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Abstract— In this paper, we propose an online learning
algorithm for supervised learning in multilayer spiking neural
networks (SNNs). It is found that the spike timings of neurons
in an SNN can be exploited to estimate the gradients that are
associated with each synapse. With the proposed method of
estimating gradients, learning similar to the stochastic gradient
descent process employed in a conventional artificial neural
network (ANN) can be achieved. In addition to the conventional
layer-by-layer backpropagation, a one-pass direct backpropaga-
tion is possible using the proposed learning algorithm. Two neural
networks, with one and two hidden layers, are employed as exam-
ples to demonstrate the effectiveness of the proposed learning
algorithms. Several techniques for more effective learning are
discussed, including utilizing a random refractory period to avoid
saturation of spikes, employing a quantization noise injection
technique and pseudorandom initial conditions to decorrelate
spike timings, in addition to leveraging the progressive precision
in an SNN to reduce the inference latency and energy. Extensive
parametric simulations are conducted to examine the aforemen-
tioned techniques. The learning algorithm is developed with the
considerations of ease of hardware implementation and relative
compatibility with the classic ANN-based learning. Therefore, the
proposed algorithm not only enjoys the high energy efficiency and
good scalability of an SNN in its specialized hardware but also
benefits from the well-developed theory and techniques of con-
ventional ANN-based learning. The Modified National Institute of
Standards and Technology database benchmark test is conducted
to verify the newly proposed learning algorithm. Classification
correct rates of 97.2% and 97.8% are achieved for the one-
hidden-layer and two-hidden-layer neural networks, respectively.
Moreover, a brief discussion of the hardware implementations is
presented for two mainstream architectures.

Index Terms— Hardware neural network, machine learning,
Modified National Institute of Standards and Technology data-
base (MNIST) benchmark, neuromorphic computing, spike-
timing-dependent plasticity (STDP), spiking neural network
(SNN), supervised learning.

I. INTRODUCTION

O
VER the past decade, an enormous amount of research

effort has been made to build specialized neuromorphic
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computing hardware for real-life applications, while the devel-

opment of the conventional von Neumann architecture-based

computing approach has slowed down because of the looming

end of Moore’s law. In recent years, research focus has

shifted from traditional rate-based artificial neural networks

(ANNs), which were popular choices of hardware implemen-

tations in the 1990s, to the third-generation spiking neural

networks (SNNs). This trend is attributed to two unique

advantages that SNNs have. The event-triggered nature of

an SNN can lead to a very power-efficient computation.

It has been shown that a customized SNN hardware is two

orders of magnitude more energy efficient than the traditional

ANN implemented on a field-programmable gate array [1].

In addition, an SNN has better scalability because an address

event representation (AER) can conveniently interconnect sub-

SNNs in a large network [2]–[4]. For example, TrueNorth

from IBM [2] is a hardware SNN that contains 1 million

spiking neurons. It consists of 4096 cores and consumes

merely 65 mW while running a real-time multiobject detection

and classification task. Unfortunately, SNNs implemented on

a general-purpose processor are not able to demonstrate supe-

riority compared to ANNs due to the lack of support of event-

based computation in the processor. Therefore, to better exploit

the aforementioned advantages of an SNN, many specialized

hardware systems have been built, such as the TrueNorth from

IBM [2], CAVIAR in Europe [5], and neuromorphic chips

from HRL Laboratories [6]. In addition to the conventional

CMOS technology, emerging nanotechnology also helps to

accelerate the development of the next-generation neuromor-

phic computing hardware. Since it was first demonstrated

in 2008 [7], the memristor has emerged as a popular choice

for building neuromorphic hardware because it satisfies all

of the requirements of being a synapse. Many studies have

been conducted with the attempt to incorporate memristors

into a neuromorphic system, including building synapses for

both SNNs [8]–[11] and ANNs [12] and developing functional

neuromorphic systems with memristors [13], [14]

Even though many SNN hardware implementations have

been demonstrated over the past few years, many of them

do not have the capability to conduct on-chip learning. One

popular way to utilize the SNN hardware is to train a con-

ventional ANN counterpart offline using conventional learning

algorithms and then convert it into an SNN and download the

learned weights into the specialized hardware [1], [15]–[17].
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One drawback of this method is the performance degradation

that is associated with the conversion from ANNs to SNNs.

In addition, online learning with low power consumption is an

expected feature for specialized neuromorphic hardware to be

deployed in the future smart Internet of Things devices, yet it

is not feasible to conduct online learning using this method.

Over the past few decades, there were many efforts from

both the computational intelligence community and the neuro-

science community to develop learning algorithms for SNNs.

Spike-timing-dependent plasticity (STDP), which was first

observed in real biological experiments, was proposed as an

empirically successful learning rule that could be used for

unsupervised learning [13], [18]–[20]. In a typical STDP

protocol, the synaptic weight updates according to the relative

order of spikes and the difference between the presynaptic and

postsynaptic spike timings. Unsupervised learning is useful in

discovering the underlying structure of the data, yet it is not as

powerful as supervised learning in many real-life applications,

at least at the current stage. There also exist various algorithms

for supervised learning in SNNs, such as SpikeProp [21],

ReSuMe [22], tempotron learning rule [23]–[25], and precise-

spike-driven (PSD) rule [26], [27]. SpikeProp is one of the

earliest proposed methods for supervised learning in SNNs,

and it is analogous to the backpropagation employed in

conventional ANNs. The tempotron rule relies on a more

biologically plausible mechanism. Both of these methods are

based on a gradient descent method, and they both limit each

neuron in the SNN to fire only once, making them well

suitable for classification applications where the output is a

one-hot code. However, it is not convenient to employ such

a learning algorithm for a softmax classifier or a universal

function approximator. ReSuMe and the PSD rule both orig-

inate from the Widrow–Hoff rule. They have the advantage

that they can learn precise spatiotemporal patterns of desired

spikes, which makes them attractive for systems in which

the information is mainly modulated on the timings of the

spikes. Another advantage is that these two learning rules are

applicable to many different neuron models. However, how to

apply these learning rules to a multilayer neural network is

not obvious. This limitation impedes these algorithms from

being employed in a deep neural network, which has achieved

many astonishing results recently [28]–[30]. In addition, all of

these learning rules aim at learning precise firing timings of

neurons. It is, however, still debatable what the best way is

to encode information using spikes. Therefore, learning exact

spike timing might not be the optimum and the most efficient

method for many real-life applications.

In this paper, we take a different approach. We do not

attempt to learn the precise spike timings of neurons. Rather,

learning rules that aim to achieve desired firing densities are

developed. Nevertheless, the spike timings of neurons are

employed to estimate the gradient components in the learning

process. It is found that a term that resembles the quantity used

in an STDP protocol can be exploited to estimate the gradients.

Furthermore, how to propagate the errors from the output

neurons to each synapse is studied; this process leads to a

learning process that is similar to a conventional backpropaga-

tion. The gradients estimated from spike timings are exploited

to conduct gradient descent learning. By developing such a

learning rule, we can take advantage of the power efficiency

and scalability of a specialized SNN hardware. In addition,

the developed learning algorithm stays relatively compatible

with the learning in a conventional ANN. Therefore, many

theories and techniques developed for the well-established

ANN-based learning, such as momentum and mini-batch, can

be applied to the proposed learning algorithm. Despite the

similarities, many unique features associated with the proposed

learning algorithm provide new opportunities. For example, in

contrast to the layer-by-layer backpropagation in a conven-

tional ANN, a direct backpropagation in SNN is possible by

properly utilizing the spike timings of neurons, thus reducing

the computational effort and improving the backpropagation

speed. Another example is that the trained SNN can infer with

progressive precision, thus accelerating the inference process

and reducing the energy consumption of the SNN hardware.

