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—— Abstract

Let L be a set of n axis-parallel lines in R®. We are are interested in partitions of R® by a set H of
three planes such that each open cell in the arrangement A(H) is intersected by as few lines from L
as possible. We study such partitions in three settings, depending on the type of splitting planes
that we allow. We obtain the following results.

There are sets L of n axis-parallel lines such that, for any set H of three splitting planes, there
is an open cell in A(H) that intersects at least [n/3] — 1~ in lines.

If we require the splitting planes to be axis-parallel, then there are sets L of n axis-parallel lines
such that, for any set H of three splitting planes, there is an open cell in A(H) that intersects
at least 3|n/4] — 1~ (% + i) n lines.

Furthermore, for any set L of n axis-parallel lines, there exists a set H of three axis-parallel
1
3
For any set L of n axis-parallel lines, there exists a set H of three axis-parallel and mutually

splitting planes such that each open cell in A(H) intersects at most %n = ( + %) n lines.
orthogonal splitting planes, such that each open cell in A(H) intersects at most [n] =~
(% + %) n lines.
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1 Introduction

Partitioning problems of point sets in R? have been studied extensively. For instance, the
famous Ham-Sandwich Theorem states that, given d finite point sets in R%, there exists a
hyperplane that bisects each of the sets, in the sense of having at most half of the set in
each of its two open halfspaces. Another well-known result is that for any set of n points in
the plane, there are two lines that partition the plane into four open cells that each contain
at most [n/4] points (a 4-partition). The latter result has several stronger forms, where
one can specify the orientation of one of the lines, or that the two lines be orthogonal to
each other [6] (but not both). The 4-partition question naturally generalizes to the problem
of 2%-partitioning of a point set in R? by d hyperplanes. Such a triple of planes indeed
always exists in R? [9,16], in fact, with the orientation of one of the planes prespecified.
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Alternatively, one of the partitioning planes can be required to be perpendicular to the other
two [4]. It is known that 2%-partition does not always exist in d > 4 [1]. The case d = 4
remains stubbornly open. Results on other partitioning problems for finite point sets can be
found in the surveys by Kaneko and Kano [10] and by Kano and Urrutia [11].

Similar theorems have been obtained for equipartitioning continuous measures. For
example, the Ham-Sandwich theorem [15] is traditionally stated in continuous setting: Given
d finite absolutely continuous measures in R?, there exists a hyperplane that bisects each
measure, in the sense of having half of the mass of each measure on each side; see [2] for
some early history of the theorem. The 2%-partition problem mentioned above was originally
asked by Griinbaum in 1960 [7] for measures, as well; for a survey, see [3]. For an overview
of equipartitioning problems, see [15,17].

In this paper we are interested in the following question: given a set L of n lines, partition
the space into open cells such that each cell intersects only few lines. This problem has been
studied extensively, in the context of cuttings and polynomial partitions, but these works
typically focus on asymptotic results that use a (possibly constant but) large number of
partitioning planes, or the zero set of a (constant but) large degree polynomial. For example,
a classical result on cuttings in the plane [5] is that, for any choice of parameter v, 1 < r < n,
there exists a tiling of the plane by O(r?) trapezoids so that each open trapezoid meets n/r
of the lines of L. In a similar spirit, a result of Guth [8] states that, for any degree D > 1,
there exists a non-zero bivariate polynomial f of degree at most D, such that the removal of
its zero set Z(f) from the plane produces O(D?) open connected sets, each meeting at most
n/D of the lines of L. Analogous results are known for higher dimensions.

Another variant that has been studied is to partition R? recursively using planes, until
each cell meets O(1) of the input objects. This results in a so-called binary space partition
(BSP) of the objects. It has been shown that any set of lines (or disjoint triangles) admits a
BSP of size O(n?) [14], and any set of axis-parallel lines (or disjoint axis-parallel rectangles)
admits a BSP of size O(n*/?) [13]. Both bounds are tight in the worst-case.

In contrast to the above settings, we are interested in what can be achieved with a very
small number of planes, similar to the results on Ham-Sandwich cuts and equipartitions. In
particular, we are interested in partitions for a set L of n lines in R that use only three
planes. More precisely, we want to partition R® using a set H of three planes such that each
open cell in the arrangement A(H) meets only few of the lines from L. Note that if the
planes of H are in general position, each such cell is an “octant.”

We are not aware of any work directly addressing this question in three or higher
dimensions, for unrestricted sets of lines. The two-dimensional case was settled in [12, Lemma
7]: for any set of n lines in the plane in general position, there exists a pair of lines with the
property that each open quadrant formed by them is met by at most |n/4] of the lines. In
this initial study of the problem, we consider the case of axis-parallel lines in R3.

Problem statement and results. Let L be a set of n axis-parallel lines in R3. We would
like to partition the space by three planes hy, ha, hs, so that each of the open cells of A(H)
meets as few lines of L as possible, where H = {hy, ha, ha}. We consider three variants,
of increasing generality. The variants depend on the orientation of the planes used in the
partitioning. To this end we define a plane to be axis-parallel if it is parallel to two of the
main coordinate axes, we define it to be semi-tilted if it is parallel to exactly one of the main
coordinate axis, and we define it to be tilted if not parallel to any coordinate axis. We will
consider the following three types of partitionings.
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Function | Lower bound Reference Upper bound Reference

g1 (n) 3 L%J ~ (% + i) n Theorem 10 {%n] ~ (% + %) n  Theorem 16
g (n) 3 L%J —1l= (% + i) n  Theorem 10 L%nJ ~ (% + %8) n  Theorem 15
g(n) L%nJ —1~3in Corollary 2 L%nJ ~ (% + %8) n  Theorem 15

Table 1 Summary of general results

The set H must consist of three mutually orthogonal axis-parallel planes; let g, be the
corresponding function.
The planes in H must all be axis-parallel (g ), but need not be pairwise orthogonal.
The planes in H can be chosen arbitrarily (g), that is, H can also use semi-tilted or tilted
planes.
For a set L of lines, we let g(L) be the minimum integer k, such that there is a set H
of three planes in R? with every open cell of A(H) meeting at most k lines of L. Define
g (L) and g, (L) analogously. Now define g(n) := max|;|—, g(L), with the maximum taken
over all sets of axis-parallel lines of size n. Define g|(n) and g, (n) similarly. Clearly,
g(n) < gj(n) < gr(n). Table 1 summarizes our results.

