IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

1897

A Scalable Low-Power Reconfigurable
Accelerator for Action-Dependent
Heuristic Dynamic Programming

Nan Zheng™, Student Member, IEEE, and Pinaki Mazumder, Fellow, IEEE

Abstract— Adaptive dynamic programming (ADP) is an
effective algorithm that has been successfully deployed in various
control tasks. For many emerging applications where power
consumption is a major design consideration, the conventional
way of implementing ADP as software executing on a general-
purpose processor is not sufficient. This paper proposes a scalable
and low-power hardware architecture for implementing one of
the most popular forms of ADP called action-dependent heuristic
dynamic programming. Different from most machine-learning
accelerators that mainly focus on the inference operation, the
proposed architecture is also designed for energy-efficient learn-
ing, considering the highly iterative and interactive nature of
the ADP algorithm. In addition, a virtual update technique is
proposed to speed up the computation and to improve the energy
efficiency of the accelerators. Two design examples are pre-
sented to demonstrate the proposed algorithm and architecture.
Compared with the software approach running on a general-
purpose processor, the accelerator operating at 175 MHz achieves
270 times improvement in computational time while consuming
merely 25 mW power. Furthermore, it is demonstrated that
the proposed virtual update algorithm can effectively boost
the energy efficiency of the accelerator. Improvements up to
1.64 times are observed in the benchmark tasks employed.

Index Terms— Adaptive dynamic programming, neural
networks, low-power accelerators, action-dependent heuristic
dynamic programming, machine learning.

I. INTRODUCTION

DAPTIVE dynamic programming (ADP) is a powerful

algorithm in solving various decision-making and control
problems [1]-[5]. Through approximating the solution to the
Bellman equation, the ADP algorithm can generate optimal
or near-optimal solutions for many real-life applications. The
ADP algorithm is considered one type of reinforcement-
learning algorithm. It is also known as adaptive critic design,
approximate dynamic programming, neurodynamic program-
ming, etc. Many ADP algorithms have been successfully

Manuscript received July 1, 2017; revised September 18, 2017 and
October 26, 2017; accepted October 27, 2017. Date of publication
November 28, 2017; date of current version May 8, 2018. This work
was supported by the National Science Foundation under Grant CCF
1421467 and Grant 1710940. This paper was recommended by Associate
Editor G. Masera. (Corresponding author: Nan Zheng.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48104 USA (e-mail:
zhengn @umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSL.2017.2771437

implemented in the form of software running on a general-
purpose processor [6]-[19]. Among various types of ADP
algorithms, the action-dependent heuristic dynamic program-
ming (ADHDP) algorithm is one of the most popular and most
powerful ADP algorithms [6], [7], [13], [14], [16], [18], as this
algorithm does not require any pre-knowledge about the model
of the system to be controlled.

Despite being effective as an algorithm itself, the highly
iterative ADP algorithms running on a general-purpose proces-
sor in the form of software fail to provide energy-efficient
solutions to various applications where power consumption is
of importance. For example, potential applications for the ADP
algorithm are mobile autonomous robots with a small form
factor [20]-[22] and future internet of things (IoT) devices.
For these microrobots and IoT devices that chiefly rely on
energy scavenging from the environment or energy stored on
a tiny battery, energy consumption is of utmost importance.
Therefore, it is necessary to resort to specialized accelerators
in order to meet the stringent requirements of both the speed
and energy consumption.

In recent years, many specialized accelerators have been
developed for neural networks [23]-[35]. Most of these accel-
erators are for deep neural networks, especially the deep
convolutional neural network (CNN), which is one of the
most popular and powerful neural networks employed widely
in image and audio recognition. Many design techniques
have been proposed to improve efficiency and throughput
of the neural network accelerators. Scalable architectures are
presented in [23] and [24] with an emphasis on memory
optimization. Low-power techniques are proposed in [25]
through leveraging the row-stationary technique so that the
number of data movements can be minimized. An automated
optimization-based co-design method is investigated in [26],
which yields a significant improvement in energy efficiency.
In [27], sparsity in the data is exploited in order to skip
ineffective computation, which improves both the speed and
power efficiency. A systolic structure was utilized in [34]
to save the computational energy and silicon area. In [33],
a novel Cartesian product-based computation architecture was
introduced to effectively exploit the sparsity in a compressed-
sparse CNN. Even though an ADP-based reinforcement learn-
ing also utilizes neural networks, there are some different
design challenges and tradeoffs in building accelerators for
ADP algorithms [36]. For example, most existing accelerators

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3261-2135

1898

only implement the inference phase, as the learning is assumed
to be accomplished somewhere else. Such an operating model
indeed works well for supervised learning. The slow and
energy-consuming learning process can be conducted on the
graphic processing units in the data centers. Users of the neural
network accelerator can then download the trained weights
onto the chip, and the accelerator is ready to conduct some
classification or inference tasks. On the other hand, most
ADP algorithms target controlling plants or making optimal
decisions in a dynamic environment. Under this circumstance,
each ADP accelerator needs to learn how to choose the optimal
policy for the plant or environment it is interacting with in an
on-line fashion. Therefore, learning for an ADP accelerator is
most likely to be a real-time task.

In this paper, we introduce a hardware architecture as well
as design methodologies for ADHDP accelerators. A tile-based
computing is employed to provide good scalability for the
accelerators. The designed accelerators are also flexible, as
they can be programmed with instructions in order to run
ADHDP algorithms with different configurations. Low-power
operations are achieved through reducing the data movements
by utilizing and partitioning data buffers. Furthermore, as
we focus on building accelerators that can conduct learning
efficiently, a virtual update technique is introduced to leverage
some unique computational patterns in the ADHDP algorithm
in order to shorten the computational time and increase the
energy efficiency.

In the following, we provide a brief introduction of the
ADHDP algorithm in Section II. The hardware architecture for
the algorithm and design strategies are presented in Section III.
The architecture is upgraded with the proposed virtual update
algorithm in Section IV. Design examples and simulation
results are provided in Section V. Section VI concludes this
work.

II. ACTION-DEPENDENT HEURISTIC
DYNAMIC PROGRAMMING

In this section, a few concepts for the ADP and ADHDP are
reviewed. Only important terminologies that are closely related
to this paper are covered. The interested reader is referred to
the excellent review papers on this topic [1]-[5].

