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Abstract

Let L be a set of n axis-parallel lines in R3. We are are interested in partitions of R3 by a set H of
three planes such that each open cell in the arrangement A(H) is intersected by as few lines from L

as possible. We study such partitions in three settings, depending on the type of splitting planes
that we allow. We obtain the following results.

There are sets L of n axis-parallel lines such that, for any set H of three splitting planes, there
is an open cell in A(H) that intersects at least Ân/3Ê ≠ 1 ¥ 1

3 n lines.
If we require the splitting planes to be axis-parallel, then there are sets L of n axis-parallel lines
such that, for any set H of three splitting planes, there is an open cell in A(H) that intersects
at least 3

2 Ân/4Ê ≠ 1 ¥
! 1

3 + 1
24

"
n lines.

Furthermore, for any set L of n axis-parallel lines, there exists a set H of three axis-parallel
splitting planes such that each open cell in A(H) intersects at most 7

18 n =
! 1

3 + 1
18

"
n lines.

For any set L of n axis-parallel lines, there exists a set H of three axis-parallel and mutually
orthogonal splitting planes, such that each open cell in A(H) intersects at most Á 5

12 nË ¥! 1
3 + 1

12
"

n lines.
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1 Introduction

Partitioning problems of point sets in Rd have been studied extensively. For instance, the
famous Ham-Sandwich Theorem states that, given d finite point sets in Rd, there exists a
hyperplane that bisects each of the sets, in the sense of having at most half of the set in
each of its two open halfspaces. Another well-known result is that for any set of n points in
the plane, there are two lines that partition the plane into four open cells that each contain
at most Ân/4Ê points (a 4-partition). The latter result has several stronger forms, where
one can specify the orientation of one of the lines, or that the two lines be orthogonal to
each other [6] (but not both). The 4-partition question naturally generalizes to the problem
of 2d-partitioning of a point set in Rd by d hyperplanes. Such a triple of planes indeed
always exists in R3 [9, 16], in fact, with the orientation of one of the planes prespecified.
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9:2 Partitioning Axis-Parallel Lines in 3D

Alternatively, one of the partitioning planes can be required to be perpendicular to the other
two [4]. It is known that 2d-partition does not always exist in d > 4 [1]. The case d = 4
remains stubbornly open. Results on other partitioning problems for finite point sets can be
found in the surveys by Kaneko and Kano [10] and by Kano and Urrutia [11].

Similar theorems have been obtained for equipartitioning continuous measures. For
example, the Ham-Sandwich theorem [15] is traditionally stated in continuous setting: Given
d finite absolutely continuous measures in Rd, there exists a hyperplane that bisects each
measure, in the sense of having half of the mass of each measure on each side; see [2] for
some early history of the theorem. The 2d-partition problem mentioned above was originally
asked by Grünbaum in 1960 [7] for measures, as well; for a survey, see [3]. For an overview
of equipartitioning problems, see [15,17].

In this paper we are interested in the following question: given a set L of n lines, partition
the space into open cells such that each cell intersects only few lines. This problem has been
studied extensively, in the context of cuttings and polynomial partitions, but these works
typically focus on asymptotic results that use a (possibly constant but) large number of
partitioning planes, or the zero set of a (constant but) large degree polynomial. For example,
a classical result on cuttings in the plane [5] is that, for any choice of parameter r, 1 6 r 6 n,
there exists a tiling of the plane by O(r2) trapezoids so that each open trapezoid meets n/r
of the lines of L. In a similar spirit, a result of Guth [8] states that, for any degree D > 1,
there exists a non-zero bivariate polynomial f of degree at most D, such that the removal of
its zero set Z(f) from the plane produces O(D2) open connected sets, each meeting at most
n/D of the lines of L. Analogous results are known for higher dimensions.

Another variant that has been studied is to partition R3 recursively using planes, until
each cell meets O(1) of the input objects. This results in a so-called binary space partition
(BSP) of the objects. It has been shown that any set of lines (or disjoint triangles) admits a
BSP of size O(n2) [14], and any set of axis-parallel lines (or disjoint axis-parallel rectangles)
admits a BSP of size O(n3/2) [13]. Both bounds are tight in the worst-case.

In contrast to the above settings, we are interested in what can be achieved with a very
small number of planes, similar to the results on Ham-Sandwich cuts and equipartitions. In
particular, we are interested in partitions for a set L of n lines in R3 that use only three
planes. More precisely, we want to partition R3 using a set H of three planes such that each
open cell in the arrangement A(H) meets only few of the lines from L. Note that if the
planes of H are in general position, each such cell is an “octant.”

We are not aware of any work directly addressing this question in three or higher
dimensions, for unrestricted sets of lines. The two-dimensional case was settled in [12, Lemma
7]: for any set of n lines in the plane in general position, there exists a pair of lines with the
property that each open quadrant formed by them is met by at most Ân/4Ê of the lines. In
this initial study of the problem, we consider the case of axis-parallel lines in R3.

Problem statement and results. Let L be a set of n axis-parallel lines in R3. We would
like to partition the space by three planes h1, h2, h3, so that each of the open cells of A(H)
meets as few lines of L as possible, where H := {h1, h2, h2}. We consider three variants,
of increasing generality. The variants depend on the orientation of the planes used in the
partitioning. To this end we define a plane to be axis-parallel if it is parallel to two of the
main coordinate axes, we define it to be semi-tilted if it is parallel to exactly one of the main
coordinate axis, and we define it to be tilted if not parallel to any coordinate axis. We will
consider the following three types of partitionings.
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Function Lower bound Reference Upper bound Reference
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2
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Table 1 Summary of general results

The set H must consist of three mutually orthogonal axis-parallel planes; let g‹ be the
corresponding function.
The planes in H must all be axis-parallel (gÎ), but need not be pairwise orthogonal.
The planes in H can be chosen arbitrarily (g), that is, H can also use semi-tilted or tilted
planes.

For a set L of lines, we let g(L) be the minimum integer k, such that there is a set H
of three planes in R3 with every open cell of A(H) meeting at most k lines of L. Define
gÎ(L) and g‹(L) analogously. Now define g(n) := max|L|=n g(L), with the maximum taken
over all sets of axis-parallel lines of size n. Define gÎ(n) and g‹(n) similarly. Clearly,
g(n) 6 gÎ(n) 6 g‹(n). Table 1 summarizes our results.

The rest of the paper is organized as follows. In Section 2 we introduce our simplest
“three bundle” construction, which implies lower bounds on all three functions and illustrates
some of the methods used in the rest of the paper. We prove stronger lower bounds on g‹(n)
and gÎ(n) in Section 3. In Section 4 we present constructive upper bounds on gÎ and g‹,
and consequently also on g.

We will use the following convention throughout the paper: we say that a line ¸ crosses a
plane h in R3, if ¸ meets h, but is not contained in it.

