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Abstract— Adaptive dynamic programming (ADP) is an
effective algorithm that has been successfully deployed in various
control tasks. For many emerging applications where power
consumption is a major design consideration, the conventional
way of implementing ADP as software executing on a general-
purpose processor is not sufficient. This paper proposes a scalable
and low-power hardware architecture for implementing one of
the most popular forms of ADP called action-dependent heuristic
dynamic programming. Different from most machine-learning
accelerators that mainly focus on the inference operation, the
proposed architecture is also designed for energy-efficient learn-
ing, considering the highly iterative and interactive nature of
the ADP algorithm. In addition, a virtual update technique is
proposed to speed up the computation and to improve the energy
efficiency of the accelerators. Two design examples are pre-
sented to demonstrate the proposed algorithm and architecture.
Compared with the software approach running on a general-
purpose processor, the accelerator operating at 175 MHz achieves
270 times improvement in computational time while consuming
merely 25 mW power. Furthermore, it is demonstrated that
the proposed virtual update algorithm can effectively boost
the energy efficiency of the accelerator. Improvements up to
1.64 times are observed in the benchmark tasks employed.

Index Terms— Adaptive dynamic programming, neural
networks, low-power accelerators, action-dependent heuristic
dynamic programming, machine learning.

I. INTRODUCTION

ADAPTIVE dynamic programming (ADP) is a powerful

algorithm in solving various decision-making and control

problems [1]–[5]. Through approximating the solution to the

Bellman equation, the ADP algorithm can generate optimal

or near-optimal solutions for many real-life applications. The

ADP algorithm is considered one type of reinforcement-

learning algorithm. It is also known as adaptive critic design,

approximate dynamic programming, neurodynamic program-

ming, etc. Many ADP algorithms have been successfully
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implemented in the form of software running on a general-

purpose processor [6]–[19]. Among various types of ADP

algorithms, the action-dependent heuristic dynamic program-

ming (ADHDP) algorithm is one of the most popular and most

powerful ADP algorithms [6], [7], [13], [14], [16], [18], as this

algorithm does not require any pre-knowledge about the model

of the system to be controlled.

Despite being effective as an algorithm itself, the highly

iterative ADP algorithms running on a general-purpose proces-

sor in the form of software fail to provide energy-efficient

solutions to various applications where power consumption is

of importance. For example, potential applications for the ADP

algorithm are mobile autonomous robots with a small form

factor [20]–[22] and future internet of things (IoT) devices.

For these microrobots and IoT devices that chiefly rely on

energy scavenging from the environment or energy stored on

a tiny battery, energy consumption is of utmost importance.

Therefore, it is necessary to resort to specialized accelerators

in order to meet the stringent requirements of both the speed

and energy consumption.

In recent years, many specialized accelerators have been

developed for neural networks [23]–[35]. Most of these accel-

erators are for deep neural networks, especially the deep

convolutional neural network (CNN), which is one of the

most popular and powerful neural networks employed widely

in image and audio recognition. Many design techniques

have been proposed to improve efficiency and throughput

of the neural network accelerators. Scalable architectures are

presented in [23] and [24] with an emphasis on memory

optimization. Low-power techniques are proposed in [25]

through leveraging the row-stationary technique so that the

number of data movements can be minimized. An automated

optimization-based co-design method is investigated in [26],

which yields a significant improvement in energy efficiency.

In [27], sparsity in the data is exploited in order to skip

ineffective computation, which improves both the speed and

power efficiency. A systolic structure was utilized in [34]

to save the computational energy and silicon area. In [33],

a novel Cartesian product-based computation architecture was

introduced to effectively exploit the sparsity in a compressed-

sparse CNN. Even though an ADP-based reinforcement learn-

ing also utilizes neural networks, there are some different

design challenges and tradeoffs in building accelerators for

ADP algorithms [36]. For example, most existing accelerators
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only implement the inference phase, as the learning is assumed

to be accomplished somewhere else. Such an operating model

indeed works well for supervised learning. The slow and

energy-consuming learning process can be conducted on the

graphic processing units in the data centers. Users of the neural

network accelerator can then download the trained weights

onto the chip, and the accelerator is ready to conduct some

classification or inference tasks. On the other hand, most

ADP algorithms target controlling plants or making optimal

decisions in a dynamic environment. Under this circumstance,

each ADP accelerator needs to learn how to choose the optimal

policy for the plant or environment it is interacting with in an

on-line fashion. Therefore, learning for an ADP accelerator is

most likely to be a real-time task.