A. Actor-Critic Networks

Suppose the discrete-time system under control can be
modeled by

X+ 1) = fIx@),a()] (1)

where x(¢) is the n-dimensional state vector at time ¢, a(t)
is the m-dimensional action vector, and f(-) is the model of
the system. The target of the algorithm is to maximize the
reward-to-go J, expressed as follows

o0
TIxO1 =D y*rx + k)])
k=1
where y is the discount factor used to promote the reward
received in the near future over long-term reward and r [x()]
is the reward received at state x(7).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

Equation (2) can be maximized through solving the Bellman
equation

J*[x()] = m(zg({rix(+ D]+ yJ*[x@ + D]} 3)

where J*[x(#)] denotes the optimal value function under
the optimal policy. The optimal policy a*(¢) is obtained by
maximizing the right-hand side of (3).

Solving the Bellman equation directly is intractable for
many problems with practical sizes. The complexity grows
exponentially with the size of the problem, which is well
known as the curse of the dimensionality. To circumvent this
difficulty, the ADP algorithm solves the Bellman equation
approximately with the help of function approximators. There
are two categories of ADP algorithms: model-based ADP and
model-free ADP. The model-based ADP algorithm assumes
the model for the plant that is under control or the environment
that the agent is interacting with is known. This type of
algorithm explicitly exploits the model information in the
process of solving the Bellman equation. In contrast, the
model-free ADP algorithm does not need a model for the
plant or the environment. The algorithm learns the model in
the process of interacting with the plant or the environment.
Therefore, the model-free ADP algorithm is more general and
more powerful for many practical problems.

The model-free ADP algorithm we consider in this paper
is the ADHDP algorithm, which is one of the most popular
model-free ADP algorithm [6], [7], [13], [14], [16], [18]. It is
closely related to the well-known Q-learning algorithm that is
widely used by researchers in the artificial intelligence com-
munity. The configuration of the ADHDP algorithm is illus-
trated in Fig. 1. In the figure, x and a represent the state and
action vectors, respectively. h? and h® are Nj,-dimensional
and Nj.-dimensional output vectors from the hidden units in
the actor and critic network, respectively. wal waZ wel and
w*? are synaptic weights in the networks. Two neural networks
are used as universal function approximators in this algorithm.
One neural network, called critic network, is employed to
generate J [x(f)], which is an estimation of J [x(r)]. The
critic network attempts to learn J [x(¢)] through adjusting the
synaptic weights in the neural network in order to minimize
the absolute value of the temporal difference error

o(r) = J [x(t — D] — y J [x(0)] — r[x(r)] 4)

The second neural network is called an actor network. Its
function is to generate an action vector a(r) that maximizes
the estimated reward-to-go J [x(1)]. Action vector outputted
by the actor network is fed to the critic network. The actor
then adjusts its synaptic weights to maximize J [x(®)].

B. On-Line Learning Algorithm

In the learning process, we need to train the two neural
networks such that the defined cost function can be minimized.
The most popular and efficient way to train a neural network
is the stochastic gradient descent learning based on backprop-
agation [37]. Errors at output layers are propagated back to
each synapse in the network, layer by layer. There are two
phases in the ADHDP algorithm: critic update phase and actor

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

ZHENG AND MAZUMDER: SCALABLE LOW-POWER RECONFIGURABLE ACCELERATOR FOR ADHDP

1899

- _ o h
[h T O |
| O L |

) X
| x, | - : |
| %O O a; | 4 Actor 2z Critic 2O ”
| K : | ¥ T : O/O J
o O O an | al x X |
am
Ee 2\ | O(©C |
Environment O

| al a2 | wcl ‘ wcz

WO w | hy;; |

Fig. 1.
in the algorithm to approximate functions need to learn.

update phase. Multiple iterations are involved in both phases.
Each iteration contains a forward operation and a backward
operation. The algorithm is illustrated in Fig. 2.

1) Forward Opeartion: For each iteration in the actor
update phase, the forward operation is carried out according
to (5)-(9).

n
W =0 | D wilx; 5)
j=1
Nha
ai = Zw“zh“ (6)
a
P = M @
m+n
hy = Zwl, P ®)
Nlu:
T = wh)

i=1

where o (-) is the activation function. Popular choices are
hyperbolic tangent function, sigmoid function, and rectified
linear unit. For the critic forward phase, only (8)-(9) are carried
out. (5)-(7) are not necessary as the weights in the actor
network remain the same, which leads to the same action
vector.

2) Backward Opeartion: During the backward operation in

the critic update phase, w! and w2 are updated according
to (10) and (11).
Awf2 = aohy (10)
m—+n
AwS! = (11)

cl 7 cl ¢ c
ij ae; o Zwikpk D;
k=1

where efl = 5wi02 is the error at the hidden unit hf and a is
the learning rate.

During the backward operation in the actor update phase,

L and w22 are updated according to (12) and (13).
Nia
Aw? = aef*o’[D withi | h¢ (12)
k=1

Illustration of the actor-critic configurations used in the ADHDP algorithm. Two neural networks, critic network and actor network, are employed

1
Awfj = aef g’ E wlkxk X (13)
al _ m a2 s Nha a a2
where ¢ = > l_l[e o (@) ‘ U]
2 Nj m+n 1 ; 2
;? => A [e ’(§] wlkpk) .c] and e9 = eaw;

are backpropagated errors at h aj and hc respectlvely
2/2 is the cost function that needs to be mmlmlzed for
the actor network. In many applications, the desired reward-
to-go is 0, i.e. no punishment (negative reward). In this
case, a convenient choice is e, = J [x(H)] [6], [7], [13], [14],

[16], [18].

III. HARDWARE ARCHITECTURE

The proposed hardware architecture for the ADP accelerator
is shown in Fig. 3. The accelerator consists of three major
blocks: datapath, memory, and controller. The datapath is the
core of the ADP accelerator. It handles all the arithmetic
operations needed in the ADHDP algorithm. The memory unit
contains all the on-chip storage units, including static random-
access memory (SRAM) array used to store synaptic weights,
registers for holding neuron states, and input buffers for reduc-
ing data movements. The controller oversees operations of the
whole accelerator, and executes pre-programmed instructions
in order.

A. On-Chip Memory

Memory in our system can be divided into three categories
based on the purposes they serve: synapse memory, neuron
memory, and data buffers. The most critical and also the
largest memory block is the synapse memory, as the number
of synapses grows quadratically with the size of the neural
network. In this design, we use an SRAM array for storing
synaptic weights. Neuron memory is where the activation
levels of neurons in the network are stored. It is implemented
with an array of registers in this design. Data buffers are
storage units used to hold the input, intermediate, and output
data temporarily in order to accelerate the computation and
save computational energy.

