520

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

Learning in Memristor Crossbar-Based
Spiking Neural Networks Through
Modulation of Weight-Dependent
Spike-Timing-Dependent Plasticity

Nan Zheng

Abstract—In this paper, we propose a methodology to design
learning systems based on a memristor crossbar structure.
Learning is carried out with the help of a hardware-friendly
spike-timing-dependent plasticity learning rule. Several simplifi-
cations and adaptations are made in order to apply the learning
algorithm to memristor-based neural networks. The difficulties
in conducting division and representing signed weights are cir-
cumvented using the proposed techniques. In addition, different
conductance-changing behaviors are considered to demonstrate
the effectiveness of the proposed algorithm and architecture
when applied to practical memristor devices. Furthermore,
various nonidealities existing in the neural network, including
variations in CMOS neurons and memristor synapses and noises
associated with updating the synaptic weights, are considered. We
demonstrate that the proposed learning algorithm and hardware
architecture are robust against most variations and noises. This
robustness of learning is promising, as variations and stochastic
behaviors of memristor devices are usually substantial. Memristor-
based neural networks with the proposed learning algorithm are
benchmarked with the MNIST handwritten digits recognition
task. A recognition accuracy as high as 97.10% is demonstrated.

Index Terms—Memristor, crossbar, supervised learning, ma-
chine learning, neuromorphic computing, spiking neural network,
deep learning, hardware neural network, spike-timing-dependent
plasticity, MNIST benchmark.

I. INTRODUCTION

INCE they were first demonstrated in 2008 [1], memristors
S have drawn many researchers’ attentions. As the missing
fourth circuit component, the existence of memristors was hy-
pothesized four decades ago [2]. A memristor is essentially a re-
sistor with memory. The resistance is determined by the amount
of charges that pass through the device [3]. To date, various
types of memristive devices have been fabricated and demon-
strated such as the ferroelectric memristor [4], the memristor

Manuscript received December 25, 2017; revised February 19, 2018; accepted
March 22, 2018. Date of publication March 30, 2018; date of current version
May 8, 2018. This work was supported by the National Science Foundation
under Grant 1710940. The review of this paper was arranged by Associate
Editor M. Niemier. (Corresponding author: Nan Zheng.)

The authors are with the University of Michigan, Ann Arbor, M1 48105 USA
(e-mail: zhengn@umich.edu; mazum@umich.edu).

Digital Object Identifier 10.1109/TNANO.2018.2821131

, Student Member, IEEE, and Pinaki Mazumder

, Fellow, IEEE

based on a single nanowire [5], and the TiO,-based memristor
[6], etc.

Numerous attempts have been made over the past decade
to build neuromorphic hardware with memristors, as a mem-
ristor device satisfies almost all the requirements to be an ar-
tificial synapse. Just as their CMOS counterpart, memristor-
based neural networks in the literature can be divided into the
rate-based artificial neural networks (ANNs) [7]-[9] and the
event-triggered spiking neural networks (SNNs) [10]-[13]. The
conventional ANN was extensively studied in both the machine
learning community and the circuit community, as its under-
lying mathematical foundation is well developed and they can
be conveniently implemented in a conventional general-purpose
processor. In recent years, however, more and more researchers
in the circuit community started working on SNNs, motivated
by several advantages that SNNs have.

Regardless of the benefits that SNNs can provide, the develop-
ment of energy-efficient SNNGs is seriously restricted by the lack
of effective learning algorithms. The huge success achieved by
the conventional ANN-based deep learning is largely attributed
to the power of backpropagation learning algorithm [14]. Er-
rors at output layers are propagated back to each synapse layer
by layer with the help of the chain rule. Thanks to the well-
established mathematical model of ANNSs, the gradient associ-
ated with each synapse is readily available to be utilized in a
gradient descent learning. Unfortunately, the conventional back-
propagation method cannot be directly employed in an SNN due
to the complicated dynamics of the spiking neurons.

One popular way to empower an SNN with intelligence is to
first train an ANN using a conventional digital computer, and
then the trained ANN is converted to an SNN with a mapping
algorithm [15]-[18]. This way of learning has the advantage
that well-developed learning techniques in ANNs can be em-
ployed to improve the performance. However, this mapping-
based learning can only yield sub-optimal results, as the
optimization is conducted on the ANN counterpart instead of
the SNN itself. This is particularly true for a memristor-based
SNN due to the difficulty of a precise mapping. For an SNN
where memristor devices are employed as analog memory, the
chip-in-the-loop configuration is more feasible as the varia-
tions in device parameters can be corrected through feedback.

1536-125X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-3261-2135
https://orcid.org/0000-0002-9353-7004
mailto:zhengn@umich.edu
mailto:mazum@umich.edu

ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

Another disadvantage of the mapping-based learning is that it
is not able to provide an on-line learning capability, which is
required by many applications. In order to empower SNNs with
the on-line learning capability, many learning algorithms for
SNNs have been proposed. For example, a supervised learning
rule was proposed in [10] where a delta learning rule is em-
ployed. However, how to apply that rule in a multilayer network
for a complicated task is not obvious, as the layer-by-layer learn-
ing in [10] requires the desired outputs of hidden layer units to
be computed beforehand.

In addition to the learning algorithms that are derived math-
ematically, biologically plausible spike-timing-dependent plas-
ticity (STDP) learning rule is proposed in recent years. STDP is
aphenomenon observed in experiments on biological neural net-
works and it has been long hypothesized as the mechanism with
which mammal can learn. It is demonstrated that the amount of
changes in the synaptic strength of a synapse depends on the
relative timings of presynaptic and postsynaptic spikes. When a
postsynaptic spike occurs shortly after a presynaptic spike, the
synapse undergoes a long-term potentiation, and the increase
in synaptic weight decays exponentially as a function of the
difference between the two spike timings. The reverse is true
if a postsynaptic spike occurs before a presynaptic one. The
synapse experiences a long-term depression in this case. Learn-
ing with STDP rules has been studied by many researchers [11],
[12], [19], [20] in recent years. It is demonstrated in [12] and
[19] that by smartly choosing the action potential of the firing
neurons, the weight update in a memristor-based synapse ap-
proximately follows the shape of a biological STDP, providing
a feasible way to implement STDP-based learning. Neverthe-
less, for most learning examples demonstrated in the literature,
STDP is employed as a biologically plausible and empirically
successful learning rule without its underlying principle be-
ing explained. The application of STDP-based learning is also
mainly restricted to unsupervised learning. Despite of being ef-
fective, the usefulness of unsupervised learning is rather limited,
as most applications of neural networks nowadays are based on
supervised learning or reinforcement learning, which require the
neural networks to be able to approximate arbitrary functions.
Furthermore, how to conduct learning in a multilayer neural net-
work with the conventional free-running STDP algorithm is not
obvious. Nevertheless, most successes in various machine learn-
ing tasks are achieved by the deep neural networks [21]—[23]. In
addition, it is unclear how closely one should follow the weight
update curve in an STDP protocol in order to achieve a suc-
cessful learning. It is well known that the nanoscale memristor
devices based on resistive oxide or metallic nanowire generally
suffer more from spatial variations compared to silicon based
devices such as transistors [24]. The probabilistic filament for-
mation process also results in high temporal variation, leading
to the stochastic switching phenomenon observed in memristor
devices [25]. Therefore, tightly controlling device behavior is
extremely difficult and energy-consuming, especially consider-
ing that millions of memristor synapses are normally involved
in a large-scale neural network.