In this paper, we introduce a hardware architecture as well

as design methodologies for ADHDP accelerators. A tile-based

computing is employed to provide good scalability for the

accelerators. The designed accelerators are also flexible, as

they can be programmed with instructions in order to run

ADHDP algorithms with different configurations. Low-power

operations are achieved through reducing the data movements

by utilizing and partitioning data buffers. Furthermore, as

we focus on building accelerators that can conduct learning

efficiently, a virtual update technique is introduced to leverage

some unique computational patterns in the ADHDP algorithm

in order to shorten the computational time and increase the

energy efficiency.

In the following, we provide a brief introduction of the

ADHDP algorithm in Section II. The hardware architecture for

the algorithm and design strategies are presented in Section III.

The architecture is upgraded with the proposed virtual update

algorithm in Section IV. Design examples and simulation

results are provided in Section V. Section VI concludes this

work.

II. ACTION-DEPENDENT HEURISTIC

DYNAMIC PROGRAMMING

In this section, a few concepts for the ADP and ADHDP are

reviewed. Only important terminologies that are closely related

to this paper are covered. The interested reader is referred to

the excellent review papers on this topic [1]–[5].

A. Actor-Critic Networks

Suppose the discrete-time system under control can be

modeled by

x(t + 1) = f [x(t), a(t)] (1)

where x(t) is the n-dimensional state vector at time t , a(t)

is the m-dimensional action vector, and f (·) is the model of

the system. The target of the algorithm is to maximize the

reward-to-go J , expressed as follows

J [x(t)] =

∞
∑

k=1

³ k−1r [x(t + k)] (2)

where ³ is the discount factor used to promote the reward

received in the near future over long-term reward and r [x(t)]

is the reward received at state x(t).

Equation (2) can be maximized through solving the Bellman

equation

J ∗ [x(t)] = max
a(t)

{

r [x(t + 1)] + ³ J ∗ [x(t + 1)]
}

(3)

where J ∗ [x(t)] denotes the optimal value function under

the optimal policy. The optimal policy a∗(t) is obtained by

maximizing the right-hand side of (3).

Solving the Bellman equation directly is intractable for

many problems with practical sizes. The complexity grows

exponentially with the size of the problem, which is well

known as the curse of the dimensionality. To circumvent this

difficulty, the ADP algorithm solves the Bellman equation

approximately with the help of function approximators. There

are two categories of ADP algorithms: model-based ADP and

model-free ADP. The model-based ADP algorithm assumes

the model for the plant that is under control or the environment

that the agent is interacting with is known. This type of

algorithm explicitly exploits the model information in the

process of solving the Bellman equation. In contrast, the

model-free ADP algorithm does not need a model for the

plant or the environment. The algorithm learns the model in

the process of interacting with the plant or the environment.

Therefore, the model-free ADP algorithm is more general and

more powerful for many practical problems.

The model-free ADP algorithm we consider in this paper

is the ADHDP algorithm, which is one of the most popular

model-free ADP algorithm [6], [7], [13], [14], [16], [18]. It is

closely related to the well-known Q-learning algorithm that is

widely used by researchers in the artificial intelligence com-

munity. The configuration of the ADHDP algorithm is illus-

trated in Fig. 1. In the figure, x and a represent the state and

action vectors, respectively. ha and hc are Nha -dimensional

and Nhc-dimensional output vectors from the hidden units in

the actor and critic network, respectively. wa1, wa2, wc1, and

wc2 are synaptic weights in the networks. Two neural networks

are used as universal function approximators in this algorithm.

One neural network, called critic network, is employed to

generate Ĵ [x(t)], which is an estimation of J [x(t)]. The

critic network attempts to learn J [x(t)] through adjusting the

synaptic weights in the neural network in order to minimize

the absolute value of the temporal difference error

´(t) = Ĵ [x(t − 1)] − ³ Ĵ [x(t)] − r [x(t)] (4)

The second neural network is called an actor network. Its

function is to generate an action vector a(t) that maximizes

the estimated reward-to-go Ĵ [x(t)]. Action vector outputted

by the actor network is fed to the critic network. The actor

then adjusts its synaptic weights to maximize Ĵ [x(t)].

B. On-Line Learning Algorithm

In the learning process, we need to train the two neural

networks such that the defined cost function can be minimized.

The most popular and efficient way to train a neural network

is the stochastic gradient descent learning based on backprop-

agation [37]. Errors at output layers are propagated back to

each synapse in the network, layer by layer. There are two

phases in the ADHDP algorithm: critic update phase and actor
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Fig. 1. Illustration of the actor-critic configurations used in the ADHDP algorithm. Two neural networks, critic network and actor network, are employed
in the algorithm to approximate functions need to learn.

update phase. Multiple iterations are involved in both phases.

