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Abstract—In this work, we propose a hardware-friendly reinforcement learning algorithm. The learning algorithm is based on

an actor-critic structure implemented with spiking neural networks (SNNs). A biologically plausible and hardware-friendly

spike-timing-dependent plasticity learning rule is formulated and employed in the training of SNNs. Several important aspects of

applying the learning rule in a reinforcement learning context is studied, especially from the circuit designers’ point of view. Pitfalls of

potential noise mixing and correlated spikes are identified and properly addressed. To feature a low-power learning architecture,

techniques such as down-sampling data for certain learning blocks, injecting quantization noise as noisy residues in neurons, and

proper memory partitioning are proposed. A 1-D state-value function learning problem and a 2-D maze walking problem are examined

in this paper to illustrate effectiveness of the proposed algorithm and learning rules. A low-power hardware architecture is proposed

and examples are implemented with Verilog. Hardware complexity of the proposed algorithm is analyzed, and potential solutions to

breaking memory bottleneck when the size of the problem gets large is also discussed.

Index Terms—Reinforcement learning, spiking neural network, hardware neural network, spike-timing-dependent plasticity,

and actor-critic network

Ç

1 INTRODUCTION

DEVELOPMENT and implementation of hardware-friendly
machine learning algorithms have drawn many

researchers’ attention in recent years. The main objective is to
push the capability of machine learning to the next level by
leveraging the computational power of specialized hardware.
Compared to a traditional software-only approach, special-
ized hardware is able to achieve much more computational
power while consuming less energy. Available hardware
platforms include universal field programmable gate arrays
(FPGA) [1], [2], [3], [4], customized CMOS chips [5], [6], [7],
[8], [9], [10], [11], [12], emerging nanotechnologies such as
memristors [13], [14] and spintronics [15].

Various machine learning algorithms have been imple-
mented on abovementioned hardware platforms, such as
deep learning [8], [12], sparse learning [10], and support
vector machine [16]. However, as one of the most important
branches of machine learning, reinforcement learning is
only reported in a limited number of articles [9].

Spiking neural networks (SNNs), as the third generation
of neural networks, are promising technologies in helping
accomplish numerous machine learning tasks. Tradition-
ally, reinforcement learning is developed on the basis of
artificial neural networks (ANNs), where the ANN is used
as a universal function approximator. Recently, there are
efforts attempting to build reinforcement learning with

SNN, as it is hypothesized that this way of learning might
actually be the mechanism as to how mammals learn [17],
[18], [19], [20], [21]. Besides its biological feasibility, SNN is
more hardware-friendly, especially when the size of the net-
work is large. Address-event representation (AER) is able to
conveniently interconnect individual sub-SNNs in a large
network [5], [11], [22], and the parallel nature of a SNN ena-
bles a fast computation by exploiting parallel processing
capability of specialized hardware. Furthermore, the event-
driven computation provided by a SNN is much more
energy-efficient compared to traditional computation. For
example, it has been shown in [23] that customized SNN
hardware is two orders of magnitude more energy-efficient
than the traditional rate-based ANN implemented on
FPGA. As a result, the focus of hardware implementation of
neural network has been shifted from ANNs to SNNs in
recent years. More and more SNNs, such as TrueNorth
from IBM [11], CAVIAR in Europe [12], and neuromorphic
chips from HRL [24] are built to tackle larger and more com-
plicated tasks.

Spike-timing-dependent plasticity (STDP) existing in
SNNs has been long believed to be the underlying mecha-
nism with which the mammal brain learns [25], [26]. To
enable SNNs with learning capability, STDP is often
employed as a learning algorithm in a hardware SNN. In
most cases, STDP is treated as a biologically plausible and
empirically successful learning rule without its underlying
principle being studied. There are numerous efforts from
neuroscience community trying to explain the fundamental
role of STDP in learning [27]. Hinton in [28] first hypothe-
sized that STDP-based learning might be a form of gradient
descent learning. Later on, similar ideas are shown in differ-
ent contexts with various forms [17], [18], [19], [20].

� The authors are with the Department of EECS, University of Michigan,
Ann Arbor, MI 48105. E-mail: {zhengn, mazum}@umich.edu.

Manuscript received 3 Feb. 2016; revised 17 May 2016; accepted 22 June 2016.
Date of publication 26 July 2016; date of current version 20 Jan. 2017.
Recommended for acceptance by N. Jha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2595580

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017 299

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:21:28 UTC from IEEE Xplore.  Restrictions apply. 



In this paper, the STDP learning rule is developed as a
hardware-friendly learning mechanism. The main objective
of this paper is not to reveal the exact role of the STDP learning
rule in a biological context. Rather, our aim is to adapt the
STDP learning rule into an economical way of learning on sili-
con bymaking reasonable simplifications and assumptions. It
is shown that STDP, withminor adjustments, becomes amea-
sure of gradient. As a result, the STDP learning rule turns out
to be a gradient descent optimization method.With the learn-
ing rule justified, we focus on using it as an effective tool for
actor-critic network based reinforcement learning. Hard-
ware-oriented learning rules are formed, and implementation
techniques that help achieve better learning performance are
presented. Noise mixing problems are identified when the
STDP learning rule is employed in reinforcement learning
that tries to minimize temporal-difference (TD) error. High-
frequency quantization noises are down-converted to base-
band, which will saturate the learning process unless proper
filtration is used. In addition, to ensure that the STDP learning
rule performs properly, a statistical neuron model is needed
such that there is little correlation among spikes. We propose
a quantization noise injection technique that avoids using
pseudo-random generators, saving power and area. Further-
more, two different sampling rates are proposed to be used in
the reinforcement learning task to take advantage of both ease
of routing of 1-bit spike signals and power efficiency of multi-
bit calculations. In addition, the decimation gain associated
with the down-sampling process is also helpful in reducing
the number of bits needed for synapse weights in a fixed-
point implementation. Two testing cases inspired by [18] are
employed to examine all aspects of hardware implementa-
tion. A low-power hardware architecture for the algorithm is
also proposed, examples ofwhich are implemented inVerilog
as synchronous digital circuits. In addition, hardware com-
plexity is analyzed. To mitigate the limits posed by memory
access, several possible solutions are also discussed.