2 Three bundles

As a warm-up exercise we analyze a simple and natural configuration of lines. The analysis
will give a first lower bound on the functions g‹(n), gÎ(n), and g(n). In fact, the bound we
obtain for g(n) is the best bound we have for this case, where the splitting planes can be
completely arbitrary. The configuration consists of three bundles of n/3 lines, where n is
a multiple of 3; see Fig. 1 for an illustration. We call this configuration the three-bundle

configuration, and denote it by L3(n), or just L3 for short. It is defined as L3 := L3
x fiL3

y fiL3
z,

where

L3
x := {(0, i, i) + ⁄(1, 0, 0) : 1 6 i 6 n/3},

L3
y := {(i, 0, 2n/3 + 1 ≠ i) + ⁄(0, 1, 0) : 1 6 i 6 n/3}, and

L3
z := {(i, i, 0) + ⁄(0, 0, 1) : n/3 < i 6 2n/3}.

To be able to handle the case of tilted splitting planes, we need to slightly shift the lines
in L3, so that no plane (titled or otherwise) contains three or more lines. For example,
L3

x is actually defined as L3
x := {(0, i + Ái, i) + ⁄(1, 0, 0) : 1 6 i 6 n/3}, where the Ái’s are

small, distinct real numbers that guarantee that no plane contains more than two of the lines
from L3

x. The sets L3
y and L3

z are shifted similarly. Thus no plane can contain more than
two lines from the same bundle. Note that a plane cannot contain two lines from di�erent

CGT
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Figure 1 (i) Rough illustration of the set L
3 for the case n = 9. (ii) A more accurate illustration

of L
3, which also shows three splitting planes that partition space into eight cells, each containing at

most two lines. The dark grey lines are contained in a splitting plane. The front, left, and top views
show that the construction is symmetric with respect to the axes, up to reversing the directions of
some axes.

bundles either. With a slight abuse of notation we will still denote the shifted sets by L3
x,

L3
y, and L3

z. For simplicity, we will refrain from showing the perturbations in our figures.

It is straightforward to verify that g‹(L3) 6 n/3≠1. Indeed, if we take h1 := {x = n/3+1},
and h2 := {y = n/3}, and h3 := {z = n/3 + 1}, then six of the eight cells in the resulting
arrangement A(H) are intersected1 by n/3≠1 lines (all coming from a single bundle) and the
remaining two cells are not intersected at all; see Fig. 1(ii). The main result of this section is
that this is tight: even if one is allowed to use tilted splitting planes, it is not possible to
ensure that all cells in the partitioning are intersected by strictly fewer than n/3 ≠ 1 lines.
This gives the following theorem.

I Theorem 1. Let L3(n) be the three-bundle configuration on n lines, where n is divisible by

3, as defined above. Then

g‹(L3(n)) = gÎ(L3(n)) = g(L3(n)) = n/3 ≠ 1 for n > 9,

g‹(L3(n)) = gÎ(L3(n)) = 1 and g(L3(n)) = 0 for n = 6,

g‹(L3(n)) = gÎ(L3(n)) = g(L3(n)) = 0 for n = 3.

Theorem 1 immediately gives the following corollary. The cases where n = 3 and n = 6 are
easy to verify. In the remainder of this section we assume n > 9.

I Corollary 2. For n > 9, g(n) > Ân/3Ê ≠ 1.

Theorem 1 also implies that g‹(n) > Ân/3Ê ≠ 1 and gÎ(n) > Ân/3Ê ≠ 1, of course, but in
later sections we will provide stronger lower bounds on g‹(n) and gÎ(n); see Theorem 10.

Since we already argued that g‹(L3) 6 n/3 ≠ 1, and we have g‹(L3) > gÎ(L3) > g(L3),
it su�ces to prove that g(L3) > n/3 ≠ 1. It will be convenient, however, to first prove this
for g‹(L3), then extend the proof to gÎ(L3), and finally extend it to g(L3).

I Lemma 3. g‹(L3(n)) > n/3 ≠ 1.

Proof. Suppose for a contradiction that there is a set H = {h1, h2, h3} of mutually orthogonal
axis-parallel planes such that each cell in the arrangement A(H) meets fewer than n/3≠1 lines
from L3. Let h1, h2, and h3 be the planes orthogonal to the x-, y-, and z-axis, respectively.

1 Recall that we consider the cells to be open, so lines fully contained in a splitting plane do not contribute
to the counts.
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Figure 2 Illustration for the proof of Lemmas 3 and 4, showing the projection onto the xy-plane,
where above/below crossings are drawn as seen from z = +Œ.

Consider the projection of L3 and the planes h1 and h2 onto the xy-plane; refer to
Fig. 2(i). The lines from L3

x and L3
y appear as lines in the projection. The planes h1 and

h2 appear as lines as well, and they partition the xy-plane into four quadrants, which we
label as ne, se, sw, and nw in the natural way. The lines from L3

z appear as points in the
projection. Below we will, with a slight abuse of terminology, sometimes speak of “points
from L3

z.”
Note that the ne-quadrant contains at most n/3 ≠ 2 points from L3

z; otherwise there
would be two octants in A(H) meeting at least n/3 ≠ 1 lines. Hence, at least one of the
following two cases occurs
(a) at least one point from L3

z lies to the left of h1, or
(b) at least one point from L3

z lies below h2.
Due to symmetry we can assume without loss of generality that case (a) holds, which implies
that all lines from L3

y lie to the left of h1. Now observe that the sw-quadrant meets at most
2n/3 ≠ 3 lines from L3

x fi L3
y; otherwise one of the two octants in A(H) that correspond to

the sw-quadrant—these octants are generated when the z-vertical column corresponding to
the sw-quadrant is split by the splitting plane h3—will meet at least n/3 ≠ 1 lines. (Note
that the plane h3 can contain at most one line from L3

x fi L3
y.) Since we already observed

that all lines from L3
y lie to the left of h1, this implies that at least two lines from L3

x lie
above h2. Hence, we can assume that the projection looks like the one depicted in Fig. 2(i).

Let i be the number of lines from L3
z lying (strictly) to the left of h1, and let j be the

number of lines from L3
x lying (strictly) above h2; by the above arguments we have i > 1 and

j > 2. Consider the remaining cutting plane h3, which is parallel to the xy-plane, and let k
be the number of lines from L3

y lying (strictly) below h3. We have k > 1 because otherwise
the nw-top octant of A(H)—this is the cell that is above h3 and whose projection onto the
xy-plane is the nw quadrant—will meet i lines of L3

z and at least n/3 ≠ 1 lines of L3
x, which

is a contradiction. Since k > 1 we also know that all j lines from L3
x must lie below h3, since

these lines lie below the lines from L3
y. We can thus derive the following.

(i) The ne-bottom octant meets n/3 ≠ i ≠ 1 lines of L3
z and j lines of L3

x. Since we assumed
all cells intersect fewer than n/3 ≠ 1 lines, we thus have n/3 ≠ i ≠ 1 + j < n/3 ≠ 1, which
implies i > j.

