loss function [39]:

Lexp = BRi,; - Qj,j@1

where Rjj = l]J((he)ir(he)jt) denotes the reward computed

by the DBGM'’s Q-network { that uses the embedding vectors

(15)
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(h®)f = ®((re);) and (he)jt = W((t®);) as the input, and Q; ;
denotes the accumulated reward associated with the expert
demonstration of assigning,the j-th task to the i-th robot. We
can computeitby Qi,; = B*q during the period of time
when the i-th robot executes the j-th task, where q denotes the
immediate reward that can be computed by q = exp(%),

and B @ (0, 1) is a discount factor. The loss in Eq. (15) trains
to generate a similar reward to the expert’s reward.

In addition, we train our DBGM approach not to choose the
scheduling that is not used in the expert demonstrations. Thus,
we design another loss to enforce the reward of executing the
schedules that are not selected by the expert is smaller than
the expert’s reward Q;,j, which can be defined as:

Lnon = BRi,j - min{Ri,j, Qi,j - z}B1 (16)

where Ri,j = Lj)((h“){(h”)jt) denotes the reward computed
by the DBGM'’s Q-network y, whose input is the embedding
vectors of the robots and tasks that are not used in the expert
demonstrations. z is a constant to ensure that the reward of the
scheduling not used by the expert is always smaller than the
reward of the expert scheduling.

The final objective function designed to train the DBGM'’s
Q-network Y is as L = Lexp + AlLnon, Where A is a hyper-
parameter to balance the two loss functions. We use ADMM
[45] as the optimization solver to train our Q-network Y using
expert demonstrations.

IV. EXPERIMENTS

In this section, we present the setup of our extensive exper-
iments, as well as discuss the experimental results on collab-
orative scheduling and team forming for failure adaptation.

A. Experimental Setups

We employ both synthetic data and Gazebo simulations in
the Robot Operating System (ROS) to evaluate our approach.
For training, we randomly generate 100 problems, which are
solved by our expert system to generate demonstrations. The
parameters used to generate the problems are as follows: (1)
The number of robot capabilities is set to 2, including mobility
and manipulation. (2) We consider payload to be the resource,
and assume the payload required by robots and tasks to follow
a uniform distribution U (2, 20). (3) The task dependency is
generated randomly and 20% of the tasks have dependencies.
In our implementation, the GAT has two layers, and we assign
the dimension of W€ to 32. We set the hyperparameter value
A = 0.1, and the discount factor B = 0.01.

We compare our approach with two methods, including (1)
Randomized policy (RAND) that randomly schedules tasks to
available robots and subteams that satisfy the task’s capability
and resource requirement; (2) Greedy resource policy (GRP)
that schedules a task to the robot/subteam that satisfies the
task’s requirement and has the minimum resource. We employ
three metrics for method evaluation and comparison, includ-
ing (1) Idle Rate (IR) that is computed as the number of idle
robots during the execution of all tasks, which indicates the
efficiency of a schedule policy; (2) MakeSpan (MS) that is
defined as the time of completing all tasks; and (3) Resource

TABLE |

QUA NTITATIVE RESULTS OF HETE ROGENEOUS MUL TI-
ROBOTC OLL AB ORATIVE SC HEDULING USING

S YNT HETIC DATA.

Method 6r-18t 6r-100t 10r-100t

MS [ IR RC | MS IR RC MS IR RC
RAND [6.06|18.36|75.06 |24.95 [49.72 |{311.00 |14.95 [49.49 |277.20
GRP 5.83[16.9859.15(22.10 [32.60 | 274.40 | 14.00 {40.00 |236.35

Ours 5.73(16.38 [ 57.57 [ 21.05 [ 26.30 | 266.50 [13.25 [32.50 {236.70

Cost (RC) that is computed as the cost of robot resources to
complete all tasks. Smaller values indicate better performance
for all of the three metrics.

B. Results on Multi-Robot Collaborative Scheduling

We first evaluate our approach in three synthetic scenarios,
including (1) 6r-18t that contains 200 problems with a team of
6 heterogenous robots and 18 tasks, (2) 6r-100t that contains
20 problems with 6 robots and 100 tasks, and (3) 10r-100t that
contains 20 problems with 10 robots and 100 tasks.

The quantitative results are shown in Table I. In the 6r-18t
scenario, we observe that RAND performs poorly, and GRP
performs much better as it greedily minimizes resource cost.
However, since GRP does not consider task dependency and
robot heterogeneity, it does not perform well on MS and IR. In
this scenario, our method obtains the best performance over all
metrics. For large problems, since the expert system cannot
provide a solution within reasonable time, we use the DBGM
model trained in the scenario of 6r-18t, and evaluate it in the
scenarios of 6r-100t and 10r-100t. In the scenario of 6r-100t,
our approach outperforms the baseline methods on all metrics.
In the scenario of 10r-100t, our method performs similarly to
GRP on the RC metric, and significantly outperforms GRP on
MS and IR. These results indicate that our approach general-
ized well to unseen scenarios to address large problems.