To tackle abovementioned difficulties, we apply a re-
cently developed hardware-friendly learning rule to memristor

521

crossbar-based SNNs in this paper. It is shown in [26] and [27]
that spike-timing (ST) information can serve as a good estima-
tion for gradient components needed in a stochastic gradient
descent (SGD) learning. This learning algorithm is particularly
suitable for memristor-based neural networks, as the dynamics
of the network is generally unknown due to process variations,
which often poses difficulties for learning algorithms that re-
quire the complete information of the neural network dynamics.
In order to deploy our learning rule in a memristor crossbar-
based network, several adaptations are made. A division-free
learning rule, which only keeps the sign information, is intro-
duced to get rid of the energy-consuming division. In addition,
a fixed-polarity network configuration is proposed to circum-
vent the problem that a memristor device can only represent
one type of synapse (either excitatory or inhibitory) by its na-
ture. Furthermore, one of the biggest issues that all the analog
and mixed-signal neural networks face is the detrimental effect
caused by the process variations. We examine how variations
in neuron circuits and memristor synapses affect the system-
level performance and provide corresponding solutions. The
main objective of this paper is not to propose a specific im-
plementation of memristor-based neural networks. Instead, we
focus on investigating how to conduct effective on-line learning
with memristor devices when realistic physical constraints are
present. With this goal in mind, algorithms and architectures
are developed to facilitate the learning in a memristor crossbar
structure. All the simulation results presented in this paper are
obtained from a simulator implemented in C++-. In the simula-
tor, behavior-level models are used to represent various circuit
components as well as memristor devices.

In the following, we briefly review the learning algorithm in-
troduced in [27] in Section II. In Section III, several adaptations
to the learning algorithm are proposed so that it can be applied
to a memristor crossbar-based neural network. In Section IV,
effects of different variations in neurons and synapses are exam-
ined to show the robustness of the learning algorithm. Bench-
mark results obtained with the proposed learning algorithms
and architectures are demonstrated in Section V. Section VI
concludes this work.

II. WEIGHT-DEPENDENT STDP LEARNING

Fig. 1 illustrates the configuration of a memristor crossbar-
based SNN. The ¢th neuron located at the /th layer is denoted
as x,li, where [ = 0,1, ..., 0. The number of neurons at layer [ is
denoted as NV;. Following the derivation in [27], the spike trains

from a presynaptic #! and a postsynaptic neuron até-“ can be
described by

zh[n] = Z(S [n — n,’;,m} (D

xﬁ“ [n] = Z 1) [n — nét,ﬂ 2)

where d[n] is the unit sample sequence. We restrict us to a
discrete-time implementation where spikes are expressed as
pulses. This type of implementation is very popular in hardware
SNNs. All the neurons are synchronous with a global clock,

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



522 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018
NN A
1
x"[n] X, |n
~J
!
g L e R R R et
~J
L] L] L L] L] L]
L] L] L] L] L] L]
L] L] L] L] L] L]
xy, [1] }% xy[n] }2&
4 LN ] @ L @ /I % L] &
| b |
Fig. 1. Illustration of a multilayer memristor crossbar-based spiking neural network.

and the synchronization period is called a tick, following the
convention used in [28].

The neuron model we use in this paper is a modified leaky
integrate-and-fire (LIF) model [26], [27], [29], although many
other neuron models can also be employed. The dynamics of
the neuron model is

+Zwmx7 [n—1]

‘Gl+l[n] — max (0 V1+1

— L =2l —1] -th{ﬁl) (3)
07 V}Hl [TL] < th§_+1
até-“ [n] = 1, le+1 [n] > thé-Jr1 & xé-“ n—1]=0
1-R, V"] >th™ &al ' n-1=1
“)

where w!; is the synaptic weight of the synapse connecting

L]
neuron x! and 1‘Z+1

the leakage, thé+1 is the threshold of the neuron, and R is a
random variable obeying the Bernoulli distribution that is used
to achieve a stochastic refractory period [27].

A variable stdp! ; and its arithmetic average over a finite

length of time can be defined as

V“rl is the membrane voltage, LZJr1 i

=aln-T](1—al[n—T-1))

WINsrpp
X E 1,]}4*1

m=1

stdp}; [n]

[n+m —1]

WINsrpp
_ Z xﬁ“ [n — m]) 5)
m=1
Dy
stdpl, = > stdpl;[n] /(Dp —T) (©)

n=T+1

where Dy is the learning duration, which serves as a design
parameter and 7' is the system delay for evaluating spikes. In (5),
WINgrpp is used to specify the window size of summation. It
is found in the simulations that a W I Ngrpp of one is enough
to feature an effective learning and a larger window does not
result in significant improvements [27]. Therefore, its value is
restricted to one in this paper.

It is shown in [27] that the gradient components needed in a
SGD learning process can be estimated according to

6,ulj+1 B E |:Stdp§j:| ~ stdp,lij

o =) TS @
o i ( Ni) ! (1 — xf)

6#2‘“ N E {stdpﬁj] ~ stdpﬁj .

owl, wl (T—pl) T 2 ®)
Wy Wi M wy; (1 — xl)

! represent the mean firing rates of neuron

x andacl+1 and 7! = ZHD’TH zhn ]/(DL -
sample mean of the time sequence ! [n] during one learning
iteration.

In a learning process, the errors at the output neurons need to
be propagated back to each synapse in the network. This can be
achieved through

where i} and ,ué*

T') represents the

(o) (o) l
a:uk —_ a:uk . aMJrl (9)
Owj; ot O
where
8/}, Niio 7 p+1
zil Z Z DD H 5 (10)

io=ki,-1=1 ippo=lij 1=jp=I+1 LP

Alternatively, a direct backpropagation is possible as shown
in (11)
oL [cstdpl+ ! }
= (11
T+1 I+1 1
ot (1=t

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

where cstdp’};l is the cross-layer STDP information with a

definition similar to the one in (5) except delay across multiple
layers are needed to be taken into considerations.

The intuition behind (7)—(11) is that each spike in an SNN
serves as a small perturbation to the system. By observing how
the outputs of the system change, we are able to estimate the
gradient at each point. More importantly, when the spike tim-
ings for the neurons are uncorrelated, the gradients associate
with each perturbation point can be estimated simultaneously.
After obtaining the gradients, we can conduct a gradient descent
learning with the objective to minimize the error function

1 X
EZgZ(ffZ)Q

k=1

12)

o

where e} = ﬁ — 17 is the error at each output neuron. Here,
¢ is the target mean firing rate of neuron 7.
With the error function defined in (12), the synaptic weights
can be updated according to (13) toward the gradient-descent
direction in order to minimize the error function.

