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Abstract

Given a function f from the set [N ] to a d-dimensional integer grid, we consider data structures that allow
e�cient orthogonal range searching queries in the image of f , without explicitly storing it. We show that,
if f is of the form [N ] ! [2w]d for some w = polylog(N) and is computable in constant time, then, for any
0 < ↵ < 1, we can obtain a data structure using Õ(N1�↵/3) words of space such that, for a given d-dimensional
axis-aligned box B, we can search for some x 2 [N ] such that f(x) 2 B in time Õ(N↵). This result is obtained
simply by combining integer range searching with the Fiat-Naor function inversion scheme, which was already
used in data-structure problems previously. We further obtain

• data structures for range counting and reporting, predecessor, selection, ranking queries, and combina-
tions thereof, on the set f([N ]),

• data structures for preimage size and preimage selection queries for a given value of f , and

• data structures for selection and ranking queries on geometric quantities computed from tuples of points
in d-space.

These results unify and generalize previously known results on 3SUM-indexing and string searching, and are
widely applicable as a black box to a variety of problems. In particular, we give a data structure for a
generalized version of gapped string indexing, and show how to preprocess a set of points on an integer grid
in order to e�ciently compute (in sublinear time), for points contained in a given axis-aligned box, their
Theil-Sen estimator, the kth largest area triangle, or the induced hyperplane that is the kth furthest from the
origin.

1 Introduction

The computational problem of inverting a function f can be cast as follows: Given a value y in the codomain of f ,
decide if there exists an x such that f(x) = y, and return such an x if one exists. The function inversion problem
is naturally a fundamental issue in cryptography, and the best known result for general function inversion is due
to Fiat and Naor [10]:

Theorem 1.1. (Fiat-Naor [10]) For any function f : [N ] ! [N ], and any choice of a constant 0 < ↵ < 1,
there exists a data structure using Õ(N1�↵/3) words of space which can invert f at any given point in Õ(N↵)
time. Moreover, this data structure can be built in Õ(N) time with high probability.

(Note that we use [N ] to denote {0, . . . , N � 1}, and use the asymptotic Õ notation, that omits polylogarithmic
factors.)

As was noticed previously by di↵erent sets of authors [8, 13, 17], Theorem 1.1 can be generalized to the case
where the codomain of f might be larger than the domain of f , by using O(logN) hash functions from a family
of pairwise independent functions.

Corollary 1.1. ([8, 13, 17]) Theorem 1.1 holds for any function f : [N ]! [2w], with w = polylog(N).

Recently, the above data structures for function inversion have been applied to tackle fundamental problems
that do not directly stem from cryptography:
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3SUM-indexing [17, 13]. Preprocess two sets S1 and S2 of n integers each, so that for any integer y, one can
decide whether there exist x1 2 S1 and x2 2 S2 such that y = x1 + x2.

Collinearity indexing with queries on a line [1]. Preprocess two sets S1 and S2 of n points in the plane,
together with a line `, so that for any point y 2 `, one can decide whether there exist p1 2 S1 and p2 2 S2

such that y, p1, and p2 are collinear.

Gapped string searching [4]. Preprocess a string of length n so that given two patterns P1 and P2 and an
integer interval [�,�], one can report all joint occurrences of P1 and P2 separated by a distance in the interval
[�,�].

It is a striking fact that, for each of these problems, the best known space-time trade-o↵s are achieved
using such a general tool as the Fiat-Naor inversion scheme. The purpose of this contribution is to extend the
applicability of this tool. We show that function inversion, used as a black box, allows to not only decide whether
there exists some x such that f(x) = y, but to actually search, select, and rank values in the image of f , as well
as to restrict those values to lie in (axis-aligned) boxes1 given as query arguments. The space-time tradeo↵s are
essentially the same as those achieved for function inversion: k-ary queries on n items can be answered in strongly
sublinear time from a data structure using O(nk�↵) space, for some ↵ > 0. Our contribution can therefore be
seen as an e�cient reduction of various problems to the function inversion problem. This provides a simple and
powerful method to design data structures for implicit set representations, as defined by Chazelle [7].

The main idea underlying all our results is that the elementary operations used in range searching, essentially
navigating a hierarchy of dyadic boxes, can themselves be implemented by inverting another function, with a
slightly larger domain and codomain but within essentially the same space and time bounds. The algorithms are
elementary, provided that the function inversion data structure is available as a black box. It can be implemented
using any such data structure, including some that would be suboptimal but easier to implement. Conversely,
any improvement on the function inversion data structure translates mechanically to an improved algorithm.