Data flow and memory access patterns employed in the
proposed accelerator are shown in Fig. 4. The computations
in the forward operations shown in (5) - (9) are mostly matrix

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

1900

Inputs : w?!, w22, w°! w©°2: weights for the actor

and critic neural network

1,,I.: The maximum number of iterations
allowed for updating actor and critic networks
in one time step

FE,, E.: Thresholds to control whether an
update can be terminated

t=20
Actor network forward operation: compute a(t)
Critic network forward operation: compute .J [x(t)]
Output action a(t) and obtain the updated states
x(t 4+ 1), reward r[x(¢t + 1)], and termination request
REQ¢erm from the environment or the plant
while REQcrm # 1 do

BOW N

5
6 =t+1,4i=0,i=0
7 Actor network forward operation: compute a(t)
8 Critic network forward operation: compute J [x(t)]
9 Compute the temporal difference §(t)
10 while (z’c <I. && @ > EC) do
11 Critic network backward operation: update w¢2
and wel
12 Critic network forward operation: compute
JIx(t = 1)]
13 Compute the temporal difference 6(t)
14 be = 1e+ 1
2
15 Compute the cost function %‘l
2
16 while (z’a <I, && % > Ea) do
17 Actor network backward operation: update w22
and wa!
18 Actor network forward operation: compute
J (1) 2
19 Compute the cost function %
20 lg =1q+1
21 Output action a(t) and obtain the updated states
x(t + 1), reward r[x(¢ + 1)], and termination
request REQ¢erm from the environment or plant

Output: w?!, w22 we°! w©°2: updated weights for the

actor and critic neural network

cl
s

Fig. 2. Pseudocode for the ADHDP Algorithm.

multiplication operations. Similar to most machine-learning
accelerators [23]-[25], [28], we adopt a tile-based matrix
multiplication strategy, where the matrix is partitioned into
several smaller blocks. The size of the tile is determined by
the number of data lanes available in the system. In this design,
the number of lanes is set to four, as this is enough for the
applications targeted by this paper. Nevertheless, the proposed
architecture and design methodology are scalable, so more
lanes can readily be added into the design to accommodate
larger problems.

For the forward operation, we adopt a row-wise multi-
plication. The neuron activation vector is first loaded from
the neuron memory to the activation buffer. The activation

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

buffer is a circular buffer, and it rotates a complete circle
when multiplying each row in the matrix. Loading the data
from neuron memory to the input buffer has the advantage
that the data in the buffer can be reused without accessing
the relatively-large neuron memory repeatedly, thereby saving
power and time. Synaptic weights in the SRAM are arranged
in a way such that weights corresponding to one tile are stored
in the same row.

For the backward operation, there are two major steps: error
backpropagation and weight update. The error backpropaga-
tion operation is also a matrix-vector multiplication. Similar
to the forward operation, a tile-based multiplication is used.
However, the multiplication in this case is done column-wise
instead of row-wise. Such an arrangement has the advantage
that the access for the memory is always sequential, providing
a more regular memory access pattern when off-chip memory
is used. In the weight update operation, two vectors are
multiplied to form a matrix that is added to the old synaptic
weight matrix. In this case, elements in the row vector are
stored in the circular buffer, whereas elements associated with
the column vector are stored in the linear buffer. The error
backpropagation and weight update operations are scheduled
in alternate clock cycles in order to reuse the same row of
synaptic weights. Therefore, for one backward operation, each
entry in the synaptic weight SRAM only needs to be read and
written once.

B. Datapath

The datapath is partitioned into five/six-stage reconfigurable
pipelines: schedule, fetch, multiply, add, activate, and write
back.

1) Scheduling and Data-Fetching Operations: In the sched-
ule stage, instructions fetched from the instruction memory
are decoded to obtain the necessary information for schedul-
ing operations with data. In the proposed single-instruction-
multiple-data (SIMD) architecture, one instruction may con-
tain the workloads that need multiple clock cycles to com-
plete. Therefore, the instruction fetching and decoding occur
selectively with the help of the controller. The scheduler
needs to generate and latch the addresses for the data to be
fetched in the fetch stage as well as to inspect any potential
data hazard. Upon detecting that the data needed in the
speculatively-scheduled operation are not ready in the input
buffer, the scheduler looks for possibilities of data forwarding
directly from the memory or write-back buffer. If even the data
forwarding is not able to resolve the data hazard, a STALL
operation is inserted into the pipeline as a null operation in
order to wait for the data that are needed to be computed. In
the fetch stage, data is read from the input buffers or memory
and is latched in corresponding pipeline registers.

2) Arithematic and Write-Back Opeartions: The multiply
and add stage conduct multiplication and addition operations,
respectively. Adders in the add stage can be configured as
parallel adders, or adder tree, or mixed of both depending on
the operations conducted. The activate stage implements the
activation function employed in neural networks. The hyper-
bolic tangent function is employed in this design, as it is the

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

ZHENG AND MAZUMDER: SCALABLE LOW-POWER RECONFIGURABLE ACCELERATOR FOR ADHDP

1901

Arithmetic Unit

— Data-Feth’ring Path

q_r

Fig. 3.
five/six-stage pipeline is used for the datapaths.

B Activation Level #® Error M Synaptic Weight

Forward

oooooo

goooooog
0oQooooo
OO@&]000|,
ooEmd000
oootnoon
0ooooooon

|
|
| Schedule | Fetch Multiply | Add | Activate | Write Back |
| | | | |
ata-Forwarding Path <—|
| 1 peererver 1 |
Controller | | | |
FSM Configuration Instruction | By-Pass | _
Regs Cache | | | | | | |
On-Chip Memory | | | | | |
N g | IEBHIEHI I (|
euron Memory Y g §
REAN NN Il mgll| |
£ b ?
Input Buffers | [| o |:B—|:B—|—>/—>l 2 |
[2]
| > |
Synapse Memory | : : : : | |
Scalar Regs | | | :B_ | :B— | By-Pass |
| Hoo4 i |
| | |
i) |
| | |
|
|

Backpropagation

Writf-Back Path

|
+
|
|
|

|
Datapath

Hardware architecture for the proposed accelerators. Data-level parallelism is exploited through utilizing multiple datapath lanes. A reconfigurable

Weight Update

OoOooooood
ooogoood

W x [Dommea00]+ e
‘0000

Halt
ooooo
oooooooo

Synapse Memory

=

Synapse Memory

Activation Buffer

Fig. 4.
Synaptic weights needed in one tile-based operation is stored in one row.

most popular choice for ADP algorithm in the literature [6],
[71, [13], [14], [16], [18]. In the proposed design, the activation
function is implemented with piecewise linear interpolation,
similar to those employed in [23] and [38]. Depending on the
operation conducted, the activation stage may be bypassed, as
the activation operation is only needed in the forward phase.
In this case, the six-stage pipeline is reduced to a five-stage
pipeline. After arithmetic computations, the write-back stage
in the end of the pipe writes computed results back to storage
units according to the instruction executed.