In the following, we introduce the method of estimating

gradients and conducting supervised learning using a weight-

dependent STDP term in Section II. Two examples of neural

networks are presented in Section III, which are used to

examine various aspects of the proposed learning algorithm.

In Section IV, we discuss how the newly proposed algorithm

can fit into two popular hardware architectures in neuromor-

phic computing. Conclusions are drawn in Section V.

II. STDP AS A MEASURE OF THE GRADIENT

We use the following notations throughout this paper.
1) A deterministic discrete-time signal is denoted by

a lowercase symbol and is indexed by n, for

example, x[n].

2) A discrete-time stochastic process is denoted with

an uppercase symbol and is indexed by n, for

example, X[n].

3) Pr(·) and E[·] are used to represent the probability and

expectation, respectively.

4) The expectation of a random variable is denoted by µ,

and the arithmetic average of signal x[n] over a finite

duration is denoted by x .

5) A column vector is denoted by a bold symbol such as x,

and its elements are denoted by xi , where i = 1, 2, · · · .

6) The differentiation of a function f with respect to

a vector is an element-wise operation. For example,

∂ f /∂x = [∂ f /∂x1, ∂ f /∂x2, · · · ]
T .

A generic diagram of a multilayer neural network is shown

in Fig. 1. In Fig. 1, a neuron that is located at the lth layer

is denoted as x l
i , where i represents the index of that neuron.

There are, in total, Nl such neurons in the lth layer. For a pair

of neurons, a presynaptic neuron x l
i and a postsynaptic neuron

x l+1
j , their output spike trains are denoted as

x l
i [n] =

∑

m

δ
[

n − nl
i,m

]

(1)

x l+1
j [n] =

∑

m

δ
[

n − nl+1
j,m

]

(2)

where δ[n] is the unit sample sequence, m is the index for

spikes, and nl
i,m and nl+1

j,m are spike timings for the mth spikes

from neuron x l
i and neuron x l+1

j , respectively. Since our
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Fig. 1. Illustration of a multilayer neural network. A neuron located at the

lth layer is denoted as xl
i
, where i represents the index of that neuron.

Fig. 2. Illustration of two regions divided by the spike timing of a presynaptic
neuron. The causal and anti-causal regions are defined according the causal
relationship between presynaptic and postsynaptic spikes.

primary interests are in training hardware-based SNNs, we

restrict ourselves to discrete-time systems and the usage of

a constant excitatory postsynaptic potential. This way of

representing spikes is very popular in the hardware realization

of SNNs, considering its ease of implementation and routing.

It was shown in [31] that a presynaptic spike partitions the

time axis into two regions: a causal region and an anti-causal

region, as shown in Fig. 2. With such a partition, let us define

a time sequence and its sample mean as

stdpl
i j [n] = x l

i [n − T ]
(

1 − x l
i [n − T − 1]

)

×
(

x l+1
j [n] − x l+1

j [n − 1]
)

(3)

stdpl
i j =

DL
∑

n=T +1

stdpl
i j [n]/(DL − T ) (4)

where T is the time delay associated with the neuron model

used, and DL is the learning duration, which serves as a design

parameter. The quantity stdpl
i j [n] measures the causality

between the presynaptic and postsynaptic spikes, which is

similar to the quantity measured in an STDP protocol. It is

demonstrated shortly that this quantity estimates how the

postsynaptic neuron changes its behavior when a presynaptic

spike occurs.

We consider a class of stochastic neuron model with the

dynamics of

X l+1
j [n] = H

⎛

⎝

Nl
∑

i=1

wl
i j X l

i [n − T ] + Sl+1
j [n − T ]

⎞

⎠. (5)

For analysis purposes, we treat spikes as stochastic processes.

The spike trains x l
i [n] and x l+1

j [n] shown in (1) and (2) are

particular realizations of X l
i [n] and X l+1

j [n] in (5). H (·) is the

Heaviside function. Sl+1
j [n] is a random process that models

the internal state of neuron x l+1
j . It could be, for example,

the membrane voltage of an integrate-and-fire neuron. The

detailed role and implications of Sl+1
j [n] are discussed shortly.

We are interested in finding out how the mean firing rate of

neuron x l+1
j is related to the mean firing rate of its input

neuron x l
i . Before embarking on deriving this relationship, let

us assume that the following two conditions hold.

C1) X l
i [n] and X l

k[n] are independent for k = 1, 2, . . . , Nl ,

and k �=i .

C2) X l
i [n] and X l+1

j [n] are strictly stationary processes, and

C
X l

i ,X l+1
j

(n, m) = 0 for n �= m − T , where CX,Y (·) stands for

the cross-covariance function.

We first show that under conditions C1) and C2), the mean

firing rate of neuron x l+1
j , i.e., µl+1

j , is a function of the

mean firing rates of its input spikes, µ
l, or mathematically,

µl+1
j = g(µl). In addition, we show that g(·) is differentiable

with respect to µ
l, and its mth derivative ∂g(m)/∂µ

l = 0 for

m > 1. Here, 0 denotes a zero vector in which all elements

are zero. Note that the time index n is dropped for the sake

of cleaner notation because we consider strictly stationary

processes.

The mean firing rate of neuron x l+1
j can be expressed as

µl+1
j = Pr

(

X l+1
j = 1

)

=

1
∑

bl
1=0

· · ·

1
∑

bl
Nl

=0

⎡

⎣Pr
(

X l+1
j = 1

∣

∣X l
1 = bl

1, . . . , X l
Nl

= bl
Nl

)

Nl
∏

i=1

Pr
(

X l
i = bl

i

)

⎤

⎦

=

1
∑

bl
1=0

· · ·

1
∑

bl
Nl

=0

⎧

⎨

⎩

Pr
(

X l+1
j = 1

∣

∣X l
1 = bl

1, . . . , X l
Nl

= bl
Nl

)

Nl
∏

i=1

[

µl
i

(

2bl
i − 1

)

− bl
i + 1

]

⎫

⎬

⎭

= g(µl) (6)

where bl
1 is a binary auxiliary variable for the convenience of

derivation. In (6), we have used the assumption that X l
i and X l

k

are independent for i �= k. In addition, the effect of Sl+1
j

on X l+1
j is implicitly included in the probability Pr(X l+1

j =

1|X l
1 = bl

1, . . . , X l
Nl

= bl
Nl

). Qualitatively, when the mean of

Sl+1
j increases, the neuron tends to fire more frequently. This

relationship translates directly to a larger Pr(X l+1
j = 1|X l

1 =

bl
1, . . . , X l

Nl
= bl

Nl
). It can be shown that the first derivative
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of g(µl) with respect to µl
i is

∂g

∂µl
i

=

1
∑

bl
1=0

· · ·

1
∑

bl
Nl

=0

⎡

⎢

⎢

⎣

Pr
(

X l+1
j = 1

∣

∣X l
1 = bl

1, . . . , X l
Nl

= bl
Nl

)

⎛

⎜

⎜

⎝

Nl
∏

k=1
k �=i

[

µl
k

(

2bl
k − 1

)

− bl
k + 1

]

⎞

⎟

⎟

⎠

(

2bl
i − 1

)

⎤

⎥

⎥

⎦

. (7)

Clearly, ∂g(1)/∂µl
i is not a function of µl

i , which implies that

∂g(m)/∂µ
l = 0 for m > 1.