In the next section, we consider range searching and range counting queries in the image of an integer function.
In Section 3, we use these two basic results to provide a collection of data structures that allow to answer complex
queries involving predecessor, ranking, and selection queries in boxes, both in the image and domain of an integer
function. In Section 4, we illustrate the versatility of the framework on a number of elementary problems. These
include generalizations of k-SUM indexing data structures and string searching, but also new geometric data
structures.

2 Range queries

We state our two main technical results, involving data structures for range searching and range counting queries
in the image of a d-dimensional function f .

Theorem 2.1. (Range searching) Let f : [N ] ! [2w]d be a function computable in Õ(1) time, where w =
polylog(N) and d = O(1). For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N) time with

high probability a data structure using Õ(N1�↵/3) words of space which supports the following query: Given a

d-dimensional box B, test if there exists x 2 [N ] with f(x) 2 B, and report such a value if it exists, in Õ(N↵)
time.

Proof. Let g : [N ]⇥ [w + 1]d ! [2w+1]d ⇥ [w + 1]d be the function defined as follows:

g(x, i1, i2, . . . , id) :=

✓�
f1(x)

2i1

⌫
,

�
f2(x)

2i2

⌫
, . . . ,

�
fd(x)

2id

⌫
, i1, i2, . . . , id

◆
.

The domain of this function has size O(N(w + 1)d) = Õ(N) and its codomain has size O(2d(w+1)(w + 1)d) =
Õ(2polylog(N)), so we can apply Corollary 1.1 to obtain a data structure using Õ(N1�↵/3) words of space which
can invert g at any given point in Õ(N↵) time.

1Throughout the paper, we use the term “box” as short for “axis-aligned box”, i.e. a hyperrectangle whose sides are parallel to
the coordinate axes.
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We call a d-dimensional box dyadic if the coordinates defining the limits of the box in each dimension are
successive multiples of a power of two. We can specify such a box using the multiples and powers of two in each
dimension:

DB(y, i) = DB(y1, y2 . . . , yd, i1, i2, . . . id) :=

[2i1y1, 2
i1(y1 + 1)� 1]⇥ [2i2y2, 2

i2(y2 + 1)� 1]⇥ . . .⇥ [2idyd, 2
id(yd + 1)� 1].

Our function g has been defined so that

f(x) 2 DB(y, i) ! g(x, i) = (y, i).

Thus, given any dyadic box DB(y, i), we can determine if there is an x such that f(x) 2 DB(y, i) by asking if
(y, i) is in the image of g.

Given a dyadic box DB(y, i) that contains f(x) for some x that we wish to compute, each dyadic box with
d
0  d non-zero elements of i can be partitioned into 2d

0
dyadic boxes where the non-zero elements of i are

decremented by one; call these the child boxes of DB(y, i). These child boxes can equivalently be viewed as the
result of cutting DB(y, i) in half in each dimension where its size is at least 2. If some f(x) 2 DB(y, i), then
f(x) 2 B

0 for some child box B
0 of DB(y, i); continue this process until some f(x) 2 DB(z, 0) is found, which

means f(x) = z 2 DB(y, i). This will involve w + 1 steps, each consisting of at most 2d inversion queries.
Let B be a d-dimensional box, not necessarily dyadic. To determine if there is an f(x) 2 B, we use the fact that

any d-dimensional box defined by integers at most 2polylog(N) can be partitioned into O(logd(2polylog(N))) = Õ(1)
dyadic boxes, and query each of these separately.

Note that in one dimension the idea of searching in bounded universes via hashing is well known, from, for
example, the x- and y-fast tries of Willard [19]. The idea of extending this to higher dimensions with dyadic
boxes has been used in the past, for example in the point location method of Iacono and Langerman [15].

We now show how to extend our result from searching to counting using a big/small approach whereby counts
of dyadic boxes intersecting large number of images of f have their counts stored explicitly, and the remaining
dyadic boxes have their counts computed on demand using function inversion. This increases the space usage
from Õ(N1�↵/3) to Õ(N1�↵/4) while supporting Õ(N↵)-time queries.

