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Abstract—In this paper, we propose an online learning
algorithm for supervised learning in multilayer spiking neural
networks (SNNs). It is found that the spike timings of neurons
in an SNN can be exploited to estimate the gradients that are
associated with each synapse. With the proposed method of
estimating gradients, learning similar to the stochastic gradient
descent process employed in a conventional artificial neural
network (ANN) can be achieved. In addition to the conventional
layer-by-layer backpropagation, a one-pass direct backpropaga-
tion is possible using the proposed learning algorithm. Two neural
networks, with one and two hidden layers, are employed as exam-
ples to demonstrate the effectiveness of the proposed learning
algorithms. Several techniques for more effective learning are
discussed, including utilizing a random refractory period to avoid
saturation of spikes, employing a quantization noise injection
technique and pseudorandom initial conditions to decorrelate
spike timings, in addition to leveraging the progressive precision
in an SNN to reduce the inference latency and energy. Extensive
parametric simulations are conducted to examine the aforemen-
tioned techniques. The learning algorithm is developed with the
considerations of ease of hardware implementation and relative
compatibility with the classic ANN-based learning. Therefore, the
proposed algorithm not only enjoys the high energy efficiency and
good scalability of an SNN in its specialized hardware but also
benefits from the well-developed theory and techniques of con-
ventional ANN-based learning. The Modified National Institute of
Standards and Technology database benchmark test is conducted
to verify the newly proposed learning algorithm. Classification
correct rates of 97.2% and 97.8% are achieved for the one-
hidden-layer and two-hidden-layer neural networks, respectively.
Moreover, a brief discussion of the hardware implementations is
presented for two mainstream architectures.

Index Terms— Hardware neural network, machine learning,
Modified National Institute of Standards and Technology data-
base (MNIST) benchmark, neuromorphic computing, spike-
timing-dependent plasticity (STDP), spiking neural network
(SNN), supervised learning.

I. INTRODUCTION

O VER the past decade, an enormous amount of research
effort has been made to build specialized neuromorphic
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computing hardware for real-life applications, while the devel-
opment of the conventional von Neumann architecture-based
computing approach has slowed down because of the looming
end of Moore’s law. In recent years, research focus has
shifted from traditional rate-based artificial neural networks
(ANNSs), which were popular choices of hardware implemen-
tations in the 1990s, to the third-generation spiking neural
networks (SNNs). This trend is attributed to two unique
advantages that SNNs have. The event-triggered nature of
an SNN can lead to a very power-efficient computation.
It has been shown that a customized SNN hardware is two
orders of magnitude more energy efficient than the traditional
ANN implemented on a field-programmable gate array [1].
In addition, an SNN has better scalability because an address
event representation (AER) can conveniently interconnect sub-
SNNs in a large network [2]-[4]. For example, TrueNorth
from IBM [2] is a hardware SNN that contains 1 million
spiking neurons. It consists of 4096 cores and consumes
merely 65 mW while running a real-time multiobject detection
and classification task. Unfortunately, SNNs implemented on
a general-purpose processor are not able to demonstrate supe-
riority compared to ANNs due to the lack of support of event-
based computation in the processor. Therefore, to better exploit
the aforementioned advantages of an SNN, many specialized
hardware systems have been built, such as the TrueNorth from
IBM [2], CAVIAR in Europe [5], and neuromorphic chips
from HRL Laboratories [6]. In addition to the conventional
CMOS technology, emerging nanotechnology also helps to
accelerate the development of the next-generation neuromor-
phic computing hardware. Since it was first demonstrated
in 2008 [7], the memristor has emerged as a popular choice
for building neuromorphic hardware because it satisfies all
of the requirements of being a synapse. Many studies have
been conducted with the attempt to incorporate memristors
into a neuromorphic system, including building synapses for
both SNNs [8]-[11] and ANNs [12] and developing functional
neuromorphic systems with memristors [13], [14]

Even though many SNN hardware implementations have
been demonstrated over the past few years, many of them
do not have the capability to conduct on-chip learning. One
popular way to utilize the SNN hardware is to train a con-
ventional ANN counterpart offline using conventional learning
algorithms and then convert it into an SNN and download the
learned weights into the specialized hardware [1], [15]-[17].
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One drawback of this method is the performance degradation
that is associated with the conversion from ANNs to SNNs.
In addition, online learning with low power consumption is an
expected feature for specialized neuromorphic hardware to be
deployed in the future smart Internet of Things devices, yet it
is not feasible to conduct online learning using this method.

Over the past few decades, there were many efforts from
both the computational intelligence community and the neuro-
science community to develop learning algorithms for SNNs.
Spike-timing-dependent plasticity (STDP), which was first
observed in real biological experiments, was proposed as an
empirically successful learning rule that could be used for
unsupervised learning [13], [18]-[20]. In a typical STDP
protocol, the synaptic weight updates according to the relative
order of spikes and the difference between the presynaptic and
postsynaptic spike timings. Unsupervised learning is useful in
discovering the underlying structure of the data, yet it is not as
powerful as supervised learning in many real-life applications,
at least at the current stage. There also exist various algorithms
for supervised learning in SNNs, such as SpikeProp [21],
ReSuMe [22], tempotron learning rule [23]-[25], and precise-
spike-driven (PSD) rule [26], [27]. SpikeProp is one of the
earliest proposed methods for supervised learning in SNN,
and it is analogous to the backpropagation employed in
conventional ANNs. The tempotron rule relies on a more
biologically plausible mechanism. Both of these methods are
based on a gradient descent method, and they both limit each
neuron in the SNN to fire only once, making them well
suitable for classification applications where the output is a
one-hot code. However, it is not convenient to employ such
a learning algorithm for a softmax classifier or a universal
function approximator. ReSuMe and the PSD rule both orig-
inate from the Widrow—Hoff rule. They have the advantage
that they can learn precise spatiotemporal patterns of desired
spikes, which makes them attractive for systems in which
the information is mainly modulated on the timings of the
spikes. Another advantage is that these two learning rules are
applicable to many different neuron models. However, how to
apply these learning rules to a multilayer neural network is
not obvious. This limitation impedes these algorithms from
being employed in a deep neural network, which has achieved
many astonishing results recently [28]-[30]. In addition, all of
these learning rules aim at learning precise firing timings of
neurons. It is, however, still debatable what the best way is
to encode information using spikes. Therefore, learning exact
spike timing might not be the optimum and the most efficient
method for many real-life applications.

In this paper, we take a different approach. We do not
attempt to learn the precise spike timings of neurons. Rather,
learning rules that aim to achieve desired firing densities are
developed. Nevertheless, the spike timings of neurons are
employed to estimate the gradient components in the learning
process. It is found that a term that resembles the quantity used
in an STDP protocol can be exploited to estimate the gradients.
Furthermore, how to propagate the errors from the output
neurons to each synapse is studied; this process leads to a
learning process that is similar to a conventional backpropaga-
tion. The gradients estimated from spike timings are exploited

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

to conduct gradient descent learning. By developing such a
learning rule, we can take advantage of the power efficiency
and scalability of a specialized SNN hardware. In addition,
the developed learning algorithm stays relatively compatible
with the learning in a conventional ANN. Therefore, many
theories and techniques developed for the well-established
ANN-based learning, such as momentum and mini-batch, can
be applied to the proposed learning algorithm. Despite the
similarities, many unique features associated with the proposed
learning algorithm provide new opportunities. For example, in
contrast to the layer-by-layer backpropagation in a conven-
tional ANN, a direct backpropagation in SNN is possible by
properly utilizing the spike timings of neurons, thus reducing
the computational effort and improving the backpropagation
speed. Another example is that the trained SNN can infer with
progressive precision, thus accelerating the inference process
and reducing the energy consumption of the SNN hardware.