We then show that stdpl
i, j defined in (4) is an unbiased

estimator of the term (∂µl+1
j /∂µl

i )µ
l
i (1 − µl

i ). According to

the law of large numbers, we have

E
[

stdpl
i j

]

= Pr
(

X l+1
j = 1, X l

i = 1, X l′

i = 0
)

− Pr
(

X l+1
j = 1, X l

i = 0, X l′

i = 1
)

=
[

Pr
(

X l+1
j = 1|X l

i = 1
)

− Pr
(

X l+1
j = 1|X l

i = 0
)]

µl
i

(

1 − µl
i

)

. (8)

In (8), X l
i denotes the random variable on which X l+1

j depends,

whereas X l′
i denotes the random variable of which X l+1

j is

independent. From (8), through expanding g(µl) in a Taylor

series and using the fact that ∂g(m)/∂µ
l = 0 for m > 1, we

have

E
[

stdpl
i j

]

µl
i

(

1 − µl
i

)

= Pr
(

X l+1
j = 1|X l

i = 1
)

− Pr
(

X l+1
j = 1

∣

∣X l
i = 0

)

= g
(

µ
l +

(

1 − µl
i

)

ul
i

)

− g
(

µ
l − µl

i u
l
i

)

= g
(

µ
l
)

+
∂g

∂µl
i

(

1 − µl
i

)

− g
(

µ
l
)

−
∂g

∂µl
i

(

− µl
i

)

=
∂g

∂µl
i

=
∂µl+1

j

∂µl
i

(9)

where ul
i is an Nl -D unit vector in which all elements are zero

except that the i th element is one. In (9), we have used the

assumption that X l
i and X l

k are independent for i �= k.

The derivation of (9) is based on assumption C1) and C2).

We then examine the validity of (9) qualitatively when

C1) and C2) do not hold rigorously. C1) assumes that the

spike timings for different input neurons are independent.

Even though the density of each neuron might be highly

correlated, the spike timing of an individual neuron can be

largely independent. The mild assumption that the spike timing

of each neuron is somewhat uncorrelated holds for most SNNs.

C2) implies that Sl+1
j [n] is also strictly stationary and that it

should be independent of X l
i and X l+1

j . Rigorously, Sl+1
j [n]

depends on all X l
i [m] in which m < n − T for any neuron

model with a memory, such as the popular LIF model. In prac-

tice, however, the dependence of Sl+1
j [n] on the firing history

of a presynaptic neuron is significantly diluted by the firing

histories of other independent presynaptic neurons as well as

the modulus or noisy reset operations that are associated with

the postsynaptic neuron. In addition, the dependence can be

weakened to an acceptable level through proper noise injec-

tion. This arrangement is illustrated in Section III. A natural

extension of (9) is to define the time sequence stdpl
i j [n]

in such a way that more samples can be included for each

estimation. This approach is illustrated in (10). In the equation,

WINSTDP is a design parameter that is used to specify the

window size of the summation. This method is inspired by the

biological STDP, in which an exponential integration window

is employed. The purpose of the parameter WINSTDP is to

include the effects of delayed perturbated outputs, which might

be caused by the memory of Sl+1
j [n]

stdpl
i j [n]

= x l
i [n − T ]

(

1 − x l
i [n − T − 1]

)

×

(

WINSTDP
∑

m=1

x l+1
j [n + m − 1] −

WINSTDP
∑

m=1

x l+1
j [n − m]

)

(10)

Intuitively, (9) indicates that ∂µl+1
j /∂µl

i can be estimated

by observing how the postsynaptic neuron alters its stochastic

behavior in response to an input spike that serves as a small

perturbation to the network. Even though perturbations from

various presynaptic neurons might cause the same postsynaptic

neuron to spike, contributions from each presynaptic neuron

can be evaluated simultaneously as long as the spike timings of

each of the presynaptic neurons are reasonably uncorrelated.

For example, at any given time k, as shown in Fig. 2, neuron

x l+1
j has equal probability to fire at both regions when the

input spike from neuron x l
i is absent. When the input spike

is present, the spike from neuron x l+1
j is more likely to

occur at one side of k depending on whether the synapse

is excitatory or inhibitory. The contributions of other input

neurons appear to be noise, and they can be easily filtered

out if they are not correlated. To further decorrelate the spike

timings of each neuron in an SNN, a stochastic neuron can be

employed. More conveniently, a technique called quantization

noise injection, which was introduced in [31], can be utilized.

Therefore, (9) can be readily employed in a large network,

and individual gradients can be estimated simultaneously. This

approach has the same spirit as simultaneous perturbation

stochastic approximation [32].

Next, we assume that (11) can approximately describe

the input–output relationship in the chosen neuron model,

where f l+1
j (·) is a differentiable function that depends on

the dynamics of the spiking neuron model that is used. The

actual form of f l+1
j (·) is not important in our derivation

because it serves as only an intermediate quantity that is

substituted eventually. Conceptually, f l+1
j (·) can be obtained,

for example, through function fitting

µl+1
j ≈ f l+1

j

(

∑

i

wl
i j µ

l
i

)

. (11)

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:22:24 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG AND MAZUMDER: ONLINE SUPERVISED LEARNING FOR HARDWARE-BASED MULTILAYER SNNs 4291

By taking the derivative with respect to µl
i in (11), one can

obtain

f l+1′
j

(

∑

i

wl
i j µ

l
i

)

=
∂µl+1

j

∂µl
i

/wl
i j . (12)

Then, with (9) and (12), we arrive at

∂µl+1
j

∂wl
i j

= µl
i f l+1′

j

(

∑

i

wl
i j µ

l
i

)

=
E

[

stdpl
i j

]

wl
i j

(

1 − µl
i

) . (13)

Equation (13) resembles the STDP learning rule in the

literature. However, in contrast to a conventional STDP rule,

a denominator term is included. Mathematically speaking,

including the weight gives at least the sign information.

If negative weights are allowed, then it is necessary for a

term to change the sign in (13), which would otherwise

induce a wrong direction for the gradient descent. In addition,

the introduction of the weight denominator ensures an upper

bound on wl
i j , which serves a similar purpose as the weight-

decay technique that is widely used in ANNs [33].

Equations (9) and (13) provide theoretical guidelines to

estimate the gradients in an SNN in order to conduct gradient

descent learning. In practice, we use stdpl
i j /[x

l
i (1 − x l

i )]

and stdpl
i j /[w

l
i j (1 − x l

i )] to approximate ∂µl+1
j /∂µl

i and

∂µl+1
j /∂wl

i j , where x l
i =

∑DL

n=T +1 x l
i [n]/(DL − T ).

To feature gradient descent learning, we need to propagate

errors at the output neuron back to each synapse in the neural

network. This process can be achieved through a chain rule

that is similar to that used in a conventional ANN, as shown

the following equation:

∂µo
k

∂wl
i j

=
∂µo

k

∂µl+1
j

·
∂µl+1

j

∂wl
i j

. (14)

In (14), the term ∂µl+1
j /∂wl

i j can be computed according

to (13), whereas the term ∂µo
k/∂µl+1

j can be obtained by

propagating the gradient layer by layer, similar to the back-

propagation used in a conventional ANN. This procedure is

shown in the following equation:

∂µo
k

∂µl+1
j

=

k
∑

io=k

No−2
∑

io−1=1

· · ·

Nl+2
∑

il+2=1

j
∑

il+1= j

o−1
∏

p=l+1

∂µ
p+1
ip+1

∂µ
p
ip

. (15)

Alternatively, a direct propagation method shown in (16) is

proposed to estimate the gradient

∂µo
k

∂µl+1
j

=
E

[

cstdpl+1
j k

]

µl+1
j

(

1 − µl+1
j

)
. (16)

In (16), cstdpl+1
j k [n] is a quantity that is similar to the quantity

defined in (3). The only difference is that cstdpl+1
j k measures

the relationship between the (l + 1)th layer and the output

layer. The delay across multiple layers must be considered in

this case. Here, (16) is an extension of (9) in the sense that

instead of using perturbation to estimate the gradient of the

output of a neuron with respect to its input, we estimate the

gradient across a network of neurons by observing how the

input spike affects the output firing probability.