Theorem 2.2. (Range counting) Let f : [N ] ! [2w]d and c : [2w]d ! [2w] be functions computable in Õ(1)
time, where w = polylog(N) and d = O(1). For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N)
time with high probability a data structure using Õ(N1�↵/4) words of space which supports the following query:

Given a d-dimensional box B, return
P

y2f([N ])\B
c(y), in Õ(N↵) time.

Proof. Consider again the function g defined in the proof of Theorem 2.1, with the same inversion data structure
using Õ(N1�↵/3) words of space which can invert g at any given point in Õ(N↵) time.

For every dyadic box DB(y, i) which contains at least N↵/3 elements of f([N ]), store that box as a key with
value

P
y2f(N)\DB(y,i) c(y) in a dictionary (which can be implemented in any number of ways, for instance using

hash tables or binary search trees). As each element of f([N ]) appears in at most O(logd(2polylog(N))) = Õ(1)
dyadic boxes, the number of dyadic boxes with at least N

↵/3 elements is at most Õ(N1�↵/3). Thus, this does
not increase space usage significantly.

Now, suppose we are given a dyadic box DB(y, i) and want to find the number of elements of f([N ]) in that
box. We start by checking if this box contains at least N↵/3 elements by a lookup in the dictionary, and we can
report the stored number if it is the case. Otherwise, the box contains at most N

↵/3 elements and we recurse
on all non-empty children of DB(y, i). We keep a global counter s to which we add c(z) each time we reach
non-empty box of the form DB(z, 0). Because each element of f([N ]) appears in at most Õ(1) dyadic boxes, this
requires Õ(N↵/3) inversion queries, for a total query time of Õ(N↵/3 ·N↵) = Õ(N4↵/3).

Given a non-dyadic box, we can again partition it into O(logd(2polylog(N))) = Õ(1) dyadic boxes and query
each of these separately.

Finally, re-scaling ↵ by a factor of 3/4 gives the result.

The previous proof can easily be adapted to support other types of associative and commutative operations
instead of a sum, such as taking the maximum in a box.
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3 Beyond range queries

We now give general results on the existence of data structures for distinct or more complex types of queries.
The proofs are elementary and only rely on Theorems 2.1 and 2.2. Note that some of these results can be
proved directly using similar ideas as for Theorems 2.1 and 2.2 and with a slightly better running time if we take
polylogarithmic factors into account.

3.1 Predecessor, ranking, and selection queries We first observe that the range searching data structures
described above directly yield data structures for predecessor, ranking, and selection queries.

In the following two lemmas, we let f : [N ] ! [2w] be a function computable in Õ(1) time, where
w = polylog(N).

Theorem 3.1. (Predecessor search) For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N)
time with high probability a data structure using Õ(N1�↵/3) words of space which supports the following query:

Given an integer y 2 [2w], report x 2 [N ] such that f(x) is the largest value in f([N ]) that is smaller or equal to

y, if it exists, in Õ(N↵) time.

Proof. We bisect on the integers z 2 [y]. For such an integer z, we define B := [z, y�1] and use the data structure
of Theorem 2.1 with d = 1 to decide whether there exists x such that f(x) 2 B in time Õ(N↵). The number of
such queries is at most log(2w) = w = O(polylog(N)), hence the overall cost remains Õ(N↵).

Theorem 3.2. (Ranking and Selection) For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N)
time with high probability a data structure using Õ(N1�↵/4) words of space which supports the following queries

in Õ(N↵) time:

Ranking. Given an integer y 2 [2w], return
��{x 2 [N ] : f(x) < y}

��.

Selection. Given an integer k 2 [N ], report x 2 [N ] such that f(x) is the kth largest value in f([N ]), if it exists.

Proof. For ranking, we let the function c be such that c(x) = 1 for all x 2 [2w], and use the data structure of
Theorem 2.2 with d = 1. Querying the interval B := [y] in this structure yields the answer in time Õ(N↵).

For selection, we bisect over the values y 2 [2w] and repeatedly query the data structure on the interval
B := [y]. This requires O(polylog(N)) steps, hence time Õ(N↵) overall as well.

3.2 Ranking and selection with range constraints By applying Theorems 2.1 and 2.2 with d > 1, we can
also perform predecessor, ranking, and selection queries within a given box.