(ii) The nw-top octant meets n/3 ≠ k ≠ 1 lines of L3
y and i lines of L3

z. For this octant to
intersect fewer than n/3 ≠ 1 lines, we must thus have k > i.

CGT
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(iii) The sw-bottom octant meets k lines of L3
y and n/3 ≠ j ≠ 1 lines of L3

x. For this octant
to intersect fewer than n/3 ≠ 1 lines, we must thus have k < j.

But (i) and (ii) together imply k > j, which contradicts (iii), thus finishing the proof of the
lemma. J

We now consider the case where the planes, though still axis-parallel, need not be mutually
orthogonal.

I Lemma 4. gÎ(L3(n)) > n/3 ≠ 1.

Proof. Suppose for a contradiction that there is a set H = {h1, h2, h3} of three axis-parallel
planes such that each cell of A(H) meets fewer than n/3 ≠ 1 lines from L3.

The case of three mutually orthogonal planes has been handled in Lemma 3. If h1, h2,
and h3 are all parallel to each other, then clearly there is a cell that is intersected by at least
n/3 lines from L3, since any line from the bundle orthogonal to the planes intersects all four
cells. Thus the remaining case is when exactly two of the planes are parallel.

Assume without loss of generality that h1 and h2 are parallel to the yz-plane, with h2
being to the right of h1, and that h3 is parallel to the xz-plane. Now consider the situation in
the projection onto the xy-plane, as shown in Fig. 2(ii). There are six cells in the projection,
which we label as ne, n-mid, nw, se, s-mid, and sw. If each cell in the projection meets
fewer than n/3 ≠ 1 lines, then at least one line of L3

y (in the projection) should be above h3,
otherwise the cells below h3 intersect more than n/3 ≠ 1 lines.

Let j > 1 be the number of lines from L3
x above h3. Then the number of lines from

L3
z—these are points in the figure—that are to the right of h2 is at most n/3≠j ≠2, otherwise

the ne cell meets at least n/3 ≠ 1 lines. Similarly, the number of lines from L3
y to the left of

h1 must be at most j ≠ 1, otherwise the sw cell meets at least (n/3 ≠ j ≠ 1) + j = n/3 ≠ 1
lines. But then we have

(# lines from L3
x in n-mid) = j,

(# lines from L3
y in n-mid) > n/3 ≠ (j ≠ 1) ≠ 1 = n/3 ≠ j,

(# lines from L3
z in n-mid) > n/3 ≠ (n/3 ≠ j ≠ 2) ≠ 1 = j + 1.

This brings the total number of lines in the n-mid cell to at least n/3+j+1, thus contradicting
our assumption. J

We now turn our attention to the general case, where we are also allowed to use splitting
planes that are tilted or semi-tilted. (Recall that a semi-tilted plane is parallel to exactly
one coordinate axis, and a tilted plane is not parallel to any coordinate axis.)

I Lemma 5. For n > 9, we have g(L3(n)) > n/3 ≠ 1.

Proof. Consider three splitting planes h1, h2 and h3, and suppose for a contradiction that
each cell in A(H) intersects fewer than n/3 ≠ 1 lines. Define

a := number of axis-parallel planes in H,
s := number of semi-tilted planes in H, and
t := number of tilted planes in H.

Note that a + s + t = 3. The case where all three planes are axis-parallel has already been
handled in the previous two lemmas, so we can assume that a < 3. Any axis-parallel plane is
crossed by n/3 lines from L3, any semi-tilted plane is crossed by 2n/3 lines from L3, and
any tilted plane is crossed by n lines from L3. (Recall that, when we say that a line crosses

a plane, or a plane crosses a line, we mean that there is a proper intersection; that is, the
line is not contained in the plane.) Thus

(# fragments generated by the planes in H) = n

3 · (3 + a + 2s + 3t).
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Some fragments may be contained in one of the splitting planes and, hence, not appear inside
any cell. Note that an axis-parallel splitting plane may contain at most one line from L3, a
semi-tilted splitting plane may contain at most two lines from L3, and a tilted splitting plane
cannot contain any line from L3. Furthermore, a line contained in splitting plane consists of
at most three fragments, arising due to the line crossing the other two splitting planes. Thus
we have at least (n/3) · (3 + a + 2s + 3t) ≠ 3(a + 2s) fragments appearing inside the cells
in A(H). Rewriting this, we conclude that

(# cell-line intersections) > (n/3) · (6 + s + 2t) ≠ 3(a + 2s). (1)

Since A(H) has at most eight cells, there must be a cell with
Ï

(n/3)·(6+s+2t)≠3(a+2s)
8

Ì

intersections. We now make a case distinction, depending on the values of a, s and t. Recall
that n is a multiple of 3 and that we are now dealing with the case n > 9. The first five
cases we consider can be handled easily using Eq. (1), as follows.

If t > 2, or t = 1 and s = 2, there is a cell with at least
Ï

(n/3)·10≠6
8

Ì
> n/3 ≠ 1 fragments.

If t = s = 1 (hence, a = 1) there is a cell with at least
Ï

(n/3)·9≠9
8

Ì
=

' 9
8 (n/3 ≠ 1)

(
> n/3≠1

fragments.
If t = 1 and s = 0 (hence, a = 2) there is a cell with at least

Ï
(n/3)·8≠6

8

Ì
= n

3 ≠ 1
fragments.
If s = 3 (hence, t = a = 0) there is a cell with at least

Ï
(n/3)·9≠18

8

Ì
=

'
n
3 ≠ 1 + n≠30

24
(

fragments. For n > 9 this is at least n/3 ≠ 1.
If t = 0 and s = 2 (hence, a = 1) there is a cell with at least

Ï
(n/3)·8≠15

8

Ì
= Án/3 ≠ 15/8Ë =

n/3 ≠ 1 fragments.

Each of the cases above gives us the desired contradiction. The only remaining, and most
di�cult, case is when t = 0, s = 1, and a = 2. In this case we need a more refined analysis,
given next.

In the rest of the proof we assume there are two axis-parallel splitting planes, say h1
and h2, and one semi-tilted splitting plane h3. If h1 and h2 are parallel to each other, the
number of cells in A(H) is six. If all three planes are parallel to the same axis, then A(H)
has seven cells. In either case, from Equation 1 it follows that there is a cell with

9
(n/3) · (6 + s + 2t) ≠ 3(a + 2s)

7

:
=

9
(n/3) · 7 ≠ 12

7

:
= Án/3 ≠ 12/7Ë > n/3 ≠ 1.

intersections giving the desired contradiction. Recall that the construction is symmetric with
respect to the axes—see Fig. 1(ii)—and so without loss of generality we may now assume
that h1 is perpendicular to the x-axis, h2 is perpendicular to the y-axis, and h3 is parallel to
the y-axis. We now proceed to derive a contradiction with our assumption that each cell in
A(H) meets less than n/3 ≠ 1 lines. To this end we first prove several properties that the
splitting planes h1, h2, h3 must satisfy, under our assumption. In the following, we consider
the projection onto the xy-plane, and statements like “to the left of” or “above” refer to the
situation in this projection. See Figure 3(i), and note that the lines of L3

z show up as points
in the figure.