In the following, we introduce the method of estimating
gradients and conducting supervised learning using a weight-
dependent STDP term in Section II. Two examples of neural
networks are presented in Section III, which are used to
examine various aspects of the proposed learning algorithm.
In Section IV, we discuss how the newly proposed algorithm
can fit into two popular hardware architectures in neuromor-
phic computing. Conclusions are drawn in Section V.

II. STDP AS A MEASURE OF THE GRADIENT

We use the following notations throughout this paper.

1) A deterministic discrete-time signal is denoted by
a lowercase symbol and is indexed by n, for
example, x[n].

2) A discrete-time stochastic process is denoted with
an uppercase symbol and is indexed by n, for
example, X[n].

3) Pr(-) and E[-] are used to represent the probability and
expectation, respectively.

4) The expectation of a random variable is denoted by g,
and the arithmetic average of signal x[n] over a finite
duration is denoted by Xx.

5) A column vector is denoted by a bold symbol such as x,
and its elements are denoted by x;, where i = 1,2, ---.

6) The differentiation of a function f with respect to
a vector is an element-wise operation. For example,
of Jox = [of Jox1, of [oxa, -+ -1T.

A generic diagram of a multilayer neural network is shown
in Fig. 1. In Fig. 1, a neuron that is located at the /th layer
is denoted as xf , where i represents the index of that neuron.
There are, in total, N; such neurons in the /th layer. For a pair
of neurons, a presynaptic neuron xf and a postsynaptic neuron

x§+1, their output spike trains are denoted as

xlinl=> o[n—nl,] (1)
xj.“[n] = > dn— n’].f,}l )

where J[n] is the unit sample sequence, m is the index for
spikes, and nfm and nl]+nll are spike timings for the mth spikes

1+1

from neuron xf and neuron x i respectively. Since our
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Fig. 1. Illustration of a multilayer neural network. A neuron located at the
[th layer is denoted as xf, where i represents the index of that neuron.

<—T>

k t

Fig. 2. Illustration of two regions divided by the spike timing of a presynaptic
neuron. The causal and anti-causal regions are defined according the causal
relationship between presynaptic and postsynaptic spikes.

primary interests are in training hardware-based SNNs, we
restrict ourselves to discrete-time systems and the usage of
a constant excitatory postsynaptic potential. This way of
representing spikes is very popular in the hardware realization
of SNNs, considering its ease of implementation and routing.

It was shown in [31] that a presynaptic spike partitions the
time axis into two regions: a causal region and an anti-causal
region, as shown in Fig. 2. With such a partition, let us define
a time sequence and its sample mean as

stdpl;[n) = x![n — T)(1 = x![n — T — 1))

x (xj.“[n] - xj.“[n — 1)) (3)
Dy,
stdpl; = " stdpj;[n]/(DL —T) (4)
n=T+1

where T is the time delay associated with the neuron model
used, and Dy is the learning duration, which serves as a design
parameter. The quantity stdpﬁ ; [n] measures the causality
between the presynaptic and postsynaptic spikes, which is
similar to the quantity measured in an STDP protocol. It is
demonstrated shortly that this quantity estimates how the
postsynaptic neuron changes its behavior when a presynaptic
spike occurs.
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We consider a class of stochastic neuron model with the
dynamics of

N
Xi.“[n] =H (> wXin—T]+ Sj.“[n -71). 3

i=1

For analysis purposes, we treat spikes as stochastic processes.
The spike trains xf [#] and xﬁ“[n] shown in (1) and (2) are
particular realizations of Xf [7] and X?'l [n]in (5). H(:) is the

Heaviside function. Sﬂ“[n] is a random process that models

the internal state of neuron x'™!. It could be, for example,

the membrane voltage of an integrate-and-fire neuron. The
detailed role and implications of S;H [n] are discussed shortly.
We are interested in finding out how the mean firing rate of

neuron x:*! is related to the mean firing rate of its input

neuron x;. Before embarking on deriving this relationship, let
us assume that the following two conditions hold.

Cl) Xf.[n] and X,l{[n] are independent for k = 1,2, ..., Nj,
and k#i.

C2) X f [n] and X?'l [n] are strictly stationary processes, and
CXf,X];+l (n,m) =0 forn #m — T, where Cyx y(-) stands for
the cross-covariance function.

We first show that under conditions C1) and C2), the mean

firing rate of neuron xl.+1, ie., /11+1, is a function of the

J
mean firing rates of its input spikes, u!, or mathematically,

,qu+1 = g(u)). In addition, we show that g(-) is differentiable

with respect to u!, and its mth derivative ag™ jou! = 0 for
m > 1. Here, 0 denotes a zero vector in which all elements
are zero. Note that the time index n is dropped for the sake
of cleaner notation because we consider strictly stationary
processes.

I+1

The mean firing rate of neuron x ; can be expressed as

/ulj+1 — PI'(X$»+1 — 1)

1 1
- Z z Pr(Xi.“
bh=0

[
by, =0

[ [ 1
=1|X] =by,..., XYy,

N
— bl [ Pe(x! = &)
i=1

1
C 0 Pr(x =X = b, X,
bly, =0
N
=by) [T[wi@0; =) =bj+ 1]} =s)  ©

i=1

|
M_

S
Il
o

where bl1 is a binary auxiliary variable for the convenience of
derivation. In (6), we have used the assumption that X f and X,l(
are independent for i # k. In addition, the effect of sl
on X'*! is implicitly included in the probability Pr(X*" =
11X ll = bl1 s X i\,[ = bi\,[). Qualitatively, when the mean of
S§+1 increases, the neuron tends to fire more frequently. This
relationship translates directly to a larger Pr(Xi,+1 =11x! =

bll, e Xi\,[ = bi\,[). It can be shown that the first derivative
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of g(uh) with respect to ,uﬁ is
og
6/15

Z Z Pr XZH =1|xi=nl,...,

pi=0 bl , =0

Xy =i,

ﬁ [ (26 — 1)

k=1
ki

—b+1]| (el -1)|. D

Clearly, og™" /6 ,uﬁ is not a function of ,uﬁ, which implies that
og™ jop! = 0 for m > 1.

We then show that stdpf j defined in (4) is an unbiased
I+1

estimator of the term (G,u /G,uﬁ),uﬁ(l — ,uﬁ). According to
the law of large numbers, We have
E[stdpl;] = Pr(X} =1, X! = 1,x!' = 0)
I+1 1 r
—Pr(X;" =1,X;=0,X; =1)
= [Pr(X" = 11X} =1

—Pr(Xi = 11X] = 0)]ui(1 — 1) ®)

In(8), X f denotes the random variable on which X 5“ depends,
whereas Xf’ denotes the random variable of which Xi.“ is
independent. From (8), through expanding g(u!) in a Taylor
series and using the fact that 9g" /o' = 0 for m > 1, we
have

E[stdpﬁj]
wi (1= wp)
- Pr(xl.+1 = 11X} = 1) = Pr(x"*' = 1]X] = 0)
= g(n! +(1— Dup) — g (n' = piw))
og og
= = (1= =g — == (- pul) ==
g(m )+a#,( D) —g(n) auf( #4) P
alul+1
= ©)
6,ui

where ug is an N;-D unit vector in which all elements are zero
except that the ith element is one. In (9), we have used the
assumption that X f and X,l( are independent for i # k.