Theorem 3.3. Let f : [N ] ! [2w]d and µ : [2w]d ! [2w] be functions computable in Õ(1) time, where w =
polylog(N) and d = O(1). For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N) time with high

probability a data structure using Õ(N1�↵/4) words of space which supports the following queries in Õ(N↵) time:

Ranking in a box. Given a d-dimensional box B and an integer y 2 [2w], return the value��{f(x) : x 2 [N ], f(x) 2 B,µ(f(x)) < y}
��.

Selection in a box. Given a d-dimensional box B and an integer k 2 [N ], report x 2 [N ] such that µ(f(x)) is

the kth largest value in {µ(f(x)) : x 2 [N ], f(x) 2 B}, if it exists.

Median in a box. Given a d-dimensional axis aligned box B, report x 2 [N ] such that µ(f(x)) is the median of

{µ(f(x)) : x 2 [N ], f(x) 2 B}.

Proof. To perform ranking of y in a box B, we can construct the data structure of Theorem 2.2 on the function
g : [N ]! [2w]d+1 defined by

g(x) := (f(x), µ(f(x))),

let the count function c for the data structure be equal to 1 everywhere, and query the data structure with the
(d+ 1)-dimensional box B ⇥ [y] in time Õ(N↵).

Selection in a box can be done as for ranking, except we now bisect on the values y, which only increases the
running time by a O(polylog(N)) factor.

Finally, we can select the median by first counting the number m of values in the preimage of B, then
performing selection with k = m/2.
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Note that this result can be used to select a value among preimages, as follows.

Theorem 3.4. (Preimage queries) Let f : [N ] ! [2w] be a function computable in Õ(1) time, where w =
polylog(N). For any choice of a constant 0 < ↵ < 1, we can construct in Õ(N) time with high probability a data

structure using Õ(N1�↵/4) words of space which supports the following queries in Õ(N↵) time:

Preimage ranking. Given two integers y, z 2 [2w], return
��{x 2 [N ] : f(x) = y, x < z}

��.

Preimage selection. Given an integer k 2 [N ] and an integer y 2 [2w], report the kth largest value x 2 [N ]
such that f(x) = y, if it exists.

Preimage median. Given an integer y 2 [2w], return the median of the values x 2 [N ] such that f(x) = y, if

such a value exists.

Proof. Let g : [N ]! [2w]⇥ [N ] be the function defined by

g(x) := (f(x), x).

Preimage ranking, selection, and median then reduces directly to ranking, selection, and median in a box
respectively, on the function g. The result then follows from Theorem 3.3.

3.3 Range reporting One can also consider the problem of reporting distinct values x such that f(x) is
contained in a specific box. The following can be obtained from Theorem 2.1.

Theorem 3.5. (Range reporting) Let f : [N ] ! [2w]d be computable in Õ(1) time, where w = polylog(N)
and d = O(1). For any choice of 0 < ↵ < 1, we can construct in Õ(N) time with high probability a data structure

using Õ(N1�↵/3) words of space which supports the following query in Õ((k+1)N↵) time: Given a d-dimensional

box B and and an integer k 2 [N ], return k distinct values x 2 [N ] such that f(x) 2 B, if they exist.

Proof. From the data structure of Theorem 2.1 constructed on the function g(x) := (f(x), x), we can decide in
time Õ(N↵) whether there exists any x 2 [N ] such that f(x) 2 B, and x < y for a given box B and integer y.
This allows to perform a bisection search on the coordinates of B and y and isolate k distinct values x such that
f(x) 2 B, in O(polylog(N)) time for each.

4 Applications

We can apply our general method not only to new variants of problems for which function inversion was already
known to be useful [12, 13, 17, 4, 1], but also to indexing variants of a number of other previously studied problems
in computational geometry [7, 3, 2, 6].

4.1 Variants of 3SUM-indexing The 3SUM-indexing problem consists of preprocessing two sets S1 and S2,
each containing n integers, so that for any integer y, one can quickly decide whether there exist x1 2 S1 and
x2 2 S2 such that y = x1 + x2. It is therefore a data structure version of the classical 3SUM problem [11, 14, 16].
Achievable space-time tradeo↵s for this question were the topic of several recent results. It was conjectured by
Goldstein, Kopelowitz, Lewenstein, and Porat [12] that any data structure for 3SUM-indexing with O(n↵) query
time for some ↵ < 1 must use ⌦(n2) space. This conjecture was disproved by Golovnev, Guo, Horel, Park, and
Vaikuntanathan [13], and Kopelowitz and Porat [17] using Corollary 1.1. In fact, the 3SUM-indexing problem
is a prominent example of a problem that is currently best solved by using this machinery. This is surprising,
considering the fact that it does not rely on any algebraic property of the problem.