The rest of the paper is organized as follows. In Section 2 we introduce our simplest
“three bundle” construction, which implies lower bounds on all three functions and illustrates
some of the methods used in the rest of the paper. We prove stronger lower bounds on g (n)
and g (n) in Section 3. In Section 4 we present constructive upper bounds on g and g,
and consequently also on g.

We will use the following convention throughout the paper: we say that a line £ crosses a
plane h in R3, if £ meets h, but is not contained in it.

2 Three bundles

As a warm-up exercise we analyze a simple and natural configuration of lines. The analysis
will give a first lower bound on the functions g, (n), g|(n), and g(n). In fact, the bound we
obtain for g(n) is the best bound we have for this case, where the splitting planes can be
completely arbitrary. The configuration consists of three bundles of n/3 lines, where n is
a multiple of 3; see Fig. 1 for an illustration. We call this configuration the three-bundle
configuration, and denote it by L3(n), or just L for short. It is defined as L3 == L3 U Lg UL3,
where

L3 = {(0,i,i) + X\(1,0,0) : 1 < i < n/3},

3 — . . . .
Ly :={(4,0,2n/3 + 1 — i) + A\(0,1,0) : 1 <7 < n/3}, and
L = {(i,4,0) + X(0,0,1) : n/3 < i < 2n/3}.

To be able to handle the case of tilted splitting planes, we need to slightly shift the lines
in L3, so that no plane (titled or otherwise) contains three or more lines. For example,
L3 is actually defined as L3 := {(0,i + &;,i) + A(1,0,0) : 1 < i < n/3}, where the ¢;’s are
small, distinct real numbers that guarantee that no plane contains more than two of the lines
from L3. The sets L} and L? are shifted similarly. Thus no plane can contain more than
two lines from the same bundle. Note that a plane cannot contain two lines from different
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Figure 1 (i) Rough illustration of the set L* for the case n = 9. (ii) A more accurate illustration
of L3, which also shows three splitting planes that partition space into eight cells, each containing at
most two lines. The dark grey lines are contained in a splitting plane. The front, left, and top views
show that the construction is symmetric with respect to the axes, up to reversing the directions of

some axes.

bundles either. With a slight abuse of notation we will still denote the shifted sets by L3,
L3, and L?. For simplicity, we will refrain from showing the perturbations in our figures.

It is straightforward to verify that g, (L3) < n/3—1. Indeed, if we take hy := {z = n/3+1},
and he = {y = n/3}, and hg = {z = n/3 + 1}, then six of the eight cells in the resulting
arrangement A(H) are intersected! by n/3 — 1 lines (all coming from a single bundle) and the
remaining two cells are not intersected at all; see Fig. 1(ii). The main result of this section is
that this is tight: even if one is allowed to use tilted splitting planes, it is not possible to
ensure that all cells in the partitioning are intersected by strictly fewer than n/3 — 1 lines.
This gives the following theorem.

» Theorem 1. Let L3(n) be the three-bundle configuration on n lines, where n is divisible by
3, as defined above. Then

91 (L3(n)) = g(L3(n)) = g(L*(n)) =n/3 — 1 forn > 9,

g1 (L3(n)) = gH(L3(n)) =1 and g(L3(n)) =0 for n = 6,

91(L3(n)) = g(L*(n)) = g(L*(n)) = 0 for n = 3.

Theorem 1 immediately gives the following corollary. The cases where n = 3 and n = 6 are
easy to verify. In the remainder of this section we assume n > 9.

» Corollary 2. Forn > 9, g(n) > |n/3] — 1.
Theorem 1 also implies that g, (n) > [n/3] — 1 and g;(n) > [n/3] — 1, of course, but in
later sections we will provide stronger lower bounds on g, (n) and gj(n); see Theorem 10.

Since we already argued that g, (L*) < n/3 — 1, and we have g, (L?) > g;(L?) > g(L?),
it suffices to prove that g(L?) > n/3 — 1. It will be convenient, however, to first prove this
for g1 (L?), then extend the proof to g(L?), and finally extend it to g(L?).

» Lemma 3. g, (L3*(n)) > n/3 — 1.

Proof. Suppose for a contradiction that there is a set H = {hy, ha, h3} of mutually orthogonal
axis-parallel planes such that each cell in the arrangement A(H) meets fewer than n/3—1 lines
from L3. Let hy, ho, and hsz be the planes orthogonal to the z-, y-, and z-axis, respectively.

1 Recall that we consider the cells to be open, so lines fully contained in a splitting plane do not contribute
to the counts.
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Figure 2 Illustration for the proof of Lemmas 3 and 4, showing the projection onto the xy-plane,
where above/below crossings are drawn as seen from z = +oo.

Consider the projection of L? and the planes h; and hy onto the zy-plane; refer to
Fig. 2(i). The lines from L3 and L} appear as lines in the projection. The planes h; and
ho appear as lines as well, and they partition the zy-plane into four quadrants, which we
label as NE, SE, SW, and NW in the natural way. The lines from L? appear as points in the
projection. Below we will, with a slight abuse of terminology, sometimes speak of “points
from L3

Note that the NE-quadrant contains at most n/3 — 2 points from L?;
would be two octants in A(H) meeting at least n/3 — 1 lines. Hence, at least one of the
following two cases occurs

otherwise there

(a) at least one point from L2 lies to the left of hy, or

(b) at least one point from L? lies below hs.

Due to symmetry we can assume without loss of generality that case (a) holds, which implies
that all lines from Lg lie to the left of h;. Now observe that the sw-quadrant meets at most
2n/3 — 3 lines from L3 U L3; otherwise one of the two octants in A(H) that correspond to
the sw-quadrant—these octants are generated when the z-vertical column corresponding to
the sw-quadrant is split by the splitting plane hs—will meet at least n/3 — 1 lines. (Note
that the plane hg can contain at most one line from L3 U L;) Since we already observed
that all lines from Lz lie to the left of hy, this implies that at least two lines from L3 lie

above ho. Hence, we can assume that the projection looks like the one depicted in Fig. 2(i).