The derivation of (9) is based on assumption C1) and C2).
We then examine the validity of (9) qualitatively when
C1) and C2) do not hold rigorously. C1) assumes that the
spike timings for different input neurons are independent.
Even though the density of each neuron might be highly
correlated, the spike timing of an individual neuron can be
largely independent. The mild assumption that the spike timing
of each neuron is somewhat uncorrelated holds for most SNNs.
C2) implies that S;H [n] is also strictly stationary and that it
should be independent of Xf and Xé.H. Rigorously, S;H [7]
depends on all Xf[m] in which m < n — T for any neuron
model with a memory, such as the popular LIF model. In prac-
tice, however, the dependence of Sj.H [7] on the firing history
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of a presynaptic neuron is significantly diluted by the firing
histories of other independent presynaptic neurons as well as
the modulus or noisy reset operations that are associated with
the postsynaptic neuron. In addition, the dependence can be
weakened to an acceptable level through proper noise injec-
tion. This arrangement is illustrated in Section III. A natural
extension of (9) is to define the time sequence stdpfj [n]
in such a way that more samples can be included for each
estimation. This approach is illustrated in (10). In the equation,
WINgTpp is a design parameter that is used to specify the
window size of the summation. This method is inspired by the
biological STDP, in which an exponential integration window
is employed. The purpose of the parameter WINgrpp is to
include the effects of delayed perturbated outputs, which might
be caused by the memory of S;H[n]

stdpfj [n]
=xlln—T1(1 = xl[n — T - 1))
WINsTDP WINsTDP
x( Z xj-“[n—l—m—l]— Z xi-“[n—m])
m=1 m=1

(10)

Intuitively, (9) indicates that 6,111].“/8;1% can be estimated
by observing how the postsynaptic neuron alters its stochastic
behavior in response to an input spike that serves as a small
perturbation to the network. Even though perturbations from
various presynaptic neurons might cause the same postsynaptic
neuron to spike, contributions from each presynaptic neuron
can be evaluated simultaneously as long as the spike timings of
each of the presynaptic neurons are reasonably uncorrelated.
For example, at any given time k, as shown in Fig. 2, neuron

l+1 has equal probability to fire at both regions when the
1nput spike from neuron x is absent. When the input spike
is present, the spike from neuron x'T' is more likely to
occur at one side of k depending on whether the synapse
is excitatory or inhibitory. The contributions of other input
neurons appear to be noise, and they can be easily filtered
out if they are not correlated. To further decorrelate the spike
timings of each neuron in an SNN, a stochastic neuron can be
employed. More conveniently, a technique called quantization
noise injection, which was introduced in [31], can be utilized.
Therefore, (9) can be readily employed in a large network,
and individual gradients can be estimated simultaneously. This
approach has the same spirit as simultaneous perturbation
stochastic approximation [32].

Next, we assume that (11) can approximately describe
the input—output relationship in the chosen neuron model,
where f;+l(~) is a differentiable function that depends on
the dynamics of the spiking neuron model that is used. The
actual form of fl+1() is not important in our derivation
because it serves as only an intermediate quantity that is
substituted eventually. Conceptually, f;H(o) can be obtained,
for example, through function fitting

l+1,\, [+1
o (z)

(1)
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By taking the derivative with respect to ,uﬁ in (11), one can
obtain

aqu+1
f}“/(z wf.jﬂg) =— —L—/w};. (12)
i i
Then, with (9) and (12), we arrive at
[+1
8# _ ZH/(ZU’ ul ) _ E[Stdpu] (13)
13 1 °
awfj / wlj (1 _lué)

Equation (13) resembles the STDP learning rule in the
literature. However, in contrast to a conventional STDP rule,
a denominator term is included. Mathematically speaking,
including the weight gives at least the sign information.
If negative weights are allowed, then it is necessary for a
term to change the sign in (13), which would otherwise
induce a wrong direction for the gradient descent. In addition,
the introduction of the weight denominator ensures an upper
bound on w , which serves a similar purpose as the weight-
decay techmque that is widely used in ANNs [33].

Equations (9) and (13) provide theoretical guidelines to
estimate the gradients in an SNN in order to conduct gradient

descent learning In practice, we use stdpf]/ l(l — xf)]

and stdpl] w (1 — xl) to approximate 6,ul+1/8,uﬁ and

ZH/@wU, where xf = ,?:LTH x![n]/(Dy —T).

To feature gradient descent learning, we need to propagate
errors at the output neuron back to each synapse in the neural
network. This process can be achieved through a chain rule
that is similar to that used in a conventional ANN, as shown
the following equation:

I+1
oup_ oug o 1)

l l+1 1

In (14), the term o ,ulJrl /6wfj can be computed according
to (13), whereas the term auZ/G,ule can be obtained by
propagating the gradient layer by layer, similar to the back-
propagation used in a conventional ANN. This procedure is
shown in the following equation:

o—1 p+1
’u’p+l

ﬂ,‘p

Nit2

3D |

o=k ip—1=1 ivo=1ii1=j p=l+1

a o
= as)
ou';
Alternatively, a direct propagation method shown in (16) is
proposed to estimate the gradient

oy Elestdp] a16)
alulJrl /ul]+1 (1 IuljJrl)

In (16), cstd pljJ,:I [n] is a quantity that is similar to the quantity

defined in (3). The only difference is that cstdpl.}:l measures
the relationship between the (/ 4+ 1)th layer and the output
layer. The delay across multiple layers must be considered in
this case. Here, (16) is an extension of (9) in the sense that
instead of using perturbation to estimate the gradient of the
output of a neuron with respect to its input, we estimate the
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gradient across a network of neurons by observing how the
input spike affects the output firing probability.

To verify (13)-(16), we conduct simulations on a two-
hidden-layer neural network. The operations of the neural
network largely follow the conventions used in TrueNorth [2]
because it is the most recently developed, powerful general-
purpose neuromorphic hardware. In [2], spikes from neurons
can occur only synchronously with a time unit called a
tick. This setting guarantees a one-to-one mapping between
software and hardware at a tick level, albeit the internal
evaluations of the neuron states are asynchronous to save
energy. In the remainder of this paper, a tick is used as the
minimum temporal resolution as well as the unit for time-
related quantities, e.g., WINsTpp.