To verify (13)–(16), we conduct simulations on a two-

hidden-layer neural network. The operations of the neural

network largely follow the conventions used in TrueNorth [2]

because it is the most recently developed, powerful general-

purpose neuromorphic hardware. In [2], spikes from neurons

can occur only synchronously with a time unit called a

tick. This setting guarantees a one-to-one mapping between

software and hardware at a tick level, albeit the internal

evaluations of the neuron states are asynchronous to save

energy. In the remainder of this paper, a tick is used as the

minimum temporal resolution as well as the unit for time-

related quantities, e.g., WINSTDP.

The configuration of the neural network is 80-30-100-1,

where each number represents the number of neurons at each

layer, from input layer to output layer. Here, we employ only

one output neuron because the gradients estimated for each

output neuron in a neural network are independent of the

other output neurons. A modified integrate-and-fire neuron

model, shown in (17) and (18), is used. In the model, x l+1
j [n]

and V l+1
j [n] are the output and membrane potential of a

neuron x l+1
j at tick n, thl+1

j is the threshold to fire, and

Ll+1
j represents the leakage. It has been shown in [31] that

such a neuron model behaves similar to a first-order � − �

modulator, and the quantization noise associated with this

model is helpful in achieving less correlated spike timings.

In other words, we can randomize the spike timing of each

neuron without explicitly using random number generators.

In addition, this modified model is one of the models employed

in the TrueNorth chips [34]. Therefore, we utilize this model in

this paper unless otherwise stated. Nevertheless, our proposed

algorithm is not restricted to this modified model. For example,

it can also be applied to a conventional leaky integrate-and-

fire (LIF) model if noise is properly injected. This approach is

demonstrated in Section III. In our simulations, input neurons

in the network are injected with excitatory currents at every

tick. The injected currents are randomly chosen at the begin-

ning of learning and are fixed throughout the learning. More

information on the input encoding is detailed in Section III

x l+1
j [n] =

{

0, V l+1
j [n] < thl+1

j

1, V l+1
j [n] ≥ thl+1

j

(17)

V l+1
j [n] = max

(

0, V l+1
j [n − 1] +

∑

i

wl
i j x l

i [n − 1] − Ll+1
j

−x l+1
j [n − 1] · thl+1

j

)

. (18)

Figs. 3–5 show scatter charts that compare gradients

estimated from the spike timing and gradients calculated

numerically. Ten sets of experiments are conducted, and

100 weights from each layer are randomly chosen for each set

of experiments. A thousand data points, in total, are collected

in Figs. 3–5 for each layer. Numerical results are obtained

with the finite-difference (FD) method. In other words, a small

perturbation is applied to the weight, and the gradient is

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:22:24 UTC from IEEE Xplore.  Restrictions apply. 



4292 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Fig. 3. Comparison of gradients obtained from numerical simulations and
gradients obtained from STDP. The gradients are associated with the first-layer

synapses w1
i j

.

Fig. 4. Comparison of gradients obtained from numerical simulations
and gradients obtained from STDP. The gradients are associated with the

second-layer synapses w2
i j

.

Fig. 5. Comparison of gradients obtained from numerical simulations
and gradients obtained from STDP. The gradients are associated with the

third-layer synapses w3
i j

.

obtained by dividing the change at the output by the amount of

perturbation that is applied. Due to the complicated dynamics

of the SNN and the limited computational resources, the

gradient obtained from the FD method is not the true gradient

TABLE I

INFORMATION FOR THE LIMITING OPERATIONS USED

TO OBTAIN DATA IN FIGS. 3–7

Fig. 6. Correlations between estimated gradients and gradients obtained with
the FD numerical method. The results obtained for all three layers of synaptic

weights (w1
i j

, w2
i j

, and w3
i j

) are compared. Two different backpropagation

methods (layer by layer and direct) are also compared. Different window
sizes for evaluating STDP are compared. The estimation accuracy does not
show significant dependence on the sizes of the STDP window.

but is instead a noisy version of the true gradient. This gradient

asymptotically approaches the true gradient as the number of

evaluation ticks increases. Nevertheless, a comparison with

such noisy gradients can provide some useful insights into how

well the spike timing can be used for estimating gradients.

As shown in (13), when the weight is small, the quantiza-

tion noise in the density of the spike might induce a large

estimated gradient variation. Therefore, a limiting operation is

needed to limit the maximum and minimum gradients obtained

from the spike timing information. Detailed information for

this clamping is shown in Table I. Estimated gradients and

gradients obtained numerically match well in Figs. 3–5, which

demonstrate the effectiveness of the proposed algorithm. It is

observed in Fig. 5 that the correlation for w3
i j is comparatively

low. It is found in the simulations that few negative outliers

in Fig. 5 are responsible for this low correlation. The reason

is that the clamping values for all layers in Table I are chosen

symmetrically for convenience, yet the gradients associated

with the last-layer weight are actually nonnegative. In prac-

tice, this nonnegative characteristic can be exploited during

learning.

To evaluate the importance of the parameter WINSTDP,

which is used in (10), simulations are conducted to examine

the results obtained with different window sizes. Fig. 6 shows

the correlations obtained between estimated gradients and

numerical gradients. As shown in Fig. 6, estimating with dif-

ferent window sizes results in similar accuracies. Preliminary

numerical studies on the effect of the window size on learning
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Fig. 7. Correlations between estimated gradients and gradients obtained with
the FD numerical method. The results obtained for all three layers of synaptic

weights (w1
i j

, w2
i j

, and w3
i j

) are compared. Two different backpropagation

methods (layer by layer and direct) are also compared. Different evaluation
durations are used. The longer the evaluation duration is, the more accurate
the estimated gradients.

also show that changing the window size does not yield a

noticeable difference. Therefore, in this paper, we focus on

the case with a window size of one. How the size and shape

of the summation window affect other aspects of learning will

be a future research topic.

Another set of simulations is conducted to study how

the evaluation duration affects the accuracy of the estimated

gradients. As shown in Fig. 7, a general trend is that the longer

the evaluation duration is, the more accurate the estimated gra-

dients. This relationship is coherent with all of the stochastic

approximation method because any possible unbiased noise is

filtered out through averaging.

With gradients estimated through spike timings, a stochastic

gradient descent method can be readily employed for learn-

ing. Following the convention in a standard backpropagation

algorithm, we define an error function as:

E =
1

2

No
∑

k=1

(

eo
k

)2
(19)

where eo
k = xo

k − to
k is the error at each output neuron. Here,

to
k is the target mean firing rate of neuron xo

k .

The weight update �wl
i j can be calculated as

�wl
i j = −α ·

No
∑

k=1

∂ E

∂µo
k

·
∂µo

k

∂wl
i j

= −α ·

No
∑

k=1

eo
k ·

∂µo
k

∂wl
i j

(20)

where α is the learning rate, and the term ∂µo
k/∂wl

i j can be

obtained from (14). Updating weights according to (20) leads

to a reduction in the error function toward the gradient-decent

direction.

It is worthwhile to note that the proposed learning algorithm

can be readily extended to other popular learning schemes,

such as unsupervised learning and reinforcement learning,

when the target is to minimize some forms of cost functions,

even though this paper focuses mainly on supervised learning,

which has achieved great success in real-life applications.