We further evaluate our approach using Gazebo simulations
in ROS. In these multi-robot simulations, a team of heteroge-
neous robots are simulated to pick and transport a collection
of boxes. The robot team includes 3 Jackal robots and 2 Husky
robots (from Clearpath Robotics), with a payload capacity of 5
and 12 units, respectively. The simulation includes 18 tasks,
and all have dependencies. The boxes involved in these tasks
require the payload capability between 2 and 8 units. As some
boxes require >5 units of payload resources, they cannot be
transported by individual Jackal robots, but a subteam of two
Jackal robots provide sufficient payload to transport them. In
the Gazebo simulations, scheduling policies are computed in a
centralized way, which are sent to each robot or subteam to
execute their scheduled tasks.

Figure 3 depicts an example of the qualitative results using
Gazebo simulations in ROS to demonstrate our approach for
multi-robot heterogeneous collaborative scheduling. We can
observe that the boxes are assigned to appropriate robots, and
the robots go back to the standby area only after they complete
all tasks. In addition, we quantitatively evaluate our approach
in these Gazebo simulations, and compare it with GRP. The
GRP approach obtains an average of MS = 192.9 and RC =
67. Our approach achieves an average of MS = 170.2 and
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t=135.68 sec

t=95.29 sec

t=169.82 sec

Fig. 3. An example of the qualitative results obtained using Gazebo simulations in ROS to evaluate and demonstrate our method of collaborative scheduling
for a team of heterogeneous robots to collaboratively pick and transport a collection of boxes.

TABLE Il

RESULTS OF FOR MING SUB TE AMS OF T WO ROBOTS TO
EXECUTE| ND IVIDUALLY UNCOMPLETABLE

TAS KS.
Required| 16 18 20 22 24 26 28
Subteam | [3,4] | [1,4] | [3,6] | [3,6] | [1,6] | [L,3] | (4, 2]
Payload [[12,5] [14,5] [12,10] [1p,10] [14,10] [14]12] [14,14]

RC = 60, which greatly outperforms GRP over both metrics.
This is because our method learns from expert demonstrations
that explicitly consider both execution time and resource use
(e.g., encoded by the two terms in Eq. (7)). Also, our approach
achieves an average of IR = 7, which significantly outperform
GRP that obtains an average of IR = 12.

C. Results on Forming Subteams for Failure Adaptation

We define 10 robot failure cases to evaluate our approach’s
performance on adaptation to robot failure that causes indi-
vidually uncompletable tasks during the scheduling process.
For example, when the robot with the largest payload capacity
fails, the payload required by a task is greater than the payload
capacity of all remaining individual robots. In this situation,
robots may have to form subteams to collaboratively address
the individually uncompletable tasks.

In this set of experiments, we simulate a team of 6 heteroge-
neous robots with payload capacities of [14,14,12,5,5, 10].
The experimental results are shown in Table Il, in which the
first row shows the payload required by the task, the second
row shows indices of the robots that form a subteam, and the
third row presents the respective payload capacity of the two
robots in the subteam. We observe that our approach is able to
form a subteam to execute an individually uncompletable task.
For example, for a task that requires 18 units of payload, no
robots can individually execute the task; our approach selects
robots 1 and 4 (with the payload of 14 and 5 units respectively)
to execute the task with minimum payload use. When robots
with a large payload capacity fail, possible combinations of
robots with a small payload capability are explored by our
method to form subteams in order to replace the failed robots.

We further investigate our method’s execution speed given
various number of tasks, number of robots, and subteam size.
The results of execution speed are obtained by averaging the
execution time of 20 problems on a Linux machine with an i7
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Fig. 4. Results on execution speed (Hz) of our approach given various (a)
number of tasks and (b) number of robots and subteam size.

16-core CPU and 16G memory. As illustrated in Figure 4(a),
the execution speed monotonically decreases as the number
of tasks increases. When the number of tasks is 18, our
approach runs at 50 Hz. When the number of tasks is 100, the
execution speed is 10 Hz, and the speed drops to 2 Hz when
the number of tasks is 500. From Figure 4(b), we observe that
when the subteam size is smaller than 3, our approach obtains
promising execution speeds, with a minimum speed of 14.09
Hz when the team includes 100 robots. When the number of
robots is smaller than 50 and the subteam size is smaller than
3, our approach obtains the execution speed of more than 100
Hz. For a larger problem that includes a number of 100 robots
with subteams that include 4 robots, our approach obtains an
execution speed of around 0.5 Hz.

V. CONCLUSION

In this paper, we have proposed a novel approach that inte-
grates deep bipartite graph matching and imitation learning to
perform heterogeneous multi-robot collaborative scheduling
with adaptation to robot failure. We formulate collaborative
scheduling as a bipartite graph matching problem. During
normal execution, our approach encodes complex robot and
task attributes based on deep graph learning. In robot failure
cases, our approach generates a pool of potential subteams to
replace the failed robots based upon its capability and
capacity. The policy network is trained through imitation
learning with expert schedules provided by our designed
expert solver. Extensive experimental results show that our
approach achieves generalizable and scalable results on het-
erogeneous multi-robot collaborative scheduling with robot
failure adaptation.
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