The configuration of the neural network is 80-30-100-1,
where each number represents the number of neurons at each
layer, from input layer to output layer. Here, we employ only
one output neuron because the gradients estimated for each
output neuron in a neural network are independent of the
other output neurons. A modified integrate-and-fire neuron
model, shown in (17) and (18), is used. In the model, xH‘l[n]
Vsl

and [n] are the output and membrane potentlal of a

at tick n, thle is the threshold to fire, and

represents the leakage. It has been shown in [31] that
such a neuron model behaves similar to a first-order £ — A
modulator, and the quantization noise associated with this
model is helpful in achieving less correlated spike timings.
In other words, we can randomize the spike timing of each
neuron without explicitly using random number generators.
In addition, this modified model is one of the models employed
in the TrueNorth chips [34]. Therefore, we utilize this model in
this paper unless otherwise stated. Nevertheless, our proposed
algorithm is not restricted to this modified model. For example,
it can also be applied to a conventional leaky integrate-and-
fire (LIF) model if noise is properly injected. This approach is
demonstrated in Section III. In our simulations, input neurons
in the network are injected with excitatory currents at every
tick. The injected currents are randomly chosen at the begin-
ning of learning and are fixed throughout the learning. More
information on the input encoding is detailed in Section III

neuron x l-+1

I+1
L;

I+1 I+1
iy = O Vi = a7)
%) 1 Vi) = mlH
V;H [n] = max(O, V]{Jrl[n 11+ z Wi X [n — 1] Lljﬂ

l+1[n 1] .thlj“). (18)

Figs. 3-5 show scatter charts that compare gradients
estimated from the spike timing and gradients calculated
numerically. Ten sets of experiments are conducted, and
100 weights from each layer are randomly chosen for each set
of experiments. A thousand data points, in total, are collected
in Figs. 3-5 for each layer. Numerical results are obtained
with the finite-difference (FD) method. In other words, a small
perturbation is applied to the weight, and the gradient is
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Fig. 3. Comparison of gradients obtained from numerical simulations and
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obtained by dividing the change at the output by the amount of
perturbation that is applied. Due to the complicated dynamics
of the SNN and the limited computational resources, the
gradient obtained from the FD method is not the true gradient

TABLE I

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

INFORMATION FOR THE LIMITING OPERATIONS USED

TO OBTAIN DATA IN FIGS. 3-7

Layer index Maximum/minimum | # of outliers
gradient allowed being clamped
1 +0.05 1
2 +0.05 4
3 +0.5 16

0.7 -
l:l WINSTDF' =1 l:l WINSTDF' = 3

0.6 - WiNgrpp = 5 - WiNgp =7
v, =9

0.5 M r
0.4
0.3
0.2

0.1

Correlation with numerical results

0.0

1 1
w; (layer-by-layer) w; (direct) Wj i

Fig. 6. Correlations between estimated gradients and gradients obtained with
the FD numerical method. The results obtained for all three layers of synaptic
weights (wilA, wiz., and w?‘) are compared. Two different backpropagation
methods (layer by layer and direct) are also compared. Different window
sizes for evaluating STDP are compared. The estimation accuracy does not
show significant dependence on the sizes of the STDP window.

but is instead a noisy version of the true gradient. This gradient
asymptotically approaches the true gradient as the number of
evaluation ticks increases. Nevertheless, a comparison with
such noisy gradients can provide some useful insights into how
well the spike timing can be used for estimating gradients.
As shown in (13), when the weight is small, the quantiza-
tion noise in the density of the spike might induce a large
estimated gradient variation. Therefore, a limiting operation is
needed to limit the maximum and minimum gradients obtained
from the spike timing information. Detailed information for
this clamping is shown in Table I. Estimated gradients and
gradients obtained numerically match well in Figs. 3—5, which
demonstrate the effectiveness of the proposed algorithm. It is
observed in Fig. 5 that the correlation for w?j is comparatively
low. It is found in the simulations that few negative outliers
in Fig. 5 are responsible for this low correlation. The reason
is that the clamping values for all layers in Table I are chosen
symmetrically for convenience, yet the gradients associated
with the last-layer weight are actually nonnegative. In prac-
tice, this nonnegative characteristic can be exploited during
learning.

To evaluate the importance of the parameter WINgtpp,
which is used in (10), simulations are conducted to examine
the results obtained with different window sizes. Fig. 6 shows
the correlations obtained between estimated gradients and
numerical gradients. As shown in Fig. 6, estimating with dif-
ferent window sizes results in similar accuracies. Preliminary
numerical studies on the effect of the window size on learning
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Fig. 7. Correlations between estimated gradients and gradients obtained with
the FD numerical method. The results obtained for all three layers of synaptic
weights (w],, w? 3 Two diff K i

ghts (wij’ Wi and w;;) are compared. Two different backpropagation
methods (layer by layer and direct) are also compared. Different evaluation
durations are used. The longer the evaluation duration is, the more accurate

the estimated gradients.

also show that changing the window size does not yield a
noticeable difference. Therefore, in this paper, we focus on
the case with a window size of one. How the size and shape
of the summation window affect other aspects of learning will
be a future research topic.

Another set of simulations is conducted to study how
the evaluation duration affects the accuracy of the estimated
gradients. As shown in Fig. 7, a general trend is that the longer
the evaluation duration is, the more accurate the estimated gra-
dients. This relationship is coherent with all of the stochastic
approximation method because any possible unbiased noise is
filtered out through averaging.

With gradients estimated through spike timings, a stochastic
gradient descent method can be readily employed for learn-
ing. Following the convention in a standard backpropagation
algorithm, we define an error function as:

No

E=2> ()

k=1

19)

where ¢} = g — 17 is the error at each output neuron. Here,
t{ is the target mean firing rate of neuron x; .
The weight update Awfj can be calculated as

N, N,
" OE ouf ° ous
Awfj:_a.z ﬂ:_a.zez.ﬂ (20)
k=1

o’ Ji !
i1 M o owj;

where a is the learning rate, and the term o uf /awf.. can be
obtained from (14). Updating weights according to (20) leads
to a reduction in the error function toward the gradient-decent
direction.

It is worthwhile to note that the proposed learning algorithm
can be readily extended to other popular learning schemes,
such as unsupervised learning and reinforcement learning,
when the target is to minimize some forms of cost functions,
even though this paper focuses mainly on supervised learning,
which has achieved great success in real-life applications.

ITI. LEARNING EXAMPLES
In Section II, we demonstrate that spike timing informa-
tion can be readily employed for estimating the gradient
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components needed in gradient descent algorithm. In this
section, we apply the proposed learning algorithm to two
neural networks. The sizes of the neural networks are chosen
according to two examples demonstrated in [35] in such a way
that a direct comparison can be made. The Modified National
Institute of Standards and Technology database (MNIST)
benchmark task [36] is employed to examine the proposed
algorithm. The MNIST data set contains, in total, 70000
28 x 28 images of handwritten digits. The number of images in
the training and testing sets are 60 000 and 10000, respectively.
The data set is categorized into 10 classes, which correspond
to ten integers (0-9), and each image has an associated label.
Unless otherwise stated, for all of the learning examples in
this section, we use a training set that contains the first
500 images from the standard MNIST training set to accelerate
the simulation. For testing, we use all of the 10000 images
from the standard MNIST testing set. It should be noted that
the results obtained with such an experiment setting are only
for verifying the proposed techniques and exploring the design
spaces. Benchmark performance obtained with the full training
set is reported in Section III-D.

To feed the double-precision real values, which are used to
encode the grayscale images, into the SNN, proper encoding
mechanisms are needed. For SNNs attempting to learn the
exact timing of spikes, temporal encoding is often employed,
such as the single-spike temporal coding [24] and the temporal
population coding [37]. In this paper, we use a pulse-density
modulation scheme, which is a rate-based encoding method.
Real values from the images in the MNIST data set are injected
into the input-layer neurons as incremental membrane poten-
tials at every tick. Combined with the modified LIF model,
this encoding scheme behaves similar to a ¥ — A modulator,
which is capable of converting high-resolution data to low-
resolution bit streams through pulse-density modulation [38].
The firing rates of the input-layer neurons are then proportional
to the intensities of the corresponding pixels. Such an encoding
method leads to a simple implementation in hardware while
achieving the desired rate encoding.