N, N,
~0E 0oy} - ons,
Awl. = — E Nt S E o k13
wL] « L altz awfj 0% — ek awg‘] ( )

where « is the learning rate.

III. ALGORITHM ADAPTATIONS

In this section, we make several adaptations to the learning
algorithm presented in Section II so that it can be better ap-
plied to memristor-based neural networks. The configuration of
a typical memristor crossbar-based multilayer feedforward neu-
ral network is illustrated in Fig. 1. The triangles in the figure
represent neurons, and they are connected through memristor
synapses as shown in the figure. When a neuron fires, a voltage
is formed at the two terminals of corresponding memristors. The
currents flowing on the synapses are integrated at the input of
each neuron. A spike is emitted by a neuron if the accumulated
charge on that neuron exceeds a pre-defined threshold. In (3),
a current-based synapse is assumed. In circuit, this can be real-
ized by forcing a virtual ground condition at the input of each
neuron. Under this circumstance, the weight of a synapse, wf j
is proportional to the conductance of that synapse, Gf ;- In other
words, w! ; can be treated as a scaled version of G! ;- Therefore,
we use these two quantities interchangeably in the rest of this
paper for the ease of discussion.

Learning to classify the hand-written digits in the MNIST
dataset is employed as an example. To accelerate the simulation
process, a down-sampled dataset is used. The original 28 x 28
images are down-sampled to 16 x 16 images. Fig. 2 compares
the first 16 data in these two sets of images. It can be observed
that the down-sampled images preserve most important infor-
mation included in the original dataset. The real values from
the MNIST dataset is injected as an incremental membrane po-
tential for each input neuron. Ten output neurons are used to
represent corresponding ten digits. The objective of the learn-
ing is to infer the correct digit when an image is applied to the
neural network. The output neuron corresponding to the shown

Down-sampled MNIST
images (16 by 16)

Original MNIST images
(28 by 28)

Fig. 2. Comparison of the original MNIST images and the down-sampled
MNIST images.

digit should fire with a high density of py, whereas all other
neurons fire with a lower density of p;, . To test the trained neural
network, a digit is presented to the network, after an inference
duration of Dy, the output neuron with the highest firing density
is chosen as the winning neuron, and its corresponding digit is
picked as the inferred result.

For all the results reported in Sections III and IV, learning
is conducted on the down-sampled MNIST images and the first
500 images in the training set are used for learning. For test-
ing, all 10000 images in the test set are used. For each result
reported, 10 runs of learning are carried out. A run is a complete
learning process including several learning iterations, where one
iteration is a process of going through all 500 training images.
The error bars in the figure correspond to the 95% confidence
interval. The reason to use only the first 500 images in the train-
ing set for learning is to accelerate the process of evaluating the
learning algorithm and various proposed techniques. Neverthe-
less, benchmark performances obtained with the full training set
is reported in Section V for the purpose of comparing with the
state-of-the-art result.

The first issue needs to be addressed is the computation of
the division, as shown in (7) and (8). The term (1 — z!) can
be neglected without introducing a significant error, consider-
ing the sparsity of spike trains outputted by each neuron. In a
purely digital implementation, the divide-by-weight operation
in (8) can be easily realized, as the weights are stored in the
memory in a digital form. It is, however, not straightforward
to conduct this division in a memristor crossbar implementa-
tion, as the weights are stored as analog values in the mem-
ristors. Power-consuming readout and quantization would be
needed if a similar division operation in a digital implementa-
tion were employed. Fortunately, it was shown in [26] and [27]
that division with only one-bit precision (i.e., with only the sign
information) can still result in a successful learning. In other

words, we can use the term stdp}; / sgn(w};) to approximate
the gradient in the learning process, where sgn(-) specifies the
sign operation. To illustrate this, simulations are conducted. The
learning results obtained with three different configurations are
compared in Fig. 3. The first configuration is the baseline that
employs (8) for weight updates. The second configuration uses

the same learning rule except the terms (1 — z!) in (7) and (8)

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



524

100 - -
95 4 [Jbaseline
[ simpler division
;\? [ sign only
~ 90+
2
©
x
O 85+
£
S
80
75
Training Test
Fig. 3. Comparison of the learning performance achieved with and without

exact division.

are ignored. The third configuration is the division-free con-

figuration, where the term stdp! i/ sgn(w! ;) is employed for a
weight update. In other words, a STDP-like rule is applied to
excitatory synapses, whereas an anti-STDP-like rule is applied
to inhibitory synapses. Good learning results are achieved in all
three cases. The results obtained with the baseline algorithm is
slightly better than other simplified versions. Nevertheless, us-
ing the gradients estimated from the simplified rules can result
in a comparable performance while remarkably reducing the
computational complexity.

Even though the gradient estimation can be greatly simpli-
fied, the weight update still poses some difficulties in a mem-
ristor crossbar-based implementation. Different from a digital
synapse, a memristor-based analog synapse can only represent
a positive weight by its nature. A negative weight can be ob-
tained through reversing the polarity at the current summing
node. Therefore, a synapse that spans both positive and nega-
tive range can be implemented with two memristors. Through
controlling the polarities of spikes, the effective synaptic weight
is the difference between the resistances of the two memristors.
However, when such a synapse is employed in the proposed
algorithm, a mechanism of detecting the polarity of the effec-
tive weight is needed. How to conduct such a detection in an
energy-efficient way is not obvious. To circumvent this diffi-
culty, we propose a network configuration with fixed polarities.
In the configuration, each synapse is either excitatory or in-
hibitory during the whole learning process. The polarities of
the synapses are decided before the learning starts. Fig. 4 illus-
trates this concept by showing all the synapses connected to one
presynaptic neuron. The excitatory and inhibitory synapses in
the same column are complementary. Polarities of the synapses
can be chosen randomly or with some strategies. The hardcoded
configuration in Fig. 4(a) is conceptually simple yet not flexi-
ble in practice. A more programmable configuration is shown
in Fig. 4(b), which is compatible with a standard densely con-
nected crossbar structure. An excitatory synapse is achieved by
programming the inhibitory synapse to G, the minimum con-
ductance of the memristor devices. The “off” synapses of the
network need to be refreshed periodically to ensure they stay
at “off” state as the learning is going on. To verify the effec-
tiveness of the proposed network configuration, simulations are

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

Excitatory -l> 1 % %
Inhibitory -l> L % % &
(a)
Excitatory -l> 1 @ %
Inhibitory -l> v % % %
(b)
Fig. 4. Proposed fixed-polarity memristor crossbar-based neural network.

(a) Polarities of the synaptic weights are hardcoded. (b) Polarities of the synaptic
weights are run-time programmable.