Each iteration contains a forward operation and a backward

operation. The algorithm is illustrated in Fig. 2.

1) Forward Opeartion: For each iteration in the actor

update phase, the forward operation is carried out according

to (5)-(9).

ha
i = σ

⎛

¿

n
∑

j=1

wa1
i j x j

À

⎠ (5)

ai = σ

⎛

¿

Nha
∑

j=1

wa2
i j ha

j

À

⎠ (6)

pc =

[

a

x

]

(7)

hc
i = σ

⎛

¿

m+n
∑

j=1

wc1
i j pc

j

À

⎠ (8)

Ĵ =

Nhc
∑

i=1

wc2
i hc

i (9)

where σ(·) is the activation function. Popular choices are

hyperbolic tangent function, sigmoid function, and rectified

linear unit. For the critic forward phase, only (8)-(9) are carried

out. (5)-(7) are not necessary as the weights in the actor

network remain the same, which leads to the same action

vector.

2) Backward Opeartion: During the backward operation in

the critic update phase, wc1 and wc2 are updated according

to (10) and (11).

�wc2
i = α´hc

i (10)

�wc1
i j = αec1

i σ ′

(

m+n
∑

k=1

wc1
ik pc

k

)

pc
j (11)

where ec1
i = ´wc2

i is the error at the hidden unit hc
i , and α is

the learning rate.

During the backward operation in the actor update phase,

wa1 and wa2 are updated according to (12) and (13).

�wa2
i j = αea2

i σ ′

⎛

¿

Nha
∑

k=1

wa2
ik ha

k

À

⎠ ha
j (12)

�wa1
i j = αea1

i σ ′

(

n
∑

k=1

wa1
ik xk

)

x j (13)

where ea1
j =

∑m
i=1

[

ea2
i · σ ′

(

∑Nha

k=1w
a2
ik ha

k

)

· wa2
i j

]

,

ea2
j =

∑Nhc

i=1

[

ec1
i · σ ′

(
∑m+n

k=1 wc1
ik pc

k

)

· wc1
i j

]

, and ec1
j = eaw

c2
j

are backpropagated errors at ha
j , a j and hc

j , respectively.

e2
a/2 is the cost function that needs to be minimized for

the actor network. In many applications, the desired reward-

to-go is 0, i.e. no punishment (negative reward). In this

case, a convenient choice is ea = Ĵ [x(t)] [6], [7], [13], [14],

[16], [18].

III. HARDWARE ARCHITECTURE

The proposed hardware architecture for the ADP accelerator

is shown in Fig. 3. The accelerator consists of three major

blocks: datapath, memory, and controller. The datapath is the

core of the ADP accelerator. It handles all the arithmetic

operations needed in the ADHDP algorithm. The memory unit

contains all the on-chip storage units, including static random-

access memory (SRAM) array used to store synaptic weights,

registers for holding neuron states, and input buffers for reduc-

ing data movements. The controller oversees operations of the

whole accelerator, and executes pre-programmed instructions

in order.

A. On-Chip Memory

Memory in our system can be divided into three categories

based on the purposes they serve: synapse memory, neuron

memory, and data buffers. The most critical and also the

largest memory block is the synapse memory, as the number

of synapses grows quadratically with the size of the neural

network. In this design, we use an SRAM array for storing

synaptic weights. Neuron memory is where the activation

levels of neurons in the network are stored. It is implemented

with an array of registers in this design. Data buffers are

storage units used to hold the input, intermediate, and output

data temporarily in order to accelerate the computation and

save computational energy.

Data flow and memory access patterns employed in the

proposed accelerator are shown in Fig. 4. The computations

in the forward operations shown in (5) - (9) are mostly matrix
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Fig. 2. Pseudocode for the ADHDP Algorithm.

multiplication operations. Similar to most machine-learning

accelerators [23]–[25], [28], we adopt a tile-based matrix

multiplication strategy, where the matrix is partitioned into

several smaller blocks. The size of the tile is determined by

the number of data lanes available in the system. In this design,

the number of lanes is set to four, as this is enough for the

applications targeted by this paper. Nevertheless, the proposed

architecture and design methodology are scalable, so more

lanes can readily be added into the design to accommodate

larger problems.

For the forward operation, we adopt a row-wise multi-

plication. The neuron activation vector is first loaded from

the neuron memory to the activation buffer. The activation

buffer is a circular buffer, and it rotates a complete circle

when multiplying each row in the matrix. Loading the data

from neuron memory to the input buffer has the advantage

that the data in the buffer can be reused without accessing

the relatively-large neuron memory repeatedly, thereby saving

power and time. Synaptic weights in the SRAM are arranged

in a way such that weights corresponding to one tile are stored

in the same row.

