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Abstract. Scene Text Recognition (STR) has many important appli-
cations in computer vision. Complex backgrounds continue to be a big
challenge for STR because they interfere with text feature extraction.
Many existing methods use attentional regions, bounding boxes or poly-
gons to reduce such interference. However, the text regions located by
these methods still contain much undesirable background interference.
In this paper, we propose a Background-Insensitive approach BINet by
explicitly leveraging the text Semantic Segmentation (SSN) to extract
texts more accurately. SSN is trained on a set of existing segmentation
data, whose volume is only 0.03% of STR training data. This prevents
the large-scale pixel-level annotations of the STR training data. To ef-
fectively utilize the segmentation cues, we design new segmentation re-
finement and embedding blocks for refining text-masks and reinforcing
visual features. Additionally, we propose an efficient pipeline that utilizes
Synthetic Initialization (SI) for STR models trained only on real data
(1.7% of STR training data), instead of on both synthetic and real data
from scratch. Experiments show that the proposed method can recognize
text from complex backgrounds more effectively, achieving state-of-the-
art performance on several public datasets.
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1 Introduction

Scene Text Recognition (STR) aims at accurately recognizing irregular and in-
cidental texts in complicated scenes and it has wide applications in video in-
formation retrieval [63], criminal investigation [1], robotic intelligence [45], and
autonomous driving [30]. STR is still a very challenging task in computer vision,
due to large variation of the text color, font and size, as well as the possible
complex background where the text is located. In real world, the complexity of
scene-text background comes from many factors, such as camera motion, scene
change, low lighting, etc. In extracting text features for STR, any interference
of background information may negatively affect the recognition performance.
In this paper, we study BINet that is less sensitive to the complex background.

1 Corresponding author.
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Fig. 1. An illustration of strategies focusing on text features for Scene Text Recognition
(STR): (a) whole input images, (b) attention map [19,84], (c) bounding box [18], (d)
conventional text segmentation [10], and (e) text semantic segmentation (ours).

To mitigate the background interference for STR, different strategies have
been explored to derive only-text-related feature representation. These mainly
can be categorized into attention-based [35,19,84,19], bounding-box-based [13],
and conventional-segmentation-based [413,10,39] by focusing on different areas
around the text, as illustrated in items (b) through (d) of Fig.1. However, none
of these strategies can optimally exclude the background interference. For ex-
ample, the attention-based strategy could wrongly entangle neighboring char-
acters or miss some distinctive characters, as shown in Fig.1(b). The bounding
box-based and conventional-segmentation-based strategies may still include un-
related background regions as part of the text, as shown in Fig.1(c-d). Clearly,
a strategy that can more accurately separate out text from background may
further facilitate accurate text feature extraction and STR.

To achieve this goal, in this paper we propose to conduct text semantic seg-
mentation (SSN) for enhancing STR. Following general-purpose image semantic
segmentation [52,57], the text semantic segmentation here aims to classify each
pixel of text image as either text or background and therefore, partitions the im-
age into two semantic segments, as shown in Fig.1(e). Note that, text semantic
segmentation is different from conventional text segmentation. The latter seg-
ments out a compact text region which may still contain part of the background,
e.g., the hollow regions in character ‘B’ in Fig.1(d). On the contrary, text se-
mantic segmentation fully separates the text and background at pixel level, and
they can provide more accurate text features for recognition.

However, the SSN requires accurate pixel-level annotations, which are labo-
rious to obtain. Embedding a pretrained network instead of integrated training
for assisting specific tasks has been widely used in many general image segmen-
tation works [6,66,34,18]. However, few studies [39,17] design the text segmenta-
tion (usually by generating pseudo mask annotations), let alone any independent
text segmentation, and the previous recognition improvements are limited [17].
In this work, we leverage the explicit text semantic segmentation with limited
knowledge to our advantage in STR without labeling mask annotations for huge
STR training data. Here, the SSN is trained on existing real data, whose volume
is only 0.03% compared to the STR training data.
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Furthermore, to address the problems of data deficiencies and domain dif-
ferences between SSN and STR, and expand SSN’s generalization capability in
STR task, we further design two blocks of segmentation refinement and embed-
ding that steer the knowledge from SSN to STR. Recent state-of-the-art STR
models typically design the pixel-wise fusion [79] or transformer [34] in utilizing
the sequential, attentional or positional information. The guiding methods are
not sufficiently studied and the transformer is extremely expensive in comput-
ing resources. In natural language processing (NLP) community, the large-scale
pretrained model [56] is modified for downstream tasks [12] by CNNs or distri-
bution losses [67]. Following this insight, we develop efficient networks to utilize
the limited prior knowledge from SSN and facilitate the visual cues in STR.