As an example of a simple generalization that we can tackle using our results, we consider the following
generalization of the k-SUM-indexing problem to arbitrary constant-degree polynomial functions, yielding a data
structure version of the recently studied 3POL and k-POL problems [2, 6].

Problem 1. (k-POL-indexing problem) Let S1, S2, . . . , Sk be k sets of n numbers in [2w], where k = O(1)
and w = O(polylog(n)), and let p 2 N[x1, x2, . . . , xk] be a constant-degree k-variate polynomial with coe�cients in

[2w]. Preprocess these sets and p to answer queries of the following form: given k intervals B1, B2, . . . , Bk ⇢ [2w]
and an integer y, are there k values x1 2 B1 \S1, x2 2 B2 \S2, . . . , xk 2 Bk \Sk such that p(x1, x2, . . . , xk) = y?
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Theorem 4.1. (k-POL-indexing problem) For any choice of a constant 0 < ↵ < 1, we can construct in

Õ(nk) time with high probability a data structure for the k-POL-indexing problem using Õ(nk�↵/3) words of space
which supports queries in Õ(n↵) time.

Proof. We can assume without loss of generality that the values of the polynomial p lie in [2w
0
] for some w

0 � w

such that w
0 = O(polylog(n)). We define the function f : [nk] ! [2w

0
]k+1 that maps a k-tuple (i1, i2, . . . , ik) to

the corresponding (k + 1)-tuple of integers (x1, x2, . . . , xk, p(x1, x2, . . . , xk)), where xj is the ijth largest value in
Sj . We then construct the data structure of Theorem 2.1 with d = k+1 and N = n

k, and use it to answer queries
with the (k + 1)-dimensional boxes B := B1 ⇥B2 ⇥ . . .⇥Bk ⇥ {y}.

Note that from Theorem 3.3, with a slight penalty in space, we can also answer ranking and selection queries
in the preimage p

�1(y) \B in sublinear time.

4.2 Substring search Function inversion has been applied to string searching problems before [8, 4]. Let us
first consider the following problem:

Problem 2. (Birange proximity) Given an array A of size n containing elements of [n]. Preprocess it to

answer queries of the form: given intervals [i, j], [k, l], and [�,�] all with endpoints in [n], report all pairs (x, y),
x 2 [i, j] and y 2 [k, l], such that |A[x]�A[y]| 2 [�,�].

We can define f : [n]2 ! [n]3 by f(x, y) := (x, y, |A[x] � A[y]|). Answering a birange proximity query is thus
equivalent to determining the pairs (x, y) with f(x, y) = (x, y, �), x 2 [i, j], y 2 [k, `], and � 2 [�,�]. Thus, by
applying Theorem 3.5 we immediately obtain:

Lemma 4.1. (Birange proximity) For any choice of a constant 0 < ↵ < 1, we can construct in Õ(n2) time

with high probability a data structure for the birange proximity problem using Õ(n2�↵/3) words of space which

supports queries that return k pairs in time Õ((k + 1)n↵).

Bille et al. [4] consider the following problem:

Problem 3. (Gapped string indexing) Given a string S of length n, prepossess it to support queries of the

form: Given two strings P1 and P2, and an interval [�,�], report all (x, y) such that P1 is a substring starting at

location x in S, P2 is a substring starting at location y in S, and |x� y| 2 [�,�].

The su�x array A of a string S is a fundamental data structure in stringology due to Manber and Meyers [18].
It has A[j] = i if S[i . . . n] is the jth lexicographically largest su�x of S, and it can be computed in linear time
using the algorithm of Farach-Colton [9]. Bille et al. [4] observe that given the su�x array A of S, which is a
permutation of [n], the locations of of occurrences of a substring P are the values in a consecutive interval of A,
and this interval can be computed in time O(|P |) using a su�x tree (which can also be computed in linear time).
Using a birange proximity structure, initialized with the su�x array of S, a gapped string indexing query in S

can be converted into a birange proximity query at cost O(|P1| + |P2|). We therefore immediately recover the
headline result of [4]:

Theorem 4.2. (Gapped string indexing) For any choice of a constant 0 < ↵ < 1, we can construct in Õ(n2)
time with high probability a data structure for the gapped string indexing problem using Õ(n2�↵/3) words of space
which supports queries that return k pairs in time Õ(|P1|+ |P2|+ (k + 1)n↵).