For the backward operation, there are two major steps: error

backpropagation and weight update. The error backpropaga-

tion operation is also a matrix-vector multiplication. Similar

to the forward operation, a tile-based multiplication is used.

However, the multiplication in this case is done column-wise

instead of row-wise. Such an arrangement has the advantage

that the access for the memory is always sequential, providing

a more regular memory access pattern when off-chip memory

is used. In the weight update operation, two vectors are

multiplied to form a matrix that is added to the old synaptic

weight matrix. In this case, elements in the row vector are

stored in the circular buffer, whereas elements associated with

the column vector are stored in the linear buffer. The error

backpropagation and weight update operations are scheduled

in alternate clock cycles in order to reuse the same row of

synaptic weights. Therefore, for one backward operation, each

entry in the synaptic weight SRAM only needs to be read and

written once.

B. Datapath

The datapath is partitioned into five/six-stage reconfigurable

pipelines: schedule, fetch, multiply, add, activate, and write

back.

1) Scheduling and Data-Fetching Operations: In the sched-

ule stage, instructions fetched from the instruction memory

are decoded to obtain the necessary information for schedul-

ing operations with data. In the proposed single-instruction-

multiple-data (SIMD) architecture, one instruction may con-

tain the workloads that need multiple clock cycles to com-

plete. Therefore, the instruction fetching and decoding occur

selectively with the help of the controller. The scheduler

needs to generate and latch the addresses for the data to be

fetched in the fetch stage as well as to inspect any potential

data hazard. Upon detecting that the data needed in the

speculatively-scheduled operation are not ready in the input

buffer, the scheduler looks for possibilities of data forwarding

directly from the memory or write-back buffer. If even the data

forwarding is not able to resolve the data hazard, a STALL

operation is inserted into the pipeline as a null operation in

order to wait for the data that are needed to be computed. In

the fetch stage, data is read from the input buffers or memory

and is latched in corresponding pipeline registers.

2) Arithematic and Write-Back Opeartions: The multiply

and add stage conduct multiplication and addition operations,

respectively. Adders in the add stage can be configured as

parallel adders, or adder tree, or mixed of both depending on

the operations conducted. The activate stage implements the

activation function employed in neural networks. The hyper-

bolic tangent function is employed in this design, as it is the
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Fig. 3. Hardware architecture for the proposed accelerators. Data-level parallelism is exploited through utilizing multiple datapath lanes. A reconfigurable
five/six-stage pipeline is used for the datapaths.

Fig. 4. Illustration of the data flow and memory access pattern in the proposed accelerators. Data buffers are employed to exploit the locality of the data.
Synaptic weights needed in one tile-based operation is stored in one row.

most popular choice for ADP algorithm in the literature [6],

[7], [13], [14], [16], [18]. In the proposed design, the activation

function is implemented with piecewise linear interpolation,

similar to those employed in [23] and [38]. Depending on the

operation conducted, the activation stage may be bypassed, as

the activation operation is only needed in the forward phase.

In this case, the six-stage pipeline is reduced to a five-stage

pipeline. After arithmetic computations, the write-back stage

in the end of the pipe writes computed results back to storage

units according to the instruction executed.

3) Datapath Quantization: One important consideration in

designing customized accelerators is the choice of bitwidth

used to represent data in the system. It is the norm to

use a fixed-point number representation in machine-learning

accelerators [23]–[36] because of its ease of implementation

and good computational efficiency. To provide some guidelines

in determining the proper bitwidth in our system, we conduct

parametric simulations on the learning performance of the

ADP algorithm under different bitwidths. Three most popular

benchmark tasks for the ADP algorithm are employed in the
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Fig. 5. Comparison of the learning performance achieved with different
levels of data quantization for three classic ADP benchmarks. The obtained
performances are normalized with respect to those obtained from the double-
precision floating-point computations.

parametric study: The cart-pole balancing problem [6], [7],

[13], [16], the beam-balancing problem [15], [17], and the

triple-link inverted pendulum problem [6], [13]. In these three

tasks, the target is to control the system such that the states

of the system stay within some pre-defined ranges. In our

experiment setting, once the states of the system under control

exceed the desired ranges, a punishment (or a negative reward)

is provided. For each task, data used in the algorithm, includ-

ing synaptic weight, neuron states, and other intermediate

variables, are quantized into numbers with a fractional bitwidth

of Q f . Learning processes are then conducted according to

the ADP algorithm. The learning performance obtained for

each task with different levels of quantizations are compared

in Fig. 5. For each task, 50 runs are conducted, where a run

contains several trials. Each trial is a complete process from

beginning to end. A trial is ended either when the maximum

time is reached (1000 time steps in these experiments), or

the states under control exceed certain limits. The learning

performance is measured by the total time that the plants

are successfully maintained in the desired states in all trials.