2 BACKGROUND

We first review a few concepts in an actor-critic based rein-
forcement learning. For brevity, only important terminolo-
gies that are closely related to this paper are covered. The
interested reader is referred to the classic book on reinforce-
ment learning [29].

In a reinforcement learning task, an agent tries to learn the
optimal policies that maximize the rewards it receives from
the environment over time. One of the most popular types of
reinforcement learning is the actor-critic method. There are
two networks in an actor-critic architecture. One is the actor
network which is responsible for action selection. It attempts
to learn the optimal policy with the help of a critic network. A
policy, denoted by pðs; aÞ, is a function of state s and action a.
It represents the probability of action a being selected at state
s. The critic network is used to estimate the value of a state st
under a policypðs; aÞ.

V stð Þ ¼
X

1

k¼0

gkrtþkþ1: (1)

In (1), g is the discount factor used to determine the rela-
tive importance of future rewards. A small g encounrages
the agent to pursue short-term rewards, whereas a large g

promotes long-term rewards. rt is the reward that the agent
receives from the environment at time t. It should be noted
that the state-value function V ðstÞ shown in (1) is implicitly
a function of the current policy pðs; aÞ.

A common technique employed in learning state-value
function is the temporal-difference learning. The TD error is
defined as

dt ¼ gV stþ1ð Þ � V stð Þ þ rtþ1: (2)

TD learning is a smart way of using a new estimation to
update old estimations. TD error shown in (2) serves as the
error signal in feedback that drives output from critic net-
work to converge to the real state-value function. More spe-
cifically, when the TD error for all states is zero, output
from the critic network satisfies (1).

Function approximators such as neural networks are often
employed as critic and actor. To learn the correct state-value
function, gradient-descent algorithm can be used. Suppose
we use a function approximator fð�Þ to represent the state-
value function such that V ðstÞ ¼ fðwtÞ, wherewt is a vector
of weights. To learn the correct weights, update rules shown
in (3) can be utilized.

wtþ1 ¼ wt þ hdtrwt
V stð Þ; (3)

where h is the learning rate.
For the actor network, TD error can also be employed for

learning purposes. Suppose the actor selects an action at in
state st. If the TD error is positivie, it suggests that the out-
come of the previous action is better than estimated, so the
tendency of selecting at in state st should be strengthend,
and vice versa.

One important aspect in an actor network design is to
balance exploration and exploitation. Exploration is impor-
tant especially at the early stages of learning. It helps gather
more information about the problem. For example, more
states in the state space can be reached through enough
exploration. Too much exploration, however, results in
slow learning. It is expected that exploitation dominates
when the agent is well trained. Therefore, balancing
between these two strategies is critical. There are two popu-
lar ways used in actor network for exploration purposes.
One is "-greedy, and another is softmax. Interested readers
are referred to [29] for more information.

3 STDP AS A MEASURE OF GRADIENT

Let us consider two layers of neurons as shown in Fig. 1. Spike
trains outputted by the pre-synaptic (input) neurons and
post-synaptic (output) neurons are shown in (4) and (5),
respectively

Fig. 1. Illustration of a two-layer neural network. xiðtÞ is the pre-synaptic
(input) spike train, and yjðtÞ is the post-synaptic (output) spike train.
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xi tð Þ ¼
X

ki

E tð Þ � d t� tki
� �

(4)

yj tð Þ ¼
X

kj

E tð Þ � d t� tkj

� �

; (5)

where the shape of the spike is represented by the excitatory
postsynaptic potential EðtÞ.

Setting aside theEðtÞ term for now and assume spikes are
just pulses. This way of representing spikes is the norm for
hardware implementation. As illustrated in Fig. 2, spike
timing can be used as a boundary to establish two regions:
causal and anti-causal for any given input spike. More
detailed definition of these two regionsmay varywith imple-
mentations. For example, for discrete-time implementations
with Dt as the time resolution, ½�Dt; 0Þ and ½0;DtÞ can be
defined as the two regions if there is no delay between input
neurons and output neurons, whereas ð�Dt; 0� and ð0;Dt�
can be used for implementations where one unit time delay
exists between input and output neurons.

Let us now focus on one pair of input and output neu-
rons that are connected by a synapse. The subscript used to
number the neurons is understood and dropped in places
where index is not important. (6)-(8) define three quantities
that help simplify notations in the following analysis. They
are binomial random variables that represent whether cer-
tain events occur or not.