Error Buffer

Error Buffer Synapse Memory

=

Tlustration of the data flow and memory access pattern in the proposed accelerators. Data buffers are employed to exploit the locality of the data.

3) Datapath Quantization: One important consideration in
designing customized accelerators is the choice of bitwidth
used to represent data in the system. It is the norm to
use a fixed-point number representation in machine-learning
accelerators [23]-[36] because of its ease of implementation
and good computational efficiency. To provide some guidelines
in determining the proper bitwidth in our system, we conduct
parametric simulations on the learning performance of the
ADP algorithm under different bitwidths. Three most popular
benchmark tasks for the ADP algorithm are employed in the

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

1902

1.8

1.6
3 144
% 4

1.2 .- p—
g . SL-oN e _'/
S 104 - A B e O
E <7 BN 2 -+ =<
o] .- -1
8 0.8] '/ P
N 064 [/, ~
T] v
E 044 cart-pole
[e) 1 - -
Z 02 beam

1 — - — triple-link inverted pendulum
0.0 "= T T T T T T T T T T T T T T
6 8 10 12 14 16 18 20
Qf
Fig. 5. Comparison of the learning performance achieved with different

levels of data quantization for three classic ADP benchmarks. The obtained
performances are normalized with respect to those obtained from the double-
precision floating-point computations.

parametric study: The cart-pole balancing problem [6], [7],
[13], [16], the beam-balancing problem [15], [17], and the
triple-link inverted pendulum problem [6], [13]. In these three
tasks, the target is to control the system such that the states
of the system stay within some pre-defined ranges. In our
experiment setting, once the states of the system under control
exceed the desired ranges, a punishment (or a negative reward)
is provided. For each task, data used in the algorithm, includ-
ing synaptic weight, neuron states, and other intermediate
variables, are quantized into numbers with a fractional bitwidth
of Q. Learning processes are then conducted according to
the ADP algorithm. The learning performance obtained for
each task with different levels of quantizations are compared
in Fig. 5. For each task, 50 runs are conducted, where a run
contains several trials. Each trial is a complete process from
beginning to end. A trial is ended either when the maximum
time is reached (1000 time steps in these experiments), or
the states under control exceed certain limits. The learning
performance is measured by the total time that the plants
are successfully maintained in the desired states in all trials.
In Fig. 5, the performances obtained with different bitwidth
are normalized to the performances obtained from computation
with a double-precision floating-point number representation.
The error bars in the figure correspond to the 95% confidence
interval. As shown in the figure, performances achieved with
quantized data start matching those obtained with double-
precision data when the bitwidth for the fractional part reaches
12 bit. We use a 6-bit integer part (including a 1-bit sign
information) and an 18-bit fractional part to represent data
in our accelerators. The extra 6 bits in the fractional part
compared to the 12-bit lower limit is to provide some tolerance
in the design.

C. Controller

The main role of the controller is to determine the instruc-
tion flow. The format of instructions developed for our accel-
erator is shown in Fig. 6(a). The operation code field specifies
the type of instruction. There are six types of instructions
in our accelerator, as shown in Fig. 6(b). The code “FF”

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

corresponds to the forward operation, which is the most
common instruction. The code “SCA” is for scalar operation
such as calculating the temporal difference as shown in (4).
The operation code “BP_WU” is used for hidden-layer units
where both error backpropagation and weight update are
needed. Code “BP” and “WU” are for error backpropagation
and weight update, respectively. They are used when only one
operation is needed. For example, “WU” code can be used for
the input layer when error backpropagations are not needed.
The code “CC” calls for controller operation. It can be used,
for example, to implement the conditional jumps in Fig. 2.
The fields “Source Addr”, “Synapse Addr”, and “Destination
Addr” specify the addresses for the source data, the address
for the synaptic weight and the addresses to write back,
respectively. In our design, the synapse memory has its own
address space, whereas all other storage units share a unified
address space. The “# of Row” and “# of Column” fields
indicate the size of the matrix. The filed “Offset” specifies any
offset in computing the matrix multiplication. For example,
as shown in Fig. 2, backpropagation for the actor network
only needs to be done for a(r). Therefore, elements associated
with x(#) should be skipped through specifying the offset.
The “Config” field is used for configuration purposes, for
example, to specify whether to bypass the activation stage in
the datapath.

With all the fields specified in the instructions, the scheduler
can schedule operations based on this information. In the
proposed architecture, one instruction specifies all operations
conducted on one matrix. An example of the instructions
corresponding to the pseudocode shown in Fig. 2 is illustrated
in Fig. 6(c). Only a portion of the instructions are shown for
the purpose of brevity. All instructions in the figure correspond
to a series of operations conducted by the datapath except for
the “Check Point” operation where the controller conducts a
conditional jump with the help of an FSM.

IV. VIRTUAL UPDATE TECHNIQUE

In this section, we examine a few unique features of the
ADP algorithm. These features are then exploited to improve
the speed and energy efficiency of the accelerator.

A. Algorithm

In the ADP algorithm, it is the norm to conduct many
internal cycles in order to minimize the cost function for
each input vector [6]-[19]. This corresponds to the second
or the third while loop in Fig. 2. The maximum number of
internal loops for each input vector is typically in the range
of 10 to 100. In other words, many iterations are carried out
for the same input vector, attempting to minimize the cost
function at the current time step. Therefore, it may be worth
conducting some pre-processing if the same input vector is
used repeatedly. Such a simplification is indeed possible by
inspecting the unrolled while loop.

Without loss of generality, let us focus on the update in the
critic network. Weights in the input layer of the critic network
are updated according to (11), followed by the immediate for-
ward operation in (8). For the ease of explanation, (11) and (8)

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

ZHENG AND MAZUMDER: SCALABLE LOW-POWER RECONFIGURABLE ACCELERATOR FOR ADHDP

1903

Op Code Source Addr|Synapase Addr|Destination Addr| # of Row |# of Column| Offset | Config
(a)
0 Check Point FF0003200
1|Actor Feedforward | FF2681300
FF69103300
5 Check Point FF 10181281301
- 6 Actor Feedforward
Op Code Operation 10 Check Point
FF Forward Operation 11 Critic Feedforward
. 13 Scalar Operation
SCA Scalar Operation p
14 Check Point
: 15| Critic Backpropagation|—{ BP_WU 101801300
BP WU Error Baf:kpropaganon 17 ChePomt BP6903300
- & Weight Update eck Foin
18 Actor Feedforward
BP Error Backpropagation 22 Scalar Operation
- 23| Check Point —1 CC0000000
WU Weight Update 24 Actor Backpropagation
CC Controller Operation 28 Check Point

(b)

Fig. 6.

