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Abstract: We propose a greedy algorithm for actuator selection considering multiplicative noise
in the dynamics and actuator architecture of a discrete-time, linear system network model. We
show that the resultant architecture achieves mean-square stability with lower control costs and
for smaller actuator sets than the deterministic model, even in the case of modeling uncertainties.
Networks with multiplicative noise may fail to be mean-square stabilizable by any small actuator
set, leading to a failure of a cost-based greedy algorithm. To account for this, we propose a multi-
metric greedy algorithm that allows actuator sets to be evaluated effectively even when none of
them stabilize the system. We illustrate our results on networks with multiplicative noise in the
open-loop dynamics and the actuator inputs, and we analyze control costs for random graphs
of different network sizes and generation parameters.
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1. INTRODUCTION

Complex dynamical systems are critical foundations of
modern technology and infrastructure with applications
to power grids, transportation networks, biological system
models, water delivery systems and many others. These
networks have practical constraints on the number of ac-
tuators, and an important emerging problem is to design
the network control architecture to optimize certain met-
rics of controllability and feedback control performance.
To effectively solve network control architecture design
problems, we need knowledge about the system dynam-
ics and uncertainties, and also a suitable algorithm for
actuator selection. We propose a multi-metric variation
of the greedy algorithm for actuator selection for linear
discrete-time network dynamics with multiplicative noise.
We evaluate our algorithm through numerical experiments
of noisy systems using control sets and feedback from mod-
els with and without multiplicative noise over variations
of systems parameters such as network size and actuator
set size.

Network control architecture and control design decisions
are affected by the accuracy of the model. However, the
accuracy of mathematical models for real-world dynam-
ics is affected by unmodelled dynamics and disturbances.
Additive noise models do not capture errors that depend
on states and inputs. Multiplicative noise models capture
this valuable information during control design, leading to
robustness. Our study here focuses on this intersection of
actuator selection in dynamic networks with multiplica-
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tive noise. Networks models encode dynamic interactions
between states into edges of the adjacency matrix. Inputs
and additive noises are modelled as inputs to nodes while
multiplicative noises can be viewed as perturbations on
the edge weights of the adjacency matrix.

In network control architecture design problems, we aim to
find a subset of control inputs that optimizes a feedback
control metric. The feasibility, selection and comparison
of controllability of actuator sets depends on the choice
of metric used to define it, such as the system graph
structure, matrix rank, Gramian, cost functions and their
combinations (Ruths and Ruths [2014], Liu et al. [2011],
Pasqualetti et al. [2014], Ganapathy et al. [2021]). The
greedy algorithm offers tractable heuristic to many selec-
tion problems. In some cases, submodularity of the cost
metric allow for approximation guarantees, while others
can even be hard to approximate (Jadbabaie et al. [2019],
Zhang et al. [2017], Olshevsky [2014], Summers [2016],
Summers et al. [2016], Cortesi et al. [2014], Chamon et al.
[2021]). A difficulty with greedy actuator selection is when
all available actuator subsets may fail to stabilize the sys-
tem and give infinite cost. Improvements to the standard
greedy algorithm such as the reverse greedy algorithm
(Guo et al. [2021]) provide an alternative approach. How-
ever, for large networks with small actuator set size restric-
tions, this can take a significant number of computations.
Further, most of these works restrict themselves to greedy
selection of closed-loop stable actuators for deterministic
dynamic models or consider additive disturbances.

We aim to extend the greedy algorithm and evaluate
its performance on multiplicative noise models. Current
research on actuator selection for the multiplicative noise
problem proposes a gradient descent algorithm with high
guarantees (Belabbas and Kirkoryan [2018]) and others
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focus on the design of controllers for fixed architectures
(Gravell et al. [2021a,b]). We propose a multi-metric vari-
ation of the greedy algorithm for actuator selection using
both control cost and time to overcome the limitations
of the standard greedy algorithm. We then evaluate our
algorithm through numerical experiments with discrete-
time linear systems using models with and without multi-
plicative noise. We study variations of systems parameters
such as network size and actuator set size to empirically
demonstrate the benefits.