Xk ¼

Z tþ
k

t�
k

x tð Þdt (6)

Y þ
k ¼

Z tþ
k

tk

y tð Þdt (7)

Y �
k ¼

Z tk

t�
k

y tð Þdt : (8)

The probability that only a causal spike occurs is

P Y þ
k ¼ 1 \ Y �

k ¼ 0 Xk ¼ 1j
� �

¼
P Y þ

k ¼ 1 \ Y �
k ¼ 0 \ Xk ¼ 1

� �

P Xk ¼ 1ð Þ
: (9)

Similarly, the chance of only an anti-causal spike occurs is

P Y þ
k ¼ 0 \ Y �

k ¼ 1 Xk ¼ 1j
� �

¼
P Y þ

k ¼ 0 \ Y �
k ¼ 1 \ Xk ¼ 1

� �

P Xk ¼ 1ð Þ
:

(10)

We are interested in finding out what @rðyðtÞÞ=@rðxðtÞÞ is,
where rð�Þ represents the normalized density of a spike
train. Let us for now consider the quasi-stationary case.
That is, rðxðtÞÞ and rðyðtÞÞ have much narrower bandwidths
compared to the operating frequency of neurons. We first
define a quantity stdp in (11).

stdp ¼
1 Xk ¼ 1 and Y þ

k ¼ 1 and Y �
k ¼ 0

�1 Xk ¼ 1 and Y þ
k ¼ 0 and Y �

k ¼ 1

0 otherwise:

8

<

:

(11)

Then we have

r stdp tð Þð Þ ¼ P Y þ
k ¼ 1 \ Y �

k ¼ 0 \ Xk ¼ 1
� �

� P Y þ
k ¼ 0 \ Y �

k ¼ 1 \ Xk ¼ 1
� �

:
(12)

Next, we arrive at the first key equation with the help of
(9)-(12).

@r y tð Þð Þ

@r x tð Þð Þ
¼ E DYk Xk ¼ 1jð Þ ¼

r stdp tð Þð Þ

r x tð Þð Þ
: (13)

Intuitively, (13) indicates that @rðyðtÞÞ=@rðxðtÞÞ can be
obtained by observing how the output spike alter its statisti-
cal behavior upon an input spike which serves as a small
perturbation to the network. One advantage of the pulse
implementation (i.e. E ðtÞ ¼ 1) is that the current input
spike only affects the next output spike. In other words, out-
put spikes that are more than one unit time away from the
current spike are uncorrelated. Therefore, causal and anti-
causal region need only to span one unit time, leading to a
very simple implementation in hardware. In this paper, we
only discuss the case where E ðtÞ ¼ 1 since this is the com-
mon practice in most hardware implementations. In the
case where a non-trivial EðtÞ is used, the two regions need
to expand accordingly as the effect of the pre-synaptic spike
is distributed over time by EðtÞ. A larger time window is
needed in this case to accumulate all effects caused by the
pre-synaptic spikes.

Even though (13) is obtained by assuming there is only
one pair of input and output neurons, it applies to a network
of input and output neurons as shown in Fig. 1, as long as the
spike timing of each neuron is reasonably uncorrelated. An
intuitive example is that at any given time ti, as shown in
Fig. 2, the probabilities that the output neuron fires in either
of the two regions are equal, when the input neuron spike is
absent. When the input spike is present, the output spike is
more likely to occur at one side of ti, depending on whether
the synapse is excitatory or inhibitory. Contributions from
other input neurons appear as noise, and they can be easily
filtered out if they are not correlated. The mild assumption
that spike timing of each neuron is somewhat uncorrelated
holds for most SNNs, especially for those that use a statistical

Fig. 2. Illustration of two regions divided by the spike timing of the input
neuron. The causal and anti-causal regions are defined according to the
causal relationship between input and output spikes.
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model. Even though the density of each neuron might be
highly correlated (especially considering that sparse coding
is often employed), the spike timing of individual spikes can
be largely uncorrelated. Therefore, (13) can be readily
employed in a large network, and individual gradients can
be obtained simultaneously. This shares the same spirit as
the simultaneous perturbation stochastic approximation
(SPSA) [30].

Next, we assume (14) can approximately describe the
input-output relation in the chosen neuron model, where
fjð�Þ is a function depending on the spiking neuron model
used. Correctness of (14) is well justified, as it is actually the
basis for artificial neural networks.

r yj tð Þ
� �

¼ fj
X

i

wi;jr xi tð Þð Þ

 !

: (14)

Then, with (13) and (14), we arrive at our second key
equation.

@r yj tð Þ
� �

@wi;j
¼ r xi tð Þð Þf 0j

X

i

wi;jr xi tð Þð Þ

 !

¼
r stdpi;j tð Þ
� �

wi;j
:

(15)

Equation (15) is highly similar to the multiplicative STDP
learning approach in literature. The denominator wi;j in the
equation is not present in previous literature [17], [18]. We
believe this denominator plays a key role in learning. Math-
ematically speaking, including the weight provides at least
the sign information. If negative weights are allowed, then
one definitely needs a term to change the sign in (15), which
would otherwise induce a wrong direction for gradient
descent. Another point is that the introduction of the
denominator ensures an upper bound on wi;j. This is also
the primary reason that a multiplicative STDP learning rule
is first introduced.

To verify (15), we conduct simulations on a network with
five input neurons and one output neuron. In the first simu-
lation, input membrane potential of one input neuron is
swept, whereas input potentials of other input neurons are

kept at fixed-yet-randomly-selected values. In the second
simulation, spike densities of all five input neurons are fixed,
while the weight of one synapse is swept. In both simula-
tions, a leaky integrate-and-fire (LIF) neuron model is used.
A small amount of noise is injected into all neurons to reduce
correlation of spike timing of each neuron. In Fig. 3, results
obtained from STDP match well the numerical results until
the firing rate of the neuron reaches a certain level. This is
caused by the discrete-time nature of the algorithm. When
the firing rate is too large, it becomes difficult to classify an
output spike as a causal or an anti-causal spike, since input
spikes occupy almost every possible slots on the time-line.
Fortunately, saturation can be avoided by keeping the time
resolution of a discrete-time design fine enough with the
price of a faster clock. In Fig. 4, good agreements are
achieved between results estimated based on (15) and the
gradient obtained numerically, justifying the existence of the
denominator. Accuracy of (15) depends largely on how well
themodel in (14) can describe the actual dynamics of the cho-
sen neuron model. Limitation of (14) lies in the fact that only
the product of weights and the input spike density matter.
That is, one would have obtained the same result if he or she
scaled the weights and input spike density reversely. This is
approximately true for an integrate-and-fire model when the
weights and input spike density is not too large. Again, this
can be achieved if the clock frequency is high enough.