Typically, the state-of-the-art STR models are required to be end-to-end
trained on the synthetic dataset, and further training on real data can boost the
performance. However, the whole training process is cumbersome and takes up
to 672 GPU hours [19]. Inspired by the wide practice that ResNet based models
are initialized by ImageNet weights, we propose to use the backbone weights pre-
trained on synthetic data for general-purpose STR model initialization denoted
as Synthetic Initialization (SI). It can be adopted by any STR models without
training on synthetic data. Experiments show that our method, trained after 5
hours with 1 GPU card, can achieve the state-of-the-art STR performance on
several public evaluation benchmarks.

In summary, our contribution and achievement are described below:

1. We propose a novel and efficient BINet that leverage text semantic seg-
mentation (SSN) for enhancing scene text recognition without large-scale
pixel-level annotations. It also gets rid of generating pseudo segmentation
labels for self-supervised, semi-supervised, or weakly-supervised training.

2. The text segmentation refinement and embedding modules are specially
designed for conditioning background-insensitive features, which efficiently
steer the limited knowledge from SSN to STR.

3. We design a new pipeline with Synthetic Initialization (SI) for STR, replacing
conventional expensive end-to-end training on synthetic data. The model
overcomes great performance degradation when trained only on real data.

4. The proposed method achieves new state-of-the-art performances on various
widely-used datasets.

2 Related Work

2.1 Scene Text Recognition

Attention-based Text Recognition. Initially enlightened by contextual in-
ference in natural language processing (NLP) community, the attention-based

STR models are equipped with the RNN [36,81], canonical attention BLSTM
[60,13,42,86], bidirectional attention BLSTM [61,11], two-dimension attention
BLSTM [38,80,75,4] and Transformer decoders [93,7,55,19,3], instead of Convo-

lutional Neural Networks (CNN) based classifier [20], in an effort to boost the
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language expression in STR. The language models utilize one or two dimen-
sional visual features to consider the character relationships from unidirectional
or bidirectional way with attention. Later, the attention is expanded to encoders
to improve feature representations [76,41,87,25,55,19]. These methods sufficiently
explore the linguistic information and feature representations in lack of charac-
ter details, but the attention maps might easily miss some small characters with
arbitrary locations, or entangle with neighbors to generate wrong predictions.

Box-based Text Recognition. Early studies with limited bounding boxes or
polygon ground truths mainly adopted segmentation methods for the localiza-
tion and detection of characters or words. Neumann et al. [51] proposed the
connected components [24] to binarize the image as coarse segmentation for text
recognition. Then a discriminating clustering algorithm [$2] and a hybrid HMM
Maxout [2] technique were used to capture character substructures from regions.
But they fail to separate contiguous characters and integrate broken strokes. The
CNN-based supervised methods [29,74,48] usually compute a text saliency map
by using the character classifier and then generate character or word bounding
boxes. They are usually boosted by strengthened recognizer [47,10,44], or rec-
tification modules [12,10,90,82]. Without well-designed module integration and
sufficient pixel-level annotations, the segmentation module is barely learned and
evaluated, mainly for text detection, instead of directly for text recognition.