Our contributions in this paper are summarized as follows.

e We propose a greedy actuator selection algorithm
for actuator selection while considering multiplicative
noise in the dynamics and actuator set for mean-
square stability. To account for limitations of the
greedy selection when small actuator sets fail to sta-
bilize the system, we propose a multi-metric greedy
algorithm to take finite-time performance into con-
sideration when selecting actuators (Section 3).

e We demonstrate the benefit of modelling multiplica-
tive noise in open-loop system dynamics for dynam-
ical networks with multiplicative noise. We show
improved performance with lower control costs and
smaller actuator set requirements compared to the de-
terministic model, even in cases of model errors (Sec-
tion 4.1). We extend our analysis to mean-square sta-
bility statistics of different actuator set sizes, network
sizes and graph generation parameters for both the
Erdos-Renyi (ER) and Barabasi-Albert (BA) graph
generators, reflecting similar results of lower costs and
smaller actuator sets stabilizing a higher fraction of
the generated networks (Section 4.2).

e We extend our experiments on models of multiplica-
tive noise models of actuator inputs. Even with errors
from mismatch of true and modelled noise in the
actuators, we show the benefits from reduced control
costs for all actuator set sizes (Section 4.3).

The code to generate, test and visualize these models can
be found on Github at https://github.com/TSummersL
ab/multiplicative _noise_greedy_control_architect
ure.

1.1 Notations

The real-valued vectors in n-dimensional space is denoted
by R™. The canonical basis vectors of R™ are denoted by
e; Vi € [1,n] where e; is a vector of zeros with the i*" term
as 1. The set of real-valued positive definite, symmetric
matrices are denoted by S, where A € S}, & A > 0.
The set of positive semi-definite symmetric matrices are
denoted by S where A € S} < A = 0. The n-
dimensional identity matrix is denoted by I,,. The vector
of ones in R" is denoted by 1,,, the vector of zeros in R" is
denoted by 0,, and matrix of zeros in R™*™ is denoted by
0,,xm- The expectation of a random variable x is denoted
by E{z}. The Kronecker delta ¢; ; = 1if ¢ = j, and 0
otherwise.
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2. DEFINING THE ACTUATOR SELECTION
PROBLEM

2.1 Dynamic Network Model With Multiplicative Noise

The network dynamics are modelled by the discrete-time
linear dynamical system evolving on the graph G = (V, )
as

N, Ny
Tiy1 = <A + Z Vi,tAi> 2y + | Bs + an,tBj Ut (1)

i=1 j=1

where x; € R™ are the states of the system, u; € R™ are
the control inputs. The non-zero entries of the open-loop
network dynamics matrix, A € R™*", model the edges £
of the graph G. The state-dependent multiplicative noise,
ve= v ... VNwt]—r e RV, perturbs dynamics through
the corresponding matrices A; € R"*" Vi € [1,N,]. The
non-zero entries of the A; indicate how each noise term
affects certain edge weights in the graph. These noises are
zero-mean identically and independently distributed (i.i.d)
with covariance E{v; +,,v; 1, } = @04, 1, with o > 0.

We define the set of all possible actuators in terms of
the canonical basis vectors e; Vi € [1,n]. The set of
available actuators is given by B. The subset of active
actuators, S C B form the actuator matrix Bg € RXIS|
where the columns of the matrix are the correspond-
ing basis vectors and the number of actuators is given
by |S|. The input-dependent multiplicative noise, 7y =

[771,15 nNn,t}T € R™» perturb the actuator inputs at
the corresponding nodes through the corresponding ma-
trices B; € R"*I51¥j € [1,N,]. We assume that input-
dependent noises only affect the same node as the corre-
sponding active actuator, so that the matrices B; have
1 in the corresponding entry and zeros elsewhere. These
noises are zero-mean 1.i.d with covariance E{n; ,,mj, } =

5j5t1,tz with ﬁj > 0.

2.2 Optimal Control Problem

The control cost is defined over the T-step horizon as

T-1
Vr,s(z0) £ Eyy {Z (] Qi +u Ruy) + x;QxT}

t=0

(2)
where (Q € S is the cost on the states and R € Stﬂ is
the cost on control inputs. The control costs are a function
of the initial states xo and the control architecture S. The
optimal feedback control problem aims to find an optimal

state feedback controller that minimizes the control cost:

Vi s(wo) = 11{1(1_1)1 Vr,s5(70) (3)

For linear systems with multiplicative noise and quadratic
costs, the dynamic programming algorithm provides back-
wards recursion to compute the cost functions and state
feedback control policies (Smith and Bertsekas [1996]). In
this case, the optimal cost-to-go functions are quadratic
with Vji g(x0) = g Poo, the optimal state feedback poli-
cies are linear with u; = Kz, and the coefficients can be
computed from the recursion
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N,
Py =Q+ATPA+Y (Al PA;) + [ATPBsK,]

i=1
(4)
N, -1
Ky=—-|R+B{PBs+>» (8B/PB;)| BiPA
j=1

()

with the initialization Pr = ). Note that the cost matrices
P, for t = [0,T — 1] are functions of the set of actuators S.