4 REINFORCEMENT LEARNING WITH STDP

In an actor-critic reinforcement learning task, the most criti-
cal part is the state-value function learning. With (15),
weights of each synapses can be updated according to (16).

@wi;j tð Þ

@t
¼ hd tð Þ

@r yj tð Þ
� �

@wi;j tð Þ
¼ hd tð Þ

r stdpi;j tð Þ
� �

wi;j tð Þ
; (16)

where h is the learning rate, and dðtÞ is the temporal differ-
ence TD error as defined in (17).

d tð Þ ¼ gV tð Þ � V t� Dtð Þ þR tð Þ; (17)

where g is the discount factor, and RðtÞ is the reward
received at time t.

Fig. 3. Gradients obtained from STDP and numerical simulation as input
membrane potential increases. Two sets of results match well until fire
rate of the input neuron reaches 0.8. The gradient estimation becomes
inaccurate in saturation region because it is difficult to distinguish a causal
spike from an anti-causal spike when the input spike is too dense.

Fig. 4. Gradients obtained from STDP and numerical simulation as
weight of the synapse increases. Two sets of results match well.
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To utilize (17), proper filtration is needed to suppress the
down-mixed noise. To illustrate this, let us denote the TD
error and spike-timing (ST) information as

d tð Þ ¼ d0 tð Þ þ nd tð Þ (18)

r stdpi;j tð Þ
� �

¼ r0 stdpi;j tð Þ
� �

þ nr tð Þ; (19)

where d0ðtÞ and r0ðstdpi;jðtÞÞ are the signal part that we are
interested in, and ndðtÞ, nrðtÞ are the quantization noise.

With (18) and (19), we have

@wi;j

@t
¼

h

wi;j
d0 tð Þr0 stdpi;j

� �

þ d0 tð Þnr tð Þ
�

þ r0 stdpi;j
� �

nd tð Þ þ nr tð Þnd tð ÞÞ:

(20)

Similar to a S� D modulator, the quantization noises
shown in (18) and (19) have a big chunk of energy located
at high frequency. This is particularly true for ndðtÞ, to
which a difference-like filter is applied as shown in (17).
Scaled versions of noise nrðtÞ and ndðtÞ in (20) cause little
trouble since the results in (20) are summed up over time,
which is equivalent to passing through an integrator.
Therefore, high-frequency noise in nrðtÞ and ndðtÞ are fil-
tered out by the integrator. Consequently, the learning
process is somewhat robust against this type of noise. The
term nrðtÞndðtÞ in (20) is much more troublesome, as they
produce a down-mixed noise as shown in Fig. 5 and (21).
In the equation, Fð�Þ stands for the autocorrelation, and

Fð�Þ and F�1ð�Þ stand for Fourier and inverse Fourier trans-
form, respectively.

nr tð Þnd tð Þ ¼ F�1 F F nr tð Þ
� �� �

� F F nd tð Þð Þð Þ
� �

: (21)

Equation (21) cannot be solved analytically, as the phase
information of noise spectrum is generally unknown. Qual-
itative analysis, however, is available with the help of

numerical simulations. The down-mixed noise that appears
at low frequency can be several orders of magnitude more
significant than the desired signal part. To make things
worse, the quantization noise ndðtÞ and nrðtÞ are correlated,
making the down-mixed noise severely biased. Therefore,
to avoid being saturated by the down-converted noise,
proper filtration is needed before multiplication. From a
circuit designer’s point of view, one should use a sophisti-
cated filter for V ðtÞ or dðtÞ, and simple and low-power fil-
ters for stdpi;j. For example, a well-designed finite impulse
response (FIR) filter with a growing stopband attenuation
can be used for the state-value function, whereas a simple
moving-average filter can be used for the spike timing
information. There are two reasons for this. The first one is
that dðtÞ has much more high-frequency noise compared to
stdpi;j, as the noise is shaped twice: once by the neuron
and the second time by (17). Another reason is that dðtÞ
only needs to be filtered once, and then it can be used
for all stdpi;j, whereas each stdpi;j needs to be filtered
separately.

After filtration, decimation can be readily employed to
reduce power consumption significantly, roughly
log2ðMÞ=M times less than the original one, where M is the
down-sampling rate. The down-sampling process is illus-
trated in Fig. 6. Decimation is also very helpful in a fixed-
point implementation, which is very popular in hardware
implementations. This is because decimation gain can effec-
tively boost the weight changes, reducing the number of
bits needed for storing the weights.

To demonstrate the proposed method, let us first con-
sider a 1-D problem. A critic network similar to the one in
[18] is employed in the simulation. The under-test critic net-
work is shown in Fig. 7. An agent is moving under a fixed
policy toward the target. Input neurons are place cells corre-
sponding to different locations. The input potential piðtÞ to
each input neuron is computed as

Fig. 5. Illustration of the noise down-mixing process. Quantization noises in dðtÞ and rðstdpi;jðtÞÞ are mostly at high frequency. After multiplication,
however, the noise is down-mixed to the baseband, saturating the desired signal. In addition, because the two quantization noises are correlated, the
resultant down-mixed noise is severely biased.