Let i be the number of lines from L3 lying (strictly) to the left of hy, and let j be the
number of lines from L3 lying (strictly) above hg; by the above arguments we have i > 1 and
j = 2. Consider the remaining cutting plane hs, which is parallel to the zy-plane, and let k
be the number of lines from L lying (strictly) below hs. We have k > 1 because otherwise
the Nw-TOP octant of A(H )—this is the cell that is above h3 and whose projection onto the
xy-plane is the NW quadrant—will meet 4 lines of L2 and at least n/3 — 1 lines of L3, which
is a contradiction. Since k > 1 we also know that all j lines from L3 must lie below h3, since
these lines lie below the lines from Lz. We can thus derive the following.

(i) The NE-BOTTOM octant meets n/3 —i — 1 lines of L? and j lines of L3. Since we assumed
all cells intersect fewer than n/3 — 1 lines, we thus have n/3 —i —1+j < n/3 — 1, which
implies 7 > j.

(ii) The NW-TOP octant meets n/3 — k — 1 lines of L3 and i lines of L. For this octant to
intersect fewer than n/3 — 1 lines, we must thus have k > i.

9:5
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(iii) The SW-BOTTOM octant meets k lines of Lg and n/3 — j — 1 lines of L3. For this octant
to intersect fewer than n/3 — 1 lines, we must thus have k < j.

But (i) and (ii) together imply k > j, which contradicts (iii), thus finishing the proof of the

lemma. <

We now consider the case where the planes, though still axis-parallel, need not be mutually
orthogonal.

» Lemma 4. g|(L3(n)) > n/3—1.

Proof. Suppose for a contradiction that there is a set H = {hq, ho, h3} of three axis-parallel
planes such that each cell of A(H) meets fewer than n/3 — 1 lines from L3.

The case of three mutually orthogonal planes has been handled in Lemma 3. If hq, ho,
and hg are all parallel to each other, then clearly there is a cell that is intersected by at least
n/3 lines from L3, since any line from the bundle orthogonal to the planes intersects all four
cells. Thus the remaining case is when exactly two of the planes are parallel.

Assume without loss of generality that h; and hy are parallel to the yz-plane, with ho
being to the right of hy, and that hg is parallel to the zz-plane. Now consider the situation in
the projection onto the xy-plane, as shown in Fig. 2(ii). There are six cells in the projection,
which we label as NE, N-MID, NW, SE, S-MID, and SW. If each cell in the projection meets
fewer than n/3 — 1 lines, then at least one line of Lg (in the projection) should be above hs,
otherwise the cells below hs intersect more than n/3 — 1 lines.

Let j > 1 be the number of lines from Li above h3. Then the number of lines from
L3—these are points in the figure—that are to the right of hs is at most n/3— j —2, otherwise
the NE cell meets at least /3 — 1 lines. Similarly, the number of lines from L} to the left of
hi must be at most j — 1, otherwise the sw cell meets at least (n/3—j—1)+j=n/3-1
lines. But then we have

(# lines from L3 in N-MID) = j,

(# lines from L} in N-MID) >n/3 — (j —1) —1=n/3 — j,

(# lines from L2 in N-MID) > n/3 — (n/3 —j—2)—1=j+1.

This brings the total number of lines in the N-MID cell to at least n/34j+1, thus contradicting
our assumption. <

We now turn our attention to the general case, where we are also allowed to use splitting
planes that are tilted or semi-tilted. (Recall that a semi-tilted plane is parallel to exactly
one coordinate axis, and a tilted plane is not parallel to any coordinate axis.)

» Lemma 5. Forn > 9, we have g(L3(n)) > n/3 — 1.

Proof. Consider three splitting planes hi, ho and hs, and suppose for a contradiction that
each cell in A(H) intersects fewer than n/3 — 1 lines. Define

a = number of axis-parallel planes in H,

s = number of semi-tilted planes in H, and

t :== number of tilted planes in H.
Note that a + s +t = 3. The case where all three planes are axis-parallel has already been
handled in the previous two lemmas, so we can assume that a < 3. Any axis-parallel plane is
crossed by n/3 lines from L3, any semi-tilted plane is crossed by 2n/3 lines from L3, and
any tilted plane is crossed by n lines from L3. (Recall that, when we say that a line crosses
a plane, or a plane crosses a line, we mean that there is a proper intersection; that is, the
line is not contained in the plane.) Thus

(# fragments generated by the planes in H) = — - (34 a + 2s + 3t).

w3



B. Aronov, A. Basit, M. de Berg, and J.Gudmundsson

Some fragments may be contained in one of the splitting planes and, hence, not appear inside
any cell. Note that an axis-parallel splitting plane may contain at most one line from L3, a
semi-tilted splitting plane may contain at most two lines from L3, and a tilted splitting plane
cannot contain any line from L. Furthermore, a line contained in splitting plane consists of
at most three fragments, arising due to the line crossing the other two splitting planes. Thus
we have at least (n/3) - (3 4+ a + 2s + 3t) — 3(a + 2s) fragments appearing inside the cells
in A(H). Rewriting this, we conclude that

(# cell-line intersections) > (n/3) - (6 + s + 2t) — 3(a + 2s). (1)

Since A(H) has at most eight cells, there must be a cell with ("/3)‘(6+S+82t)_3(a+25)
intersections. We now make a case distinction, depending on the values of a, s and t. Recall
that n is a multiple of 3 and that we are now dealing with the case n > 9. The first five
cases we consider can be handled easily using Eq. (1), as follows.

(n/3)-10—6

Ift > 2,ort=1and s =2, there is a cell with at least [ 3

Ift = s = 1 (hence, a = 1) there is a cell with at least [("/3)%—‘ =[2(n/3-1)] = n/3-1

fragments.
Ift =1 and s = 0 (hence, a = 2) there is a cell with at least [("/3)%—‘ =351
fragments.

If s = 3 (hence, t = a = 0) there is a cell with at least {W—‘ = [2 -1+ 2539
fragments. For n > 9 this is at least n/3 — 1.

Ift = 0 and s = 2 (hence, a = 1) there is a cell with at least [("/3)%—‘ =[n/3-15/8] =
n/3 — 1 fragments.

Each of the cases above gives us the desired contradiction. The only remaining, and most
difficult, case is when t =0, s =1, and a = 2. In this case we need a more refined analysis,
given next.