(©

Tllustration of the instructions used in the accelerators. (a) Format of the instruction. (b) List of all operation codes and their corresponding operations.

(c) A sample program for implementing the ADHDP algorithm shown in Fig. 2.

are rewritten in (14) and (15) with the dependence on the loop
index i, explicitly indicated. Note that p® in the equations is
not a function of i., as the state vector and selected action
remain the same when the critic network is updating.

m-+n
Awicj1 (ic) = aefl(ic)a/[zwfkl (ic)Pz:| S (14)
k=1
m+n
hlic +1) = o | D wilic + 1)pS (15)
j=1

By substituting (15) into (14) with the help of the relation-
ship wl‘j1 (ic+1)= w,‘j1 (o) + Awfjl (ic), one can obtain

hf (ic +1) = o[of (ic + D] (16)
where

Oic(ic +1) = Of(ic) +eiic)Ac (17)

m-+n
0f(ic) = D wl (i) p§ (18)

=1
€ilic) = aef (ic)a'[0f (ic)] (19)

m-+n
Ac = (20)

> r5)?
j=l1

0; (ic) is the input to neuron k{ in the i éh iteration; ¢; (i;) is the
scaled backpropagated error at the input of neuron 4 in the i éh

iteration. These two quantities are computed in the i éh iteration
for the forward and backward operations, respectively. A is
the sum of squares of activation levels of all input neurons,
which is independent of i.. Therefore, activation levels of the
hidden layer units in the (i.41)"" iteration can be conveniently
calculated based on results obtained from the i iteration.
Even though no actual weight update or forward operations are
conducted, it appears to neurons in other layers as if weights
in the input layer were updated. We call this technique the
virtual update technique.

More conveniently, if the virtual update technique is
employed from the 0'” iteration, then we have

Of(ic) = Of(()) + Ei(ic)Ac 21
m—+n

0(0) = D wi! (0)pS (22)
=1

Ei(i;) = Z ael' (kyo'[of (k)] (23)

k=0

In this case, we only need to update E;(i.) in each iteration,
whereas 0f (0) and A, remain the same. When the update loop
is terminated either because the maximum number of iterations
I is reached or because the cost function is below a certain
threshold, synaptic weights associated with the input layer are
updated according to (24).

Awf! = Ei(ic)p§ (24)

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

1904

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY OF CONVENTIONAL UPDATE AND VIRTUAL UPDATE

Regular Update Virtual Update
Forward N; Ny, L MAC (L —1)Np MAC +N; MUL +N; N, MAC
Backward NZNhL MAC (L - I)Nh ADD +N1Nh MAC
Total Operations (MAC/MUL/ADD) | 2N; Ny L 2(L+ N; — 1)Np, + N;
Complexity O (N; N, L) O [(L + N;)Ny]

It is worth mentioning that the proposed virtual update
algorithm does not reduce the precision of the algorithm.
That is, the speedup of the algorithm is achieved through
reordering effective operations more efficiently instead of
using approximations.

B. Implementation Considerations

In order to exploit the proposed virtual update technique,
one extra instruction “VU” is added to our instruction set intro-
duced in Section III. This instruction implements (21) - (23)
in two groups of operations. The first group of operations is
to compute and store A, when the current input vector is
presented for the first time. The second group of operations are
the multiply-and-add operations shown in (21). The operation
of accumulating E;(i.) is merged to the normal “BP” or
“BP_WU” operations without introducing any overhead in
computational time. It is worth noting that all newly-added
operations, as shown in (21)-(23), scale linearly with the size
of the network, whereas the original backward and forward
operations scale quadratically. Therefore, the virtual update
technique can help save significant computational efforts.

To implement the virtual update algorithm, o (0) and E; (i)
need to be stored. They can be stored conveniently in the
synapse memory, recognizing that the weight memory is not
utilized during the virtual update operation. Indeed, the virtual
update technique avoids both writing synaptic weights in
the weight update phase and reading weights in the forward
phase, leaving the weight memory free during that period.
Compared to synaptic weights stored in the synapse SRAM,
the additional memory overhead caused by the virtual update
technique is negligible, especially when the size of the network
is large.

The pseudocode for the while loop of updating the critic
network with the proposed virtual update technique is shown
in Fig. 7. If the current iteration is not the last iteration allowed
by the maximum number of iterations, the virtual update algo-
rithm is used to compute neuron activation levels of hidden-
layer neurons in the next iteration, otherwise the conventional
update is used. It should be ensured that when exiting the
while loop, normal weight update has to be conducted once
according to (24), as weights are actually not updated during
previous iterations.

The computational complexity of the virtual update algo-
rithm is compared with that of the baseline in Table I. The
number of arithmetic operations per time step is used for
comparison. In the table, N; and Nj represent the number
of input-layer neurons and hidden-layer neurons, respectively.
L specifies the number of iterations in one time step. Its
value should be in the range of [1, I.] or [1, I,] depending

—

while (7. < I, && 24" > E.) do

2 Backward operation: update w2
3 if (i, == 1. — 1) then
4 Backward operation: update w°?!
5 Forward operation: compute h®
6 else
7 | Virtual update: compute h®
8 Forward operation: compute J [x(t — 1)]
9 Compute the temporal difference J(t)
2
10 if (% < EC) then
11 ‘ Backward operation: update w¢!
12 e = tc+ 1
Fig. 7. Pseudocode for the while loop corresponding to the critic update

when the virtual update algorithm is employed.

on whether the network is critic or actor. “MAC”, “MUL”
and “ADD” denote multiply-accumulate, multiply, and add
operations, respectively. It is worth noting that complexity
listed in the table is valid for the case where L > 1.
When L = 1, two algorithms have the same computational
complexity, as no virtual update takes place. As shown in the
table, the virtual update technique significantly reduces the
number of operations needed. Even though the technique is
only applicable for synapses between input layer and hidden
layer, the savings in computational efforts is remarkable, as
most weights in neural networks concentrate in between these
two layers. The actual percentage of savings is reported in
Section V.