III. LEARNING EXAMPLES

In Section II, we demonstrate that spike timing informa-

tion can be readily employed for estimating the gradient

components needed in gradient descent algorithm. In this

section, we apply the proposed learning algorithm to two

neural networks. The sizes of the neural networks are chosen

according to two examples demonstrated in [35] in such a way

that a direct comparison can be made. The Modified National

Institute of Standards and Technology database (MNIST)

benchmark task [36] is employed to examine the proposed

algorithm. The MNIST data set contains, in total, 70 000

28×28 images of handwritten digits. The number of images in

the training and testing sets are 60 000 and 10 000, respectively.

The data set is categorized into 10 classes, which correspond

to ten integers (0–9), and each image has an associated label.

Unless otherwise stated, for all of the learning examples in

this section, we use a training set that contains the first

500 images from the standard MNIST training set to accelerate

the simulation. For testing, we use all of the 10 000 images

from the standard MNIST testing set. It should be noted that

the results obtained with such an experiment setting are only

for verifying the proposed techniques and exploring the design

spaces. Benchmark performance obtained with the full training

set is reported in Section III-D.

To feed the double-precision real values, which are used to

encode the grayscale images, into the SNN, proper encoding

mechanisms are needed. For SNNs attempting to learn the

exact timing of spikes, temporal encoding is often employed,

such as the single-spike temporal coding [24] and the temporal

population coding [37]. In this paper, we use a pulse-density

modulation scheme, which is a rate-based encoding method.

Real values from the images in the MNIST data set are injected

into the input-layer neurons as incremental membrane poten-

tials at every tick. Combined with the modified LIF model,

this encoding scheme behaves similar to a � − � modulator,

which is capable of converting high-resolution data to low-

resolution bit streams through pulse-density modulation [38].

The firing rates of the input-layer neurons are then proportional

to the intensities of the corresponding pixels. Such an encoding

method leads to a simple implementation in hardware while

achieving the desired rate encoding.

For both neural networks, 10 output neurons, which corre-

spond to 10 digits, are used. The target of learning is that when

a digit is applied to the neural network, the output neuron that

corresponds to the correct digit should fire with a high density

of ρH , whereas all of the other neurons fire with a lower

density of ρL . The firing density is measured through xo
k .

To test the trained neural network, a digit is presented to

the network. After an inference duration of DI , the output

neuron with the highest firing density xo
k is chosen as the

winning neuron, and its corresponding digit is chosen as the

inferred result. All of the results presented in this section are

obtained from 10 independent runs. Error bars that correspond

to the 95% confidence interval are plotted together with the

simulation data.

A. One-Hidden-Layer Neural Network

As most useful feed-forward neural networks have at least

one hidden layer, the first example that we consider is a

one-hidden-layer neural network with 784 input neurons,

300 hidden-layer neurons, and 10 output neurons. Neverthe-
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less, neural networks with only two layers are also useful in

some cases. For example, a two-layer neural network with a

special input encoding similar to the radial basis function has

been demonstrated in our previous work [31]. Because learn-

ing in a two-layer neural network is essentially a subproblem

of learning in a multilayer (more than two) network, we do

not study them in this paper separately. Nevertheless, most

conclusions and techniques developed in this section can be

readily applied to two-layer neural networks as well.

As demonstrated in [31], the gradients estimated from STDP

started saturating and diverging from the actual gradients as the

density of spike trains reaches a certain limit. This saturation

occurs because it is difficult to tell whether a postsynaptic

spike is a causal spike or an anti-causal spike when the

presynaptic spike train is too dense. To tackle this issue,

it was suggested in [31] that a clock that is fast enough to

avoid dense spike trains should be used. This approach is

similar to avoiding the hidden unit in a conventional ANN

to be driven close to 1 or 0, which would otherwise lead to a

significantly slowed learning process. Despite its effectiveness,

this method of manually adjusting weights or the clock fre-

quency is inconvenient. In this paper, we propose to leverage

a biologically inspired refractoriness to achieve the desired

sparsity. More specifically, each neuron has a refractory period

after firing. During the refractory period, it is not allowed to

fire again. By utilizing this technique, dense spike trains can be

avoided. One potential drawback with a fixed refractory period

is that all neurons that are saturated are highly correlated

in their spike timings. To tackle this problem, a random

refractory period technique is proposed. In a discrete-time

implementation, it is convenient to implement according to

the following equation:

x l+1
j [n] =

⎧

⎪

⎨

⎪

⎩

0, V l+1
j [n] < thl+1

j

1, V l+1
j [n] ≥ thl+1

j & x l+1
j [n − 1] = 0

1 − R, V l+1
j [n] ≥ thl+1

j & x l+1
j [n − 1] = 1

(21)

where R is a random variable with a Bernoulli distribution

B[1, pr ]. Here, pr is a design parameter that is used for

controlling the sparsity. A larger pr can lead to sparser spike

trains.

Fig. 8 compares the learning results achieved with dif-

ferent initial weights and pr . Two sets of initial weights

are employed. One set of weights is initialized uniformly

from the interval [0, 2], i.e., wl
i j ∼ U [0, 2], where U [0, 2]

stands for a uniform distribution between 0 and 2. The results

obtained with these initial weights are labeled with “2×”

in Fig. 8. Another set of weights is initialized such that

wl
i j ∼ U [0, 8]. The results obtained with these initial weights

are labeled with “8×” in Fig. 8. For small initial weights

(wl
i j ∼ U [0, 2]), a reasonable learning result can be achieved

even for the case in which pr = 0 because saturation has been

avoided through the proper choice of small initial weights.

This circumstance corresponds to the case in which proper

initial weights are chosen to avoid the hidden layer unit

being driven close to 0 or 1 when training a conventional

ANN. When the initial weights are large (wl
i j ∼ U [0, 8]),

Fig. 8. Comparison of the training and testing correct rates achieved with
different levels of refractoriness and different initial weights. The refractory
mechanism is helpful in avoiding dense spike trains, which can improve the
learning results. Two sets of initial weights are used. One set of weights is
uniformly initialized between 0 and 2 (labeled with 2×), whereas another
set of weights is uniformly initialized between 0 and 8 (labeled with 8×).
Learning performance is severely deteriorated when a deterministic refractory
period (pr = 1) is used, as all saturated neurons have highly correlated spike
timings.

Fig. 9. Comparison of the training and testing correct rates achieved with
the LIF neuron model and the modified LIF model. The results obtained with
the conventional LIF model with white noise residue injection are labeled as
“LIF w/white noise, ” whereas the results obtained with the modified
LIF model is labeled as “LIF w/quantization noise.” Learning with the
conventional LIF model is effective when enough noise is injected.

however, the learning performance is significantly deteriorated

for the pr = 0 case due to the aforementioned detrimental

effect of saturated spike trains. It is noted that learning is not

successful for the case pr = 1 regardless of the selection

of initial weights because neurons that are saturated always

have high correlations in spike timings. Due to the proposed

stochastic refractory period technique, good learning results

are achieved when a proper pr is employed. It should be

mentioned that even though the initial weights are generated

from positive uniform distributions in our learning examples,

other initializations, such as negative weights and a normal

distribution, can be used as well.