Conventional Segmentation-based Text Recognition. To handle irregular
scene text recognition, Jaderberg et al. [28] proposed to recognize the characters
or words within the detected regions by using at least 9 million images and a
90k word dictionary. The problem is formulated indirectly by embedding text
strings into subspace vectors, which could calculate the nearest neighbor pre-
diction results. Following this work, many segmentation-region-based methods
[64,26,60,36,43] were proposed for STR. Recently, Liu et al. [42] employed a char-
acter encoder to rectify the accurate local character region, but it might contain
neighboring characters. Liao et al. [10] utilized a Fully Convolutional Network
(FCN) to estimate character polygons under the supervision of the processed
bounding boxes.But such polygons and ground truths still contain background
parts. Zhang et al. [90] utilized attention to adaptively increase the tightness of
the local character regions, and Wan et al. [70] further rectified spurious attention
by complementing the character regions with position and order attention. These
methods applied multiple modules to refine segmentation regions for predicting
more accurate recognition probabilities of each class. As mentioned earlier, these
conventional text segmentation methods may still mix part of background into
text segments. In this paper, we propose to leverage text semantic segmentation
into STR by more accurately separating the text and background in the image.

2.2 Text Semantic Segmentation

Aiming at predicting all the text pixels, the text semantic segmentation has been
studied in several text-related tasks, e.g., text style transfer [33] and scene text
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removal [22]. These methods directly implement the supervised semantic segmen-
tation and transfer text styles in small datasets of the tasks, in incorporating
with generative adversarial networks (GANs). For the Scene Text Recognition
(STR), the closest work is from Luo et al. [16] that uses the GANs to separate
text content from the backgrounds. However, it fails to generate characters on
complex backgrounds due to the mode-dropping phenomenon [8] and the lin-
gering gap [92] of GANs trained on the supervised synthesized samples. The
power of generators highly depends on the synthesized character style samples
and then the capacity of synthesis engines. Several studies [33,40] purposely gen-
erate polygons as pseudo ground truths on self-supervised or weakly-supervised
training. To overcome the limitations of synthesized training samples and pseudo
ground truths, we independently pretrain text semantic segmentation network
(SSN) only on real data, which is only 0.03% of STR training data. The model
does not need to generate pseudo ground truths or synthesize reference samples.
We also well design text segmentation refinement and embedding modules for
steering knowledge from SSN to STR.

2.3 Training Strategy

Most state-of-the-art STR models are trained end-to-end from scratch on syn-
thetic data [27,23]. Some works [39,38,41] continually train extra real data to
reduce domain drifts. Recently, Beak et al. [5] demonstrate that training only on
real data (1.7% of synthetic data) causes great performance degradation, while
training on synthetic and real data together can definitely boost the recognition.
Inspired by NLP works [16,35] that utilize general pretrained models for diverse
downstream tasks, we further propose the Synthetic Initialization (SI) that is a
backbone weights solely pretrained on synthetic data. Note that the backbone
refers to ResNet (and an encode unit) that is generally used as feature extractor
in STR models [55,19,34]. Thus, the pretrained backbone weights can be widely
used to initialize feature extractor in any STR models. Only the specific design
of each method needs to be trained, instead of the whole model trained on syn-
thetic data from scratch. We explore whether it can overcome the performance
degradation caused by real data deficiency (1.7% of synthetic data).

3 STR with Text Segmentation

3.1 Overview

The proposed BINet is shown in Fig.2. It consists of a text semantic segmenta-
tion network (SSN), a feature extractor, a segmentation refinement module, a
segmentation embedding module and a transformer-based language decoder.
Following recent works [55,19,84], we use the combination of ResNet R and
Transformer units 7 as the feature extractor. Given an image I, the feature map
F is generated by F = T(R(I)) with the shape of H x W x C, where H and W
are the height and width of the features, and C' is the number of channels (we
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Fig. 2. The framework of the proposed BINet. The input image I and text semantic
segmentation M from SSN are fed into the network. The extracted feature F' is used
to refine the segmentation map M and obtain M’. Then M’ is embedded back to F'
for visual feature F'. The decoder generates language feature I} with 3 iterations of
correction. The text predictions from the combination of features are supervised by the
text ground truths via a cross-entropy recognition loss.

set C' = 512 in this paper). At the same time, the image I is also fed into the
text semantic segmentation network which produces a semantic segmentation
M. The initial feature F' and segmentation map M are fed into the proposed
segmentation refinement and the segmentation embedding blocks to obtain the
segmentation-embedded feature F. Later, a language decoder is employed to
obtain the final prediction, which is composed of multi-layer transformers [68]
with the iterative correction strategy. Specifically, the language decoder is pre-
trained on an unlabeled natural language processing dataset following Fang et
al. [19] to learn the linguistic knowledge F; and corresponding language vectors
Vi (i =1,2,3) from F. Following previous works [$4], F and F} are fused recur-
rently to generate the refined probability distributions as final text prediction.