In the rest of the proof we assume there are two axis-parallel splitting planes, say hq
and hs, and one semi-tilted splitting plane hs. If hy and ho are parallel to each other, the
number of cells in A(H) is six. If all three planes are parallel to the same axis, then A(H)
has seven cells. In either case, from Equation 1 it follows that there is a cell with

"(n/?)) (6454 2t) —3(a—|—2s)-‘ _ {(n/?)) ST—12

7 - } = [n/3—12/7] > n/3 - 1.

intersections giving the desired contradiction. Recall that the construction is symmetric with
respect to the axes—see Fig. 1(ii)—and so without loss of generality we may now assume
that hy is perpendicular to the z-axis, ho is perpendicular to the y-axis, and hg is parallel to
the y-axis. We now proceed to derive a contradiction with our assumption that each cell in
A(H) meets less than n/3 — 1 lines. To this end we first prove several properties that the
splitting planes hy, ho, hg must satisfy, under our assumption. In the following, we consider
the projection onto the zy-plane, and statements like “to the left of” or “above” refer to the
situation in this projection. See Figure 3(i), and note that the lines of L2 show up as points
in the figure.

> Claim 6. At least one line of L2 must lie above hy. Hence, all lines of L? lie
above hs.

—‘ > n/3 — 1 fragments.

9:7

CGT



Partitioning Axis-Parallel Lines in 3D

(i) y

ha
4 lines
Y z

SW SE SW SE
h1 hl
T T

Figure 3 Illustration for the proof of Lemma 5. Note that in part (ii) of the figure, the semi-tilted
plane hs can also show up as a line with negative slope. However, due to the small perturbation of
the lines in L3, hs can contain at most two lines from L3 (here showing up as points).

Proof. For a contradiction, assume that no line of L3 lies strictly above hy. There is
at most one line contained in hg, so at least n/3 —1 lines of Li lie below hy. Each such
line crosses h1 and hg—recall that the latter splitting plane is semi-tilted and parallel
to the y-axis—and therefore crosses three of the four octants below hy. Moreover, each
line of Lg, except at most one line contained in h; and at most two lines contained
in hg, intersects one of these octants. Hence, the total count for the four octants
below hy is at least 3-(n/3 — 1) + (n/3 — 3), and consequently, at least one of the four
octants must intersect at least

{3-(71/3—1): (n/3—3)w _ {4”/3"_% —n/3-1

lines, contradicting our assumption. (Here we use our assumption that n is a multiple
of 3 and that n > 9.) <

Claim 6 can be used to restrict the possible positions of h;.

> Claim 7. h; must have at least one line of L3 on either side of it. Hence, all lines
of L} lie to the left of hy.

Proof. By Claim 6, all lines from L?2 lie above hy. If hy does not have lines from L3
on either side of it, then one side has at least n/3 — 1 of these lines. Hence, one of
the four quadrants defined by hq, hs in the zy-projection—in particular, one of the
quadrants above ho—contains at least n/3 — 1 lines from L2. Recall that the splitting
plane hj3 is a semi-tilted plane parallel to the y-axis. Hence, hg is crossed by all lines
from L2, and so there would be an octant in A(H) that intersects at least n/3 — 1
lines, thus contradicting our assumptions. |

Next we restrict the possible positions for the semi-tilted splitting plane hs.

> Claim 8. hz must have at least one line of Lf/ on either side of it.



B. Aronov, A. Basit, M. de Berg, and J.Gudmundsson

Proof. Observe that hs can contain at most two lines from Lg. Suppose for a
contradiction that there are at least n/3 — 2 lines to one side of h3, and consider the
four octants of A(H) lying to this side. Every line from L3 and L2 intersects at least
one of these octants, except at most one line from L3 contained in hy and at most one
line from L? contained in hy. Moreover, each of the at least n,/3 — 2 lines from L3 not
contained in hg, intersects ho and, hence, two of the octants. It follows that there is
an octant that intersects

[(Qn/32)12(n/32)] _ rmﬂiﬂ —n/3-1

lines, thus contradicting our assumptions. |

Let i be the number of lines of L3 below ho.

> Claim 9. i> 2n— 3.

Proof. Consider the two quadrants above he and the four octants of A(H) corre-
sponding to those quadrants. Each line of L3 above hy intersects hy and h3, and thus
intersects three of these octants, for a total of 3(n/3 — ¢ — 1) octant-line intersections.
Each line of Lg, except for at most two lines contained in hg, intersects one octant,
thus contributing n/3 — 2 octant-line intersections. Finally, each line of L, except
for at most one line contained in hy, intersects two octants (since they intersect hs),
contributing 2(n/3 — 1) octant-line intersections. Hence, there is an octant intersecting

F;(n/?;—i—1)+(ni3—2)+2(n/3—1)“ _ {n/3_2+ 2n/3—43i—|—1—‘

lines. In order not to contradict the assumption that no octant intersects more than
n/3 — 2 lines, we must thus have 2n/3 —3i + 1 < 0. Hence, i > 2n/9 — 1/3, as
claimed. |

To finish the proof of Lemma 5, we switch views and consider the projection onto the xz-plane.

Here h3 shows up as a slanted line, as shown in Fig. 3(ii). The are two cases, depending on
the slope of h3 in the zz-projection.

Case 1: The projection of hs onto the xz-plane has positive slope.

Consider the sw-quadrant in Fig. 3(i), that is, the quadrant below hs and to the left of h;.

This quadrant corresponds to a vertical column in R3, which is cut into two octants by the
semi-tilted plane hz. Clearly, each line in Lg, except for at most two lines contained in hg,
intersects one of these two octants. Furthermore, each of the i lines of L2 below hy intersects
both octants, because h3 has positive slope in the zz-projection. Indeed, by Claim 8 the
plane hs must have at least one line from L331 on either side of it—see Fig. 3 where these
lines show up as points—and together with the fact that hs has positive slope this implies
that all intersections of L3 with hs lie to the left of h;. Thus, all i lines of L3 below hs
intersects both octants, contributing 2i octant-line intersections. Hence, the total number of
octant-line intersections in the two octants is at least (n/3 — 2) 4 2i. Since i > 2n — § by
Claim 9 there is an octant that intersects at least

"(n/3—2)+2i-‘ . [n/3+(4n/9—2/3)—2-‘ _ [n/3_2+ (n/9—2/3)-‘

2 2 2
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L3
—_——
hs ]l
NW | NE
%
@ /z,')
G
o
e The spliting plane hg is parallel to the xz-plane
and, hence, not shown.
3
Lq o All lines from L2 lie above ho by Claim 7.
z SVY T ‘SEI e By definition, i lines from L3 are below ha, and so
‘ ‘ | at least n/3 — i — 1 lines from L2 are above hs
Iy Hl,_,
z 7 lines

Figure 4 Illustration for Case 2 of the proof of Lemma 5. Recall that the lines in the construction
were perturbed slightly. For the lines in Lg, which show up as points in the figure, these perturbations
are shown larger than they actually are. Due to the perturbations, hs can contain at most two lines
from Lg.

lines. Since n > 9 there is an octant intersecting more than n/3 — 2 lines, thus giving the
desired contradiction for Case 1.