In Fig. 5, the performances obtained with different bitwidth

are normalized to the performances obtained from computation

with a double-precision floating-point number representation.

The error bars in the figure correspond to the 95% confidence

interval. As shown in the figure, performances achieved with

quantized data start matching those obtained with double-

precision data when the bitwidth for the fractional part reaches

12 bit. We use a 6-bit integer part (including a 1-bit sign

information) and an 18-bit fractional part to represent data

in our accelerators. The extra 6 bits in the fractional part

compared to the 12-bit lower limit is to provide some tolerance

in the design.

C. Controller

The main role of the controller is to determine the instruc-

tion flow. The format of instructions developed for our accel-

erator is shown in Fig. 6(a). The operation code field specifies

the type of instruction. There are six types of instructions

in our accelerator, as shown in Fig. 6(b). The code “FF”

corresponds to the forward operation, which is the most

common instruction. The code “SCA” is for scalar operation

such as calculating the temporal difference as shown in (4).

The operation code “BP_WU” is used for hidden-layer units

where both error backpropagation and weight update are

needed. Code “BP” and “WU” are for error backpropagation

and weight update, respectively. They are used when only one

operation is needed. For example, “WU” code can be used for

the input layer when error backpropagations are not needed.

The code “CC” calls for controller operation. It can be used,

for example, to implement the conditional jumps in Fig. 2.

The fields “Source Addr”, “Synapse Addr”, and “Destination

Addr” specify the addresses for the source data, the address

for the synaptic weight and the addresses to write back,

respectively. In our design, the synapse memory has its own

address space, whereas all other storage units share a unified

address space. The “# of Row” and “# of Column” fields

indicate the size of the matrix. The filed “Offset” specifies any

offset in computing the matrix multiplication. For example,

as shown in Fig. 2, backpropagation for the actor network

only needs to be done for a(t). Therefore, elements associated

with x(t) should be skipped through specifying the offset.

The “Config” field is used for configuration purposes, for

example, to specify whether to bypass the activation stage in

the datapath.

With all the fields specified in the instructions, the scheduler

can schedule operations based on this information. In the

proposed architecture, one instruction specifies all operations

conducted on one matrix. An example of the instructions

corresponding to the pseudocode shown in Fig. 2 is illustrated

in Fig. 6(c). Only a portion of the instructions are shown for

the purpose of brevity. All instructions in the figure correspond

to a series of operations conducted by the datapath except for

the “Check Point” operation where the controller conducts a

conditional jump with the help of an FSM.

IV. VIRTUAL UPDATE TECHNIQUE

In this section, we examine a few unique features of the

ADP algorithm. These features are then exploited to improve

the speed and energy efficiency of the accelerator.

A. Algorithm

In the ADP algorithm, it is the norm to conduct many

internal cycles in order to minimize the cost function for

each input vector [6]–[19]. This corresponds to the second

or the third while loop in Fig. 2. The maximum number of

internal loops for each input vector is typically in the range

of 10 to 100. In other words, many iterations are carried out

for the same input vector, attempting to minimize the cost

function at the current time step. Therefore, it may be worth

conducting some pre-processing if the same input vector is

used repeatedly. Such a simplification is indeed possible by

inspecting the unrolled while loop.

Without loss of generality, let us focus on the update in the

critic network. Weights in the input layer of the critic network

are updated according to (11), followed by the immediate for-

ward operation in (8). For the ease of explanation, (11) and (8)
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Fig. 6. Illustration of the instructions used in the accelerators. (a) Format of the instruction. (b) List of all operation codes and their corresponding operations.
(c) A sample program for implementing the ADHDP algorithm shown in Fig. 2.

are rewritten in (14) and (15) with the dependence on the loop

index ic explicitly indicated. Note that pc in the equations is

not a function of ic, as the state vector and selected action

remain the same when the critic network is updating.