100
; . .
95 - [ flexible-sign, 100 HU
[ fixed-sign, 100 HU
Q) I fixed-sign, 150 HU
% 90 I fixed-sign, 200 HU
T
14
T 854
o
3
80
75
Training Test

Fig. 5. Comparison of the classification correct rate for several network
configurations. The flexible-sign configuration is the case where the synap-
tic weights can be programmed to be either excitatory or inhibitory, whereas the
fixed-sign configuration corresponds to the configurations shown in Fig. 4.

carried out and the obtained results are compared with the base-
line result in Fig. 5. In the figure, the network with fixed-polarity
synapses has a slightly deteriorated performance compared to
the flexible-polarity one when the same number of hidden-layer
units are used. This is expected since restricting the polarity
of each synapse reduces the entropy of the network. To give
a fairer comparison, the learning results obtained by networks
with more hidden-layer units are also compared. As the number
of hidden-layer units increases, the performance is improved and
the performance loss due to fixing the polarities of the synapses
are compensated.

There are two ways of updating weights according to (13).
One is to store the spike information temporarily in a memory
and update the synaptic weights only once at the end of one
learning iteration, as shown in (14).

stdpl i
sgn (w! ]-)

1 +1
ij = €

(14)

We call this way of updating weights a cumulative update.
Another way is to update the synaptic weight whenever there is

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

BLo BL, BL,
Juu
i
% )
% e
Axong
= "
L
. S
Axon, % %
_D :'3 ='1 Wl.l-
L
N S
Axon, % %
_l> H1E = wL,”
Fig. 6. An example of programming the memristor crossbar when the pro-

posed learning algorithm is employed.

an STDP event, as shown in (15).
o1

Awt. = o J
Wi ; @ sgn(wf;j) (D, —T)

~stdp; ] (15)

We call this type of updating an incremental update. The
incremental update does not require memory to hold the spike-
timing information as this information is implicitly accumulated
in the memristor itself. It is expected that these two ways of up-
dating weights lead to similar results, considering the weight
changes during one iteration are small. Indeed, a good rule of
thumb is to control the learning rate such that the weight changes
in one iteration are less than one thousandth of the weights
[30]. One possible way of updating weights according to (14)
and (15) is illustrated in Fig. 6. A one-transistor-one-memristor
configuration is assumed in the figure. For each axon, there are
two word-lines (WLs) controlling the excitatory and inhibitory
synapses, respectively. Whenever a WL is selected, the conduc-
tances of the memristors on that row can be altered through
injecting currents through the bit-line (BL). Either pulse trains
with a programmed pulse numbers or pulses with a modulated
pulse width can be used for programming purposes. A pulse train
is used for demonstration in Fig. 6. The programming schedule
of the cumulative update is different from that of the incremental
update. For the cumulative style, updating the synaptic weight
is similar to writing the memory in a memristor-based memory.
This is illustrated in Fig. 7. The conductances of the memris-
tors are changed row by row. Since the two rows associated
with the same axon is mutual-exclusive in the locations of the
memristor. These two rows can be updated simultaneously, as
shown in Fig. 7. In contrast, for the incremental update, all the
excitatory synapses can be updated together, whereas all the

525

Cumulative Incremental

tick n tick 1 tick n

— O Selected
Unselected

T

Fig. 7.  Comparison of the updating schedules for the cumulative and incre-
mental update style.

inhibitory synapses can be updated together. This is because
stdpé ; [n] only takes three values: —1, 0, and 1. Therefore, all
the synapses connected to the same postsynaptic neuron ex-
perience the same change in magnitude. The sign information
implied by the term sgn(w! ]-) in (15), nevertheless, requires the
positive and negative synapses to be programmed separately. In
addition, only active axons need to be selected for an update,
as the value of stdp|;[n] for inactive axons is 0. In Fig. 7, it is
assumed that all the axons are active. In spite of the fact that the
synapses associated with different axons can be updated simul-
taneously, an incremental update requires the update to occur
at every tick, as illustrated in Fig. 7. It is worth noting that the
method of updating weights presented in Figs. 6 and 7 is just
one example of illustrating how the proposed learning algorithm
and architecture function conceptually. There exist other ways
of updating weights based on the actual need.

Fig. 8 compares the results obtained with these two different
weight update styles. For the purposes of comparison, both the
hardcoded and the programmable network configurations are
employed. All four cases yield similar learning results. From
a circuit designer’s point of view, an incremental update has
the advantage that it requires less amount of memories to store
the ST information, whereas the cumulative update style is more
efficient as the number of conductance update is greatly reduced.
Another advantage of the cumulative update, as is demonstrated
in Section IV, is that it is more robust against variations in
memristors.

For a real memristor device, we might not always be able to
control the increment and decrement in conductance linearly. In

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



526

100 ~
= )
95 ] hardcoded & cumulative
[ programmable & cumulative
;\? [ hardcoded & incremental
\q—; 90 [l programmable & incremental
©
o
D 854
0]
=
S I i
80 ﬂ
75
Training Test
Fig. 8. Comparison of the learning performances obtained with the cumula-

tive/incremental weight update. Both the hardcoded and programmable fixed-

polarity network configurations are simulated.

101 Linear w.r.t resistance
—o— Exponential /
0.5 ] —— Linear w.r.t conductance /
R —v— Square root /
)
\E/ 0.6
[0]
o
o
S
3 0.4 y
o
O 0.2
T T — T T 1
0 200 400 600 800 1000
Program Pulses
Fig. 9. Illustration of different conductance-changing characteristics.

other words, the weight change in a memristor may be a function
of the weight itself. In general, the change of the conductance
of a memristor device follows

AG,’L’»J» =g (Asl

LG (16)

where sfj is a linearly (or approximately linearly) controllable
state variable.

To more accurately capture the characteristics of a memristor
device, we employ the VTEAM model in [31]. si j in (16) corre-
sponds to the state variable in the VTEAM model. Linear control
over As! ; can be achieved by modulating the pulse width or the
number of pulses that is used to program memristors. Various
conductance-changing characteristics are illustrated in Fig. 9
and the recognition accuracies achieved with these models af-
ter learning are compared in Fig. 10. In this set of simulations,
only g(-) that are even functions of As! ; are considered. In
other words, increments and decrements in weights are sym-
metrical. The more general asymmetrical case is considered
in Section IV. A G of 10755 and G, of 10725 are used,
which correspond to the minimum and the maximum conduc-
tance that the memristors can achieve. The linear-R (defined as
linear with respect to resistance) model shown in (17) and the
exponential models shown in (18) are commonly used models in

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

100
954 JJE [ JLinearw.rt.R
. [ Exponential
S 904 B Linear w.rt. G
o I Square root
©
oY 85+
©
9}
S 804
[}
&)
75 &‘
70 .
Training Test
Fig. 10. Comparison of the learning performances achieved with different

conductance-changing characteristics shown in Fig. 9.