Case 2: The projection of hs onto the xz-plane has negative slope.

This case is illustrated in Fig. 4. Let j be the number of lines of L? to the right of h; and let
k be the number of lines of Lg above hg; see Fig. 4. We label the “quadrants” induced by
h1, h3 the zz-projection as NE, SE, SW, NW. Each of the these quadrants defines a column
in R3, which is partitioned into two octants by hs. We label the octants in the NE-column
that are above and below ho by NE-TOP and NE-BOTTOM, respectively. The octants in the
other columns are labeled similarly.

Consider the NW-TOP octant. It meets at least n/3 — j — 1 lines of L2, because all lines of
L3 lie above hy by Claim 6. Moreover, it meets k lines of Lz. (It may also meet lines from
L3 but we need not take them into account.) Since any octant is assumed to intersect
less than n/3 — 1 lines, we must have (n/3 —j + 1)+ k <n/3 — 1. Hence, j > k + 2.

Now consider the SW-BOTTOM octant. It meets i lines from L2 and at least n/3 — k — 2
lines of L3, and so we must have i + (n/3 — k —2) <n/3 — 1. Hence, k > i — 1.

Finally, consider the NE-TOP octant. It meets j lines from L2, because all lines of
L3 lie above hy by Claim 6. Note that all lines from L3 intersect the NE quadrant,
since hz has negative slope in the xzz-projection. At least n/3 — ¢ — 1 of these lines lie
above ho and, hence, intersect the NE-TOP octant. We can conclude that we must have
j+n/3—i—1)<n/3—1,and soi > j.

Putting these three inequalities together we obtain
j>k+2>i+1>5+1.

This is the desired contradiction and finishes the proof. <



B. Aronov, A. Basit, M. de Berg, and J.Gudmundsson

3 Better lower bounds for axis-parallel splitting planes

In this section we give improved lower bounds on g, (n) and g;(n). To this end we present
a family of configurations L*(n) of n lines, with n divisible by 8, and prove that any
decomposition of the type under consideration must have a cell intersected by at least
3n/8 —1 lines. Interestingly, for mutually orthogonal splitting planes the —1 term disappears.

» Theorem 10. For every n divisible by 8, there exists a configuration L* = L*(n) such that
g1 (L*(n)) = 3n/8 and g (L*(n)) = 3n/8—1. Hence, for any n > 8, we have g, (n) > 3|n/4]
and g(n) = 3|n/4] — 1.

The rest of this section is devoted to the proof of Theorem 10, where L? is defined as the
union of the following sets:

LY = {(0,i,i+n/4) + X(1,0,0) : i € [n/4,n/2)},
Ly = {(i+n/4,0,i) + A(0,1,0) : i € [0,n/4)}, and
LY = {(i,i,0) + X(0,0,1) : i € [0,n/4) U [n/2,3n/4)}.

Note that |L3| = [L}| = n/4 and |L%| = n/2, and that, up to symmetries, any projection to
an axis-parallel plane looks like one of projections in Fig. 5. We will prove the theorem in

() . (i)
{ T 1
Li LT
L1
L Lt Lt

Projection onto xy-plane, view from z = +00 Projection onto xz-plane, view from y = +00

[ )
~
I

Figure 5 Line set L* from the proof of Theorem 10

two steps, by first considering the case of mutually orthogonal splitting planes and then the
case of arbitrary axis-parallel splitting planes. In the remainder of this section, we assume
that n is divisible by 8 and that n > 8.

» Lemma 11. For any n divisible by 8, we have g, (L*(n)) = 3n/8.

Proof. Consider three splitting planes hi, ho, and hg, orthogonal to the z-, y-, and z-axis,
respectively. Let ¢1: x =14 and ¢5: y = j be the projections of h; and hs onto the xy-plane;
see Fig. 6. Suppose that hs has k of the lines from Lj U Lj lying strictly above it. (Note that
for the purposes of lower-bound analysis we can assume that hy, ho, and hz each contain
a line of L*, as shifting them until they do can only decrease the number of lines of L*
meeting each open octant. We will make this assumption hereafter in this proof, that is, we
suppose that i, j, and k are integers in the relevant range.) We use NE to denote the open
north-east quadrant defined by /1, /> and define SE, SW, and NW similarly. For a quadrant

9:11
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Q € {NW,NE, sW, SE}, we define Q-TOP and Q-BOTTOM to be the open octants induced by
hs. With a slight abuse of notation, we also use NE (and, similarly, the other variables) to
denote the total number of objects (lines and points) incident to the region NE.

We first observe that by setting i = j = 3n/8 and k = n/4 we obtain g, (L*) < 3n/8. It
remains to argue that g, (L*) > 3n/8. Up to translation, rotation, and reflection, it suffices
to consider the following cases.

Case 1: 0 <i<n/4 and 0 < j < n/2; see Fig. 6(i).

Observe that NE is incident to, at least, all n/4 lines in Lg, and n/4 lines of L. Tt
follows that the number of incidences in NE-TOP and NE-BOTTOM together is at least
n/4+2(n/4) — 1 =3n/4 — 1, implying that at least one of NE-TOP, NE-BOTTOM is incident

to
3n 1 3n
- 2 -
8 2 8

lines, where the inequality uses the fact that since n is divisible by 8.
Case 2: 0 <i<n/4 andn/2 < j < 3n/4; see Fig. 6(ii).