Fig. 6. Illustration of the decimation process. Down-sampling is taken place after filtration. This process effectively reduces the operating frequency of
corresponding blocks. In addition, the associated decimation gain is also helpful in reducing the number of bits needed for the synapse weights.
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pi tð Þ ¼ k x� cið Þ; (22)

where x is the current location of the agent, ci is the center of
the input neuron i, and kð�Þ is the kernel function similar to
those used in radial basis function (RBF) networks. The
most popular choice is a Gaussian kernel.

Upon reaching the target, a reward is received by the
agent. For each training (or iteration), the agent is first placed
at a fixed starting point and is moved toward the target at a
constant speed. Learning takes place when the task is per-
formed. After each training, the agent is put back to the start-
ing point, and a new training phase begins. The agent thus
learns the state-value function in this process through TD
learning.

Fig. 8 shows the state-value function obtained after a few
trainings and the reference result obtained analytically. At
the place x ¼ 300, a reward is received by the agent. Each
state is then assigned credits for the ultimate reward as
shown in the figure, which forms an exponential curve. The
back-propagation of TD error is clearly shown in the figure,
and the results are well matched with the reference.

To demonstrate the importance of a proper filtration,
Fig. 9 shows the root-mean-square error (RSME) between

output of the critic network and the reference when filters
with different orders are applied to stdpi;j and dðtÞ. In order
to give a fair comparison, all filters are moving average FIR
filters. The only difference is the number of taps used. Learn-
ing rates are reduced for cases with fewer taps, which would
otherwise diverge. As clearly shown in the figure, as the
order of the filter increases, the learning ismore effective.

We have previously assumed that input spikes are
uncorrelated. This is a good assumption in general. Even
when a deterministic IF neuron model is used, the input
spike trains are reasonably uncorrelated if the input kernel
is non-linear and the input is varying. In the case where one
has to use a simple liner kernel, or in cases where one sim-
ply wants to use a statistical neuron model to improve the
performance, noise can be added into the IF neuron model.
Injecting noise, however, is an expensive operation, espe-
cially in a hardware implementation, since pseudo-random
number generators that run as fast as neurons are needed
for each neuron.

To tackle this problem, we propose to leverage the read-
ily available quantization noise to implement the statistical
model. Fig. 10a shows an IF model with a noisy threshold.
Another statistical model, the noisy residue model shown
in Fig. 10b behaves similarly to a noisy threshold model.
The difference is that noise is injected every clock cycle in a
noisy threshold model and every spike in a noisy residue
model. In Fig. 10c, instead of injecting white noise residue,
quantization residue is employed as “free” noise. With such
a noise injection mechanism, each IF neuron behaves as a
first-order S� D modulator. Even though the quantization
noise added to each neuron, in this case, depends on the
input of that neuron, quantization noises of neurons become
reasonably uncorrelated in practical cases where inputs
are varying. This is because the quantization noise is a func-
tion of integration of all past states of that neuron, which
would normally differ for neurons. In addition to injecting
noise, a discrete-time IF neuron with a quantization residue
is closer to a continuous-time IF neuron, as it suffers less
from the spike timing quantization problems. Therefore, we
utilize this neuron model in the rest of this paper unless oth-
erwise stated.

Fig. 7. Configuration of the 1-D test case. An agent is moving toward a
target under a fixed policy. Each input neuron is a place cell that fires
intensively when the agent is close to its center.

Fig. 8. Comparison of outputs of the critic with analytical result. Back-
propagation of the TD error is clearly shown in the figure. Results
obtained after 15 iterations start matching the reference result well.

Fig. 9. Comparison of outputs of the critic network when filters of different
orders are used. Learning rates are lowered for cases where only few
taps are used. Moving average FIR filters are used for a fair comparison.
The result obtained with a 32-order filter barely features a learning. The
learning becomes more effective as the order of the filter increases. The
improvement starts saturated when the order of the filter reaches 128.

304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:21:28 UTC from IEEE Xplore.  Restrictions apply. 



RSMEs obtained from three cases are plotted in Fig. 11
for a Gaussian kernel and Fig. 12 for a triangular kernel.
The first case is learning with a deterministic IF model. The
second case is training with a statistical IF model, where a
noisy residue with a white spectrum is used. The third case
is the IF model with a quantization noise residue. As shown
in the figures, all three testing cases can achieve impressive
learning results when a Gaussian kernel is used. The deter-
ministic model is slightly inferior to the other two cases.
When the triangular kernel is employed, the deterministic

model behaves remarkably worse than the other two statis-
tical models. The average magnitudes of correlations
between each pair of neurons are compared in Fig. 13. The
correlation is measured for two adjacent input neurons
when the agent is in between them. As clearly shown in the
figure, the poorly behaved triangular kernel based deter-
ministic model has a high correlation among spikes. With
the help of the proposed quantization noise injection, a low
correlation value can be achieved and the learning perfor-
mance is significantly improved.

Next, a 2-D test case with a critic-actor network is exam-
ined. An agent is placed at a random starting point in a 120
by 120 maze. It moves at a constant speed, and the moving
direction is controlled by the actor network. The objective of
the agent is to reach the target while avoiding walls and
obstacles. The agent initially has no knowledge about the
target, the walls and the obstacles. It learns from each trial
through reinforcement. The critic network in the previous
1-D example can be readily adapted into this 2-D maze
problem. To complete the actor-critic network, we still need

Fig. 10. Illustration of three different ways of injecting noise into neuron
models: (a) noisy threshold, (b) noisy residue where the noise is white,
(c) quantization residue.

Fig. 11. Comparison of RSMEs obtained with a Gaussian kernel and
three different neuron models: the deterministic model, the statistical
model with white noise injected as membrane potential residue, and the
statistical model with quantization noise residue.