B Claim 6. At least one line of L3
x must lie above h2. Hence, all lines of L3

z lie
above h2.

CGT
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Figure 3 Illustration for the proof of Lemma 5. Note that in part (ii) of the figure, the semi-tilted
plane h3 can also show up as a line with negative slope. However, due to the small perturbation of
the lines in L

3
y, h3 can contain at most two lines from L

3
y (here showing up as points).

Proof. For a contradiction, assume that no line of L3
x lies strictly above h2. There is

at most one line contained in h2, so at least n/3≠1 lines of L3
x lie below h2. Each such

line crosses h1 and h3—recall that the latter splitting plane is semi-tilted and parallel
to the y-axis—and therefore crosses three of the four octants below h2. Moreover, each
line of L3

y, except at most one line contained in h1 and at most two lines contained
in h3, intersects one of these octants. Hence, the total count for the four octants
below h2 is at least 3 · (n/3 ≠ 1) + (n/3 ≠ 3), and consequently, at least one of the four
octants must intersect at least

9
3 · (n/3 ≠ 1) + (n/3 ≠ 3)

4

:
=

9
4n/3 ≠ 6

4

:
= n/3 ≠ 1

lines, contradicting our assumption. (Here we use our assumption that n is a multiple
of 3 and that n > 9.) J

Claim 6 can be used to restrict the possible positions of h1.

B Claim 7. h1 must have at least one line of L3
z on either side of it. Hence, all lines

of L3
y lie to the left of h1.

Proof. By Claim 6, all lines from L3
z lie above h2. If h1 does not have lines from L3

z

on either side of it, then one side has at least n/3 ≠ 1 of these lines. Hence, one of
the four quadrants defined by h1, h2 in the xy-projection—in particular, one of the
quadrants above h2—contains at least n/3 ≠ 1 lines from L3

z. Recall that the splitting
plane h3 is a semi-tilted plane parallel to the y-axis. Hence, h3 is crossed by all lines
from L3

z, and so there would be an octant in A(H) that intersects at least n/3 ≠ 1
lines, thus contradicting our assumptions. J

Next we restrict the possible positions for the semi-tilted splitting plane h3.

B Claim 8. h3 must have at least one line of L3
y on either side of it.
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Proof. Observe that h3 can contain at most two lines from L3
y. Suppose for a

contradiction that there are at least n/3 ≠ 2 lines to one side of h3, and consider the
four octants of A(H) lying to this side. Every line from L3

x and L3
z intersects at least

one of these octants, except at most one line from L3
x contained in h2 and at most one

line from L3
z contained in h1. Moreover, each of the at least n/3 ≠ 2 lines from L3

y not
contained in h3, intersects h2 and, hence, two of the octants. It follows that there is
an octant that intersects

9
(2n/3 ≠ 2) + 2(n/3 ≠ 2)

4

:
=

9
4n/3 ≠ 6

4

:
= n/3 ≠ 1

lines, thus contradicting our assumptions. J

Let i be the number of lines of L3
x below h2.

B Claim 9. i > 2
9 n ≠ 1

3 .

Proof. Consider the two quadrants above h2 and the four octants of A(H) corre-
sponding to those quadrants. Each line of L3

x above h2 intersects h1 and h3, and thus
intersects three of these octants, for a total of 3(n/3 ≠ i ≠ 1) octant-line intersections.
Each line of L3

y, except for at most two lines contained in h3, intersects one octant,
thus contributing n/3 ≠ 2 octant-line intersections. Finally, each line of L3

z, except
for at most one line contained in h1, intersects two octants (since they intersect h3),
contributing 2(n/3 ≠ 1) octant-line intersections. Hence, there is an octant intersecting

9
3(n/3 ≠ i ≠ 1) + (n/3 ≠ 2) + 2(n/3 ≠ 1)

4

:
=

9
n/3 ≠ 2 + 2n/3 ≠ 3i + 1

4

:

lines. In order not to contradict the assumption that no octant intersects more than
n/3 ≠ 2 lines, we must thus have 2n/3 ≠ 3i + 1 6 0. Hence, i > 2n/9 ≠ 1/3, as
claimed. J

To finish the proof of Lemma 5, we switch views and consider the projection onto the xz-plane.
Here h3 shows up as a slanted line, as shown in Fig. 3(ii). The are two cases, depending on
the slope of h3 in the xz-projection.

Case 1: The projection of h3 onto the xz-plane has positive slope.

Consider the sw-quadrant in Fig. 3(i), that is, the quadrant below h2 and to the left of h1.
This quadrant corresponds to a vertical column in R3, which is cut into two octants by the
semi-tilted plane h3. Clearly, each line in L3

y, except for at most two lines contained in h3,
intersects one of these two octants. Furthermore, each of the i lines of L3

x below h2 intersects
both octants, because h3 has positive slope in the xz-projection. Indeed, by Claim 8 the
plane h3 must have at least one line from L3

y on either side of it—see Fig. 3 where these
lines show up as points—and together with the fact that h3 has positive slope this implies
that all intersections of L3

x with h3 lie to the left of h1. Thus, all i lines of L3
x below h2

intersects both octants, contributing 2i octant-line intersections. Hence, the total number of
octant-line intersections in the two octants is at least (n/3 ≠ 2) + 2i. Since i > 2

9 n ≠ 1
3 by

Claim 9 there is an octant that intersects at least
9

(n/3 ≠ 2) + 2i

2

:
>

9
n/3 + (4n/9 ≠ 2/3) ≠ 2

2

:
=

9
n/3 ≠ 2 + (n/9 ≠ 2/3)

2

:

CGT
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h3

h1

L3
x

L3
z

x

z

j lines

k
lines

ne

se

nw

sw

• The spliting plane h2 is parallel to the xz-plane
and, hence, not shown.

• All lines from L3
z lie above h2 by Claim 7.

• By definition, i lines from L3
x are below h2, and so

at least n/3� i� 1 lines from L3
x are above h2

Figure 4 Illustration for Case 2 of the proof of Lemma 5. Recall that the lines in the construction
were perturbed slightly. For the lines in L

3
y, which show up as points in the figure, these perturbations

are shown larger than they actually are. Due to the perturbations, h3 can contain at most two lines
from L

3
y.

lines. Since n > 9 there is an octant intersecting more than n/3 ≠ 2 lines, thus giving the
desired contradiction for Case 1.

Case 2: The projection of h3 onto the xz-plane has negative slope.

This case is illustrated in Fig. 4. Let j be the number of lines of L3
z to the right of h1 and let

k be the number of lines of L3
y above h3; see Fig. 4. We label the “quadrants” induced by

h1, h3 the xz-projection as ne, se, sw, nw. Each of the these quadrants defines a column
in R3, which is partitioned into two octants by h2. We label the octants in the ne-column
that are above and below h2 by ne-top and ne-bottom, respectively. The octants in the
other columns are labeled similarly.