VTEAM [31].
Rorr — R -
Gl = (RON 2O (6l son)) (17)
: Soff — Son :
Sl'*scn
eXp ( }L(St:ﬂj’_son ) >
Gl = 18
Y Ron (1%

The linear-G (defined as linear with respect to conductance)
model is the one assumed in (14) and (15). Since both linear-R
and exponential models are convex functions of the weight, we
also compare the results obtained from a concave dependency
on weight, a square-root model, in order to demonstrate the
effectiveness of the proposed algorithm. In a square-root model,
the relationship between the state variable s ; and the weight is

Gl; = Gorr + (Gox — Gorr)

As shown in Fig. 10, impressive results can be achieved from
all conductance-changing characteristics, even for the badly-
behaved linear-R characteristic which may introduce many sad-
dle points in the learning. This demonstrates the effectiveness
and robustness of the proposed learning algorithm when applied
to different memristor devices.

In principle, the conductance of a memristor device can be
adjusted continuously through, for example, a pulse-width mod-
ulated voltage pulse. Nevertheless, the granularity of the con-
ductance change, in reality, might be restricted by the device and
the programming circuit. In training neural network models, a
rule of thumb is to control the weight change to be less than
one thousand of the weight itself. However, such a fine granu-
larity might be hard to achieve with a memristor device. Fig. 11
investigates how the weight-programming granularity affects
the learning. In the simulation, an exponential weight-changing
characteristic is used for demonstration. The maximum allowed
change in the state variable s, which is called Asy, .y, is swept
from 1% to 5% in the simulation. The minimum programming
granularity, whichis called As,,i,, is determined by both A sy, .«
and the number of bits (NOB) used to represent the program-
ming voltage pulses. For example, a 4-bit precision indicates

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

] baseline [l forced minimum update [l =-A

80 As,..=0.01 As,,.=0.02 As, .. =0.05
70
—~ 60+
X
= 50 1
(&}
O 404
3
Q -
£ 30
B 20 -
ke
104
04
0 4 8 - 0 4 8 - 0 4 8
Number of bits
Fig. 11. Comparison of the test accuracies achieved with different program-

ming granularities.

that the absolute change in conductance can only be a multi-
ple of 2-1. ASpax. As shown in the figure, learning with a
baseline updating method experiences a degradation in perfor-
mance when a As,, .« of 1% and a NOB of 4 is used, which
corresponds to a programming granularity of 0.0625%. Such a
degradation in the performance is mainly attributed to the fact
that small changes are rounded to zero and are not applied to the
weight updates. One method that can mitigate this problem is to
force a minimum update on the weight. In other words, in the
case where the weight update is less than the minimum allowed
weight update, the minimum amount is applied. Such a method
indeed helps improve the performance, as shown in Fig. 11. A
more effective approach is to use a ¥ — A modulation, which
is a well-known technique to represent high-precision data with
low-precision ones. The > — A modulator used here can be
conveniently implemented with following equations

A [n] = {AS [nfs o [n]J Aswin  (0)
Asing [n+ 1] = Asine [n] + As [n] — As' [n] 201

where As'[n] is the actual change in the state variable and it is
rounded to a multiple of As,i, in (20). As;y[n] is the output of
the integrator used to hold the residue generated in the 3 — A
modulation.

With the help of the ¥ — A modulation, the requirement on
the programming granularity is greatly reduced as shown in
Fig. 11. It is even possible to use only one programming levels
to achieve a successful learning. A granularity of 5% is enough
for the learning. Such a relaxed requirement on the programming
granularity is mainly attributed to the fact that small changes are
accumulated in the integrator before applying to the memristors.

IV. NON-IDEALITIES

One of the biggest problems with the analog implementa-
tions of neural networks is the performance degradation due to
process variations. Conventionally, an off-line learning suffers
from the mismatches between the assumed device parameters in
the learning process and the actual device parameters in the in-
ference phase. The proposed on-line learning, however, tackles
this problem through an on-chip feedback, where the learning

527

LT B
1

CLK

1 Tnl—

Fig.12.  Anexample of the analog neuron that can be employed in a memristor
crossbar-based neural network.

is conducted in situ with the actual devices. Nevertheless, there
still exist some non-idealities in the real circuits that might possi-
bly deteriorate the performance. In this section, we examine the
effects of various non-idealities in neuron circuits and synapses,
respectively.

A. Neuron Non-idealities

Fig. 12 illustrates one possible realization of the neurons in
the proposed memristor crossbar-based neural network. An in-
tegrator sums up the currents from all firing neurons. A virtual
ground is forced at the input of the neuron, as the proposed
algorithm assumes a current-based synapse. At the output of the
integrator, a clocked comparator is used to sample the mem-
brane voltage. Once the voltage exceeds the threshold voltage,
the comparator outputs a logic high, which serves as a voltage
spike. Meanwhile, a current packet is delivered to the neuron
through a one-bit digital-to-analog converter (DAC) in order
to implement the dynamics shown in (3). The comparators are
clocked by a global clock and the neurons are only allowed to
spike synchronously with the clock. There are two important
parameters in the neuron model as shown in (3) and (4): the
threshold voltage and the leakage. These two parameters can be
controlled well in a digital design. However, they are subject to
variations in an analog neuron. As shown in Fig. 12, the varia-
tion of the threshold voltage mainly comes from the feedback
DAC, whereas the variation of the leakage can be attributed to
three terms. L is the leakage from non-selected memristors.
It can come from the sneak-path leakage or the subthreshold
leakage of transistors, depending on the detailed implementa-
tion of the memristor array. L, is the leakage from the feedback
DAC or any other branches that are connected to the input of the
integrator. L3 represents the leakage at the output of the integra-
tor, including the kick-back noise from the comparator and the
leakage that is intentionally put at the output of the integrator.
Lj can also model the leakage caused by the non-ideality of the
integrator, namely the low-frequency error due to the finite gain
of the operational amplifier [32].

Since the threshold and leakage terms do not show up in the
proposed learning algorithm, it is expected that learning is some-
what robust against variations in these two parameters. Fig. 13
compares the results obtained with different levels of variations.
In the simulation, the variations of the threshold voltage and

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



528

80

794 1 T
] ! 1
o
< 77 % i AT‘ i/
>
o
S 76~
3
< 757 —=— variation in threshold
= e i
8 74 ] —e— variation in leak
'_
73
72 1+ T T T T
0.0 0.1 0.2 0.3 0.4
oM
Fig. 13. Comparison of the test accuracies obtained with different levels of

leakage and threshold variations. Learning is robust against variations in these
two parameters.

Py
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
80 T T T T T T T T T
79
78 \:‘ I
X 7{g—m8 ___—1
> 764 ES
(]
© 75
5
744 . .
£ —m=— White noise
% 73] —e— Blank-out noise
3 724
714
70 1+ T T T T
0.0 0.1 0.2 0.3 0.4
[
Fig. 14. Comparison of the test accuracies obtained with different levels of

noises in changing the conductances of memristors. Two types of noises are
considered: a normally distributed white noise with a standard deviation of o
and a blank-out noise with a blank-out probability of p;.

the leakage for each neuron are treated as normally distributed
random variables and they are added to the nominal threshold
voltage and leakage. The standard deviations of these random
variables are swept and the normalized value are shown in the x-
axis. As shown in the figure, the learning is quite robust against
the variations in both the threshold voltage and the leakage. This
is good news to analog neurons, which typically have a good
energy-efficiency and compact size yet suffer from process vari-
ations.