V. DESIGN EXAMPLES

Hardware architectures and techniques discussed in previous
sections are implemented in TSMC 65-nm CMOS technology,
and the obtained simulation results are presented in this
section. In order to examine all aspects of the proposed design
methodology and design strategies, simulators are developed in
a high-level programming language. These simulators model
behaviors of the final chip, and they are employed to mea-
sure the input-output relationships and clock cycle needed to
accomplish certain tasks. Area, speed and power consumption
are evaluated based on post-layout circuit simulation results.

Two accelerators are implemented. One implementation is
equiped with the proposed virtual update algorithm, whereas
another one is the baseline design with the conventional
update. Both chips have similar chip layouts. Therefore, only
the one with virtual update is shown in Fig. 8 for brevity.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

ZHENG AND MAZUMDER: SCALABLE LOW-POWER RECONFIGURABLE ACCELERATOR FOR ADHDP

550 pm

On-Chip Memory

-

550 pm

A

Fig. 8. Chip layout and floorplan of the accelerator chip with the virtual
update algorithm.

On-chip memories, including synaptic weight memory, neuron
memory, input buffers, and instruction memory take most of
the spaces. The arithmetic unit, which contains multipliers,
adders, and the activation block, is the second largest block.
The controller and scheduler occupy the rest of the area. In
this design, synaptic weights are stored in a 1536-byte SRAM
array. The sizes of the registers for storing neuron activations,
intermediate results, and instructions are 192 bytes, 336 bytes
and 240 bytes, respectively. Both the baseline and the upgraded
accelerators are designed to operate at a clock frequency of
175 MHz. Such a clock frequency is more than enough for
allowing all benchmark tasks discussed in this paper to operate
in real time.

In order to evaluate the performance of the accelerators in
conducting reinforcement-learning tasks, three most common
control benchmarks used in Section III are employed. The
same metric, accumulated time steps, is used for comparison.
The performance achieved by the accelerator is normalized
with respect to the performance achieved by the software
approach implemented on a general-purpose processor. The
obtained results are shown in Fig. 9. Since the virtual update
algorithm does not use any approximation or assumption in
the computation, the obtained results should be the same as
the baseline design when quantization is absent. Neverthe-
less, there exists slight differences in the computed results
caused by different ordering of quantizations. The results
in the figure are obtained from the behavior-level model
of the chip. Mathematical models used for simulating these
benchmark tasks can be found in [6], [7], [13], and [15]-[17],
and they are omitted in this paper for brevity. As shown
in the figure, the accelerators are able to achieve a similar
performance compared to the processor that computes with
double-precision floating-point numbers. One set of typical
waveforms obtained from the triple-link task for a successful

1905

1|

beam triple-link

I wio VU
Bl v/ VU

0.8
0.6 1

0.4 1

Normalized Performance

0.2

0.0

cart-pole

Benchmark Tasks

Fig. 9. Comparison of the learning performances achieved by the accelerators
and the software approach for three commonly used benchmarks. The results
obtained from the accelerators are normalized to those obtained from software.
Error bars correspond to a confidence interval of 95%.

0 5000 10000
0.0081 F T T T T T .
x 00000 F HEAARAAAMMAAMAAWY
_ / \ /]
11F T T T T T B
0, oof M\MMWWWMWM]
L 1 L 1 L 1 1
0.34 F T T T T T .
6, o00f WWWM]
_ \ \]

081 . . ; .

0. oo00L h]
3 ' C r L 1 N 1 1
. 052F T T T T T .

XTI T ————————

C . .]

! F T Y v]
U of GG——————
_14912 L 1 . 1 . I]

! T T T T T
0, ok %]
C ! ! " j
' n T T v T]
% of Mmmmmmmm]
25 L . I . !]
56 F T T T T =
U o oof | .
J 0.1 F T T]
0.0 o~ i -) =
600 —— : : : —

1 L 1 L 1

559 N T T T T T
r 0 7

1 L 1 R 1 R 1

0 5000 10000
time step
Fig. 10. Typical waveforms obtained in the triple-link inverted pendulum

task with the baseline accelerator. In the figure, the unit for distances and
angles are meter and degree, respectively.

learning is demonstrated in Fig. 10. In the figure, x, 61 - 63
and their corresponding derivative x” and 6] - 6} are eight
state variables under control, u is the applied control voltage,
J is the estimated reward-to-go, X |w| is the sum of absolute
values of all weights, and r is the reward signal, which is
—1 if the states of the plant exceed the target range. Initial
conditions for the plants are set as the following. x and x’
are initialized as zero. #; — 03 and @] — 5 are initialized
randomly. They obey uniform distributions U [—1°, 1°] and
U [-0.5°/s,0.5°/s], respectively. The target is to control x to

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

1906

FF [l SCA BP, WU [l cC STALL [l VU
350
= 3004 w/o VU
ie] 1
® 250 ?
2 1.47x
‘? 200
2 450 wio VU Zm
© " lwowu 1.27x %
3] i
g ' 1.25x
5 50 7
s Z: w/ VU — wi/VU w/ VU
0
4-6-1 ,I 5-6-1 4-10-1 ,I 5-12-1 8-20-1 ,I 9-20-1
Network Configurations
Fig. 11. Comparison of the numbers of clock cycles needed for every

critic/actor update iteration. The first two groups of data are obtained from the
cart-pole balancing task, whereas the third group of data is from the triple-
link inverted pendulum task. The forward and backward operations consume
most clock cycles. The overheads of scalar operation and control operation
are quickly diluted as the sizes of the neural networks increase.

Scheduler [l ALU Controller
30 -l Memory Others
1 71 1.11x

< 74 1.09x <
£) 1.11x
= 204
2
a
E 15qwlo V w/o VU w/o VU
§ j
S 104
&)
5 1 w/ VU w/ VU w/ VU
2 5
[e]
a

0 T T T

4-6-1, 5-6-1 4-10-1, 5-12-1 8-20-1, 9-20-1

Network Configurations

Fig. 12. Comparison of the power consumption breakdown for every
critic/actor update iteration. The first two groups of data are obtained from the
cart-pole balancing task, whereas the third group of data is from the triple-
link inverted pendulum task. The arithmetic unit and memory consume most
of the power. The virtual update technique improves the power consumption
slightly.

be within the range of [—1m, Im] and to maintain 8; - 83 in the
range of [—20°, 20°], while the applied voltage is bounded by
+30V. More detailed information on the triple-link inverted
pendulum balancing task can be found in [6] and [13]. It is
demonstrated in Fig. 10 that the accelerator successfully learns
the control policy and maintains the states of the system well
within the target range.