While the problem we call birange proximity is implicit in the presentation of Bille et al. [4], their reductions
make use of other problems; here the use of birange proximity along with the framework we have developed
makes the proof immediate and amenable to many possible variations. We state one possible generalization,
where instead of two strings, k substrings are to be matched, with k � 2 a constant. We impose pairwise
restrictions on the allowable distances between the matches, and additionally we restrict the occurrence of each
substring to an interval in the base string.

Problem 4. (Generalized gapped string indexing) Given a string S of length n and a constant nonneg-

ative integer d, preprocess to support queries of the form: Given strings P0, P1, . . . Pd�1, intervals [�i,�j ] for all

i, j 2 [d], i < j, intervals [�i, ⇠i], for all i 2 [d] report all (x0, x1, . . . xd�1) such that Pi is a substring starting at

location xi in S, xi 2 [�i, ⇠i] and |xi � xj | 2 [�i,�j ] for all i, j 2 [d], i < j. The counting variant returns the

number of (x0, x1, . . . , xd�1) meeting this condition.
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Using Theorems 3.3 and 3.5 with N = Õ(nk), we directly obtain the following.

Theorem 4.3. (Generalized gapped string indexing) For any choice of a constant 0 < ↵ < 1, we can

construct in Õ(nd) time with high probability a data structure for the generalized gapped string indexing problem

using Õ(nd�↵/3) words of space which supports queries that return k pairs in time Õ(
P

d

i=1 |Pi|+ (k+1)n↵). For

the counting variant, queries take time Õ(
P

d

i=1 |Pi|+ n
↵) and the space usage is Õ(nd�↵/4).

4.3 Geometric applications The following result follows directly from Theorem 3.3 and will be useful in
applying our method to specific computational geometry problems.

Lemma 4.2. (Searching tuples of points in space) Let S be a set of n points on the d-dimensional integer

grid [2w]d, where w = polylog(n) and d = O(1). Let � : [2w]td ! [2w], for some constant t > 1, be any integer

function mapping a t-tuple of points in S to an integer, and computable in Õ(1).
For any choice of a constant 0 < ↵ < 1, we can construct in Õ(nt) time with high probability a data structure

using Õ(nt�↵/4) words of space which supports the following queries in Õ(n↵) time:

Ranking in a box. Given t d-dimensional boxes B1, B2, . . . , Bt and an integer y, return the number of t-tuples

T of distinct points of S in B1 ⇥B2 ⇥ · · ·⇥Bt such that �(T ) < y.

Selection in a box. Given t d-dimensional boxes B1, B2, . . . , Bt and an integer k, return the kth largest value

of �(T ) among all t-tuples T of distinct points of S in B1 ⇥B2 ⇥ · · ·⇥Bt.

Median in a box Given t d-dimensional boxes B1, B2, . . . , Bt, return the median of �(T ) among all t-tuples T

of distinct points of S in B1 ⇥B2 ⇥ · · ·⇥Bt.

Proof. We denote by pi,` the `th coordinate of the ith point of S, for i 2 [n]. Consider the function g mapping
an ordered t-tuple of pairwise distinct elements of [n] to [2w]td, defined as

g((i1, i2, . . . , it)) := (pi1,1, pi1,2, . . . , pi1,d, pi2,1, pi2,2, . . . , pi2,d, . . . , pit,1, pit,2, . . . , pit,d).

The result follows by applying Theorem 3.3 to the functions g and �, with N = n!/(n� t)! < n
t.

One simple example of a function � for t = 2 is the squared Euclidean distance between two points, and we
then get a data structure for interdistance selection and ranking. For t = 3, we can also define the function � as
twice the area of the triangle defined by the three points. Note that from Pick’s Theorem, the area is half-integer.
Lemma 4.2 then directly yields a data structure for the following problem.

Problem 5. (Triangle selection in boxes) Given a set S of n points on the two-dimensional integer grid

[2w]2, where w = polylog(n), preprocess it to answer queries of the form: given three two-dimensional boxes

B1, B2, B3 and an integer k, return the triangle with the kth largest area among all those formed by three points

in (S \B1)⇥ (S \B2)⇥ (S \B3).