3.2 Semantic Segmentation Network

Text semantic segmentation can indicate accurate characters from background.
To achieve background-insensitive text feature representation, we propose to
explicitly model the text semantic segmentation network (SSN) on real data.
The SSN is firstly pre-trained on two real-world text datasets [14,78] with pixel-
level annotations. The total data here is around 4,000 images, accounting for only
0.03% of STR 16 million training data. The SSN is equipped with HRNetV2-
W48 [72] as the backbone, and utilizes an attention module [78] as head to
generate the final semantic segmentation results. Specifically, the image I is fed
into the backbone to get the feature map x; and initial semantic segmentation
Tseg- Then taking w,.4, ¢ and I as inputs, the attention module generates the
segmentation result M, which is a soft map, as shown in Fig.2.
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Fig. 3. The network of segmentation refinement and embedding blocks in BINet. Dif-
ferent colors of C'onv represents different series of convolution layers, the C'os indicates
cosine operation, and the ® and + mean pixel-wise multiplication and addition, as
described in Sections 3.3 and 3.4.

3.3 Segmentation Refinement

Due to limited number of images with pixel-level annotations used for training
the SSN and the problem of domain shifts in STR datasets, the quality of text
semantic segmentation results produced by the SSN are possibly unsatisfactory
for STR. To address these issues, we propose to refine the segmentation M
by utilizing the image features from STR training data, which compensate the
details of segmentation maps, as shown in Fig.3. Firstly, the features F' is fed
into a two-dimensional convolution layer Conv to get global features F(1):

FO) = Conu(F) e REXWXC, (1)

where the number of channels C' is 512. Then we extract the representative vector
V. € R [89] by pixel-wise multiplying F () and the segmentation M, and then
averaging over pixels within M,

V _ Z’IVT[L/’:I-i,n:l F'r(nlv)n7c @ Mm;n

ZW,H My

m=1,n=1

(2)

The vector V, is related to texts by removing the background interference. To
find features similar to the vector V. and compensate the segmentation map M,
we use the cosine distance C'osSim to calculate the similarity map S € RH¥>*Wx1
between the representative vector V, and each pixel of the features F():

S = CosSim(FM,V,). (3)



8 L. Zhao et al.

The map is applied to optimize the semantic feature F(2 ¢ R¥ *WxC" which
is constructed from the last two layers of ResNet R in the same way as F().
The number of channels C’ for F(?) is 128. F(?) is used to get the accurate
text features Fy, which is then fed into a classification layer cls to obtain the
corresponding semantic segmentation S’ € RE*Wx1,

S = cls(Fy) = cls(S © F®), (4)

Finally, we propose to reinforce the segmentation M by the fusion with
the optimized semantic features which contains features similar to the text
and restores certain details of the segmentation map. The refined segmentation
M' € REXWXL i5 obtained by two convolutions Conv with a residual fusion.

M' = Conv(M + Conv(S")). (5)
To encourage the refinement block to produce segmentation maps with high
confidence, we design a segmentation regularization term L,, as:
1 !

where H x W is the number of pixels in the segmentation map M’, and o is a
threshold of the convergence.

3.4 Segmentation Embedding

The affine transformation could learn to recover high-quality texture based on
semantic segmentation maps [77]. Thus, we develop the segmentation embedding
module to embed the segmentation M’ into image features F' to indicate text
details for STR. Specifically, the refined segmentation M’ is modeled into two
transformation parameters v and 8 by a mapping function F [77]:

v, B=F(M), (7)

where F contains two branches of convolutional layers that are optimized with
our BINet. Then, the learned parameters are adopted into the features as:

F=Fo~+5, (8)

where © is the element-wise multiplication. With the learned conditions, the
feature maps F' are guided by the refined text segmentation for text recognition.