Consider the nw-top octant. It meets at least n/3 ≠ j ≠ 1 lines of L3
z, because all lines of

L3
z lie above h2 by Claim 6. Moreover, it meets k lines of L3

y. (It may also meet lines from
L3

x but we need not take them into account.) Since any octant is assumed to intersect
less than n/3 ≠ 1 lines, we must have (n/3 ≠ j + 1) + k < n/3 ≠ 1. Hence, j > k + 2.
Now consider the sw-bottom octant. It meets i lines from L3

x and at least n/3 ≠ k ≠ 2
lines of L3

y, and so we must have i + (n/3 ≠ k ≠ 2) < n/3 ≠ 1. Hence, k > i ≠ 1.
Finally, consider the ne-top octant. It meets j lines from L3

z, because all lines of
L3

z lie above h2 by Claim 6. Note that all lines from L3
x intersect the ne quadrant,

since h3 has negative slope in the xz-projection. At least n/3 ≠ i ≠ 1 of these lines lie
above h2 and, hence, intersect the ne-top octant. We can conclude that we must have
j + (n/3 ≠ i ≠ 1) < n/3 ≠ 1, and so i > j.

Putting these three inequalities together we obtain

j > k + 2 > i + 1 > j + 1.

This is the desired contradiction and finishes the proof. J
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3 Better lower bounds for axis-parallel splitting planes

In this section we give improved lower bounds on g‹(n) and gÎ(n). To this end we present
a family of configurations L4(n) of n lines, with n divisible by 8, and prove that any
decomposition of the type under consideration must have a cell intersected by at least
3n/8 ≠ 1 lines. Interestingly, for mutually orthogonal splitting planes the ≠1 term disappears.

I Theorem 10. For every n divisible by 8, there exists a configuration L4 = L4(n) such that

g‹(L4(n)) = 3n/8 and gÎ(L4(n)) = 3n/8≠1. Hence, for any n > 8, we have g‹(n) > 3
2 Ân/4Ê

and gÎ(n) > 3
2 Ân/4Ê ≠ 1.

The rest of this section is devoted to the proof of Theorem 10, where L4 is defined as the
union of the following sets:

L4
x := {(0, i, i + n/4) + ⁄(1, 0, 0) : i œ [n/4, n/2)},

L4
y := {(i + n/4, 0, i) + ⁄(0, 1, 0) : i œ [0, n/4)}, and

L4
z := {(i, i, 0) + ⁄(0, 0, 1) : i œ [0, n/4) fi [n/2, 3n/4)} .

Note that |L4
x| = |L4

y| = n/4 and |L4
z| = n/2, and that, up to symmetries, any projection to

an axis-parallel plane looks like one of projections in Fig. 5. We will prove the theorem in

Projection onto xy-plane, view from z = +1 Projection onto xz-plane, view from y = +1

L4
y

L4
x

L4
z

L4
zL4

z

(i) (ii)

L4
x

L4
z

L4
y

y

x

z

x

Figure 5 Line set L
4 from the proof of Theorem 10

two steps, by first considering the case of mutually orthogonal splitting planes and then the
case of arbitrary axis-parallel splitting planes. In the remainder of this section, we assume
that n is divisible by 8 and that n > 8.

I Lemma 11. For any n divisible by 8, we have g‹(L4(n)) = 3n/8.

Proof. Consider three splitting planes h1, h2, and h3, orthogonal to the x-, y-, and z-axis,
respectively. Let ¸1 : x = i and ¸2 : y = j be the projections of h1 and h2 onto the xy-plane;
see Fig. 6. Suppose that h3 has k of the lines from L4

x fi L4
y lying strictly above it. (Note that

for the purposes of lower-bound analysis we can assume that h1, h2, and h3 each contain
a line of L4, as shifting them until they do can only decrease the number of lines of L4

meeting each open octant. We will make this assumption hereafter in this proof, that is, we
suppose that i, j, and k are integers in the relevant range.) We use ne to denote the open
north-east quadrant defined by ¸1, ¸2 and define se, sw, and nw similarly. For a quadrant

CGT
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q œ {nw, ne, sw, se}, we define q-top and q-bottom to be the open octants induced by
h3. With a slight abuse of notation, we also use ne (and, similarly, the other variables) to
denote the total number of objects (lines and points) incident to the region ne.

We first observe that by setting i = j = 3n/8 and k = n/4 we obtain g‹(L4) 6 3n/8. It
remains to argue that g‹(L4) > 3n/8. Up to translation, rotation, and reflection, it su�ces
to consider the following cases.

Case 1: 0 6 i < n/4 and 0 6 j < n/2; see Fig. 6(i).

Observe that ne is incident to, at least, all n/4 lines in L4
y, and n/4 lines of L4

z. It
follows that the number of incidences in ne-top and ne-bottom together is at least
n/4 + 2(n/4) ≠ 1 = 3n/4 ≠ 1, implying that at least one of ne-top, ne-bottom is incident
to 9

3n

8 ≠ 1
2

:
> 3n

8

lines, where the inequality uses the fact that since n is divisible by 8.

Case 2: 0 6 i < n/4 and n/2 6 j < 3n/4; see Fig. 6(ii).

We first additionally assume that 0 6 k < n/4. Thus, h3 meets some line of L4
x. ne-bottom

meets n/4 lines of L4
y and 3n/4 ≠ j ≠ 1 lines of L4

z, so n ≠ j ≠ 1 lines in total. If j < 5n/8
then we have n ≠ j ≠ 1 > 3n/8 ≠ 1 and, hence, n ≠ j ≠ 1 > 3n/8. So we may assume j > 5n/8.
Observe that se is incident to all n/2 lines in L4

x fi L4
y, and at least j ≠ n/2 > n/8 lines of

L4
z. Since h3 contains a line of L4

x, the number of incidences in se-top and se-bottom is
at least 2(n/8) + n/2 ≠ 1 = 3n/4 ≠ 1, implying that at least one of se-top and se-bottom
is incident to at least 9

3n

8 ≠ 1
2

:
= 3n

8

lines.
Now suppose n/4 6 k < n/2, i.e., h3 meets some line of L4

y. sw-top meets i lines of L4
z

and all n/4 lines of L4
x, i.e., sw-top = i + n/4. When i > n/8 (recall that n is a multiple

of 8), we get sw-top > 3n/8, so we can assume i < n/8. Observe that se is incident to all
n/2 lines in L4

x fi L4
y, and

n

4 ≠ i ≠ 1 >
n

4 ≠ n

8 ≠ 1 = n

8 ≠ 1,

(ii) (iii)(i)
`1 `1

L4
y

L4
z

L4
z

L4
y

L4
z

L4
z

L4
y

L4
z

L4
z`2

L4
x L4

x

`2

`2

j

`1
nw

sw se

ne

j

i i i

j

nw

sw se

ne nw

sw se

ne

L4
x

y

x

y

x

y

x

Figure 6 Di�erent cases of partitioning with three orthogonal planes, projected to the xy-plane
showing view from z = +Œ.
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that is, at least n/8 lines of L4
z. Thus the number of incidences in se-top and se-bottom

together is at least
2

1n

8

2
+ n

2 ≠ 1 = 3n

4 ≠ 1,

implying that at least one of se-top and se-bottom meets at least 3n/8 lines.