To study the effectiveness of the proposed learning algo-

rithm applied to a conventional integrate-and-fire neuron

model, simulations are conducted for different levels of noise

injection, as shown in Fig. 9. Noise is injected into the neuron

model as noisy residues. In other words, a random residue is

added to the membrane voltage after each spike. The injected
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Fig. 10. Comparison of the training and testing correct rates achieved
with different initial conditions. The case with pseudorandom initial mem-
brane voltages outperforms the cases with fixed initial membrane voltages.
A pseudorandom leakage technique is also employed to further improve the
learning performance.

noise is uniformly distributed with the range from zero to a

percentage of the threshold value of that neuron. For example,

the 50% white noise in Fig. 9 means that the noise injected into

the neuron obeys a distribution, U [0, 0.5 × thl
i ]. The results

obtained with the modified integrate-and-fire model that are

described in (17) and (18) are also shown for comparison.

The corresponding results are labeled as “LIF w/ quantization

noise.” As the amount of injected noise increases, the learning

is more effective. This result is expected because the proposed

algorithm relies on the assumption that the spike timings of

unconnected neurons should stay relatively uncorrelated. The

conventional LIF model with noise injection can achieve a

reasonably low correlation, yet random number generators are

required for this purpose. On the other hand, the modified

LIF model can decorrelate spike timings without explicitly

injecting noise.

Another design consideration in our proposed learning

algorithm is the initial condition of the neuron. In many

applications, we need to reset neurons to certain states for each

new input. Therefore, a proper initial condition needs to be set

up. We propose to use a pseudorandom initial condition such

that the initial membrane voltage of a neuron obeys a uniform

distribution, e.g., x l
i [0] ∼ U [0, thl

i ]. The reason to choose such

an initial condition is that the membrane voltages of an SNN

in a steady state approximately follow a uniform distribution.

Therefore, a warm start can be achieved by setting the initial

condition as a uniformly distributed random variable. The

results obtained with such a pseudorandom initial condition

are compared with the fixed initial conditions in Fig. 10.

As shown in Fig. 10, even though any initial condition can

feature effective learning, the proposed pseudorandom initial

condition achieves the best performance. The main reason

that the random initial conditions outperform others is that

such an initial condition helps to achieve lower correlations

among the input spikes. For the MNIST data set, many pixels

that correspond to strokes have values equal to one. This

circumstance leads to highly correlated input spikes even

when the modified LIF neuron model is used. By setting the

initial condition differently, the correlations can be somewhat

lowered.

Fig. 11. Comparison of the testing correct rates achieved with different learn-
ing and inference durations. The longer the learning or inference duration is,
the higher the correct rate.

With the same spirit, a pseudorandom leakage is also

added at the input layer to further decorrelate the spike

timings caused by the saturated intensities. The leakage for

each neuron is assigned randomly beforehand and is fixed

for the whole learning process. At each tick, the leakage

is subtracted from the membrane voltage according to the

neuron dynamics shown in (18). From another perspective,

the pseudorandom leakage is helpful in breaking the possible

symmetry that exists in the input data. Many input pixels

from the MNIST data set have the value of one. Through

introducing the random leakage, we can break this symmetry

in the data. The symmetry-breaking technique has been widely

used by many machine learning researchers for weight ini-

tialization [33] and asymmetric connections in convolutional

neural networks (CNNs) [35]. The results obtained with this

technique are also compared in Fig. 10. The advantage of

pseudorandom initial conditions and leakage for neurons is

that no pseudorandom/true-random number generators are

actually needed in the hardware implementation. The values

can be conveniently stored in an on-chip static random access

memory array or can be hardcoded in the logic.

In Section II, it is shown that a longer learning duration

yields more accurate estimated gradients. Therefore, it is

expected that the learning performance can be improved

through lengthening the learning duration. To investigate the

effect of the learning duration on the learning performance,

simulations are conducted, and the obtained results are com-

pared in Fig. 11. In Fig. 11, five different learning durations

are used: 32, 64, 128, 256, and 512. Five different infer-

ence durations are also used to evaluate the learned weights.

A general trend shown in Fig. 11 is that increasing either

the learning or inference duration helps in improving the

recognition accuracy. For both the learning and inference dura-

tion, saturations occur at approximately 256, beyond which

the improvement is marginal. Despite the fact that the best

learning results are achieved when the learning duration is

long, learning with a short duration also yields impressive

results. This finding arises because stochastic gradient descent

learning is quite robust against noise as long as it is not

biased. Furthermore, it has been demonstrated recently that a

noisy gradient is actually beneficial in learning, especially for
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Fig. 12. Comparison of the testing correct rates achieved with the two
different backpropagation schemes. The two methods achieve similar perfor-
mances. The two-hidden-layer neural network can yield better performance,
but it requires a longer learning duration.

a very deep neural network [39]. Therefore, a recommendation

is to utilize a small learning duration at the beginning of

the learning to speed up the learning process as well as to

reduce the power consumption. The learning duration should

be gradually lengthened to obtain more and more accurate

gradients.

B. Two-Hidden-Layer Neural Network

The second example is a two-hidden-layer neural network

with 784 neurons in the input layer, 300 neurons in the first

hidden layer, 100 neurons in the second hidden layer, and

10 neurons in the output layer.

Because many conclusions that we draw for the one-

hidden-layer neural network also apply to the two-hidden-

layer neural network, we focus mainly on investigating how

different methods of propagating the errors affect the learning

performances. Simulations are conducted for the two different

backpropagation methods discussed in Section II: the standard

layer-by-layer backpropagation and the direct backpropaga-

tion. As shown in Fig. 12, similar performances are achieved

by two backpropagation methods, which agree with the results

shown in Figs. 6 and 7. For comparison purposes, we also

plot the results obtained with a one-hidden-layer network

in Fig. 12. The recognition rates achieved with the two-

hidden-layer network are higher when a learning duration of

a moderate length is used (specifically, DL ≥ 256 in Fig. 12).

In addition, the two-hidden-layer neural network requires

a longer learning duration to achieve a satisfactory result

compared to its one-hidden-layer counterpart. This finding is

consistent with the observation in ANNs that a deeper network

tends to yield better results, yet it is harder and slower to train.

Even though the conventional layer-by-layer backpropaga-

tion can always be used along with our proposed algorithm,

the unique direct backpropagation method can be helpful

when the number of output-layer neurons is much smaller

than the number of hidden-layer neurons, thereby providing

more design freedom. For the lth layer in the network,

Nl Nl+1 multiply-accumulate (MAC) operations are needed

for a layer-by-layer backpropagation, whereas only Nl No

MAC operations are needed for a direct backpropagation.

A significant savings in the number of MAC operations can

be achieved when No � Nl . We do pay the price of spending

more memory to store the STDP information across multiple

layers. Therefore, we trade more memory space for fewer

computations. The memory requirement for storing cstdpl
j k

is No ·
∑o−1

i=1 Ni . Fortunately, this memory requirement does

not scale as badly as the synaptic weights memory, which

is on the order of O(N2), where N is the average number

of neurons for each layer. For the neural networks that are

employed in most applications, the output layer has far fewer

neurons compared to the preceding layers. Indeed, a function

of a deep neural network is to extract useful information

from a high-dimensional input, layer by layer. Therefore, the

number of output neurons in a typical neural network is on the

order of O(1). Consequently, the memory requirement for this

type of error backpropagation is approximately on the order

of O(N).

C. Inference With a Progressive Precision

The results in the previous sections are obtained with

inference methods that are mapped directly from those used

in a conventional ANN, for simplicity. In other words, we

wait until the output of the neural network converges to the

steady-state result, and then, we read out the results. An SNN,

however, provides new opportunities for more rapid estimation

of the results. For example, if we train the neural network such

that the output neuron that corresponds to the correct digit fires

with a firing density of ρH , and other output neurons fire with

a density of ρL . Then, we have a noise margin of ρH − ρL

such that a correct inference can still be achieved as long as

the noise or any disturbance is less than this margin. Similar

to the signal outputted by a � − � modulator, output signals

from neurons are buried in high-frequency quantization noise.