Fig. 12. Comparison of RSMEs obtained with a triangular kernel and
three different neuron models: the deterministic model, the statistical
model with white noise injected as membrane potential residue, and the
statistical model with quantization noise residue.

Fig. 13. Magnitudes of correlations obtained from the simulation. Corre-
lations of spikes from adjacent neurons are measured. The deterministic
neuron model with a Gaussian kernel and a varying input can achieve
reasonably low correlations, whereas a statistical model is needed when
a simple kernel is used to ensure a low correlation among spikes. The
proposed quantization noise injection is effective in randomize the spike
timing of each neuron.
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the actor network. The actor neurons we use are similar to
the critic neurons. In the maze problem, we propose to use
four actor neurons, as shown in Fig. 14, that represent north,
south, west and east, respectively. At every time unit, neu-
ron N and neuron S compare their potentials, and the one
with a larger potential spikes. After firing, membrane poten-
tials of both neurons are reset to zero. A similar operation is
conducted for E and W neurons. This method behaves simi-
larly to a winner-take-all method. However, this way of
operating avoids the trial-and-error tuning for the inhabita-
tion weights in [18]. To conduct exploration, noise is
injected into the actor neurons. The same learning rule as
shown in (16) is employed for the actor neurons. In this
maze problem, we leverage the mutual exclusiveness and
the orthogonality of actions, leading us to a policy as shown
in (23).

p s; akð Þ ¼ P a tð Þ; s tð Þð Þ

¼ P

�

X

i

w
ak
i;j � w

ak
i;j

� �

r xi tð Þð Þ þ nk > 0

�

:
(23)

where pðs; aÞ is the policy, sðtÞ is the current state, aðtÞ is
the chosen action, ak is the action k, ak is the opposite of ak,
and nk is the injected noise.

Equation (23) behaves similarly to a Gibbs softmax
method [29] in the sense that the preferred actions (action
with larger weights) is chosen with a high probability, while
other actions are chosen with low probabilities for explora-
tion purposes. Weights are updated according to (16) such

that the taken actions are reinforced if a positive TD error is
received and vice versa.

A more general policy as shown in (24) can be applied
when mutual-exclusiveness nature is not present. In
(24), the most preferred action is taken with the highest
probability.

p s; akð Þ ¼ P a tð Þ; s tð Þð Þ

¼ P

�

argmax
k

:

�

X

i

w
ak
i;jr xi tð Þð Þ þ nk

�

¼ k

�

:
(24)

Spikes from each actor neurons are filtered, and the mov-
ing direction is determined by

u tð Þ ¼ tan �1 r E tð Þð Þ � r W tð Þð Þ

r N tð Þð Þ � r S tð Þð Þ

� �

: (25)

Two sets of simulations are conducted, and the results are
shown in Figs. 15, 16, 17, and 18. Eighty-one place cells are
used. For each training, the agent is placed at a random start-
ing point in the maze. The agent then starts wandering in the
maze at a constant speed. Its moving direction is determined
according to (25). The agent is bounced back and receives a
punishment (negative reward) when it hits the obstacle or
walls. Whenever the agent reaches the target (less than 3 per-
cent of the total area), a reward is delivered and the current

Fig. 14. Actor neurons employed in the maze problem. Action ak and ak
are mutual exclusive in nature. The actual moving direction is interpo-
lated according to the relative firing rate of each neuron.

Fig. 15. Accumulated reward obtained and time it takes to reach the
target versus the number of training conducted. Maze configuration is
shown in Fig. 17. As the training goes on, the agent gradually learns
about its environment and starts receiving more rewards.

Fig. 16. Accumulated reward obtained and time it takes to reach the tar-
get versus the number of training conducted. Maze configuration is
shown in Fig. 18. As the training goes on, the agent gradually learns
about its environment and starts receiving more rewards.

Fig. 17. State-value function and preferred actions outputted by the critic
and actor networks. The brighter the color is, the higher chance the
agent “thinks” there is a reward. Arrows in the figure represent the pre-
ferred moving directions.
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training cycle is terminated. The training cycle may also be
terminated if the running time of the agent exceeds a preset
time-out limit. Once a training cycle ends, the agent is put at a
new random starting point in the maze and another training
cycle begins. Maze configurations are shown in Figs. 17 and
18. For the first set of simulations (Figs. 15 and 17), no obstacle
is placed in the maze. For the second set of simulations
(Figs. 16 and 18), one obstacle is placed in themaze.

Accumulated rewards received by the agent and the time
it takes for the agent to reach the target during each training
cycle are plotted in Figs. 15 and 16. For a better illustration,
results in the figures are filtered to show the trend of success-
ful learnings. As shown in the figures, the agent initially is
naive about the environment. Therefore, little or even nega-
tive reward is received. The agent cannot reach the target
within the time-out limit, which is set at 10,000 in our experi-
ments. After a number of trainings, the agent learns how to

avoid walls and obstacles and move toward the target.
Figs. 17 and 18 show outputs of critic network and preferred
actions picked by the actor network. Color maps in the fig-
ures represent the relative magnitude of output of the critic
network. Arrows in the figure represent the preferred action
at that point. The brighter the color is, the larger the output
of the critic network is. A larger critic output means that the
agent “thinks” there is a higher chance it can receive reward
in those regions. Accordingly, actor network leads the agent
toward those rewarding regions.