We first additionally assume that 0 < k < n/4. Thus, h3 meets some line of L. NE-BOTTOM
meets n/4 lines of Ly and 3n/4 — j — 1 lines of L}, so n — j — 1 lines in total. If j < 5n/8
then we have n—j—1 > 3n/8—1 and, hence, n—j —1 > 3n/8. So we may assume j > 5n/8.
Observe that SE is incident to all n/2 lines in Lj U Ly, and at least j —n/2 > n/8 lines of
L%. Since hj3 contains a line of L2, the number of incidences in SE-TOP and SE-BOTTOM is
at least 2(n/8) +n/2 — 1 = 3n/4 — 1, implying that at least one of SE-TOP and SE-BOTTOM

is incident to at least
3n 1 - 3n
8 2| 8

Now suppose n/4 < k < n/2, i.e., hg meets some line of Li. SW-TOP meets i lines of L%
and all n/4 lines of L%, i.e., SW-TOP = i + n/4. When i > n/8 (recall that n is a multiple
of 8), we get SW-TOP > 3n/8, so we can assume i < n/8. Observe that SE is incident to all
n/2 lines in L} U L, and

lines.

n n n
——t—1>-=—=—=1=—--1,
1! 173 8
() W 4 NE (ii) ~w b NE ° (i) "W b NE
. £y N

L] L[] ' L]
t . L‘z1 . L‘z1 . L;l

L[] [ ]
i oz '
L} . * L1 SE ~L SE

\ SE 9 -
Y SwW Y SW .
LJ

-
Y L4 — w
1 Yy [ Yy . Y

2

Figure 6 Different cases of partitioning with three orthogonal planes, projected to the xy-plane
showing view from z = +oo.
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that is, at least n/8 lines of L%. Thus the number of incidences in SE-TOP and SE-BOTTOM

together is at least
n n 3n
2 (f) L )
8 + 2 4
implying that at least one of SE-TOP and SE-BOTTOM meets at least 3n/8 lines.

Case 3: nf4 <i<n/2 and n/4 < j <n/2; see Fig. 6(iii).

Suppose also that 0 < k < n/4 (i.e., hs contains a line of L2). Then, all but one of the
lines of L; (so n/4 — 1) are incident to either NE-BOTTOM or sW-BOTTOM. Additionally,
NE-BOTTOM and SW-BOTTOM are each incident to n/2 lines of L?. That is, number of
incidences in NE-BOTTOM and SW-BOTTOM is at least n/4 — 1+ n/2 = 3n/4 — 1. It follows
that at least one of these cells is incident to 3n/8 lines.

Now suppose n/4 < k < n/2. i.e., hy contains a line of L;. Then, all but one of the
lines of L% (so n/4 — 1) are incident to either NE-TOP or SW-TOP. Additionally, NE-TOP and
SW-TOP are each incident to n/2 lines of L?. Then the number of incidences in NE-TOP and
SW-TOP is at least n/4 — 1+ n/2 = 3n/4 — 1. Tt follows that at least one of these cells is
incident to 3n/8 lines.

We conclude that all three cases give the desired number of incidences, which finishes the
proof of the lemma. <

To finish the proof of Theorem 10 it remains to deal with axis-parallel splitting planes that
need not be mutually orthogonal.

» Lemma 12. For any n divisible by 8, we have g;|(L*(n)) = 3n/8 — 1.

Proof. We first observe that the case of all three planes being orthogonal to the same axis is
not interesting: Such planes would cut each line of one of the sets L%, Li, L% into four pieces,
producing a total of at least

non n ™
4 —4+—-——=14+=-—-1=—-2
4+4 +2 4

line-cell incidences, so at least one of the four cells would meet at least

1
L _,\_T _1_3n
4\ 4

lines. Hence, we will focus on partitions where two of the planes are parallel. Up to a
permutation and reorientation of the coordinates, it is sufficient to consider the three cases
illustrated in Figure 7. As before, it is safe to assume that each of the three planes contains
a line of L*.

We need prove that in each of the three cases, there is a cell that meets at least 3n/8 — 1
lines, and that this bound can also be achieved as an upper bound in at least one of the
cases.

Case (a): hy and he are parallel to the yz-plane and hg is parallel to the xz-plane.

We label the cells as NW, N, NE, SW, S, and SE. Suppose there are i lines from L‘; uL?
strictly to the left of hy, and j lines from L‘; U L? strictly to the right of ho, and k lines from
L1 U L? strictly above hz. Due to the symmetry in the configuration, we may assume that
the number of lines from L2 below hs is at least the number of lines from L% above hz. We
can assume that hg contains a line of L2 (and not a line of L), since otherwise

n n n 5n
SW + S + SE 3(4)+4+4 1 )
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(2) hi, . ho NW h

NW N NE o

NE

.
AN
RS

s SE

. SW - SE —_— —_— —_— —_—
T4 L L 5 L
x v T T

Figure 7 Different cases in the proof of Lemmal2. For Case (a) the projection onto the zy-plane
is shown, viewed from z = +o00. For Cases (b) and (c) the projection onto the zz-plane is shown,

viewed from y = +o0.

implying that at least one of these cells contains

[571 2—‘ 3
——-|=2=-n-1
12 3 8
lines. Hence, from now on we assume 0 < k < 3n/8.

Note that sw is incident to n/2 —k —1 > n/8 lines of L} and i lines of Ly U L1. If
i > n/4, then this implies sW > n/8 + ¢ > 3n/8 and so we are done. Similarly, if j < n/4,
then s is incident to at least n/8 lines of L, and n/4 lines of L, for a total of 3n.8 incidences,
and we are done as well. Hence, from here on we assume that ¢ < n/4 (so h; contains a line
of L}), and that j > n/4 (so hy contains a line of Lj). Observe that sw,NE are incident to
i+ J lines of L;‘; U L2 and n/4 — 1 lines of L2, that is,

SW—}—NE:i—f—j—l—g—l.

Moreover, § is incident to at least n/8 lines of L3, to n/2—j—1 lines of L, and to n/4—i—1
lines of L? giving

s=ﬁ+(g—j—1)+(g—i—1):%”-(Hj)—z.

By combining these two inequalities we see that

In
SW+NE+S:§73,

implying one of the three cells is incident to at least 3n/8 — 1 lines.
This finishes the lower-bound proof for Case (a). Note that we can also achieve an upper
bound of 3n/8 — 1, by setting k =3n/8 —1,i=n/4—1, and j = n/4.

Case (b): hy and hy are parallel to the yz-plane and hs is parallel to the xy-plane.

As before, we label the cells as NW, N, NE, sW, s, and SE. Suppose there are i lines from LjUL?
strictly to the left of hy, and j lines from Lj U L? strictly to the right of hy, and k lines from
L3 U Ly strictly above hs.