Counting the number of spikes is essentially filtering the high-

frequency noise. A longer inference duration can lead to less

quantization noise, and consequently, a more reliable result.

This finding is similar to the well-known progressive precision

in the stochastic computation [40].

Suppose that we apply an image to a well-trained network.

When the image is simple (in the sense that it is easy to

be recognized), one output neuron in the well-trained neural

network, which corresponds to the digit presented, should

spike with a firing density of ρH , and all of the other output

neurons should fire with a density ρL . In this case, the signal

strength is strong, and we do not have to wait until the

quantization noise is removed. On the other hand, when the

input image is complex (in the sense that it is difficult to

recognize), then more than one output neuron may have high

spike densities, which indicates that it could be one of these

digits. In this case, the quantization noise might severely

deteriorate the recognition accuracy, and thus, one should wait

longer to filter out the high-frequency quantization noise. This

process is similar to how humans accomplish recognition.

When the classification problem is easy, the response time

is short, whereas a longer time is needed when the pattern is

complicated.
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Fig. 13. Recognition accuracies on the testing set for different levels of
reduced margin. Only a slight degradation in the correct rate is observed as
the margin reduces. The results are obtained with the one-hidden-layer neural
network.

Fig. 14. Comparison of the effective inference durations needed for
classifications. The number of ticks that is needed to complete one inference
decreases significantly as the margin reduces. The results are obtained with
the one-hidden-layer neural network.

Figs. 13 and 14 show the testing correct rate and effective

inference durations that are needed to complete one classifi-

cation. A trained one-hidden-layer neural network is used for

illustration. At each tick, the density outputted from each of

the output neurons is computed. If the density of one neuron

is larger than ρH − M/2, and the densities from all of the

other neurons are less than ρL + M/2, then the inference is

considered to be completed, and the output neuron with the

largest spike density is chosen as the answer, where M is

the reduced margin. Otherwise, the inference continues until a

maximum allowed inference duration is reached. The effective

inference duration in Figs. 13 and 14 is obtained by averaging

the inference durations in 10 000 testing cases. As shown in

the figure, as the margin reduces, the length of the effective

inference duration is significantly shortened. The classification

accuracy, however, does not start dropping until the reduced

margin reaches 0.3, where the quantization noise starts having

a noticeable effect on the testing results. It should be noted

that there exist some testing cases where the neural network

is not able to give a confident answer regardless of how long

the inference duration is. For these testing cases, the results

are always produced when the maximum allowed inference

duration is reached. Therefore, a trend is that the longer

Fig. 15. Recognition accuracies on the testing set with the first-to-spike-
K-spikes readout. The digit corresponding to the output neuron that first emits
K spikes is readout. The black curve and the blue curve show the recognition
correct rates and the average inference durations with different values of K .
The results are obtained with the one-hidden-layer neural network.

the maximum inference duration is, the longer the effective

inference duration.

Another way to demonstrate the inference with a progressive

precision is shown in Fig. 15. The first output neuron that

generates K spikes is determined to be the winning neuron,

and the corresponding digit is read out as the inferred result.

The recognition rates on the testing set images are shown

in Fig.15 for different values of K . The number of ticks needed

before an inference can be obtained is also recorded. As shown

in Fig. 15, an accuracy as high as 89% can be achieved with

an effective inference duration of only 5.6 ticks. The accuracy

enhances rapidly when K increases. The growth in accuracy

starts saturating when K reaches 10 in Fig. 15.

D. MNIST Benchmark

To demonstrate the effectiveness of the proposed learning

algorithm, the standard MNIST benchmark is employed. Here,

60 000 training data are used for training a one-hidden-layer

neural network and a two-hidden-layer neural network. The

trained networks are examined with the testing set, which

includes 10 000 digits. No preprocessing technique is used

for a fair comparison. The obtained testing results for these

two networks are compared with the results in the literature

in Table II. Classification accuracies of 97.2% and 97.8%

are achieved by the two neural networks, respectively. The

proposed learning algorithm can achieve better classification

correct rates compared to ANNs with the same configurations

that are trained with sophisticated algorithms. Compared to

the state-of-the-art result 98.6% in [15], our result is only

slightly worse, especially considering that the size of our

neural network is 9 times smaller than the network used in [15]

in terms of the number of synapses. Moreover, different from

the ANN-to-SNN conversion method employed in [15], our

proposed learning algorithm can conduct an online learning

directly on hardware SNNs, which is an expected feature in

many energy-stringent applications.

In Table II, unsupervised learning in [18] and [13] and the

contrast divergence learning in [16] are similar to clustering.

Other decision logics in addition to the neural network are

needed to perform the classification. Moreover, it is not
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TABLE II

COMPARISON OF THE CLASSIFICATION ACCURACIES FOR THE MNIST BENCHMARK TASK

obvious how these learning algorithms can be used to train

a universal function approximator that can be employed in

various applications, e.g., reinforcement learning.

IV. CONSIDERATIONS FOR HARDWARE IMPLEMENTATION

In this section, we consider how the proposed learning

algorithm can fit into various hardware implementations.

Discussions on trade-offs and design considerations are also

briefly presented. There are two popular hardware architec-

tures for neuromorphic computing. One architecture is what

we call a centralized memory architecture. An example of

this type of system is shown in Fig. 16. This architecture is

closely related to the conventional von Neumann architecture.

Synaptic weights are stored in a memory array, and they can be

accessed through buses. Another architecture, the distributed

memory architecture, is more related to biological neural

networks. Memory cells, in this case, are distributed along with

processing units. This architecture is very popular in recent

years due to many emerging memory technologies, such as

memristor and phase-change memory.

Ways in which the proposed learning algorithm can be

applied could be different for these two architectures, as shown

in the following equations:

�W l
i j = −α · el+1

j ·
stdpl

i j

wl
i j

(

1 − x l
i

)

(22)

�W l
i j =

∑

n

⎛

⎝

−α · el+1
j · stdpl

i j [n]

wl
i j

(

1 − x l
i

)

(DL − T )

⎞

⎠ (23)

Fig. 16. Illustration of an example of the centralized memory architecture.
Weights and STDP information are stored in a centralized memory, and they
can be visited through buses.

where �W l
i j is the total weight change in one learning

iteration, and el+1
j =

∑No

k=1 eo
k · (∂µo

k/∂µl+1
j ) is the back-

propagated error at neuron x l+1
j .

In (22), the STDP information is accumulated over one

iteration, and then, the weight change for that iteration is

calculated. It is desirable to minimize the number of weight

memory accesses in a centralized memory architecture because
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Fig. 17. Example of the timing diagram of the proposed learning algorithm
employed in a centralized memory system.

the access of memory is a relatively expensive operation.

Therefore, (22) can be used for weight updating in this

case. On the other hand, in (23), the weight updating occurs

whenever there is an STDP event. The summation of the

weight change in one iteration occurs in the weight memory

itself. Consequently, there is no need to store STDP infor-

mation separately. Writing memory in a distributed memory

system can be conducted easily with the help of auxiliary

circuits associated with neurons while the system is operating.

Therefore, (23) is more suitable for a distributed memory

system. It should be noted that the above recommendations are

not absolute. It is possible to use (22) in a distributed memory

system and (23) in a centralized memory system, depending

on the actual need.

The main focus of this paper is on the learning algorithm

itself rather than its hardware implementation. Detailed hard-

ware implementation is a future research direction. Therefore,

only a brief discussion on how the proposed learning algorithm

can be employed in a hardware realization is presented in this

section.