To demonstrate the effectiveness of the proposed virtual
update technique, Fig. 11-Fig. 13 compare the number of
clock cycles, power consumption, and energy efficiency of
the accelerators with and without the proposed technique.
Different sizes of neural networks and control tasks are
examined. In the figures, results with labels “4-6-1, 5-6-1" and
“4-10-1, 5-12-1” are obtained from the cart-pole task, where
the two sets of numbers indicate the sizes of the critic
and actor networks, respectively. The results with the label
“8-20-1, 9-20-1” are obtained from the triple-link inverted
pendulum task. In addition, specifications of the proposed

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

60
55
50
45
40
35
30
25
20
15
10

5]

.

I /o VU
i wvu

1.64x

1.39x

Energy / lteration (nJ)

1.39x

4-6-1,5-6-1 4-10-1, 5-12-1

Network Configuration

8-20-1, 9-20-1

Fig. 13. Comparison of the energy consumption for every critic/actor update
iteration. The first two groups of data are obtained from the cart-pole balancing
task, whereas the third group of data is from the triple-link inverted pendulum
task. The virtual update technique effectively improves the energy efficiency.
The improvement is more significant for larger neural networks.

ADHDP accelerator are summarized in Table II. The ADP
accelerator faces many unique challenges compared to other
machine-learning accelerators, as pointed out in Section I.
Nevertheless, to provide some insights, two state-of-the-art
accelerators for supervised learning are also presented in
the table. Two trends can be observed in Table II. The
ADP accelerator is smaller compared to the accelerators for
supervised-learning tasks. Indeed, most ADP algorithms deal
with extracted features, which can be handled by networks
with smaller sizes. Nevertheless, the proposed design method-
ologies are scalable, and the accelerator can be readily scaled
to deal with larger problems. The second observation is that
the number of bit used in the ADP accelerator is larger
than those used in supervised-learning accelerators. This is
mainly because learning typically requires a higher numerical
precision compared to inference in order to converge.

The normalized number of clock cycle breakdowns are
compared in Fig. 11. One trend that can be observed for
both the baseline accelerator and the accelerator with the
virtual update is that the forward and backward operations
occupy most of the clock cycles, and the percentages that
these two operations occupy increase as the size of neural
networks becomes large. Indeed, as the size of the neural
network increases, the number of operations that can flow
through the pipeline without being interrupted by the control
or branch operation increases. The proposed virtual update
algorithm effectively shortens the number of clock cycles
needed for each task. The improvement grows as the size of
the problem increases. A 1.47 times improvement is achieved
for the triple-link inverted pendulum benchmark task. The
main reason for the growing improvement is that the virtual
update algorithm effectively replaces the quadratically-scaled
operations with linearly-scaled operations. Therefore, the sav-
ings in the number of clock cycles increases with the size of
the problem. To give a comparison between the accelerators
presented in this paper and a software running on a general-
purpose processor, the ADP algorithm is programmed and is
run on an Intel Xeon processor. The improvement in running

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

ZHENG AND MAZUMDER: SCALABLE LOW-POWER RECONFIGURABLE ACCELERATOR FOR ADHDP

1907

TABLE 11
SUMMARY AND COMPARISON OF SPECIFICATIONS OF THE ADHDP ACCELERATOR

This work [25] [23]
Application Optimal Control Classification Classfication
Algorithm ADP/reinforcement learning | supervised learning | supervised learning
On-Chip/Real-Time Learning | Yes No No
Technology TSMC 65nm TSMC 65 nm 65 nm
Area 550 pm x 550 ym 35 mm X 3.5 mm | 3 mm?
Number of Lanes 4 168 256
Arithmetic Precision 24-bit fixed-point 16-bit fixed-point 16-bit fixed-point
Supply Voltage 1.2V 1V -
Clock Frequency 175MHz 200 MHz 980 MHz
Power Consumption 25 mW 278 mW 485 mW

time which is averaged over all three network sizes is about
270 times.

Fig. 12 compares the power consumption of the two accel-
erators. The accelerator with virtual update has a slightly
lower power consumption compared to the baseline design,
thanks to many fewer memory operations, as illustrated in
the figure. Another observation made from Fig. 12 is that the
virtual update tends to increase the power consumption in the
arithmetic unit. This can be attributed to two reasons. The
first reason is that the virtual update increases the utilization
rate of the arithmetic unit. Another reason is that multiplexers
are added in the arithmetic unit to allow more operations
needed in the virtual update algorithm, which contributes to the
additional power. The additional power in the arithmetic unit is
offset by the savings in memory operations, resulting in a net
savings in the power consumption. The energy efficiencies are
compared in Fig. 13. Through accumulating the improvements
in both the number of clock cycles per iteration and the
power consumption, energy efficiency of the accelerator with
the virtual update technique has been improved as many as
1.64 times for the triple-link inverted pendulum task. Again,
as the sizes of the network increase, the improvement in energy
efficiency grows.

VI. CONCLUSION

In this paper, we present a hardware architecture for
ADHDP accelerators. Through leveraging the data-level par-
allelism and data locality, scalable and programmable accel-
erators with high throughput and high energy efficiency are
demonstrated. In addition, to exploit the iterative nature of
the ADP algorithm, a virtual update technique is proposed
to skip unnecessary computations, improving the throughput
and power consumption. We demonstrate two design examples
that are with and without the proposed technique. Extensive
simulations are conducted to demonstrate efficacy of the
design strategies and techniques. It is observed from the
simulations that the accelerator is around 270 times faster than
the software approach running on a general-purpose processor
while achieving similar learning performance. Furthermore,
the proposed virtual update algorithm can effectively improve
the energy efficiency of the accelerator by a factor of 1.64
for the most complicated benchmark task we employ. Such
a good energy efficiency and high throughput open the door
for complicated ADP algorithms to be deployed in various

energy-constraint applications where optimal decision-making
or control are needed.

REFERENCES

[1] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997-1007, Sep. 1997.

[2] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32-50, 3rd Quart., 2009.

[3] F-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39-47,
May 2009.

[4] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Syst., vol. 32, no. 6,
pp. 76-105, Dec. 2012.

[5] D. Wang, H. He, and D. Liu, “Adaptive critic nonlinear robust control:
A survey,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3429-3451,
Oct. 2017.

[6] J. Si and Y.-T. Wang, “Online learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264-276,
Mar. 2001.

[7] D. Liu, X. Xiong, and Y. Zhang, “Action-dependent adaptive critic
designs,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), vol. 2.
Jul. 2001, pp. 990-995.