For both neural networks, 10 output neurons, which corre-
spond to 10 digits, are used. The target of learning is that when
a digit is applied to the neural network, the output neuron that
corresponds to the correct digit should fire with a high density
of pg, whereas all of the other neurons fire with a lower
density of pr. The firing density is measured through x;.
To test the trained neural network, a digit is presented to
the network. After an inference duration of Dy, the output
neuron with the highest firing density x_,‘c’ is chosen as the
winning neuron, and its corresponding digit is chosen as the
inferred result. All of the results presented in this section are
obtained from 10 independent runs. Error bars that correspond
to the 95% confidence interval are plotted together with the
simulation data.

A. One-Hidden-Layer Neural Network

As most useful feed-forward neural networks have at least
one hidden layer, the first example that we consider is a
one-hidden-layer neural network with 784 input neurons,
300 hidden-layer neurons, and 10 output neurons. Neverthe-
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less, neural networks with only two layers are also useful in
some cases. For example, a two-layer neural network with a
special input encoding similar to the radial basis function has
been demonstrated in our previous work [31]. Because learn-
ing in a two-layer neural network is essentially a subproblem
of learning in a multilayer (more than two) network, we do
not study them in this paper separately. Nevertheless, most
conclusions and techniques developed in this section can be
readily applied to two-layer neural networks as well.

As demonstrated in [31], the gradients estimated from STDP
started saturating and diverging from the actual gradients as the
density of spike trains reaches a certain limit. This saturation
occurs because it is difficult to tell whether a postsynaptic
spike is a causal spike or an anti-causal spike when the
presynaptic spike train is too dense. To tackle this issue,
it was suggested in [31] that a clock that is fast enough to
avoid dense spike trains should be used. This approach is
similar to avoiding the hidden unit in a conventional ANN
to be driven close to 1 or 0, which would otherwise lead to a
significantly slowed learning process. Despite its effectiveness,
this method of manually adjusting weights or the clock fre-
quency is inconvenient. In this paper, we propose to leverage
a biologically inspired refractoriness to achieve the desired
sparsity. More specifically, each neuron has a refractory period
after firing. During the refractory period, it is not allowed to
fire again. By utilizing this technique, dense spike trains can be
avoided. One potential drawback with a fixed refractory period
is that all neurons that are saturated are highly correlated
in their spike timings. To tackle this problem, a random
refractory period technique is proposed. In a discrete-time
implementation, it is convenient to implement according to
the following equation:

0, V}“[n] < thlj“
I+1 _ I+1 I+1 I+1 _
X; [n] =11, Vj [n]zthj &xj [n—=1]=0
1—R, v;“[n] > thlj“ & xj.“[n —1]=1
21

where R is a random variable with a Bernoulli distribution
B[1, p,]. Here, p, is a design parameter that is used for
controlling the sparsity. A larger p, can lead to sparser spike
trains.

Fig. 8 compares the learning results achieved with dif-
ferent initial weights and p,. Two sets of initial weights
are employed. One set of weights is initialized uniformly
from the interval [0, 2], i.e., wfj ~ U]0, 2], where UJO0, 2]
stands for a uniform distribution between 0 and 2. The results
obtained with these initial weights are labeled with “2x”
in Fig. 8. Another set of weights is initialized such that
wf .~ U]0, 8]. The results obtained with these initial weights
are labeled with “8x” in Fig. 8. For small initial weights
(wf T U|[0, 2]), a reasonable learning result can be achieved
even for the case in which p, = 0 because saturation has been
avoided through the proper choice of small initial weights.
This circumstance corresponds to the case in which proper
initial weights are chosen to avoid the hidden layer unit
being driven close to 0 or 1 when training a conventional
ANN. When the initial weights are large (wll.j ~ U0, 8]),
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Fig. 8. Comparison of the training and testing correct rates achieved with
different levels of refractoriness and different initial weights. The refractory
mechanism is helpful in avoiding dense spike trains, which can improve the
learning results. Two sets of initial weights are used. One set of weights is
uniformly initialized between O and 2 (labeled with 2x), whereas another
set of weights is uniformly initialized between 0 and 8 (labeled with 8x).
Learning performance is severely deteriorated when a deterministic refractory
period (p = 1) is used, as all saturated neurons have highly correlated spike

timings.
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Fig. 9. Comparison of the training and testing correct rates achieved with
the LIF neuron model and the modified LIF model. The results obtained with
the conventional LIF model with white noise residue injection are labeled as
“LIF w/white noise, ” whereas the results obtained with the modified
LIF model is labeled as “LIF w/quantization noise.” Learning with the
conventional LIF model is effective when enough noise is injected.

however, the learning performance is significantly deteriorated
for the p, = 0 case due to the aforementioned detrimental
effect of saturated spike trains. It is noted that learning is not
successful for the case p, = 1 regardless of the selection
of initial weights because neurons that are saturated always
have high correlations in spike timings. Due to the proposed
stochastic refractory period technique, good learning results
are achieved when a proper p, is employed. It should be
mentioned that even though the initial weights are generated
from positive uniform distributions in our learning examples,
other initializations, such as negative weights and a normal
distribution, can be used as well.

To study the effectiveness of the proposed learning algo-
rithm applied to a conventional integrate-and-fire neuron
model, simulations are conducted for different levels of noise
injection, as shown in Fig. 9. Noise is injected into the neuron
model as noisy residues. In other words, a random residue is
added to the membrane voltage after each spike. The injected
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Fig. 10.  Comparison of the training and testing correct rates achieved

with different initial conditions. The case with pseudorandom initial mem-
brane voltages outperforms the cases with fixed initial membrane voltages.
A pseudorandom leakage technique is also employed to further improve the
learning performance.

noise is uniformly distributed with the range from zero to a
percentage of the threshold value of that neuron. For example,
the 50% white noise in Fig. 9 means that the noise injected into
the neuron obeys a distribution, U[0, 0.5 x thg]. The results
obtained with the modified integrate-and-fire model that are
described in (17) and (18) are also shown for comparison.
The corresponding results are labeled as “LIF w/ quantization
noise.” As the amount of injected noise increases, the learning
is more effective. This result is expected because the proposed
algorithm relies on the assumption that the spike timings of
unconnected neurons should stay relatively uncorrelated. The
conventional LIF model with noise injection can achieve a
reasonably low correlation, yet random number generators are
required for this purpose. On the other hand, the modified
LIF model can decorrelate spike timings without explicitly
injecting noise.

Another design consideration in our proposed learning
algorithm is the initial condition of the neuron. In many
applications, we need to reset neurons to certain states for each
new input. Therefore, a proper initial condition needs to be set
up. We propose to use a pseudorandom initial condition such
that the initial membrane voltage of a neuron obeys a uniform
distribution, e.g., xf [0] ~ U0, thé]. The reason to choose such
an initial condition is that the membrane voltages of an SNN
in a steady state approximately follow a uniform distribution.
Therefore, a warm start can be achieved by setting the initial
condition as a uniformly distributed random variable. The
results obtained with such a pseudorandom initial condition
are compared with the fixed initial conditions in Fig. 10.
As shown in Fig. 10, even though any initial condition can
feature effective learning, the proposed pseudorandom initial
condition achieves the best performance. The main reason
that the random initial conditions outperform others is that
such an initial condition helps to achieve lower correlations
among the input spikes. For the MNIST data set, many pixels
that correspond to strokes have values equal to one. This
circumstance leads to highly correlated input spikes even
when the modified LIF neuron model is used. By setting the
initial condition differently, the correlations can be somewhat
lowered.
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Fig. 11. Comparison of the testing correct rates achieved with different learn-
ing and inference durations. The longer the learning or inference duration is,
the higher the correct rate.