�wc1
i j (ic) = αec1

i (ic)σ
′

[

m+n
∑

k=1

wc1
ik (ic)pc

k

]

pc
j (14)

hc
i (ic + 1) = σ

⎡

£

m+n
∑

j=1

wc1
i j (ic + 1)pc

j

¤

⎦ (15)

By substituting (15) into (14) with the help of the relation-

ship wc1
i j (ic + 1) = wc1

i j (ic) + �wc1
i j (ic), one can obtain

hc
i (ic + 1) = σ

[

oc
i (ic + 1)

]

(16)

where

oc
i (ic + 1) = oc

i (ic) + εi (ic)�c (17)

oc
i (ic) =

m+n
∑

j=1

wc1
i j (ic)pc

j (18)

εi (ic) = αec1
i (ic)σ

′
[

oc
i (ic)

]

(19)

�c =

m+n
∑

j=1

(pc
j )

2 (20)

oc
i (ic) is the input to neuron hc

i in the i th
c iteration; εi (ic) is the

scaled backpropagated error at the input of neuron hc
i in the i th

c

iteration. These two quantities are computed in the i th
c iteration

for the forward and backward operations, respectively. �c is

the sum of squares of activation levels of all input neurons,

which is independent of ic. Therefore, activation levels of the

hidden layer units in the (ic+1)th iteration can be conveniently

calculated based on results obtained from the i th
c iteration.

Even though no actual weight update or forward operations are

conducted, it appears to neurons in other layers as if weights

in the input layer were updated. We call this technique the

virtual update technique.

More conveniently, if the virtual update technique is

employed from the 0th iteration, then we have

oc
i (ic) = oc

i (0) + Ei (ic)�c (21)

oc
i (0) =

m+n
∑

j=1

wc1
i j (0)pc

j (22)

Ei (ic) =

ic
∑

k=0

αec1
i (k)σ ′

[

oc
i (k)

]

(23)

In this case, we only need to update Ei (ic) in each iteration,

whereas oc
i (0) and �c remain the same. When the update loop

is terminated either because the maximum number of iterations

Ic is reached or because the cost function is below a certain

threshold, synaptic weights associated with the input layer are

updated according to (24).

�wc1
i j = Ei (ic)pc

j (24)
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TABLE I

COMPARISON OF COMPUTATIONAL COMPLEXITY OF CONVENTIONAL UPDATE AND VIRTUAL UPDATE

It is worth mentioning that the proposed virtual update

algorithm does not reduce the precision of the algorithm.

That is, the speedup of the algorithm is achieved through

reordering effective operations more efficiently instead of

using approximations.

B. Implementation Considerations

In order to exploit the proposed virtual update technique,

one extra instruction “VU” is added to our instruction set intro-

duced in Section III. This instruction implements (21) - (23)

in two groups of operations. The first group of operations is

to compute and store �c when the current input vector is

presented for the first time. The second group of operations are

the multiply-and-add operations shown in (21). The operation

of accumulating Ei (ic) is merged to the normal “BP” or

“BP_WU” operations without introducing any overhead in

computational time. It is worth noting that all newly-added

operations, as shown in (21)-(23), scale linearly with the size

of the network, whereas the original backward and forward

operations scale quadratically. Therefore, the virtual update

technique can help save significant computational efforts.

To implement the virtual update algorithm, oc
i (0) and Ei (ic)

need to be stored. They can be stored conveniently in the

synapse memory, recognizing that the weight memory is not

utilized during the virtual update operation. Indeed, the virtual

update technique avoids both writing synaptic weights in

the weight update phase and reading weights in the forward

phase, leaving the weight memory free during that period.

Compared to synaptic weights stored in the synapse SRAM,

the additional memory overhead caused by the virtual update

technique is negligible, especially when the size of the network

is large.

The pseudocode for the while loop of updating the critic

network with the proposed virtual update technique is shown

in Fig. 7. If the current iteration is not the last iteration allowed

by the maximum number of iterations, the virtual update algo-

rithm is used to compute neuron activation levels of hidden-

layer neurons in the next iteration, otherwise the conventional

update is used. It should be ensured that when exiting the

while loop, normal weight update has to be conducted once

according to (24), as weights are actually not updated during

previous iterations.

The computational complexity of the virtual update algo-

rithm is compared with that of the baseline in Table I. The

number of arithmetic operations per time step is used for

comparison. In the table, Ni and Nh represent the number

of input-layer neurons and hidden-layer neurons, respectively.

L specifies the number of iterations in one time step. Its

value should be in the range of [1, Ic] or [1, Ia] depending

Fig. 7. Pseudocode for the while loop corresponding to the critic update
when the virtual update algorithm is employed.

on whether the network is critic or actor. “MAC”, “MUL”

and “ADD” denote multiply-accumulate, multiply, and add

operations, respectively. It is worth noting that complexity

listed in the table is valid for the case where L > 1.

When L = 1, two algorithms have the same computational

complexity, as no virtual update takes place. As shown in the

table, the virtual update technique significantly reduces the

number of operations needed. Even though the technique is

only applicable for synapses between input layer and hidden

layer, the savings in computational efforts is remarkable, as

most weights in neural networks concentrate in between these

two layers. The actual percentage of savings is reported in

Section V.