3.5 Optimization

For the individual training of text recognition in our proposed BINet, the objec-
tives consist of text recognition losses and the segmentation regularization term.
The total loss function is defined as:

N N
Ad i As i
L =NLop(Ve, GT) + 55 ; Lop(ViGT) + 57 ; Lep(ViGT) + AL,
(9)
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where Lo denotes the cross-entropy recognition losses from the predictions of
the encoder vectors V,, decoder vectors Vy, and the fusion vectors Vy following
Fang et al. [19] with N = 3 iterations for the decoder, GT is the ground truth
text, and L, is our proposed regularization loss. The balanced weights Ac, Ag,
Ay and A, are set to 1.0, 1.0, 1.0, and 1.0, respectively.

4 Experiments

4.1 Datasets and Implementation Details

Most STR models are trained on the synthetic text datasets referring to the
MJSynth (MJ) [27,26] and SynthText (ST) [23], which totally have more than
16 million images.

Unlike previous works trained on synthetic datasets and real data, we just
train the STR model on real data [5] that contains 276K images, which is 1.7% of
synthetic data. It contains a group of real datasets. Street View Text (SVT) [73]
consists of 257 training and 647 testing street scene text images. IITT5k-Words
dataset (IIIT) [17] is collected from Google images which includes 2,000 train-
ing and 3,000 testing images. ICDAR2013 (IC13) is built in the ICDAR 2013
Robust Reading Competition [32] with 848 images for training and 1,015 im-
ages for testing. ICDAR2015 (IC15) [31], consisting of 4,468 training and 2,077
testing images, has more irregular texts with perspective and blur attributes.
COCO-Text (COCO) [69] includes occluded and low-resolution texts of around
39K images. Further, RCTW [62], Uber-Text (Uber) [91], ArT [15], LSVT [65],
MLT19 [50], and ReCTS [88] are also included with 8,186, 92K, 29K, 34K, 46K,
and 23K images, respectively. The final real data is accounted to 276K images
in total. In addition to the above, for evaluation we also use SVT Perspec-
tive (SVTP) [53] which consists of 645 street view perspective-text images, and
CUTE [58] which is a dataset of 288 curved texts. The evaluation metric is the
widely used word-level recognition accuracy on the benchmark datasets.

The experiment settings are described below. The model is trained on batch
size of 64 on one 16G NVIDIA v100 graphic card. The initial learning rate is set
to le™* and then decayed to tenth of it for last four epochs in total 10 epochs,
with Adam optimizer. The input images are processed with data augmentation
including random rotation, affine transformation, perspective distortion, and
color editing [19]. All inputs are resized to 32 x 128 for training and testing.

4.2 Comparing with State-of-the-Art Methods

We compare our BINet with the state-of-the-art methods in Table 1. Note that it
is hard to fairly compare with different methods due to various pre-processing,
rectification, training data, training strategies, etc. It is also not possible to
reproduce most previous works with the same configuration in this paper due to
limited available codes. However, training on synthetic data is a great advantage
[0] for existing methods, compared with our data deficiency.
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Table 1. Accuracy (%) comparison of STR models on different training strategies
and six benchmark evaluation datasets. MJ, ST, Real and Real’ represent MJSynth,
SynthText, and two different unions of real datasets, with 9 million, 7 million, 48K and
276K images, respectively. The “Total” means evaluation on the union of all testing
datasets. The top accuracy is in bold for each evaluation dataset on two versions of
benchmarks. Most works are evaluated on the original version of IC13 of 1015 images
and IC15 of 2,077 images, while recent studies are evaluated on the developed version
of IC13 of 857 images and IC15 of 1,811 images, denoted with “*”.