Case 3: n/4 6 i < n/2 and n/4 6 j < n/2; see Fig. 6(iii).

Suppose also that 0 6 k < n/4 (i.e., h3 contains a line of L4
x). Then, all but one of the

lines of L4
y (so n/4 ≠ 1) are incident to either ne-bottom or sw-bottom. Additionally,

ne-bottom and sw-bottom are each incident to n/2 lines of L4
z. That is, number of

incidences in ne-bottom and sw-bottom is at least n/4 ≠ 1 + n/2 = 3n/4 ≠ 1. It follows
that at least one of these cells is incident to 3n/8 lines.

Now suppose n/4 6 k < n/2. i.e., h3 contains a line of L4
y. Then, all but one of the

lines of L4
x (so n/4 ≠ 1) are incident to either ne-top or sw-top. Additionally, ne-top and

sw-top are each incident to n/2 lines of L4
z. Then the number of incidences in ne-top and

sw-top is at least n/4 ≠ 1 + n/2 = 3n/4 ≠ 1. It follows that at least one of these cells is
incident to 3n/8 lines.

We conclude that all three cases give the desired number of incidences, which finishes the
proof of the lemma. J

To finish the proof of Theorem 10 it remains to deal with axis-parallel splitting planes that
need not be mutually orthogonal.

I Lemma 12. For any n divisible by 8, we have gÎ(L4(n)) = 3n/8 ≠ 1.

Proof. We first observe that the case of all three planes being orthogonal to the same axis is
not interesting: Such planes would cut each line of one of the sets L4

x, L4
y, L4

z into four pieces,
producing a total of at least

4 · n

4 + n

4 ≠ 1 + n

2 ≠ 1 = 7n

4 ≠ 2

line-cell incidences, so at least one of the four cells would meet at least

1
4

3
7n

4 ≠ 2
4

= 7n

16 ≠ 1
2 >

3n

8 ≠ 1

lines. Hence, we will focus on partitions where two of the planes are parallel. Up to a
permutation and reorientation of the coordinates, it is su�cient to consider the three cases
illustrated in Figure 7. As before, it is safe to assume that each of the three planes contains
a line of L4.

We need prove that in each of the three cases, there is a cell that meets at least 3n/8 ≠ 1
lines, and that this bound can also be achieved as an upper bound in at least one of the
cases.

Case (a): h1 and h2 are parallel to the yz-plane and h3 is parallel to the xz-plane.

We label the cells as nw, n, ne, sw, s, and se. Suppose there are i lines from L4
y fi L4

z

strictly to the left of h1, and j lines from L4
y fi L4

z strictly to the right of h2, and k lines from
L4

x fi L4
z strictly above h3. Due to the symmetry in the configuration, we may assume that

the number of lines from L4
x below h3 is at least the number of lines from L4

x above h3. We
can assume that h3 contains a line of L4

x (and not a line of L4
z), since otherwise

sw + s + se = 3
1n

4

2
+ n

4 + n

4 ≠ 2 = 5n

4 ≠ 2,

CGT
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L4
y

L4
x

L4
zL4

z

L4
y

L4
x

L4
zL4

z

h3

h1 h2

h3

h1 h2 h3

h1

h2

L4
z

L4
z

L4
x

L4
y

z

x

z

x

y

x

nw ne

sesw

n

s

nw ne

sesw

n

s

ne

e

sesw

w

nw

(b)(a) (c)

Figure 7 Di�erent cases in the proof of Lemma12. For Case (a) the projection onto the xy-plane
is shown, viewed from z = +Œ. For Cases (b) and (c) the projection onto the xz-plane is shown,
viewed from y = +Œ.

implying that at least one of these cells contains
9

5n

12 ≠ 2
3

:
> 3

8n ≠ 1

lines. Hence, from now on we assume 0 6 k < 3n/8.
Note that sw is incident to n/2 ≠ k ≠ 1 > n/8 lines of L4

x and i lines of L4
y fi L4

z. If
i > n/4, then this implies sw > n/8 + i > 3n/8 and so we are done. Similarly, if j < n/4,
then s is incident to at least n/8 lines of Lx and n/4 lines of Ly, for a total of 3n.8 incidences,
and we are done as well. Hence, from here on we assume that i < n/4 (so h1 contains a line
of L4

z), and that j > n/4 (so h2 contains a line of L4
y). Observe that sw, ne are incident to

i + j lines of L4
y fi L4

z, and n/4 ≠ 1 lines of L4
x, that is,

sw + ne = i + j + n

4 ≠ 1.

Moreover, s is incident to at least n/8 lines of L4
x, to n/2≠ j ≠1 lines of L4

y, and to n/4≠ i≠1
lines of L4

z giving

s = n

8 +
1n

2 ≠ j ≠ 1
2

+
1n

4 ≠ i ≠ 1
2

= 7n

8 ≠ (i + j) ≠ 2.

By combining these two inequalities we see that

sw + ne + s = 9n

8 ≠ 3,

implying one of the three cells is incident to at least 3n/8 ≠ 1 lines.
This finishes the lower-bound proof for Case (a). Note that we can also achieve an upper

bound of 3n/8 ≠ 1, by setting k = 3n/8 ≠ 1, i = n/4 ≠ 1, and j = n/4.

Case (b): h1 and h2 are parallel to the yz-plane and h3 is parallel to the xy-plane.

As before, we label the cells as nw, n, ne, sw, s, and se. Suppose there are i lines from L4
yfiL4

z

strictly to the left of h1, and j lines from L4
y fi L4

z strictly to the right of h2, and k lines from
L4

x fi L4
y strictly above h3.

Each of the lines in L4
y and L4

z are incident to exactly one of sw, s, se, except for the two
lines contained in h1 and in h2. If k < n/8, then at least n/8 of the lines in L4

x are incident
to each of the cells sw, s, se, implying

sw + s + se = 3
1n

8

2
+ 3n

4 ≠ 2 = 9n

8 ≠ 2.
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Hence, one of sw, s, se is incident to at least Á3n/8 ≠ 2/3Ë = 3n/8 lines, and we are done.
From here on, we therefore assume k > n/8.

Each line in L4
x is incident to either of sw or nw, except for the line contained in h3. If

i > n/4 then n/4 lines in L4
z are incident to both sw and nw, and so

sw + nw = 2
1n

4

2
+ n

4 ≠ 1 = 3n

4 ≠ 1.

It follows that sw or nw must be incident to at least 3n/8 lines, and we are done again. So
we can assume i < n/4. By symmetry, we also can assume j < n/4.