With the same spirit, a pseudorandom leakage is also
added at the input layer to further decorrelate the spike
timings caused by the saturated intensities. The leakage for
each neuron is assigned randomly beforehand and is fixed
for the whole learning process. At each tick, the leakage
is subtracted from the membrane voltage according to the
neuron dynamics shown in (18). From another perspective,
the pseudorandom leakage is helpful in breaking the possible
symmetry that exists in the input data. Many input pixels
from the MNIST data set have the value of one. Through
introducing the random leakage, we can break this symmetry
in the data. The symmetry-breaking technique has been widely
used by many machine learning researchers for weight ini-
tialization [33] and asymmetric connections in convolutional
neural networks (CNNs) [35]. The results obtained with this
technique are also compared in Fig. 10. The advantage of
pseudorandom initial conditions and leakage for neurons is
that no pseudorandom/true-random number generators are
actually needed in the hardware implementation. The values
can be conveniently stored in an on-chip static random access
memory atrray or can be hardcoded in the logic.

In Section II, it is shown that a longer learning duration
yields more accurate estimated gradients. Therefore, it is
expected that the learning performance can be improved
through lengthening the learning duration. To investigate the
effect of the learning duration on the learning performance,
simulations are conducted, and the obtained results are com-
pared in Fig. 11. In Fig. 11, five different learning durations
are used: 32, 64, 128, 256, and 512. Five different infer-
ence durations are also used to evaluate the learned weights.
A general trend shown in Fig. 11 is that increasing either
the learning or inference duration helps in improving the
recognition accuracy. For both the learning and inference dura-
tion, saturations occur at approximately 256, beyond which
the improvement is marginal. Despite the fact that the best
learning results are achieved when the learning duration is
long, learning with a short duration also yields impressive
results. This finding arises because stochastic gradient descent
learning is quite robust against noise as long as it is not
biased. Furthermore, it has been demonstrated recently that a
noisy gradient is actually beneficial in learning, especially for
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Fig. 12.  Comparison of the testing correct rates achieved with the two
different backpropagation schemes. The two methods achieve similar perfor-
mances. The two-hidden-layer neural network can yield better performance,
but it requires a longer learning duration.

a very deep neural network [39]. Therefore, a recommendation
is to utilize a small learning duration at the beginning of
the learning to speed up the learning process as well as to
reduce the power consumption. The learning duration should
be gradually lengthened to obtain more and more accurate
gradients.

B. Two-Hidden-Layer Neural Network

The second example is a two-hidden-layer neural network
with 784 neurons in the input layer, 300 neurons in the first
hidden layer, 100 neurons in the second hidden layer, and
10 neurons in the output layer.

Because many conclusions that we draw for the one-
hidden-layer neural network also apply to the two-hidden-
layer neural network, we focus mainly on investigating how
different methods of propagating the errors affect the learning
performances. Simulations are conducted for the two different
backpropagation methods discussed in Section II: the standard
layer-by-layer backpropagation and the direct backpropaga-
tion. As shown in Fig. 12, similar performances are achieved
by two backpropagation methods, which agree with the results
shown in Figs. 6 and 7. For comparison purposes, we also
plot the results obtained with a one-hidden-layer network
in Fig. 12. The recognition rates achieved with the two-
hidden-layer network are higher when a learning duration of
a moderate length is used (specifically, Dy > 256 in Fig. 12).
In addition, the two-hidden-layer neural network requires
a longer learning duration to achieve a satisfactory result
compared to its one-hidden-layer counterpart. This finding is
consistent with the observation in ANN s that a deeper network
tends to yield better results, yet it is harder and slower to train.

Even though the conventional layer-by-layer backpropaga-
tion can always be used along with our proposed algorithm,
the unique direct backpropagation method can be helpful
when the number of output-layer neurons is much smaller
than the number of hidden-layer neurons, thereby providing
more design freedom. For the /th layer in the network,
N;Nj+1 multiply-accumulate (MAC) operations are needed
for a layer-by-layer backpropagation, whereas only NN,
MAC operations are needed for a direct backpropagation.
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A significant savings in the number of MAC operations can
be achieved when N, < N;. We do pay the price of spending
more memory to store the STDP information across multiple
layers. Therefore, we trade more memory space for fewer
computations. The memory requirement for storing cstdpljk

is N, - Z?;ll N;. Fortunately, this memory requirement does
not scale as badly as the synaptic weights memory, which
is on the order of O(N?), where N is the average number
of neurons for each layer. For the neural networks that are
employed in most applications, the output layer has far fewer
neurons compared to the preceding layers. Indeed, a function
of a deep neural network is to extract useful information
from a high-dimensional input, layer by layer. Therefore, the
number of output neurons in a typical neural network is on the
order of O(1). Consequently, the memory requirement for this
type of error backpropagation is approximately on the order
of O(N).

C. Inference With a Progressive Precision

The results in the previous sections are obtained with
inference methods that are mapped directly from those used
in a conventional ANN, for simplicity. In other words, we
wait until the output of the neural network converges to the
steady-state result, and then, we read out the results. An SNN,
however, provides new opportunities for more rapid estimation
of the results. For example, if we train the neural network such
that the output neuron that corresponds to the correct digit fires
with a firing density of pg, and other output neurons fire with
a density of p;. Then, we have a noise margin of pg — pr
such that a correct inference can still be achieved as long as
the noise or any disturbance is less than this margin. Similar
to the signal outputted by a £ — A modulator, output signals
from neurons are buried in high-frequency quantization noise.
Counting the number of spikes is essentially filtering the high-
frequency noise. A longer inference duration can lead to less
quantization noise, and consequently, a more reliable result.
This finding is similar to the well-known progressive precision
in the stochastic computation [40].

Suppose that we apply an image to a well-trained network.
When the image is simple (in the sense that it is easy to
be recognized), one output neuron in the well-trained neural
network, which corresponds to the digit presented, should
spike with a firing density of py, and all of the other output
neurons should fire with a density pr. In this case, the signal
strength is strong, and we do not have to wait until the
quantization noise is removed. On the other hand, when the
input image is complex (in the sense that it is difficult to
recognize), then more than one output neuron may have high
spike densities, which indicates that it could be one of these
digits. In this case, the quantization noise might severely
deteriorate the recognition accuracy, and thus, one should wait
longer to filter out the high-frequency quantization noise. This
process is similar to how humans accomplish recognition.
When the classification problem is easy, the response time
is short, whereas a longer time is needed when the pattern is
complicated.
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Fig. 13. Recognition accuracies on the testing set for different levels of

reduced margin. Only a slight degradation in the correct rate is observed as
the margin reduces. The results are obtained with the one-hidden-layer neural
network.
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Fig. 14. Comparison of the effective inference durations needed for
classifications. The number of ticks that is needed to complete one inference
decreases significantly as the margin reduces. The results are obtained with
the one-hidden-layer neural network.