Method Training Testing Datasets
Datasets IIIT SVT IC13 IC15 SVTP CUTE Total

ESIRI[30] MJ+4ST 93.3 90.2 91.3 769 79.6 83.3 86.8
DANJ76] MJ+ST 94.3 89.2 939 74.5 80.0 844 86.9
ASTER|[61] MJ+ST 93.4 89.5 91.8 76.1 785 79.5 86.4
SE-ASTER[55] MJ+ST 93.8 89.6 92.8 80.0 81.4 83.6 88.2
ScRN[&0] MJ+ST 94.4 88.9 939 787 80.8 87.5 88.2
PlugNet[19] MJ+ST 944 92.3 95.0 82.2 84.3 85.0 89.8
Bhunia et al. [9] MJ+ST 95.2 92.2 955 84.0 857 89.7 90.9
Li et al. [38] MJ+ST+Real 91.5 84.5 91.0 69.2 76.4 83.3 83.2
Hu et al. [25] MJ+ST+Real 95.8 92.9 944 79.5 85.7 922 90.0
TextScanner|70] MJ+ST+Real 95.7 92.7 949 83.5 848 91.6 91.2
RobustScanner[85] MJ+ST+Real 954 89.3 94.1 79.2 829 924 89.2
PIMNet[54] MJ+4+ST+Real 96.7 94.7 954 85.9 88.2 927 92.5
CRNNI59] MJ+ST 84.3 78.9 888 61.5 64.8 61.3 758
CRNNJ7] MJ+ST+Real’ 89.8 84.3 90.9 73.1 746 823 834
TRBA[/] MJ+ST 92.1 88.9 93.1 74.7 795 782 857
TRBA[Y] MJ+ST+Real” 95.2 92.0 94.7 81.2 84.6 88.7 90.0
Ours SI+Real’ 97.3 96.4 96.7 85.0 89.9 95.8 93.1
SRN[&4T* MJ+ST 94.8 91.5 95.5 82.7 851 87.8 904
PREN2D[79]* MJ+ST 95.6 94.0 96.4 83.0 87.6 91.7 915
PIMNet[54] MJ+4+ST+Real 96.7 94.7 96.6 88.7 88.2 92.7 935

ABINet[19]* (original) SI+MJ+ST 96.2 93.5 97.4 86.0 89.3 89.2 926
ABINet[19]* (reproduce)  SI+Real’ 97.0 94.9 96.1 88.2 88.5 94.4 93.7
Ours* SI+Real’”  97.3 96.4 96.8 89.2 89.9 95.8 94.4

Specifically, there are four training strategies indicated as MJ 4+ ST + Real,
MJ+ ST+ Real’, SI+MJ+ ST, and ST + Real’, compared with conventional
methods on synthetic data M J+ ST, as shown in Table 2. The M J+ST+ Real is
the STR model trained on two synthetic datasets [27,23] and several real datasets
(IIIT5K, SVT, IC03, IC13, IC15, COCO) [38,25,70,85,54]. The M J+ ST + Real’
means that the STR model is trained on both synthetic datasets and another
version of real data (IIIT5K, SVT, IC13, IC15, COCO, RCTW, Uber-Text,
ArT, MLT19, ReCTS) [5]. The ST refers to use synthetic initialization. It is the
backbone weights appeared in ABINet [19] and treated as the pre-training of
feature extractor on synthetic data. The whole model will be trained on synthetic
data, which is denoted as SI + MJ + ST. We figure out that the weights from
the backbone or feature extractor can be widely used as model initialization for
downstream recognition task, instead of training whole STR model on synthetic
data from scratch. We remove the positional encoding module designed by the
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Table 2. Comparison of different training strategies. For different stages, MJ, ST, Real
and Real’ represent MJSynth, SynthText, and two different unions of real datasets. The
SI denotes separated pretraining on synthetic data. The training time is calculated as

the sum of “Train” and ”Finetune”.

Training Strategy | Number of Images | Pretrain| Train |Finetune |Training Time
MJ+ST 16 Million - MJ+ST - > 1 week
MJ+ST+Real | 16 Million + 48K - MJ+ST| Real > 1 week
MJ+ST+Real’ | 16 Million +276K - MJ+ST | Real’ > 1 week
SI+MJ+ST 16 Million SI MJ+4ST - > 1 week
SI+Real’ 276K SI Real’ - ~ 5 hours

original work and only keep the backbone weights for the feature extractor. To
verify this idea, we train our method only on real data denoted as ST + Real’.