[8] M. S. Iyer and D. C. Wunsch, “Dynamic re-optimization of a fed-batch
fermentor using adaptive critic designs,” IEEE Trans. Neural Netw.,
vol. 12, no. 6, pp. 1433-1444, Nov. 2001.

[9] D. Han and S. N. Balakrishnan, “State-constrained agile missile control

with adaptive-critic-based neural networks,” IEEE Trans. Control Syst.

Technol., vol. 10, no. 4, pp. 481-489, Jul. 2002.

S. Ferrari and R. F. Stengel, “Online adaptive critic flight control,”

J. Guid., Control, Dyn., vol. 27, no. 5, pp. 777-786, 2004.

C.-K. Lin, “Adaptive critic autopilot design of Bank-to-turn mis-

siles using fuzzy basis function networks,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 35, no. 2, pp. 197-207, Apr. 2005.

S. Ferrari, J. E. Steck, and R. Chandramohan, “Adaptive feedback control

by constrained approximate dynamic programming,” /EEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 982-987, Aug. 2008.

H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line

learning and optimization based on adaptive dynamic programming,”

Neurocomputing, vol. 78, no. 1, pp. 3-13, 2012.

F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result

for the direct heuristic dynamic programming,” Neural Netw., vol. 32,

pp- 229-235, Aug. 2012.

Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based

on the dual critic network design,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 24, no. 6, pp. 913-928, Jun. 2013.

Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, “Complete

stability analysis of a heuristic approximate dynamic programming

control design,” Automatica, vol. 59, pp. 9-18, Sep. 2015.

Z.Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic

dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,

no. 8, pp. 1834-1839, Aug. 2013.

C. Mu, Z. Ni, C. Sun, and H. He, “Air-breathing hypersonic vehicle

tracking control based on adaptive dynamic programming,” /EEE Trans.

Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 584-598, Mar. 2017.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

1908

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 65, NO. 6, JUNE 2018

Q. Wei, D. Liu, F. L. Lewis, Y. Liu, and J. Zhang, “Mixed iterative
adaptive dynamic programming for optimal battery energy control in
smart residential microgrids,” IEEE Trans. Ind. Electron., vol. 64, no. 5,
pp. 4110-4120, May 2017.

R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic
insect,” IEEE Trans. Robot., vol. 24, no. 2, pp. 341-347, Apr. 2008.
N. O. Pérez-Arancibia, K. Y. Ma, K. C. Galloway, J. D. Greenberg, and
R. J. Wood, “First controlled vertical flight of a biologically inspired
microrobot,” Bioinspiration Biomimetics, vol. 6, no. 3, p. 036009, 2011.
P. Mazumder, D. Hu, I. Ebong, X. Zhang, Z. Xu, and S. Ferrari, “Digital
implementation of a virtual insect trained by spike-timing dependent
plasticity,” Integr., VLSI J., vol. 54, pp. 109-117, Jun. 2016.

T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269-284, 2014.

Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2014,
pp. 609-622.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in Proc. 43rd Int. Symp. Comput. Archit.,
Jun. 2016, pp. 267-278.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Seoul, South Korea, 2016, pp. 1-13.

C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU:
A scalable deep learning accelerator unit on FPGA,” IEEE Trans.
Comput.-Aided Des. Integr., vol. 36, no. 3, pp. 513-517, Mar. 2017.
Y. Sun and A. C. Cheng, “Machine learning on-a-chip:
A high-performance low-power reusable neuron architecture for
artificial neural networks in ecg classifications,” Comput. Biol. Med.,
vol. 42, no. 7, pp. 751-757, 2012.

O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in Proc. 39th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2012, pp. 356-367.

J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feed-
forward neural network platform with backpropagation driven approx-
imate synapses,” in Proc. IEEE/ACM Int. Symp. Low Power Electron.
Des. (ISLPED), Jul. 2015, pp. 85-90.

A. Savich, M. Moussa, and S. Areibi, “A scalable pipelined architecture
for real-time computation of MLP-BP neural networks,” Microprocess.
Microsyst., vol. 36, no. 2, pp. 138-150, 2012.

A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. 44th Annu. Int. Symp. Comput.
Archit., 2017, pp. 27-40.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017,
pp. 1-12.

[35] S. Venkataramani et al., “ScaleDeep: A scalable compute architecture
for learning and evaluating deep networks,” in Proc. 44th Annu. Int.
Symp. Comput. Archit., 2017, pp. 13-26.

N. Zheng and P. Mazumder, “A low-power circuit for adaptive dynamic
programming,” in Proc. 31th Int. Conf. VLSI Des. (VLSID), Jan. 2018.
C. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag, 2006.

D. Larkin, A. Kinane, V. Muresan, and N. O’Connor, “An efficient hard-
ware architecture for a neural network activation function generator,” in
Proc. Int. Symp. Neural Netw., 2006, pp. 1319-1327.

[36]

(371

[38]

Nan Zheng (S’13) received the B.S. degree in
information engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2011, and the M.S.
degree in electrical engineering from the University
of Michigan, Ann Arbor, in 2014, where he is
currently pursuing the Ph.D. degree in electrical
engineering.

In 2012, he had an internship at Qualcomm, CA,
where he involved in developing antenna system
for the next-generation communication network. His
research interests include low-power circuit design,
modeling, and optimization with an emphasis on machine-learning applica-
tions.

Pinaki Mazumder (S’84-M’87-SM’95-F’99)
received the Ph.D. degree from the University of
Illinois at Urbana—Champaign, Urbana, in 1988.

He is currently a Professor with the Department
of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor. He was with
industrial research and development centers that
included AT&T Bell Laboratories for six years,
where in 1985, he started the CONES Project the
first C modeling-based very large scale integration
(VLSI) synthesis tool at Indias premier electronics
company, Bharat Electronics Ltd., India, where he had developed several
high-speed and high-voltage analog integrated circuits intended for consumer
electronics products. He has authored or co-authored over 320 technical
papers and five books on various aspects of VLSI research works. His current
research interests include current problems in nanoscale CMOS VLSI design,
computer-aided design tools, and circuit designs for emerging technologies,
including quantum MOS and resonant tunneling devices, semiconductor
memory systems, and physical synthesis of VLSI chips.

Dr. Mazumder is a fellow of the American Association for the
Advancement of Science in 2008. He was a recipient of the Digitals
Incentives for Excellence Award, the BF Goodrich National Collegiate
Invention Award, and the Defense Advanced Research Projects Agency
Research Excellence Award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 29,2024 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