B. Synapse Non-idealities

Itis well known that memristors are subject to significant vari-
ations. There are two types of variations associated with each
memristor device: the temporal variation and the spatial varia-
tion. The temporal variation mainly comes from the stochastic
formation of the conducting filament in a memristor device,
whereas the spatial variation originates from the mismatch be-
tween devices when they are fabricated.

Let us examine the effect of the temporal variations first. It
was observed that the conductance change in a memristor device
is stochastic in nature, resulted from the probabilistic formation
of the conducting filament [24], [25]. Fig. 14 compares the
learning results obtained with two different types of noises. One

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

is a white noise with a Gaussian distribution. With this noise, the
actual weight update is scaled by a random variable with a mean
of 1 and a standard deviation of o. Another noise considered
here is a multiplicative blank-out noise that prevents the weight
update to be conducted, and the blank-out rate is p;. As shown in
the figure, the proposed algorithm is robust against noise in the
weight update, making it well-suited for memristor-based neural
network where significant variations exist. The learning rule can
tolerate variations and noises as long as they are not severely
biased. This robustness mainly comes from the stochastic nature
of the learning algorithm.

Next let us discuss the spatial variation. Ideally, when we
apply voltage pulses with the same amplitude and the same
duration to two synapses with the same weight, we expect to
see identical changes in the weights for these two synapses ac-
cording to (16). In reality, however, there exist variations in
each memristor synapse. As a result, different weight updates
may occur even when the same write voltage pulse is applied.
Fig. 15 compares the learning results obtained with different
levels of variations in controlling s. In the simulation, we scale
the weight update for each synapse by a normally distributed
random variable with a mean of 1. Since we are interested in the
spatial variation, these random variables are fixed throughout
the learning in one run. When the variations in incrementing
and decrementing of the weights are the same, or mathemati-
cally when the g(-) in (16) is an even function of As! j» the curve
with a label of “Sym” in the figure is produced. It is shown that
the learning is robust against this type of variations. On the other
hand, when the variations are not symmetrical, learning is dete-
riorated, especially for the case where the incremental update is
employed. It is worth noting that the performance degradation
caused by the imbalance in weight update is not unique to the
proposed learning algorithm. Rather, it is a common threat to all
SGD learning. Such a performance degradation is attributed to
the bias term generated by the imbalance in the weight updates.
More formally, assume the weight update is

Aw = Awy + ny, (22)

where Awy is the desired weight update that helps move the cost
function to its minimum and n,, is the noise term that comes
from either the stochastic nature of a SGD learning process or
from the STDP term.

For the convenience of analysis, let us assume n, obeys
a normal distribution with a probability density function of
o(ny /o,), and g(-) has the following form

Aw >0
Aw <0

9p Aw,

g (Aw,w) = (23)

Gn Aw,

With above assumptions, it can be shown that the expectation
of the weight update becomes

(gp - gn) On

E(Aw) = Awy + ——F——

In a normal SGD, E(Aw) should be equal to Awy, as the
noise term n,, is unbiased, and the SGD is robust against a
zero-mean noise. When the weight update in a memristor is

(24)

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

529

804 _ _ ~ _ )

70
< 60 ] ] Sym+inc
< ] i [_] Asym+inc
2 50 [_]Asym+cum:B1_M0_D128
o 40 1 [_] Asym+cum:B1_MO0_D256
3 i ] Asym+cum:B1_M0.5_D256
S 304 E [ Asym+cum:B1_M0.9_D256
% 0] I Asym+cum:B10_M0.9_D256
R 0 ] Il Asym+cum:B100_MO0.9_D256

I ] I

0
0.0 0.1 0.2 0.3 0.4
o/u

Fig. 15.

Comparison of the test accuracies achieved with different non-idealities and learning hyperparameters. In the figure, “Sym” and “Asym” represent that

the variations in incrementing and decrementing the conductance are symmetrical and asymmetrical, respectively. “inc” and “cum” represent the incremental and
the cumulative update style, respectively. The numbers after letter “B”, “M” and “D” represent the size of the mini-batch, the coefficient for the momentum, and

the learning duration, respectively.

not symmetrical, however, a bias term is generated, as shown
in (24). This bias term is detrimental to learning, as a constant
error that yields a weight update that is equal to the bias term is
needed to maintain a zero weight update in the steady state.

To reduce this bias term, one way is to make the updates of
weights in memristors as symmetrical as possible. This may
be done by properly engineering the device. Another way is to
reduce o,,. This can be achieved by using a cumulative update
style, as noise is first averaged out before applying to the mem-
ristors. Fig. 15 compares the results achieved with the incre-
mental and cumulative updates. The cumulative update is help-
ful in mitigating the performance degradation brought by the
asymmetrical variations. Nevertheless, when the variation be-
comes more significant, more advanced techniques are needed.
Three techniques are employed here to reduce the noise asso-
ciated with the gradient-descent process. The first one is to use
a longer learning duration. Increasing the learning duration is
helpful in reducing the noise associated with the estimated gra-
dients. As the proposed learning algorithm is based on stochastic
approximation, a longer evaluation time can lead to a more ac-
curate gradient [27]. The second technique is to use momentum
[33] as

oF
Aw(t) =7vAw(t—1) —«a- D (t)

The technique of momentum is widely used in gradient de-
scent learning. Applying the momentum to a weight update is
similar to applying a filter. It is expected that a larger momen-
tum coefficient -y can lead to a better filtration of high-frequency
noise, resulting in better performance when the asymmetrical
variations exist. The third technique introduced is to use a mini-
batch [33]. Momentum can help filter the updated weight in
time domain, whereas the mini-batch technique helps filter the
updated weight by averaging over multiple input samples. The
results obtained with these three techniques are compared in
Fig. 15. It is observed that all proposed techniques successfully
improve the learning results. A longer learning duration, a larger
momentum coefficient, and a bigger mini-batch size are helpful
in achieving a better performance.