Figs. 13 and 14 show the testing correct rate and effective
inference durations that are needed to complete one classifi-
cation. A trained one-hidden-layer neural network is used for
illustration. At each tick, the density outputted from each of
the output neurons is computed. If the density of one neuron
is larger than py — M/2, and the densities from all of the
other neurons are less than p; + M/2, then the inference is
considered to be completed, and the output neuron with the
largest spike density is chosen as the answer, where M is
the reduced margin. Otherwise, the inference continues until a
maximum allowed inference duration is reached. The effective
inference duration in Figs. 13 and 14 is obtained by averaging
the inference durations in 10000 testing cases. As shown in
the figure, as the margin reduces, the length of the effective
inference duration is significantly shortened. The classification
accuracy, however, does not start dropping until the reduced
margin reaches 0.3, where the quantization noise starts having
a noticeable effect on the testing results. It should be noted
that there exist some testing cases where the neural network
is not able to give a confident answer regardless of how long
the inference duration is. For these testing cases, the results
are always produced when the maximum allowed inference
duration is reached. Therefore, a trend is that the longer
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correct rates and the average inference durations with different values of K.
The results are obtained with the one-hidden-layer neural network.

the maximum inference duration is, the longer the effective
inference duration.

Another way to demonstrate the inference with a progressive
precision is shown in Fig. 15. The first output neuron that
generates K spikes is determined to be the winning neuron,
and the corresponding digit is read out as the inferred result.
The recognition rates on the testing set images are shown
in Fig.15 for different values of K. The number of ticks needed
before an inference can be obtained is also recorded. As shown
in Fig. 15, an accuracy as high as 89% can be achieved with
an effective inference duration of only 5.6 ticks. The accuracy
enhances rapidly when K increases. The growth in accuracy
starts saturating when K reaches 10 in Fig. 15.

D. MNIST Benchmark

To demonstrate the effectiveness of the proposed learning
algorithm, the standard MNIST benchmark is employed. Here,
60000 training data are used for training a one-hidden-layer
neural network and a two-hidden-layer neural network. The
trained networks are examined with the testing set, which
includes 10000 digits. No preprocessing technique is used
for a fair comparison. The obtained testing results for these
two networks are compared with the results in the literature
in Table II. Classification accuracies of 97.2% and 97.8%
are achieved by the two neural networks, respectively. The
proposed learning algorithm can achieve better classification
correct rates compared to ANNs with the same configurations
that are trained with sophisticated algorithms. Compared to
the state-of-the-art result 98.6% in [15], our result is only
slightly worse, especially considering that the size of our
neural network is 9 times smaller than the network used in [15]
in terms of the number of synapses. Moreover, different from
the ANN-to-SNN conversion method employed in [15], our
proposed learning algorithm can conduct an online learning
directly on hardware SNNs, which is an expected feature in
many energy-stringent applications.

In Table II, unsupervised learning in [18] and [13] and the
contrast divergence learning in [16] are similar to clustering.
Other decision logics in addition to the neural network are
needed to perform the classification. Moreover, it is not
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TABLE II

COMPARISON OF THE CLASSIFICATION ACCURACIES FOR THE MNIST BENCHMARK TASK

Reference | Preprocessing Type Configuration Learning algorithm Recognition
accuracy
[18] None Spiking neural network 784 input neurons + 6400 excitatory | Unsupervised, STDP 95.0%
neurons + 6400 inhibitory neurons +
readout circuit
[13] None Spiking neural network 784 input neurons + 300 output | Unsupervised, STDP 93.5%
neurons + readout circuit
[17] Random translation, | Spiking deep belief network | 784-500-500-10 ANN to SNN mapping 94.09%
rotation, and scaling
to extend the training
set to 120000 images
[25] Convert image into | Spiking convolutional neural | - Tempotron 91.29%
AER events and add | network
noise
[15] None Spiking neural network 784-1200-1200-10 ANN to SNN mapping 98.6%
Spiking convolutional | 28x28-12¢5-2s-64¢5-2s-100 99.1%
neural network
[16] None Spiking deep belief Network | 484-256 + linear classifier ANN to SNN mapping 89%
[41] Thresholding Spiking deep belief Network | 784-500-40 Contrastive divergence 91.9%
[42] Thresholding Spiking neural network 784 input + 10 output neurons each | Morphological learning 90.26%
with 200 dendrites and 5000
synapses
[43] None Spiking neural network 784-500-10 Contrastive divergence 95.6%
[35] None Artificial neural network 784-300-10 Stochastic gradient descent 95.3%
784-300-100-10 96.95%
This paper | None Spiking neural network 784-300-10 Stochastic gradient descent | 97.2%
784-300-100-10 through  modulation  of | 97.8%
weight-dependent STDP
obv1(?us how thege learning .algorlthms can be used to tra¥r1 Weight Main STDP Main
a universal function approximator that can be employed mn Memory Memory
various applications, e.g., reinforcement learning. I Controller] I
Weight Cache STDP Cache
IV. CONSIDERATIONS FOR HARDWARE IMPLEMENTATION
In this section, we consider how the proposed learning TT 1T i

algorithm can fit into various hardware implementations.
Discussions on trade-offs and design considerations are also
briefly presented. There are two popular hardware architec-
tures for neuromorphic computing. One architecture is what
we call a centralized memory architecture. An example of
this type of system is shown in Fig. 16. This architecture is
closely related to the conventional von Neumann architecture.
Synaptic weights are stored in a memory array, and they can be
accessed through buses. Another architecture, the distributed
memory architecture, is more related to biological neural
networks. Memory cells, in this case, are distributed along with
processing units. This architecture is very popular in recent
years due to many emerging memory technologies, such as
memristor and phase-change memory.

Ways in which the proposed learning algorithm can be
applied could be different for these two architectures, as shown
in the following equations:

i
AW, = —a - et vy (22)
wll'j(l —xf)
I+1 !
—o e -stdp'.[n]
awj = 3 (S 2

n wll.j (1 — xf)(DL —-T)

INeuro (XX ) —Neuro;

INeuro INeuro

INeuro

INeuro ooo

INeuro!

N,
[ Neuroi

1" Layer 2" Layer o™ Layer

Fig. 16. Illustration of an example of the centralized memory architecture.
Weights and STDP information are stored in a centralized memory, and they
can be visited through buses.

where AWl.lj is the total weight change in one learning

iteration, and eifH = Dl (8/1Z/8ylj+1) is the back-
propagated error at neuron X

In (22), the STDP information is accumulated over one
iteration, and then, the weight change for that iteration is
calculated. It is desirable to minimize the number of weight

memory accesses in a centralized memory architecture because

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:22:24 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: ONLINE SUPERVISED LEARNING FOR HARDWARE-BASED MULTILAYER SNNs

Learning Inference

Feedforwad Backpropagation

STDP Memory < RIW X R
Weight Memory< R >;< R/W ><

Neuron

R_>

Fig. 17. Example of the timing diagram of the proposed learning algorithm
employed in a centralized memory system.

the access of memory is a relatively expensive operation.
Therefore, (22) can be used for weight updating in this
case. On the other hand, in (23), the weight updating occurs
whenever there is an STDP event. The summation of the
weight change in one iteration occurs in the weight memory
itself. Consequently, there is no need to store STDP infor-
mation separately. Writing memory in a distributed memory
system can be conducted easily with the help of auxiliary
circuits associated with neurons while the system is operating.
Therefore, (23) is more suitable for a distributed memory
system. It should be noted that the above recommendations are
not absolute. It is possible to use (22) in a distributed memory
system and (23) in a centralized memory system, depending
on the actual need.

The main focus of this paper is on the learning algorithm
itself rather than its hardware implementation. Detailed hard-
ware implementation is a future research direction. Therefore,
only a brief discussion on how the proposed learning algorithm
can be employed in a hardware realization is presented in this
section.

A. Centralized Memory Architecture

Fig. 16 shows a generic diagram of a centralized memory
architecture. This architecture is very popular in CMOS imple-
mentations [2], [44], [45]. In Fig. 16, neurons with dedicated
computational resources are used for illustration because this
configuration applies to both analog neurons [44], [45] and
digital neurons [2]. Nevertheless, the discussions presented
here also apply to virtual, time-multiplexed neurons, where
the computational resources are shared among neurons.