Each of the lines in Lj and L? are incident to exactly one of W, 8, SE, except for the two
lines contained in hy and in hy. If k < n/8, then at least n/8 of the lines in L% are incident
to each of the cells sw, S, SE, implying

%)+3—n—2:9—”—2.

SW+ S SEZS(
+S+ 1 3
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Hence, one of sw, s, SE is incident to at least [3n/8 — 2/3] = 3n/8 lines, and we are done.

From here on, we therefore assume k > n/8.
Each line in L% is incident to either of SW or NW, except for the line contained in hz. If
i > n/4 then n/4 lines in L% are incident to both SW and Nw, and so

n n 3n
SW—|—NW—2<Z)+Z—1—I—1.

It follows that SW or NW must be incident to at least 3n/8 lines, and we are done again. So
we can assume ¢ < n/4. By symmetry, we also can assume j < n/4.

Each of the k lines of L% above hs are incident to both NW and NE. The cells NW and
NE are also incident to i and j lines from L%,
Combining this with NW + NE < 3n/4 — 2, we get that i + j < 3n/4 — 2k — 2. On the other
hand, s is incident to n/2 — k — 1 lines of L} U Ly and n/2 — (i + j) — 2 lines of L?. Hence,

s=(5-k-1)+(5-6+9-2)
=n—k—(i+j)—3

2nk(68n?k2>3

S
8
This finishes the proof of the lower bound for Case (b). Note that also for this case we can

achieve an upper bound of 3n/8 — 1 lines, by setting k =n/8 and i = j =n/4 — 1.
Case (c): h1 and hy are parallel to the xy-plane and hg is parallel to the yz-plane.

Label the cells as NW, W, SW, NE, E, and SE. Let k£ be the number of lines in Lj U L? that are
strictly to the left of h3. By symmetry, we may assume that k& > 3n/8. Now each of the cells
NW, W, SW are incident to n/4 of the lines from L%. All n/4 lines in L2 and at least n/8 lines
in L; are incident to exactly one of these cells, except for two that might be contained in hy

and ho. Hence,
NW + W + SW > 3 E +ﬁ+ﬁ—2*9—n72
“o\d") sty T o
implying one of these cells is incident to at least [3n/8 — 2/3] = 3n/8 lines.

This finishes the lower-bound proof for Case (c) and, hence, the proof of the lemma. <

4 Upper bounds

We now prove upper bounds on g, (n) and g (n). More precisely, we present algorithms that
produce, for any set L of n lines, a decomposition of the type under consideration, with each
cell intersected by at most a certain number of the lines.

Let L:= L, UL, UL, be a set of axis-parallel lines in R*, where L,, L,, L. denote the
subsets parallel to the z-, y-, and z-axis, respectively. We say L, is in general position if
no pair of distinct lines in L, share y- or z-coordinates; we define general position for L,
and L. similarly. We say L is in general position if L, L,, and L, are in general position,
and no two lines in L have a common point. We first argue that, for the purposes of upper
bounds, it suffices to restrict our attention to sets in general position.

respectively, and so NW + NE = 2k + ¢ + j.
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» Lemma 13. Let L =L, UL, UL, be a set of axis-parallel lines not in general position.
Then there exists a set L' = L, U Ly, U L, of azis-parallel lines in general position such that

gi(L) < gy(L') and g1 (L) <gu(L').

Proof. Suppose that L = L, UL, U L, is a set of lines not in general position. Assume,
without loss of generality, that the intersection points of lines in L, (resp. L,, and L,) with
the plane z = 0 (resp. y = 0, and z = 0) have integer coordinates. We obtain L’ by a generic
perturbation of the lines of L. More specifically, for each line £ € L, we let ¢/ be a generic
line parallel to £ inside a tube of radius 1/3 centered at ¢.

Consider a triple H' = (h], hf, h%) of axis-parallel splitting planes (which need not be
mutually orthogonal). Suppose, without loss of generality, that A/ is orthogonal to the x-axis
and is given by x = o’ for some o’ € R. Let h; be the plane given by = o where « is o
rounded to the nearest integer with ties broken arbitrarily; and define ho, hg similarly. Let
H = (hq, ho, hs) be the resulting triple of axis-parallel splitting planes.

Let C' € A(H'), and let C € A(H) be the corresponding cell. (Since two or more planes
in H' may be “rounded” to the same plane in H, the cell C can be the empty set. In this
case the following claim trivially holds.) We claim that the number of incidences of C with
lines of L is at most the number of incidences of C’ with lines of L’. This claim follows
from the observation that, for each plane h; € H, the number of lines of L lying strictly on
one side of h; is upper bounded by the number of lines of L’ lying on the same side of the
corresponding h} € H. To see this, note that if ¢/ € L’ lies on h;, on h}, or between them,
then the corresponding line ¢ € L lies on h;. <

4.1 Upper bounds on g,
We start with a simple observation.

» Observation 14. If max (|Ly|,|Ly|,|L:|) = m then there is a set H of three axis-parallel
planes (two of which are parallel) such that any cell in A(H) meets at most (5n—m) /12 lines
from L.

Proof. Assume without loss of generality that L, is the smallest of the three sets. By
assumption, |L.| < [(n —m)/2]. Partition L, U L, into three equal-size subsets using two
planes hq, ho parallel to the xy-plane, and partition L, into two equal-size subsets using a
plane hg parallel to the yz- or xz-pane. As in earlier arguments, we can always choose the
planes so that they contain a line of L. Set H := {hq, ha, h3}. Then the number of lines each
of the six cells in A(H) meets is at most

[l =2] | [l 2] (Ll 1L L

3 2 = 3 2
n— |Lz| |Lz|
=73 T
o, Lln=m))]
3 6
Sn—m <
=12

The following theorem gives an upper bound on gj.

» Theorem 15. For any set L of n axis-parallel lines in R3, there is a set H of three
azis-parallel planes (two of which are parallel) such that any cell in A(H) meets at most
7n/18 lines from L. Hence, g)(n) < [7n/18].
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Proof. Define L, L,, and L, as above. The largest of the groups has size at least [n/3].
The theorem now follows from Observation 14 with m = [n/3]. <

4.2 Upper bounds on g,

» Theorem 16. For any set L of n axis-parallel lines, there is a set H of three planes, one
orthogonal to each axis direction, such that any cell in A(H) meets at most [5n/12] of the
lines; in other words, g, (n) < [5n/12].