Each of the k lines of L4
x above h3 are incident to both nw and ne. The cells nw and

ne are also incident to i and j lines from L4
z, respectively, and so nw + ne = 2k + i + j.

Combining this with nw + ne 6 3n/4 ≠ 2, we get that i + j 6 3n/4 ≠ 2k ≠ 2. On the other
hand, s is incident to n/2 ≠ k ≠ 1 lines of L4

x fi L4
y and n/2 ≠ (i + j) ≠ 2 lines of L4

z. Hence,

s =
1n

2 ≠ k ≠ 1
2

+
1n

2 ≠ (i + j) ≠ 2
2

= n ≠ k ≠ (i + j) ≠ 3

> n ≠ k ≠
3

6n

8 ≠ 2k ≠ 2
4

≠ 3

= n

4 + k ≠ 1

> 3n

8 ≠ 1.

This finishes the proof of the lower bound for Case (b). Note that also for this case we can
achieve an upper bound of 3n/8 ≠ 1 lines, by setting k = n/8 and i = j = n/4 ≠ 1.

Case (c): h1 and h2 are parallel to the xy-plane and h3 is parallel to the yz-plane.

Label the cells as nw, w, sw, ne, e, and se. Let k be the number of lines in L4
y fi L4

z that are
strictly to the left of h3. By symmetry, we may assume that k > 3n/8. Now each of the cells
nw, w, sw are incident to n/4 of the lines from L4

z. All n/4 lines in L4
x and at least n/8 lines

in L4
y are incident to exactly one of these cells, except for two that might be contained in h1

and h2. Hence,

nw + w + sw > 3
3

1
4n

4
+ n

8 + n

4 ≠ 2 = 9n

8 ≠ 2,

implying one of these cells is incident to at least Á3n/8 ≠ 2/3Ë = 3n/8 lines.
This finishes the lower-bound proof for Case (c) and, hence, the proof of the lemma. J

4 Upper bounds

We now prove upper bounds on g‹(n) and gÎ(n). More precisely, we present algorithms that
produce, for any set L of n lines, a decomposition of the type under consideration, with each
cell intersected by at most a certain number of the lines.

Let L := Lx fi Ly fi Lz be a set of axis-parallel lines in R3, where Lx, Ly, Lz denote the
subsets parallel to the x-, y-, and z-axis, respectively. We say Lx is in general position if
no pair of distinct lines in Lx share y- or z-coordinates; we define general position for Ly

and Lz similarly. We say L is in general position if Lx, Ly, and Lz are in general position,
and no two lines in L have a common point. We first argue that, for the purposes of upper
bounds, it su�ces to restrict our attention to sets in general position.

CGT
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I Lemma 13. Let L = Lx fi Ly fi Lz be a set of axis-parallel lines not in general position.

Then there exists a set LÕ = LÕ
x fi LÕ

y fi LÕ
z of axis-parallel lines in general position such that

gÎ(L) 6 gÎ(LÕ) and g‹(L) 6 g‹(LÕ).

Proof. Suppose that L = Lx fi Ly fi Lz is a set of lines not in general position. Assume,
without loss of generality, that the intersection points of lines in Lx (resp. Ly, and Lz) with
the plane x = 0 (resp. y = 0, and z = 0) have integer coordinates. We obtain LÕ by a generic
perturbation of the lines of L. More specifically, for each line ¸ œ L, we let ¸Õ be a generic
line parallel to ¸ inside a tube of radius 1/3 centered at ¸.

Consider a triple H Õ = (hÕ
1, hÕ

2, hÕ
3) of axis-parallel splitting planes (which need not be

mutually orthogonal). Suppose, without loss of generality, that hÕ
1 is orthogonal to the x-axis

and is given by x = –Õ for some –Õ œ R. Let h1 be the plane given by x = – where – is –Õ

rounded to the nearest integer with ties broken arbitrarily; and define h2, h3 similarly. Let
H = (h1, h2, h3) be the resulting triple of axis-parallel splitting planes.

Let CÕ œ A(H Õ), and let C œ A(H) be the corresponding cell. (Since two or more planes
in H Õ may be “rounded” to the same plane in H, the cell C can be the empty set. In this
case the following claim trivially holds.) We claim that the number of incidences of C with
lines of L is at most the number of incidences of CÕ with lines of LÕ. This claim follows
from the observation that, for each plane hi œ H, the number of lines of L lying strictly on
one side of hi is upper bounded by the number of lines of LÕ lying on the same side of the
corresponding hÕ

i œ H. To see this, note that if ¸Õ œ LÕ lies on hi, on hÕ
i, or between them,

then the corresponding line ¸ œ L lies on hi. J

4.1 Upper bounds on gÎ

We start with a simple observation.

I Observation 14. If max (|Lx|, |Ly|, |Lz|) = m then there is a set H of three axis-parallel

planes (two of which are parallel) such that any cell in A(H) meets at most (5n≠m)/12 lines

from L.

Proof. Assume without loss of generality that Lz is the smallest of the three sets. By
assumption, |Lz| 6 Â(n ≠ m)/2Ê. Partition Lx fi Ly into three equal-size subsets using two
planes h1, h2 parallel to the xy-plane, and partition Lz into two equal-size subsets using a
plane h3 parallel to the yz- or xz-pane. As in earlier arguments, we can always choose the
planes so that they contain a line of L. Set H := {h1, h2, h3}. Then the number of lines each
of the six cells in A(H) meets is at most

9
|Lx| + |Ly| ≠ 2

3

:
+

9
|Lz| ≠ 1

2

:
6 |Lx| + |Ly|

3 + |Lz|
2

= n ≠ |Lz|
3 + |Lz|

2

6 n

3 + Â(n ≠ m)/2)Ê
6

6 5n ≠ m

12 . J

The following theorem gives an upper bound on gÎ.

I Theorem 15. For any set L of n axis-parallel lines in R3
, there is a set H of three

axis-parallel planes (two of which are parallel) such that any cell in A(H) meets at most

7n/18 lines from L. Hence, gÎ(n) 6 Â7n/18Ê.
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Proof. Define Lx, Ly, and Lz as above. The largest of the groups has size at least Án/3Ë.
The theorem now follows from Observation 14 with m = Án/3Ë. J

4.2 Upper bounds on g‹

I Theorem 16. For any set L of n axis-parallel lines, there is a set H of three planes, one

orthogonal to each axis direction, such that any cell in A(H) meets at most Á5n/12Ë of the

lines; in other words, g‹(n) 6 Á5n/12Ë.

Proof. Assume without loss of generality that |Lz| > max(|Lx|, |Ly|), and consider the
projection of L onto the xy-plane. In the projection the lines from Lz become points, the
lines from the other sets are still lines. We denote the splitting planes orthogonal to the
x-, y-, and z-axis by h1, h2, and h3, respectively. We will first explain how we pick h1 and
h2—in the projection these correspond to splitting lines, which we denote by ¸1 and ¸2,
respectively—and then finish the construction by placing h3. We distinguish two cases.