V. DESIGN EXAMPLES

Hardware architectures and techniques discussed in previous

sections are implemented in TSMC 65-nm CMOS technology,

and the obtained simulation results are presented in this

section. In order to examine all aspects of the proposed design

methodology and design strategies, simulators are developed in

a high-level programming language. These simulators model

behaviors of the final chip, and they are employed to mea-

sure the input-output relationships and clock cycle needed to

accomplish certain tasks. Area, speed and power consumption

are evaluated based on post-layout circuit simulation results.

Two accelerators are implemented. One implementation is

equiped with the proposed virtual update algorithm, whereas

another one is the baseline design with the conventional

update. Both chips have similar chip layouts. Therefore, only

the one with virtual update is shown in Fig. 8 for brevity.
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Fig. 8. Chip layout and floorplan of the accelerator chip with the virtual
update algorithm.

On-chip memories, including synaptic weight memory, neuron

memory, input buffers, and instruction memory take most of

the spaces. The arithmetic unit, which contains multipliers,

adders, and the activation block, is the second largest block.

The controller and scheduler occupy the rest of the area. In

this design, synaptic weights are stored in a 1536-byte SRAM

array. The sizes of the registers for storing neuron activations,

intermediate results, and instructions are 192 bytes, 336 bytes

and 240 bytes, respectively. Both the baseline and the upgraded

accelerators are designed to operate at a clock frequency of

175 MHz. Such a clock frequency is more than enough for

allowing all benchmark tasks discussed in this paper to operate

in real time.

In order to evaluate the performance of the accelerators in

conducting reinforcement-learning tasks, three most common

control benchmarks used in Section III are employed. The

same metric, accumulated time steps, is used for comparison.

The performance achieved by the accelerator is normalized

with respect to the performance achieved by the software

approach implemented on a general-purpose processor. The

obtained results are shown in Fig. 9. Since the virtual update

algorithm does not use any approximation or assumption in

the computation, the obtained results should be the same as

the baseline design when quantization is absent. Neverthe-

less, there exists slight differences in the computed results

caused by different ordering of quantizations. The results

in the figure are obtained from the behavior-level model

of the chip. Mathematical models used for simulating these

benchmark tasks can be found in [6], [7], [13], and [15]–[17],

and they are omitted in this paper for brevity. As shown

in the figure, the accelerators are able to achieve a similar

performance compared to the processor that computes with

double-precision floating-point numbers. One set of typical

waveforms obtained from the triple-link task for a successful

Fig. 9. Comparison of the learning performances achieved by the accelerators
and the software approach for three commonly used benchmarks. The results
obtained from the accelerators are normalized to those obtained from software.
Error bars correspond to a confidence interval of 95%.

Fig. 10. Typical waveforms obtained in the triple-link inverted pendulum
task with the baseline accelerator. In the figure, the unit for distances and
angles are meter and degree, respectively.

learning is demonstrated in Fig. 10. In the figure, x , θ1 - θ3

and their corresponding derivative x ′ and θ ′
1 - θ ′

3 are eight

state variables under control, u is the applied control voltage,

J is the estimated reward-to-go, 
|w| is the sum of absolute

values of all weights, and r is the reward signal, which is

−1 if the states of the plant exceed the target range. Initial

conditions for the plants are set as the following. x and x ′

are initialized as zero. θ1 − θ3 and θ ′
1 − θ ′

3 are initialized

randomly. They obey uniform distributions U [−1◦, 1◦] and

U [−0.5◦/s, 0.5◦/s], respectively. The target is to control x to
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Fig. 11. Comparison of the numbers of clock cycles needed for every
critic/actor update iteration. The first two groups of data are obtained from the
cart-pole balancing task, whereas the third group of data is from the triple-
link inverted pendulum task. The forward and backward operations consume
most clock cycles. The overheads of scalar operation and control operation
are quickly diluted as the sizes of the neural networks increase.

Fig. 12. Comparison of the power consumption breakdown for every
critic/actor update iteration. The first two groups of data are obtained from the
cart-pole balancing task, whereas the third group of data is from the triple-
link inverted pendulum task. The arithmetic unit and memory consume most
of the power. The virtual update technique improves the power consumption
slightly.

be within the range of [−1m, 1m] and to maintain θ1 - θ3 in the

range of [−20◦, 20◦], while the applied voltage is bounded by

±30V . More detailed information on the triple-link inverted

pendulum balancing task can be found in [6] and [13]. It is

demonstrated in Fig. 10 that the accelerator successfully learns

the control policy and maintains the states of the system well

within the target range.

To demonstrate the effectiveness of the proposed virtual

update technique, Fig. 11-Fig. 13 compare the number of

clock cycles, power consumption, and energy efficiency of

the accelerators with and without the proposed technique.