Proof. Assume without loss of generality that |L.| > max(|Ls|,|Ly|), and consider the
projection of L onto the xy-plane. In the projection the lines from L, become points, the
lines from the other sets are still lines. We denote the splitting planes orthogonal to the
x-, y-, and z-axis by hi, ho, and hg, respectively. We will first explain how we pick h; and
ho—in the projection these correspond to splitting lines, which we denote by ¢; and /5,
respectively—and then finish the construction by placing hs. We distinguish two cases.

Case 1: |L,| = n/2.

This is the easy case: we pick ¢; and /5 such that each open quadrant contains at most
[|L-|/3] points, and we pick hs such that at most half the lines from L, U L, are above hq
and at most half are below. Thus each cell in the resulting decomposition intersects at most

1Ll | || Bl 1Tyl | o [Lal 4 1Byl £ [Le| | [Laf 4 1Ly <5
3 2 3 6 12

lines, since |Ly| + |Ly| + |L.| = n and |L,| + |L,| < n/2.
Case 2: |L,| < n/2.

For two given splitting lines ¢; and /5 in the xy-plane, we use NE to denote the number of
lines in L whose projection (which can be a line or a point) intersects the open north-east
quadrant defined by /1, {5, and we define SE, SW, and NW similarly. Let N = NW + NE, and
define E, S, W similarly. Note that lines from L, that lie in the northern part are counted twice
in N, once for their intersection with the north-west quadrant and once for their intersection
with the north-east quadrant. Finally, we use NE, to denote the number of lines from L,
intersecting the north-east quadrant, and we use NE,, S, and so on, in a similar way. Finally,
let T = NE 4+ NW + SE 4+ SW denote the total number of incidences.
Let W(L) := 2(|Lg| + |Ly|) + |Lz] = n+ |Ly| + |Ly|, and note that

3n+1 <
2

W(L) < [5n/3]

which follows from the facts that max(|L;|,|L,|) < |L.| and |L,| < n/2. We will require ¢;
and /5 together each contain the projection of a line; note that such a line may subtract 1
from the total count T (if its projection is a point), or 2 (if its projection is a line). Hence,

3n—17
2

<SW(L)—4<T<W(L)—2< |5n/3] — 2.

We now explain how to pick ¢5 (and, hence, hs), the splitting line orthogonal to the y-axis.

Place /5 at the highest y-coordinate where we still have s < % This is always possible
since LQ/P’J < % for all n > 2. Now, we have
[5n/3] [5n/3]

7—1<S<7
2 2
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where the lower bound comes from the fact that moving ¢s could change the number of
incidences by two (if ¢, contains a line of L,). Furthermore, since s +N =T < |5n/3] — 2,
we have

/3] |

NS

We also assume, without loss of generality, that s, > N,. Indeed, if this is not the case, we
can interchange the roles of s and N; simply enlarge N (by shifting ¢ down) until the above
inequalities hold in interchanged form.

Now pick ¢; (and, hence, hy) such that |s/2] < sw < [s/2] and [s/2] < sE < [s/2].
From now on we assume, without loss of generality, that NE > Nw. Note that this implies
that Nw < |N/2]. Furthermore, we have

Sw,SE < [s/2] < [|5n/3]/4] < [5n/12]
and
Nw < [N/2] < [([5n/3] —2)/4] < |5n/12].

Thus the corresponding “columns” in R3 already have the desired number of incidences.

We choose the remaining splitting plane hs such that, within the north-eastern column,
at most half the lines from L, U L, are above h3 and at most half are below (and one line is
contained in hg). We conclude that the number of lines intersected by each of the two cells
resulting from splitting this column by hg is at most

NE NE NE NE
{TJ 4 NE, < % 2)

To bound the expression in (2), we rely on the following.
Claim. With {1, /5 as above, we have NE < n — SW.
Proof. Since N, = 2NE, we have
N, =N-—N; — Ny =N —2NE; — N.
Trivially, we also have
NE = NE; + NEy + NE, < NE; + NE, + N.
Combining these we get
NE < NE; + NEy; + (N — 2NE; — Ny) = N — Ny + NE;, — NE. (3)
Moreover, since SE, = E; — NE, and NE, = SE, we have
SE = SE, + SE, + SE, = (E; — NE;) + NE, + SE,,
which can be rewritten as
NE, — NE; = SE — E; — SE,. (4)
Note also that

N=T—-S=2N,+2E; +T, —S. (5)
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Using that B, < |L;| and N, < |L,| and T, < |L.|, we obtain

NE < N — Ny, + (NE, — NE) by (3)
=N—Ny + (SE — E; — SE;) by (4)
= (2Ny+2E; + T, —S) — Ny + (SE — E; — SE;) by (5)

< |Lz|+ |Ly| + |L2| — S + SE — SE,
=1n — SW — SE,

<n—SwW,
which finishes the proof of the claim. <

Now recall that

SW > [s/2] = {

Moreover, since we assumed N, < S, and we are in Case 2 (so |L.| < (n —1)/2) we have
NB. <N < [IL1/2) < [(n — 1)/4]. 7)

Finally, from (2), the number of incidences in each cell of the north-eastern column is at
most

NE + NE n — SW + NE
TNEs + NE. by the Claim above

2 2
< LU5n/3) - 2)/4] + NE. by (6)
= Ln/3) - 2>2/4J +L(n - 1)/4] by (7)
< [5n/12].

= lsn/31-2)/4 | + L1y
For the last inequality, define f(n) := 5 — [5n/12]. We need to

show that f(n) < 0 for all n € N. Observe that f(n) = f(n + 12) for any n. Hence, it
suffices to show that f(n) < 0 for all integer n from 0 to 11, which can be verified by a
straightforward computation. <

5 Conclusions
Two obvious open problems remain:

Close the gaps between the upper and the lower bounds for axis-parallel lines.

Answer the same question for lines with arbitrary orientations in R3: given a set L of
n lines, minimize the number of lines meeting each open cell of the arrangement A(H)
formed by a set H of three planes. A simple calculation shows that if L is in general
position, then at least one of the open cells of A(H) meets at least 4(n — 3)/8 ~ n/2 lines
from L, since any plane can contain or be parallel to at most one of the lines of L. Can
we prove larger lower bounds, and what upper bounds can we obtain?

CGT
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