Case 1: |Lz| > n/2.

This is the easy case: we pick ¸1 and ¸2 such that each open quadrant contains at most
Â|Lz|/3Ê points, and we pick h3 such that at most half the lines from Lx fi Ly are above h1
and at most half are below. Thus each cell in the resulting decomposition intersects at most

7
|Lz|

3

8
+

7
|Lx| + |Ly|

2

8
6 |Lx| + |Ly| + |Lz|

3 + |Lx| + |Ly|
6 6 5n

12 ,

lines, since |Lx| + |Ly| + |Lz| = n and |Lx| + |Ly| 6 n/2.

Case 2: |Lz| < n/2.

For two given splitting lines ¸1 and ¸2 in the xy-plane, we use ne to denote the number of
lines in L whose projection (which can be a line or a point) intersects the open north-east
quadrant defined by ¸1, ¸2, and we define se, sw, and nw similarly. Let n = nw + ne, and
define e, s, w similarly. Note that lines from Lx that lie in the northern part are counted twice
in n, once for their intersection with the north-west quadrant and once for their intersection
with the north-east quadrant. Finally, we use nex to denote the number of lines from Lx

intersecting the north-east quadrant, and we use ney, sz, and so on, in a similar way. Finally,
let t = ne + nw + se + sw denote the total number of incidences.

Let W (L) := 2(|Lx| + |Ly|) + |Lz| = n + |Lx| + |Ly|, and note that

3n + 1
2 6 W (L) 6 Â5n/3Ê

which follows from the facts that max(|Lx|, |Ly|) 6 |Lz| and |Lz| < n/2. We will require ¸1
and ¸2 together each contain the projection of a line; note that such a line may subtract 1
from the total count t (if its projection is a point), or 2 (if its projection is a line). Hence,

3n ≠ 7
2 6 W (L) ≠ 4 6 t 6 W (L) ≠ 2 6 Â5n/3Ê ≠ 2.

We now explain how to pick ¸2 (and, hence, h2), the splitting line orthogonal to the y-axis.
Place ¸2 at the highest y-coordinate where we still have s 6 Â5n/3Ê

2 . This is always possible
since Â5n/3Ê

2 < 3n≠7
2 for all n > 2. Now, we have

Â5n/3Ê
2 ≠ 1 6 s 6 Â5n/3Ê

2

CGT
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where the lower bound comes from the fact that moving ¸2 could change the number of
incidences by two (if ¸2 contains a line of Ly). Furthermore, since s + n = t 6 Â5n/3Ê ≠ 2,
we have

n 6 Â5n/3Ê
2 ≠ 1.

We also assume, without loss of generality, that sz > nz. Indeed, if this is not the case, we
can interchange the roles of s and n; simply enlarge n (by shifting ¸2 down) until the above
inequalities hold in interchanged form.

Now pick ¸1 (and, hence, h1) such that Âs/2Ê 6 sw 6 Ás/2Ë and Âs/2Ê 6 se 6 Ás/2Ë.
From now on we assume, without loss of generality, that ne > nw. Note that this implies
that nw 6 Ân/2Ê. Furthermore, we have

sw, se 6 Ás/2Ë 6 ÁÂ5n/3Ê/4Ë 6 Á5n/12Ë

and

nw 6 Ân/2Ê 6 Á(Â5n/3Ê ≠ 2)/4Ë < Â5n/12Ê.

Thus the corresponding “columns” in R3 already have the desired number of incidences.
We choose the remaining splitting plane h3 such that, within the north-eastern column,

at most half the lines from Lx fi Ly are above h3 and at most half are below (and one line is
contained in h3). We conclude that the number of lines intersected by each of the two cells
resulting from splitting this column by h3 is at most

7
nex + ney

2

8
+ nez 6 ne + nez

2 . (2)

To bound the expression in (2), we rely on the following.

Claim. With ¸1, ¸2 as above, we have ne 6 n ≠ sw.

Proof. Since nx = 2 nex we have

nz = n ≠ nx ≠ ny = n ≠ 2 nex ≠ ny.

Trivially, we also have

ne = nex + ney + nez 6 nex + ney + nz.

Combining these we get

ne 6 nex + ney + (n ≠ 2 nex ≠ ny) = n ≠ ny + ney ≠ nex. (3)

Moreover, since sex = ex ≠ nex and ney = sey we have

se = sex + sey + sez = (ex ≠ nex) + ney + sez,

which can be rewritten as

ney ≠ nex = se ≠ ex ≠ sez. (4)

Note also that

n = t ≠ s = 2 ny + 2 ex + tz ≠ s. (5)
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Using that ex 6 |Lx| and ny 6 |Ly| and tz 6 |Lz|, we obtain

ne 6 n ≠ ny + (ney ≠ nex) by (3)
= n ≠ ny + (se ≠ ex ≠ sez) by (4)
= (2 ny + 2 ex + tz ≠ s) ≠ ny + (se ≠ ex ≠ sez) by (5)
6 |Lx| + |Ly| + |Lz| ≠ s + se ≠ sez

= n ≠ sw ≠ sez

6 n ≠ sw,

which finishes the proof of the claim. C

Now recall that

sw > Âs/2Ê >
7

Â5n/3Ê ≠ 2
4

8
. (6)

Moreover, since we assumed nz 6 sz and we are in Case 2 (so |Lz| 6 (n ≠ 1)/2) we have

nez 6 nz 6 Â|Lz|/2Ê 6 Â(n ≠ 1)/4Ê. (7)

Finally, from (2), the number of incidences in each cell of the north-eastern column is at
most

ne + nez

2 6 n ≠ sw + nez

2 by the Claim above

6
n ≠

%
(Â5n/3Ê ≠ 2)/4

&
+ nez

2 by (6)

6
n ≠

%
(Â5n/3Ê ≠ 2)/4

&
+ Â(n ≠ 1)/4Ê

2 by (7)

6 Á5n/12Ë.

For the last inequality, define f(n) :=
n≠

Í
(Â5n/3Ê≠2)/4

Î
+Â(n≠1)/4Ê

2 ≠ Á5n/12Ë. We need to
show that f(n) 6 0 for all n œ N. Observe that f(n) = f(n + 12) for any n. Hence, it
su�ces to show that f(n) 6 0 for all integer n from 0 to 11, which can be verified by a
straightforward computation. J

5 Conclusions

Two obvious open problems remain:

Close the gaps between the upper and the lower bounds for axis-parallel lines.
Answer the same question for lines with arbitrary orientations in R3: given a set L of
n lines, minimize the number of lines meeting each open cell of the arrangement A(H)
formed by a set H of three planes. A simple calculation shows that if L is in general
position, then at least one of the open cells of A(H) meets at least 4(n ≠ 3)/8 ¥ n/2 lines
from L, since any plane can contain or be parallel to at most one of the lines of L. Can
we prove larger lower bounds, and what upper bounds can we obtain?

CGT
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