Different sizes of neural networks and control tasks are

examined. In the figures, results with labels “4-6-1, 5-6-1” and

“4-10-1, 5-12-1” are obtained from the cart-pole task, where

the two sets of numbers indicate the sizes of the critic

and actor networks, respectively. The results with the label

“8-20-1, 9-20-1” are obtained from the triple-link inverted

pendulum task. In addition, specifications of the proposed

Fig. 13. Comparison of the energy consumption for every critic/actor update
iteration. The first two groups of data are obtained from the cart-pole balancing
task, whereas the third group of data is from the triple-link inverted pendulum
task. The virtual update technique effectively improves the energy efficiency.
The improvement is more significant for larger neural networks.

ADHDP accelerator are summarized in Table II. The ADP

accelerator faces many unique challenges compared to other

machine-learning accelerators, as pointed out in Section I.

Nevertheless, to provide some insights, two state-of-the-art

accelerators for supervised learning are also presented in

the table. Two trends can be observed in Table II. The

ADP accelerator is smaller compared to the accelerators for

supervised-learning tasks. Indeed, most ADP algorithms deal

with extracted features, which can be handled by networks

with smaller sizes. Nevertheless, the proposed design method-

ologies are scalable, and the accelerator can be readily scaled

to deal with larger problems. The second observation is that

the number of bit used in the ADP accelerator is larger

than those used in supervised-learning accelerators. This is

mainly because learning typically requires a higher numerical

precision compared to inference in order to converge.

The normalized number of clock cycle breakdowns are

compared in Fig. 11. One trend that can be observed for

both the baseline accelerator and the accelerator with the

virtual update is that the forward and backward operations

occupy most of the clock cycles, and the percentages that

these two operations occupy increase as the size of neural

networks becomes large. Indeed, as the size of the neural

network increases, the number of operations that can flow

through the pipeline without being interrupted by the control

or branch operation increases. The proposed virtual update

algorithm effectively shortens the number of clock cycles

needed for each task. The improvement grows as the size of

the problem increases. A 1.47 times improvement is achieved

for the triple-link inverted pendulum benchmark task. The

main reason for the growing improvement is that the virtual

update algorithm effectively replaces the quadratically-scaled

operations with linearly-scaled operations. Therefore, the sav-

ings in the number of clock cycles increases with the size of

the problem. To give a comparison between the accelerators

presented in this paper and a software running on a general-

purpose processor, the ADP algorithm is programmed and is

run on an Intel Xeon processor. The improvement in running
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TABLE II

SUMMARY AND COMPARISON OF SPECIFICATIONS OF THE ADHDP ACCELERATOR

time which is averaged over all three network sizes is about

270 times.

Fig. 12 compares the power consumption of the two accel-

erators. The accelerator with virtual update has a slightly

lower power consumption compared to the baseline design,

thanks to many fewer memory operations, as illustrated in

the figure. Another observation made from Fig. 12 is that the

virtual update tends to increase the power consumption in the

arithmetic unit. This can be attributed to two reasons. The

first reason is that the virtual update increases the utilization

rate of the arithmetic unit. Another reason is that multiplexers

are added in the arithmetic unit to allow more operations

needed in the virtual update algorithm, which contributes to the

additional power. The additional power in the arithmetic unit is

offset by the savings in memory operations, resulting in a net

savings in the power consumption. The energy efficiencies are

compared in Fig. 13. Through accumulating the improvements

in both the number of clock cycles per iteration and the

power consumption, energy efficiency of the accelerator with

the virtual update technique has been improved as many as

1.64 times for the triple-link inverted pendulum task. Again,

as the sizes of the network increase, the improvement in energy

efficiency grows.

VI. CONCLUSION

In this paper, we present a hardware architecture for

ADHDP accelerators. Through leveraging the data-level par-

allelism and data locality, scalable and programmable accel-

erators with high throughput and high energy efficiency are

demonstrated. In addition, to exploit the iterative nature of

the ADP algorithm, a virtual update technique is proposed

to skip unnecessary computations, improving the throughput

and power consumption. We demonstrate two design examples

that are with and without the proposed technique. Extensive

simulations are conducted to demonstrate efficacy of the

design strategies and techniques. It is observed from the

simulations that the accelerator is around 270 times faster than

the software approach running on a general-purpose processor

while achieving similar learning performance. Furthermore,

the proposed virtual update algorithm can effectively improve

the energy efficiency of the accelerator by a factor of 1.64

for the most complicated benchmark task we employ. Such

a good energy efficiency and high throughput open the door

for complicated ADP algorithms to be deployed in various

energy-constraint applications where optimal decision-making

or control are needed.
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