Fig. 17 shows a typical timing diagram of operations and
resource usages for the proposed learning algorithm. During
the learning phase, feed-forward computations are first con-
ducted. Spike timing information is generated and stored in
the STDP memory. In the backpropagation phase, errors at the
output neurons are propagated back to each synapse, and the
weights are updated according to (22). During an inference
phase, STDP memory is not used, and it can be power gated
to save energy.

In the proposed learning algorithm, an array of memory is
required to store the spike timing information. In the worst
case, the spike timing information that is associated with each
synapse needs to be stored. Fortunately, the number of bits
that is needed to represent the STDP information is much
less than the number needed for the synaptic weights. For
example, in a fixed-point implementation, even though only
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Fig. 18.

and cross-layer STDP information cstdp? for the synapses in different
layers. The results are normalized to the number of synaptic weights in the
corresponding layer.

Percentage of the active (nonzero) STDP information stdpﬁ j

a few bits are necessary for inference, more than 20 bits are
usually needed to represent the weights for successful learning.
The reason is that the weight changes are typically controlled
to be 1073 of the weights [33], and the ratio between the
maximum and minimum weight in a learning task, such as the
MNIST benchmark task that we consider, is normally a thou-
sand. On the other hand, at most [log,(2D1, - WINgpp + 1)]
bits are needed to store the spike timing information. The
actual memory requirement, however, is much less than this
upper bound, considering the sparseness of spikes. It is found
through simulations that only 5 bits are required to represent
the STDP information for the case of WINstpp = 1 and
D = 128.

Furthermore, in contrast to synaptic weights that must be
stored as “static” information in the memory even for inactive
synapses, only the STDP information that is associated with
recently active synapses is stored. This type of “dynamic”
information storage can be leveraged to reduce the memory
requirement and help improve the memory access latency.
To illustrate this aspect, Fig. 18 shows the percentage of active
(nonzero) STDP field in the memory for the synapses in each
layer. Handwritten digits from the MNIST database are used as
the input. It is shown in Fig. 18 that only approximately 15%
of the synapses in the first layer are active. This finding occurs
because only a few input neurons that are associated with
strokes of a handwritten digit are active. For deeper layers, the
percentage of active synapses is higher, yet there still exists
some sparsity. Furthermore, in our implementation, we do not
impose any sparsity regulation. In some applications, however,
learning with a sparsity requirement is needed. In that case,
the overall activity of the synapses can be further reduced.
This sparsity in the spike timing information can be leveraged
in a memory hierarchy to reduce the memory requirement
significantly.

B. Distributed Memory Architecture

An example of the distributed memory architecture is shown
in Fig. 19. Memristors are used in Fig. 19 for demonstration.
Nevertheless, discussions in this section also apply to many
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Fig. 19. Example of the distributed memory-based neuromorphic system.
A crossbar structure consists of memristors is used for demonstration.
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Fig. 20.  TIllustration of a memristor-based synapse sandwiched by two
neurons. The STDP protocol can be implemented by either the neuron
circuitry or the device itself.

other emerging memory technologies. In Fig. 19, a cross-
bar architecture is employed. Triangles in Fig. 19 represent
neurons, and the memristor at each cross point represents a
synapse that connects two neurons. When a neuron decides
to spike, a voltage pulse is emitted by the neuron. The
voltage potential across the memristors induces current flowing
between the presynaptic neuron and the postsynaptic neuron.
The magnitude of the current is determined by the conductance
of the memristor. The currents flowing to the same postsynap-
tic neuron are summed up and accumulated on the capacitor
associated with the neuron.

In a distributed memory architecture, the updating of the
weights can occur when the SNN is operating. The error is
back propagated to each neuron, and the weight update is then
conducted according to (23). This arrangement is illustrated
in Fig. 20. Here, (23) is essentially a scaled version of STDP
divided by the weight. Let us ignore the denominator for
now. There are various methods discussed in the literature that
involve implementing neurons with STDP [11], [14]. In addi-
tion, there are also memristors that possess such a property on

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

100 [ ]0-bit [ 1-bit
90 - I 2-bit [ 3-bit
80 I o quantization
70 1 M
60
50
40
30

o | H

Training

Correct Rate (%)

Testing

Fig. 21.  Comparison of the classification accuracies for different levels of
quantization in the weight denominator. Impressive results can be achieved
even with a one-bit precision.

their own [8], [10]. Multiplying the error and learning rate can
be easily achieved through controlling the pulsewidth or signal
strength. In addition, stochastic multiplication is a candidate
for this purpose.

Another matter needs to be_addressed is the denominator
shown in (23). The term (1 — xf) can be neglected when the
firing rate of the neuron is low, and the constant term (Dy —T')
can be absorbed into the learning rate. It is not obvious how
the division by the weight operation can be included in the
memristance update. Fortunately, it has been shown in [31]
that learning is still possible without accurately accounting
for this denominator. This finding is due to the well-known
robustness of the stochastic gradient descent method against
noisy gradients. To illustrate this aspect, Fig. 21 compares
the learning results that are obtained with different levels of
precision in the denominator. The denominator is quantized
into different numbers of bits to show how the inaccuracy
of this division affects the learning performance. The weight
in the denominator is quantized according to the following
equation:

1
Wql, Wyl = wij < Wq2
1
1 ] wqo, ngij < wgq1
Wi = ! 24)
—wg0, —Wgl < wi; < 0
1
—Wgql, —Wg2 = wij < —wgq1

where w0, wgy1, and so on are manually chosen constants that
are used to partition the quantization intervals.

As shown in Fig. 21, impressive learning results can even be
achieved with only a one-bit precision. In other words, only the
sign information is preserved. This one-bit-precision division
can be easily implemented with memristors. More specifically,
an STDP rule is used for the excitatory synapses, whereas
an anti-STDP rule is used for the inhibitory synapses. It is
worthwhile to note that a memristor device cannot represent
a negative weight by its nature. However, we can utilize a
combination of two memristor devices to form a synapse
that can be programmed to be either excitatory or inhibitory.
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In addition, to feature better learning, a more accurate weight
division can be explored. This goal can be achieved at both
the circuit level and the device level.

V. CONCLUSION

In this paper, we formulate an online learning algorithm for
multilayer SNNs. The proposed learning method can estimate
the gradient components with the help of the spike timings
in an SNN. The readily available gradient information is then
exploited in stochastic gradient descent learning. How the error
can be propagated back to each layer is studied. A direct
backpropagation is proposed in addition to the conventional
layer-by-layer approach. The newly proposed algorithm is
employed in two neural networks for the purposes of demon-
stration. To feature more effective learning, techniques such as
random refractory period and pseudorandom initial conditions
are proposed. Furthermore, the progressive precision provided
by a trained SNN is leveraged to accelerate the inference
process. Extensive parametric studies are conducted to verify
the proposed techniques as well as to examine many aspects
of the proposed learning rules. To further demonstrate the
effectiveness of the proposed algorithm, the MNIST bench-
mark test is conducted. Recognition accuracies of 97.2% and
97.8% are achieved with the neural networks trained by the
proposed algorithm. Last, how the proposed learning rules can
be implemented in hardware is discussed, and several trade-
offs are identified. Detailed implementation of the proposed
algorithm in hardware will be a future research direction.
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