Theorem 4.4. (Triangle selection in boxes) For any choice of a constant 0 < ↵ < 1, we can construct

in Õ(n3) time with high probability a data structure for the triangle selection in boxes problem using Õ(n3�↵/4)
words of space which supports queries in Õ(n↵) time.

This problem, as well as the interdistance selection problem, have previously been considered by Chazelle [7] in
the “one-shot” setting where there are no query boxes, k is fixed, and the points have real coordinates.

Other problems of interest involve functions with divisions or radicals, for which our approach focusing on
integer functions does not seem to apply at first glance. In many cases we can circumvent this problem, due to
the fact that a limited precision is enough to decide which of two values is larger. One bound implied for example
by the work of Burnikel et al. [5] is the following.

Lemma 4.3. ([5]) Let f : [2w]d ! R be a function which has a constant-sized expression consisting of the operators

+,�,⇥, /,
p
·, O(w)-bit constants and the arguments of f . Then computing f up to O(w) bits of precision is

enough to decide if f(p)  f(q) for any p, q 2 [2w]d.
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In what follows, given a function f for which this lemma applies, we will use the notation f
• to denote the

function computed to the required O(w) of bits of precision, scaled to have an integer domain. Thus, f• is a
function [2w]d ! [2O(w)]. Note that f• is always computable in O(poly(w)) = Õ(1) time.

An example here is the case t = 2, d = 2, and �(p1, p2) = f
•(p1, p2), where f(p1, p2) is defined as the slope of

the line through p1, p2. In robust statistics, the Theil-Sen estimator of a set S of points in R2 is the median of
the slopes of all the lines through two points of S. It is considered as a more robust estimator for linear regression
than the classical least-square estimator, and commonly used in practice.

Problem 6. (Linear regression in a box) Given a set S of n points on the two-dimensional integer grid

[2w]2, where w = polylog(n), preprocess it to answer queries of the form: given a two-dimensional box B, return

the Theil-Sen estimator of the points in S \B.

Applying Lemma 4.2, we directly obtain the following.

Theorem 4.5. (Linear regression in a box) For any choice of a constant 0 < ↵ < 1, we can construct in

Õ(n2) time with high probability a data structure for linear regression in a box using Õ(n2�↵/4) words of space

which supports queries in Õ(n↵) time.

Another example is the following problem, which is a data structure variant of a problem previously considered
by Bespamyatnikh and Segal [3].

Problem 7. (Hyperplane distance selection) Given n points on the d-dimensional grid [2w]d, preprocess
them to answer queries of the following form: given k and d boxes B1, . . . , Bd, return the hyperplane with the kth

largest distance to the origin, among all hyperplanes spanned by d points in B1 ⇥B2 ⇥ · · ·⇥Bd.

Let f be the function which maps d-tuples of points in [2w]d to the distance between the origin and the hyperplane
they span. Note that for any constant d, we can express this function in a way to which Lemma 4.3 applies.
Thus, applying Lemma 4.2 with � = f

• yields the following.

Theorem 4.6. (Hyperplane distance selection) For any choice of a constant 0 < ↵ < 1, we can construct

in Õ(nd) time with high probability a data structure for hyperplane distance selection using Õ(nd�↵/4) words of

space which supports queries in Õ(n↵) time.

As a last example, let us consider the following problem, which is the main focus of previous work by Aronov
et al. [1].

Problem 8. (Collinearity indexing with queries on a line) Given two sets S1 and S2 of n points on the

two-dimensional integer grid [2w]2, where w = polylog(n), and a vertical line `, preprocess them to answer queries

of the form: given a point q on `, are there two points p1 2 S1 and p2 2 S2 such that q, p1, and p2 are collinear?

Aronov et al. showed the following result, which now also follows from a straightforward application of
Lemma 3.4 and Lemma 4.3.

Theorem 4.7. (Theorem 1.1 of [1]) For any choice of a constant 0 < ↵ < 1, we can construct in Õ(n2) time

with high probability a data structure for collinearity indexing with queries on a line using Õ(n2�↵/3) words of

space which supports queries in Õ(n↵) time.

Note that as with previous applications, our results also allow us to restrict to pairs of points lying in two boxes
given at query time. Using Lemma 4.2 instead of Lemma 3.4, we could also answer queries asking for the closest
line spanned by a pair of points in S1 ⇥ S2, above or below the query point p, at the cost of increasing the space
of our data structure to Õ(n2�↵/4).
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