Corresponding to the original version of benchmarks (with IC13 of 1015 im-
ages and IC15 of 2077 images), most works are trained on synthetic data and
real data Real. Baek et al. [5] constructed another real data Real’ and repro-
duced two typical STR models on the synthetic data and Real’, i.e., CRNN and
TRBA, with additional ROTNet [21] and unlabeled data [37], as shown after
corresponding original results. Our method outperforms most previous models
with remarkable margins especially on complex and irregular datasets. Specifi-
cally, the performance is improved by 2.2%, 4.8%, 2.1%, 4.7%, 6.3%, 8.0% and
3.4% on IIIT, SVT, IC13, IC15, SVTP, CUTE datasets and the total evaluation,
respectively, comparing with the latest TRBA [5] trained on the synthetic and
real data as well as extra unlabeled datasets. The results are boosted by 0.6%,
1.8%, 1.4%, -1.0%, 1.9%, 3.3% and 0.6% on above datasets and the total eval-
uation, comparing with the previous SOTA PIMNet [54]. Note that synthetic
data of 16 million is extremely large compared to both kinds of real data, which
are accounted for 0.3% and 1.7%, respectively. Baek et al. [5] demonstrate that
training on synthetic data is an advantage for STR models and can beat any
models training only on real data. With the novel design of SI, training only
on real data now can compete the synthetic training of STR models. Besides,
it could finish training in several hours that is less than 0.7% of the time for
conventional methods training on synthetic datasets.

Several recent works are evaluated on a developed version of IC13 and IC15,
which contains 857 and 1,811 images, respectively. Results are shown in the
bottom half of the Table 1. For the regular text datasets IIIT, SVT and IC13,
there are the 1.1%, 3.1% and -0.7% improvements, respectively, compared to the
original ABINet [19]. For the challenging irregular text datasets IC15, SVTP,
and CUTE, our model achieves the best results by increasing of 3.7%, 0.7%, and
7.4% performance compared to the same method. The total evaluation result is
boosted by around 2.0%. For fair comparison, we reproduce the results of ABINet
[19] trained on real data (while other codes are not fully provided for reproducing
the results). The reproduced results trained with the same configuration on
real data are improved in total evaluation from 92.6% to 93.7%. Training the
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Fig. 4. Qualitative challenging examples. Under each image, the left text is the ground
truth; the middle one is the prediction from the SOTA work [19] while the red color
indicates the wrongly predicted or missed characters; and the right one in green color
is the prediction from our model.

whole model solely on real data previously causes great performance degradation
[5] due to its 1.7% volume of synthetic data. Our results indicate that solely
training on real data with SI can beat the end-to-end training on synthetic
data in total accuracy. Moreover, BINet shows impressive superiority on the
challenging datasets (IC15, SVTP, and CUTE) that contains various kinds of
background-interference scene text images (as shown in Fig.4), which previous
works are generally short at confidently recognizing them.

The Fig.4 shows certain qualitative results. For the perspective, curved and
blur texts entangled with background shapes in the first row, the attention-based
method is vulnerable in missing or wrongly recognizing characters. For the styled
texts in the second row, the background interference with unexpected breaks
cause the recognition difficulties. When the background is extremely similar to
the texts, the interference is much more irregular in STR as shown in the third
row of Fig.4. In the case of complicated background changing in the forth row,
the character shapes are much more important in recognizing the characters.
Our model handles the challenging cases more robust than the previous method.

4.3 Ablation Study

SSN Strategy and Modules. To verify the effectiveness of main components
in our BINet, we design two different training strategies for the text semantic
segmentation (SSN), i.e., conventional jointed training versus pretrained SSN,
together with or without the segmentation refinement (SR) and segmentation
embedding (SE) blocks described in Section 3.3 and 3.4, respectively. Experi-
ments are evaluated on both the original and developed version of benchmarks
as described in Section 4.2.