A. Centralized Memory Architecture

Fig. 16 shows a generic diagram of a centralized memory

architecture. This architecture is very popular in CMOS imple-

mentations [2], [44], [45]. In Fig. 16, neurons with dedicated

computational resources are used for illustration because this

configuration applies to both analog neurons [44], [45] and

digital neurons [2]. Nevertheless, the discussions presented

here also apply to virtual, time-multiplexed neurons, where

the computational resources are shared among neurons.

Fig. 17 shows a typical timing diagram of operations and

resource usages for the proposed learning algorithm. During

the learning phase, feed-forward computations are first con-

ducted. Spike timing information is generated and stored in

the STDP memory. In the backpropagation phase, errors at the

output neurons are propagated back to each synapse, and the

weights are updated according to (22). During an inference

phase, STDP memory is not used, and it can be power gated

to save energy.

In the proposed learning algorithm, an array of memory is

required to store the spike timing information. In the worst

case, the spike timing information that is associated with each

synapse needs to be stored. Fortunately, the number of bits

that is needed to represent the STDP information is much

less than the number needed for the synaptic weights. For

example, in a fixed-point implementation, even though only

Fig. 18. Percentage of the active (nonzero) STDP information stdpl
i j

and cross-layer STDP information cstdpl
i j

for the synapses in different

layers. The results are normalized to the number of synaptic weights in the
corresponding layer.

a few bits are necessary for inference, more than 20 bits are

usually needed to represent the weights for successful learning.

The reason is that the weight changes are typically controlled

to be 10−3 of the weights [33], and the ratio between the

maximum and minimum weight in a learning task, such as the

MNIST benchmark task that we consider, is normally a thou-

sand. On the other hand, at most �log2(2DL · WINSTDP + 1)	

bits are needed to store the spike timing information. The

actual memory requirement, however, is much less than this

upper bound, considering the sparseness of spikes. It is found

through simulations that only 5 bits are required to represent

the STDP information for the case of WINSTDP = 1 and

D = 128.

Furthermore, in contrast to synaptic weights that must be

stored as “static” information in the memory even for inactive

synapses, only the STDP information that is associated with

recently active synapses is stored. This type of “dynamic”

information storage can be leveraged to reduce the memory

requirement and help improve the memory access latency.

To illustrate this aspect, Fig. 18 shows the percentage of active

(nonzero) STDP field in the memory for the synapses in each

layer. Handwritten digits from the MNIST database are used as

the input. It is shown in Fig. 18 that only approximately 15%

of the synapses in the first layer are active. This finding occurs

because only a few input neurons that are associated with

strokes of a handwritten digit are active. For deeper layers, the

percentage of active synapses is higher, yet there still exists

some sparsity. Furthermore, in our implementation, we do not

impose any sparsity regulation. In some applications, however,

learning with a sparsity requirement is needed. In that case,

the overall activity of the synapses can be further reduced.

This sparsity in the spike timing information can be leveraged

in a memory hierarchy to reduce the memory requirement

significantly.

B. Distributed Memory Architecture

An example of the distributed memory architecture is shown

in Fig. 19. Memristors are used in Fig. 19 for demonstration.

Nevertheless, discussions in this section also apply to many
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Fig. 19. Example of the distributed memory-based neuromorphic system.
A crossbar structure consists of memristors is used for demonstration.

Fig. 20. Illustration of a memristor-based synapse sandwiched by two
neurons. The STDP protocol can be implemented by either the neuron
circuitry or the device itself.

other emerging memory technologies. In Fig. 19, a cross-

bar architecture is employed. Triangles in Fig. 19 represent

neurons, and the memristor at each cross point represents a

synapse that connects two neurons. When a neuron decides

to spike, a voltage pulse is emitted by the neuron. The

voltage potential across the memristors induces current flowing

between the presynaptic neuron and the postsynaptic neuron.

The magnitude of the current is determined by the conductance

of the memristor. The currents flowing to the same postsynap-

tic neuron are summed up and accumulated on the capacitor

associated with the neuron.

In a distributed memory architecture, the updating of the

weights can occur when the SNN is operating. The error is

back propagated to each neuron, and the weight update is then

conducted according to (23). This arrangement is illustrated

in Fig. 20. Here, (23) is essentially a scaled version of STDP

divided by the weight. Let us ignore the denominator for

now. There are various methods discussed in the literature that

involve implementing neurons with STDP [11], [14]. In addi-

tion, there are also memristors that possess such a property on

Fig. 21. Comparison of the classification accuracies for different levels of
quantization in the weight denominator. Impressive results can be achieved
even with a one-bit precision.

their own [8], [10]. Multiplying the error and learning rate can

be easily achieved through controlling the pulsewidth or signal

strength. In addition, stochastic multiplication is a candidate

for this purpose.

Another matter needs to be addressed is the denominator

shown in (23). The term (1 − x l
i ) can be neglected when the

firing rate of the neuron is low, and the constant term (DL −T )

can be absorbed into the learning rate. It is not obvious how

the division by the weight operation can be included in the

memristance update. Fortunately, it has been shown in [31]

that learning is still possible without accurately accounting

for this denominator. This finding is due to the well-known

robustness of the stochastic gradient descent method against

noisy gradients. To illustrate this aspect, Fig. 21 compares

the learning results that are obtained with different levels of

precision in the denominator. The denominator is quantized

into different numbers of bits to show how the inaccuracy

of this division affects the learning performance. The weight

in the denominator is quantized according to the following

equation:

wl
i j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

· · ·

wq1, wq1 ≤ wl
i j < wq2

wq0, 0 ≤ wl
i j < wq1

−wq0, −wq1 ≤ wl
i j < 0

−wq1, −wq2 ≤ wl
i j < −wq1

· · ·

(24)

where wq0, wq1, and so on are manually chosen constants that

are used to partition the quantization intervals.

As shown in Fig. 21, impressive learning results can even be

achieved with only a one-bit precision. In other words, only the

sign information is preserved. This one-bit-precision division

can be easily implemented with memristors. More specifically,

an STDP rule is used for the excitatory synapses, whereas

an anti-STDP rule is used for the inhibitory synapses. It is

worthwhile to note that a memristor device cannot represent

a negative weight by its nature. However, we can utilize a

combination of two memristor devices to form a synapse

that can be programmed to be either excitatory or inhibitory.
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In addition, to feature better learning, a more accurate weight

division can be explored. This goal can be achieved at both

the circuit level and the device level.

V. CONCLUSION

In this paper, we formulate an online learning algorithm for

multilayer SNNs. The proposed learning method can estimate

the gradient components with the help of the spike timings

in an SNN. The readily available gradient information is then

exploited in stochastic gradient descent learning. How the error

can be propagated back to each layer is studied. A direct

backpropagation is proposed in addition to the conventional

layer-by-layer approach. The newly proposed algorithm is

employed in two neural networks for the purposes of demon-

stration. To feature more effective learning, techniques such as

random refractory period and pseudorandom initial conditions

are proposed. Furthermore, the progressive precision provided

by a trained SNN is leveraged to accelerate the inference

process. Extensive parametric studies are conducted to verify

the proposed techniques as well as to examine many aspects

of the proposed learning rules. To further demonstrate the

effectiveness of the proposed algorithm, the MNIST bench-

mark test is conducted. Recognition accuracies of 97.2% and

97.8% are achieved with the neural networks trained by the

proposed algorithm. Last, how the proposed learning rules can

be implemented in hardware is discussed, and several trade-

offs are identified. Detailed implementation of the proposed

algorithm in hardware will be a future research direction.
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