5 HARDWARE ARCHITECTURE

A hardware architecture for the proposed algorithm is
shown in Fig. 19. This architecture is generic, and many
detail circuit implementations can fit into it. For example,
neuron blocks in Fig. 19 can be implemented as analog cir-
cuits to take advantage of power efficiency of analog circuits
at the low bit-precision region [31]. Alternatively, asynchro-
nous digital neurons [11] can be employed to save clock dis-
tribution power and power dissipated in clocking flip-flops.
In the figure, there are two memory banks. They are parti-
tioned according to their chance of being visited. Memory A
stores weight information and tick-level spike timing infor-
mation (see Fig. 20 for the definition of a tick), and it may be
accessed at every clock cycle. Memory B stores the deci-
mated ST information, and it shall be accessed at every unit
interval (see Fig. 20 for the definition of a unit interval).

For a proof-of-concept demonstration, the proposed
algorithm is implemented with synchronous digital circuits
using Verilog. The timing diagram is shown in Fig. 20 for
illustration purposes. The minimal time unit that a spike
can occur is called a tick following the convention used in
[11]. Within a tick, several clock cycles are needed to run
through all input neurons. Each input neuron takes two
clock cycles to complete its evaluation: one clock cycle for
reading memory and the other for writing. During the read

Fig. 18. State-value function and preferred actions outputted by the critic
and actor networks. The brighter the color is, the higher chance the
agent “thinks” there is a reward. Arrows in the figure represent the pre-
ferred moving directions. Compared to Fig. 17, color around the obstacle
is darker, indicating a possible punishment. Actions are changed accord-
ingly to avoid the obstacle.

Fig. 19. A hardware architecture for the STDP learning rule based actor-critic reinforcement learning. Actor and critic are two SNNs with same inputs.
Memory A and memory B are partitioned according the frequency they are accessed. Memory A stores synapse weights and tick-level spike timing
information, and it may be read or write at every tick. Memory B stores decimated spike timing information, and its chance of being accessed is
much lower than memory A.
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cycle, weights are read out from the memory if the current
input neuron spikes at present tick or previous tick. During
the write cycle, ST field is updated. At the end of each tick,
all neurons are evaluated. Logic units, such as adders and
comparators used in evaluating neuron states are shared
among all neurons. Parallel computation can be introduced
for large networks with little overhead, as computations in
spiking neural networks are parallel in nature.

In each unit interval, spikes from the critic neuron is
filtered, and the TD error is produced. Spike timing infor-
mation is read out from memory B, and updated weights
are computed. It is worth noting that even though the access
of memory B and filtration are illustrated at the last tick of
each unit interval, they can be spread out within one unit
interval in a time-interleaved fashion to save hardware
resources or relax the requirement on the critical path delay.

In (16), a division operation is needed. Fixed-point divi-
sion is relatively expensive in hardware. It normally takes
multiple clock cycles to complete, or otherwise a pipelined
divider is usually needed. Therefore, we employed an
approximate division in our implementation: that is, we
replaced the divisor with the closest number that is a power
of two. Consequently, the division operation can be easily
accomplished by a round-and-shift operation. We compare
simulation results obtained by the exact division and
approximate division in Fig. 22. There is hardly any notice-
able difference between the two results. Fig. 22 also shows
the result obtained with no division at all (the learning rate
is, of course, adjusted accordingly). To further study the
effect of the denominator in (16), we compare learning per-
formances under three learning rates for the case where
approximate division is employed, as well as the case where
no division is used. The results are illustrated in Fig. 23. It is
noticed that learning conducted according to (16) is more
robust to changes in learning rate. The converging process
is also faster and smoother. On the contrary, learning with-
out division is very sensitive to the changes in learning rate.
To avoid divergence, one has to tolerate a slow learning
speed. This may also possibly explain why learning is possi-
ble in literature, where a STDP learning rule without

division is used. The observation that learning is still feasi-
ble (however slow), even when low-accuracy divisions are
used, is good news for implementations with analog neu-
rons. Analog neurons have unique advantages such as a
lower power consumption and a smaller footprint com-
pared to digital neurons. The STDP learning rule is particu-
larly useful in this case because the exact dynamics of
an analog neuron cannot be controlled completely due to
the process, voltage and temperature (PVT) variation. This
problem is, however, mitigated with the use of the STDP
learning rule, as spike timing provides a good way of
estimating gradients regardless of the model parameters
(such as leakage, threshold). Despite of the energy-
efficiency of analog neurons, routing of spikes should be
conducted through digital circuitry to ensure robustness
and scalability.

As shown in Fig. 20, most operations conducted are
reading and writing memory, as it is normally the case in
hardware neural networks. In terms of energy consumption,
memory access is also likely to be the most expensive opera-
tion in a hardware implementation. Fortunately, the event-
based nature of SNNs makes the access of memory event-
triggered, saving power consumption. Fig. 21 shows the
content of eachword inmemoryA and B. Eachword inmem-
ory A hasw bits for weights and s1 bits for spike timing infor-
mation. The number of bits needed for weights varies with
tasks. A parametric sweep onw is conducted for the 1-D critic
example. The result is shown in Fig. 24. As shown in the
figure, the numbers of bits needed for learning and perform-
ing the task are different. It is well known that neural net-
works are able to work well, even when the computation
precision is low. Therefore, only few bits are needed for a neu-
ral network to conduct a task as shown in Fig. 24.When learn-
ing is taking place, however, small weight updates need to be
built up in the memory at each reinforcement. That is why
more bits are needed for learning. This phenomenon is previ-
ously reported in literature [10]. The technique of partitioning
the memory into learning and performing banks can also be
used in our case to reduce the run-time power consumption
after the training is completed.

Fig. 20. An example of timing diagram for the proposed hardware archi-
tecture. Each input neuron takes two clock cycles to be evaluated. One
cycle for reading weight, and another cycle for writing spike timing
information. States of all neurons are updated every tick. Blocks in the
down-sampled domain operate at a much lower rate.