In addition to the random asymmetrical variations, a system-
atic asymmetrical weight-changing characteristic might exist in

(25)

1.0
B .
0.8
)
§, 0.6
g —— Incremental
g —O— Decremental
T 044
p=} V4
© /
c /
o]
© 024 /
j/
: T T T T 1
0 200 400 600 800 1000
# of Program Pulses
Fig. 16.  Illustration of the weight-changing characteristics of the memristor

model employed in [11].

a real memristor device. Such an asymmetrical characteristic
was observed in many different fabricated memristors. To study
this effect, we adopt the memristor model used in [11] for sim-
ulations. The increment and decrement of the conductances are
expressed as

G — Gor
AGP = ap €Xp (—bp M) (26)
Gon— G
AG, =q, —by ———— 2
G = an exp ( by G Goff> 27

The weight-changing characteristic of this model is illustrated
in Fig. 16. As observed in the figure, the slope for incrementing
and decrementing the conductance are different. Such an asym-
metrical conductance-changing feature poses a similar problem
in learning as the asymmetrical variations. The abovementioned
three techniques can be exploited here to improve the perfor-
mance in this case as well. The results are compared in Fig. 17.
For comparison purposes, the learning results obtained from a
symmetrical linear-G model is also simulated. It is observed in
the figure that while the increased learning duration, momen-
tum coefficient and mini-batch size do not change the results
obtained from the symmetrical model, it brings remarkable im-
provements to the asymmetrical case. Such a result demonstrates

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



[ 1B1_M0_D128 [ ]B1_M0_D256 [__]B1_M0.1_D256
[]B1_M0.5_D256 [] B1_M0.9_D256 [l B5_M0.9_D256
[ B20_M0.9_D256 [l B100_M0.9_D256

80+ g
70
60
50
40+
30
20+
10

Test accuracy (%)

Asymmetrical Exponential Linear-G

Memristor model

Fig. 17. Comparison of the test accuracies obtained with different hyperpa-
rameters. The numbers after letters “B”, “M”, and “D” represent the size of
the mini-batch, the coefficient for the momentum, and the learning duration,
respectively.

that the proposed learning algorithm is effective for networks
consist of various memristor models.

One possibility to further improve the performance when an
asymmetrical conductance-changing characteristic is present is
to encourage a small weight. The intuition behind this is that
an asymmetrical characteristic such as the one shown in Fig. 16
tends to force the synaptic weights of the neural network to
distribute toward the region where the slopes for increasing
and decreasing the weight are approximately equal. This can
be seen from (24) where the term (g, — g,, ), //27 serves as
a regularization term. Recognizing that, one can intentionally
strength the decrement in the weights. Such an arrangement
is similar to the regularization used in training deep ANNS.
Mathematically, this can be expressed as

(28)

Al — Aw, Aw-w >0
T\ AMAw, Aw-w <0

where Aw’ is the actual weight update. The coefficient A is
a hyperparameter. A larger A implies that small weights are
more preferred. Similar to the regularization, the introduction
of A helps achieve smaller synaptic weights as well. This can
be very useful in reducing the power consumption. A signifi-
cant portion of power consumed in a memristor crossbar-based
neural network is generated by the currents that flow through
the memristors. This type of power consumption is proportional
to > |w;;|. Apparently, smaller synaptic weights are helpful in
keeping this power consumption low.

Figs. 18 and 19 compare the test accuracy and the sum of the
absolute values of all the synaptic weights in the neural network.
Itis observed that the test accuracy is improved for the asymmet-
rical exponential model when a A that is larger than 1 is used. It
is also noticed that increasing X is helpful in reducing the abso-
lute values of the synaptic weights. In addition, the performance
of the learning is not affected noticeably until A becomes larger
than 10. Such an insensitivity to A also demonstrates again the
robustness of the proposed learning algorithm.

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

Test accuracy (%)
(o2}
o

—u— Asymmetrical exp
—e— Symmetrical exp

451 —a— Linear w.r.t. conductance
40 T T
1 10 100
A
Fig. 18. The obtained test accuracy as A increases.
0.40
0.35 —=— Asymmetrical exp
—e— Symmetrical exp
0.30 4 —a— Linear w.r.t. conductance
0.25
E 0.20
“ 0.15
0.10
0.05 - T
0.00 T T
1 10 100
A
Fig. 19. The obtained sum of the absolute synaptic weights in the neural
network when different A is used.
TABLE I
BENCHMARK PERFORMANCE ACHIEVED WITH DIFFERENT
MEMRISTOR MODELS
Type of network Memristor model Networlf Test
configuration | accuracy
. . 784-300-10 97.03%
. asymmetrical exponential
Memristor 784-400-10 97.10%
crossbar . 784-300-10_| 96.51%
Linear-G
784-400-10 96.76%
Non-memristor o
baseline [27] - 784-300-10 97.20%

V. BENCHMARKS

In this section, the proposed learning algorithm and various
techniques are examined with the standard MNIST benchmark.
The original 28 x 28 images are employed. The complete train-
ing set that contains 60000 hand-written digits are used for
training and the test is conducted with the whole test set. Two
different memristor models are evaluated: the linear-G model
and the asymmetrical exponential model. The maximum and
minimum achievable conductances are set as 1 mS and 1 S, re-
spectively. Only the results obtained from the cumulative update
are reported as this update style can yield better performance,
as shown in previous sections. The benchmark results are sum-
marized in Table 1. For all the results shown in the table that are
obtained from memristor-based network, a mini-batch size of

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND MAZUMDER: LEARNING IN MEMRISTOR CROSSBAR-BASED SNNs

100 and a momentum coefficient of 0.9 are used. For the asym-
metrical exponential model, a A of 32 is used. For the purpose
of comparison, the results reported in [27], which is obtained
from the original algorithm, is also compared in Table I.

100 iterations are conducted. During each iteration, all 60000
training images are fed to the neural network. Test accuracy is
recorded for each iteration. The test accuracies for memristor-
based network shown in Table I are obtained by averaging the
accuracies obtained during the 91th iteration and the 100th itera-
tion. Good recognition accuracies are achieved for both memris-
tor models, demonstrating the efficacy of the learning algorithm.

VI. CONCLUSION

In this paper, we propose to use memristor crossbar to conduct
learning tasks with the help of a weight-dependent STDP learn-
ing rule. The original learning algorithm is tailored to fit into
the memristor crossbar context. It is demonstrated that only sign
information associated with each synaptic weight is necessary
to conduct an effective learning. To reduce the overhead posed
by the sign detection, a fixed-polarity network configuration is
proposed with two different programming styles. In order to
demonstrate our proposed learning algorithm and hardware ar-
chitecture can be applied to various memristor devices, we show
examples of successful learning with different conductance-
changing characteristics. It is found that even though certain
conductance-changing behaviors outperform the others, the dif-
ference is marginal. In addition, we show that our proposed
learning system is quite robust against different types of varia-
tions in device parameters. The only variation that may lead to a
degraded performance is the asymmetrical variation in the con-
ductance update. We propose multiple techniques to mitigate
the performance degradation caused by this non-ideality. The
proposed learning algorithm and techniques are verified with
the help of the MNIST benchmark task. Recognition rates of
97.10% and 96.76% are achieved by two memristor crossbar-
based SNNs with two different memristor models.