As shown in Table 3, the performance of jointed segmentation is inferior to
that of explicitly pretrained strategy. More specifically, by using pretrained strat-
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Table 3. Accuracy (%) comparison on different components of BINet. For the SSN,
the “J” represents the jointed training while the “P” represents the pretrained strategy.
The developed version of benchmarks is denoted with “*”.

SSN SR SE IIIT SVT SVTP CUTE IC13 IC15 IC13* IC15* Total Total*
- - 96.2 951 885 944 953 839 958 879 919 93.2
- v 962 943 87.3 924 943 829 964 894 91.3 934
- 96.7 951 884 944 959 843 96.6 88.6 923 93.7
- v 969 95.2. 89.0 944 96.2 84.6 96.7 88.6 92.6 93.8
vV v 973 964 899 95.8 96.7 8.0 96.8 89.2 931 944

| o] o] H —

egy instead of jointed training, the recognition accuracy increases from 91.9%
to 92.3% without SE, and from 91.3% to 92.6% with SE, for the original ver-
sion of benchmarks. The jointed training might cause insufficient learning of
the segmentation and deficient communication with the recognition, but pre-
trained SSN could boost the learning of text semantic segmentation and reduce
the negative effect for recognition. That is, the text semantic segmentation is
not severed as both for improving segmentation and recognition performance
at the same time, which reduces the unexpected noises and interruptions from
models [19,6]. We equip SR and SE blocks based on the pretrained SSN and the
performance further increases 0.5%. Compared with SSN and SE with higher im-
provements of 0.9% and 1.5% on IC13 and SVTP, SR improves more accuracy
of 1.2% and 1.4% on SVT and CUTE, respectively, for the original version of
benchmarks. The marked improvements on each of the benchmarks demonstrate
the effectiveness of each component in our BINet.

Segmentation Embedding. We also try different segmentation embedding
strategy to better utilize the semantic segmentation map for STR, including
stacking images with masks [71] (Concat), adding feature maps as residual fu-
sion (Add), attention-based multiplying [68] (Multiply), and our proposed seg-
mentation embedding (SE). They are corresponding to each row of Table 4,
respectively. The results show that our designed SE block works more effectively
than other competitors for STR.

Segmentation Refinement. We further explore the effectiveness of segmen-
tation refinement module. Due to the domain gap between the datasets for se-
mantic segmentation and the datasets for STR, directly applying the pretrained
model to generate the segmentation map for STR dataset might get inaccurate
results. We can see that some initial text segmentation in the middle column
of Fig.5 are not satisfactory. After refinement, the segmentation results are im-
proved as shown in the right column of Fig.5. It is obvious that some miss-
ing strokes and components of segmentation are compensated to exhibit more
distinctive features, which is especially important in the recognition of similar
characters. For example, the initially segmented first and last characters in the
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Table 4. Accuracy (%) comparison on different embedding methods. The developed
version of benchmarks is denoted with “*”.

Level  Strategy IIIT SVT SVTP CUTE IC13 IC15 IC13* IC15* Total Total*
Image Concat 91.2 89.2 80.6 83.3 922 74.6 93.1 794 855 87.0
Feature Add 96.6 94.7 90.2 948 96.0 83.7 96.6 88.0 92.3 93.6
Feature Multiply 96.7 95.1 88.4 944 95.9 84.3 96.6 88.6 92.3 93.7
Feature Ours 96.9 952 89.0 944 96.2 84.6 96.7 88.6 92.6 93.8

@SS Grenier|Grenier

Fig. 5. Samples of the initial segmentation map (middle column) and the refined seg-
mentation map (right column).

bottom row look like “c” and “i”, respectively. After the refinement, it is more

easier to identify the characters “F” and “t”, respectively.

5 Conclusion

In STR models, the background interference always causes ineffective feature
representations for recognition. In this paper, we proposed an effective frame-
work BINet that leverages the text semantic segmentation to STR by novel
segmentation refinement and segmentation embedding blocks. We also design
an efficient pipeline for training the model only on real data with synthetic ini-
tialization. It can be widely used for any STR models with ResNet backbone,
instead of training the whole model on synthetic datasets from scratch. Experi-
ments showed the superiority of our BINet on standard benchmarks, especially
on challenging and irregular scene text recognition.
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