Fig. 21. Memory contents in the implementation example. Memory A
stores w-bit weights and s1-bit ST information. Memory B stores s2-bit
down-sampled ST information.

308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 24,2023 at 20:21:28 UTC from IEEE Xplore.  Restrictions apply. 



The number of memory bits used for storing weights is

Nweight ¼
Y

k

Nk 1þNactionð Þw; (26)

where Nk is the number of states associated with dimension
k, and Naction is the number of possible actions.

Equation (26) is obviously affected by the well-known
curse-of-dimensionality. From the performance point of
view, a large memory size often limits the speed of access-
ing memory. Fortunately, in a SNN, memory can be made
local to neurons to boost the performance in a large net-
work, as has already been demonstrated by the TrueNorth
[11]. In addition, thanks to the highly correlated nature of
the sparse coding, memory hierarchy used in modern com-
puter architecture can be readily employed to eliminate the
bottleneck in memory accessing. Therefore, speed seems
not to be a problem even when the size of the network
becomes large. The great amount of memory needed to
solve a huge task, however, still poses a problem on power
consumption. Fortunately, the number of dimensions can
usually be reduced by choosing state space smartly, while
the size of each dimension can be made compact enough

through a self-adapting kernel similar to the technique that
is well-known for RBF networks [32]. In addition, recent
progress in nanotechnologies has significantly sped up
memory scaling [33], [34], enabling the capability to solve
larger problems with reinforcement learning.

s1 and s2 in Fig. 21 depend on the chosen decimation fil-
ter and down-sampling ratio. In our implementation, a cas-
caded integrator-comb (CIC) filter is used for decimating
stdpi;j. This choice can help reduce the number of bits
needed in memory. When the first order CIC filter is used,
s1 is equal to log2M, where M, again, is the down-sampling
ratio. s2 is equal to ðNtap=M þ 1Þlog2M, where Ntap is the
order of filter used to filter the state-value function. Memory
B serves as a delay unit for ST information. The delay is
used to match the group delay induced by filtering the
state-value function outputted by the critic network.

In a naive manner, the memory requirement for the spike
timing field is similar to (26) except w in the equation is
replaced with ðs1þ s2Þ in this case. We can, however,
achieve a much smaller number, considering that only a
small portion of states in a large state space is active at a
particular period of time. When the sizes of dimensions of
the problem become large, a specialized array of memory
can be built for storing spike timing information. This mem-
ory behaves as a cache in the sense that it only stores spike
timing information associated with synapses that are
recently active. The difference, however, is that upon a
cache miss, a new entry is created instead of visiting the
main memory (there is no main memory in this case
anyway). Whenever an entry has a rðstdpi;jðtÞÞ that is equal
to zero, it is deleted from the cache. The main idea is that all
inactive neurons have a rðstdpi;jðtÞÞ of zero, and we know it
as a given. Therefore, the memory requirement for holding
spike timing information is significantly relieved for a large
design.

6 CONCLUSION AND FUTURE WORK

In this paper, we formulate biologically plausible and hard-
ware-friendly STDP learning rules. The STDP learning rule
turns out to be a gradient-descent optimization algorithm.

Fig. 23. Comparison of learning performances achieved with multiplica-
tive STDP learning rules (w/ dividing by weights) and non-weight-depen-
dent STDP learning rules (w/o dividing by weights). Three different
learning rates are employed. h1 and h2 are two manually chosen
constants.

Fig. 22. RSMEs of outputs of critic network obtained when exact division
shown in (16) is used, when simple division with rounded divisor is used
and when no division is used at all. The approximate division does not
yield noticeable performance degradation compared to the exact divi-
sion. Results obtained with no division is slightly worse.

Fig. 24. RSMEs of outputs of critic network versus the number of bits
used to represent synapse weights. Only few bits are necessary to per-
form a task after being well trained. Much more bits are needed for a
learning to be successfully conducted. This is mainly because small
changes in weights need to be accumulated during learning, which
needs a high resolution in weights.
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Based on the learning rule, actor-critic network based rein-
forcement learning is presented. It is found that quantization
noise is down-mixed to the baseband during the process of
weights update which aims to minimize TD error. Proper fil-
tration is therefore recommended to be used at output of the
critic to eliminate the noise prior to mixing. Decimation after
filtration is proposed as an effective way to reduce the oper-
ating frequency of learning related blocks, as well as to
reduce the number of bits needed to represent synapse
weights in a learning task. Effects of correlated spikes are
also studied, and a quantization noise injection technique is
proposed to help reduce the correlations, boosting learning
performance. A 1-D problem of the state-value function
learning and a 2-D problem of maze walking are studied.
The agent equipped with the proposed algorithms can effec-
tively learn tasks. In addition, a low-power hardware archi-
tecture is proposed and examples are implemented in
Verilog. To break the memory bottleneck as the size of the
network grows large, possible solutions such as utilizing
memory partitioning, hierarchy memory structure, and
emergentmemory technologies are also discussed.

In this paper, only two layers of neurons are considered,
as it is the number of layers needed to complete tasks that
are of interest. However, it should be straightforward to
adapt (16) into a more general form which can be applied to
a multi-layer configuration. The main difference will be that
region partitioning shown in Fig. 2 needs to be adjusted
according to the delay associated with the number of layers.
In addition, besides the single-task scenario considered in
this paper, multi-task situations can also be handled by the
proposed method. For example, techniques such as the scal-
ing factor proposed in [35] can be employed to handle mul-
tiple rewards. In future work, more general learning rules
for multi-layer SNNs will be studied. In addition, building
neuromorphic chips with analog neurons that takes advan-
tage of the STDP learning rule will be another research
direction.
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