REFERENCES
[1] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83,
2008.
L. Chua, “Memristor—The missing circuit element,” IEEE Trans. Circuit
Theory, vol. CT-18, no. 5, pp. 507-519, Sep. 1971.
0. Kavehei, A. Igbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, and D.
Abbott, “The fourth element: Characteristics, modelling and electromag-
netic theory of the memristor,” Proc. R. Soc. London A Math. Phys. Eng.
Sci., vol. 466, no. 2120, pp. 2175-2202, 2010.
A. Chanthbouala et al., ““A ferroelectric memristor,” Nature Mater.,vol. 11,
no. 10, pp. 860-864, 2012.
S. L. Johnson, A. Sundararajan, D. P. Hunley, and D. R. Strachan, “Mem-
ristive switching of single-component metallic nanowires,” Nanotechnol-
0gy, vol. 21, no. 12, 2010, Art. no. 125204.
J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memiristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, no. 7, pp. 429-433,
2008.
D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-based multilayer neural networks with online gradient de-
scent training,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10,
pp. 2408-2421, Oct. 2015.
M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memris-
tor crossbar-based neuromorphic computing system: A case study,” [EEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 10, pp. 1864—1878, Oct.
2014.

[2]
[3]

[4]
[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
(33]

531

S. P. Adhikari, H. Kim, R. K. Budhathoki, C. Yang, and L. O. Chua,
“A circuit-based learning architecture for multilayer neural networks with
memristor bridge synapses,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 62, no. 1, pp. 215-223, Jan. 2015.

D. Chabi, Z. Wang, C. Bennett, J.-O. Klein, and W. Zhao, “Ultrahigh
density memristor neural crossbar for on-chip supervised learning,” IEEE
Trans. Nanotechnol., vol. 14, no. 6, pp. 954-962, Nov. 2015.

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device
variations in a spiking neural network with memristive nanodevices,” IEEE
Trans. Nanotechnol., vol. 12, no. 3, pp. 288-295, May 2013.

T. Serrano-Gotarredona, T. Prodromakis, and B. Linares-Barranco, “A
proposal for hybrid memristor-CMOS spiking neuromorphic learning sys-
tems,” IEEE Circuits Syst. Mag., vol. 13, no. 2, pp. 74-88, Secondquarter
2013.

J. A. Starzyk and Basawaraj, “Memristor crossbar architecture for syn-
chronous neural networks,” IEEE Trans. Circuits Syst. 1, Reg. Papers,
vol. 61, no. 8, pp. 2390-2401, Aug. 2014.

C. M. Bishop, Pattern Recognition and Machine Learning. Berlin, Ger-
many: Springer, 2006.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in Proc. 2015 Int. Joint Conf. Neural Netw.,
2015, pp. 1-8.

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha,
“A digital neurosynaptic core using embedded crossbar memory with 45pJ
per spike in 45nm,” in Proc. 2011 IEEE Custom Integr. Circuits Conf.,
2011, pp. 1-4.

P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time
classification and sensor fusion with a spiking deep belief network,” Front.
Neurosci., vol. 7, p. 178, 2013.

Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” Int. J. Comput. Vis.,
vol. 113, no. 1, pp. 54-66, 2015.

B. Linares-Barranco, T. Serrano-Gotarredona, L. A. Camunas-Mesa, J.
A. Perez-Carrasco, C. Zamarrefio-Ramos, and T. Masquelier, “On spike-
timing-dependent-plasticity, memristive devices, and building a self-
learning visual cortex,” Front. Neurosci., vol. 5, 2011, Art. no. 26.

P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Front. Comput. Neurosci., vol. 9, p. 99,
2015.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Syst.,
2012, pp. 1097-1105.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S.
Bengio, “Why does unsupervised pre-training help deep learning?” J.
Mach. Learn. Res., vol. 11, pp. 625-660, 2010.

P. Knag, W. Lu, and Z. Zhang, ““A native stochastic computing architecture
enabled by memristors,” IEEE Trans. Nanotechnol., vol. 13,n0. 2, pp. 283—
293, Mar. 2014.

S. H. Jo, K.-H. Kim, and W. Lu, “Programmable resistance switching in
nanoscale two-terminal devices,” Nano Lett., vol. 9, no. 1, pp. 496-500,
2008.

N.Zheng and P. Mazumder, “Hardware-friendly actor-critic reinforcement
learning through modulation of spike-timing-dependent plasticity,” IEEE
Trans. Comput., vol. 66, no. 2, pp. 299-311, Feb. 2017.

N. Zheng and P. Mazumder, “Online supervised learning for hardware-
based multilayer spiking neural networks through the modulation of
weight-dependent spike-timing-dependent plasticity,” IEEE Trans. Neural
Netw. Learn. Syst., to be published.

F. Akopyan et al., “TrueNorth: Design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Design
Integr. Circuits Syst., vol. 34, no. 10, pp. 1537-1557, 2015.

A.S. Cassidy et al., “Cognitive computing building block: A versatile and
efficient digital neuron model for neurosynaptic cores,” in Proc. 2013 Int.
Joint Conf. Neural Netw., 2013, pp. 1-10.

G. E. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” in Neural Networks: Tricks of the Trade. Berlin, Germany:
Springer, 2012, pp. 599-619.

S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A general model for voltage-controlled memristors,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 62, no. 8, pp. 786-790, Aug. 2015.

R. Stata, “Operational integrators,” Analog Dialogue, vol. 1, pp. 1-9, 1967.
G. E. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” in Neural Networks: Tricks of the Trade., New York, NY: Springer,
2012, pp. 599-619.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



532

Nan Zheng (S’13) received the B.S. degree in
information engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2011, and the M.S de-
gree in electrical engineering from the University of
Michigan, Ann Arbor, in 2014, where he is cur-
rently working toward the Ph.D. degree in electrical
engineering.

In the summer of 2012, he had an internship at
Qualcomm, CA, where he was involved on develop-
ing the antenna system for the next-generation com-
munication network. His research interests include
low-power circuit design, modeling and optimization with an emphasis on
machine-learning applications.

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 17, NO. 3, MAY 2018

Pinaki Mazumder (S’84-M’87-SM’95-F’99) re-
ceived the Ph.D. degree from the University of Illinois
at Urbana-Champaign, Urbana, in 1988.

He is currently a Professor with the Department of
Electrical Engineering and Computer Science, Uni-
versity of Michigan, Ann Arbor. He was for six years
with industrial R&D centers that included AT&T Bell
Laboratories, where in 1985, he started the CONES
Project—the first C modeling-based very large scale
integration (VLSI) synthesis tool at India’s premier
electronics company, Bharat Electronics, Ltd., India,
where he had developed several high-speed and high-voltage analog integrated
circuits intended for consumer electronics products. He is the author or coau-
thor of more than 200 technical papers and four books on various aspects of
VLSI research works. His current research interests include current problems in
nanoscale CMOS VLSI design, computer-aided design tools, and circuit designs
for emerging technologies including quantum MOS and resonant tunneling de-
vices, semiconductor memory systems, and physical synthesis of VLSI chips.

Dr. Mazumder is a Fellow of the American Association for the Advancement
of Science (2008). He was a recipient of the Digital’s Incentives for Excellence
Award, BF Goodrich National Collegiate Invention Award, and Defense Ad-
vanced Research Projects Agency Research Excellence Award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:36:41 UTC from IEEE Xplore. Restrictions apply.