For the infinite horizon problem, if the system is stabiliz-
able in the mean-square sense, we can calculate the fixed
gain K and the cost matrix P via the generalized Riccati
equation

N,
P=Q+A"PA+> (aA] PA) + [ATPBsK,], (6)

=1
N, -1
K=—|R+B§PBs+Y (8B PB;)| BIPA (7)
j=1

and the corresponding cost Vi, s(79) = x§ Px. Similar to
(5), cost matrix P is a function of the actuator set S.

2.8 Actuator Selection Problem

The actuator selection problem is aimed at optimizing
the control architecture to minimize the control cost. This
problem is defined as

S* = argmin J§ (8)

ScB,|s|1<s

where S| < S is a bound on the maximum number of
actuators and Jg , is related to Vg (zo) in various ways
depending on the initial state, e.g.,

fixed (9a)
average (9b)

T 2y = Vii.g(w0) = xg Powo,
ng = tT’(PoXo),

,]; = mﬁx JJJPQIO = )\maX(PO)7

worst-case. (9c¢)
|zo|=

With z fixed, we can define the cost as (9a). Given
the covariance X of the initial states, we can define the
average-cost metric as (9b). Alternatively, we can optimize
over the worst case of initial states distributed over the
unit circle as (9¢). For T — oo, we would substitute Py
with P from (7).

3. MULTI-METRIC GREEDY ACTUATOR
SELECTION

Actuator selection is a combinatorial optimization prob-
lem which makes it computationally difficult, further scal-
ing with network size. However, greedy selection algo-
rithms perform well empirically in many practical prob-
lems. We propose using a greedy algorithm to optimize
the control architecture for the problem posed in Section
2.

A complication for greedy actuator selection may occur
when there does not exist any actuator subset of a certain
(small) cardinality that stabilizes the system. This is
especially challenging in systems with multiplicative noise,
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since the noise may cause mean square instability even
when the system without noise is stabilizable. In such
cases, the standard greedy algorithm fails to provide
meaningful actuator selection in the first iterations when
there are few or no actuators already selected. To address
this, we propose a multi-metric algorithm.

In particular, for the primary metric, we use a finite T-step
horizon cost J*(S) from (9). If this cost is larger than a
user-specified upper bound Jyax, then for the secondary
metric, we define the largest time for which this cost bound
is satisfied

T7*(S) = max{T | J*(S) < Jmax}- (10)
In this way, one of these two metrics is always finite
for every possible actuator subset. This allows effective
actuators to be selected even when every actuator subset
in an iteration of the greedy algorithm fails to stabilize the
system in the mean square sense.

Algorithm 1 shows the multi-metric greedy algorithm that
we propose for actuator selection in dynamical networks
with multiplicative noise.

Algorithm 1 Greedy actuator selection

Require: System model: A, o, A;, 585, By, Set of available
actuators: B, Given actuator set: default S = 0,
actuator selection constraint: S, cost parameters: @, R,
time horizon: T, cost bound: Jy.x, primary metric:
J*(S) from (9), secondary metric: T*(S) from (10)

Ensure: B# ) and BNS =10

1: while |S| < S and |B| > 0 do
2: if 3b € B such that J*(S + b) < Jnax then
b* «— argmin,cg J*(S +b)

else
b* < argmax,cz T*(S + b)

end if

S+ S+b*, B+~ B-b*

8: end while

9: return S

4. NUMERICAL EXPERIMENTS

Our analysis focuses on two broad cases of multiplicative
noise modelling, first in the network dynamics and second
in the actuator inputs. Networks models, with each node
representing a state variable and each actuator inject-
ing a control input at a certain node, can be used to
study how network properties influence actuator selection.
We utilize realizations of Erdos-Renyi (ER) (Erdos and
Rényi [2011]) and the Barabasi-Albert (BA) (Barabdsi
and Albert [2011]) random graph generators to evaluate
performance statistics. They reflect networks with varying
degree distributions and allow us analyze the effect on
actuator selection and control costs. We ensure that all
graphs generated are undirected and connected (there is a
path between any pair of nodes) to eliminate trivial cases
involving isolated nodes. We assume @) = I, and R = I|g
for all the numerical tests in this paper.

4.1 Benefits of modelling multiplicative noise in dynamics

We first demonstrate the benefits of multiplicative noise
modelling in the system dynamics. We show that even
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in the case of imperfect information of the network
edges, multiplicative noise models give better controllabil-
ity properties for smaller actuator sets and at lower costs.

Model setup  We consider a network size of n = 10 nodes.
The true and model network parameters are described
in Fig. la. The adjacency matrices are realizations ER
networks with edge probability p = 0.3 with the edge
weights scaled such that |Apax(A)] = 0.8 for the open-
loop nominal dynamics of each network. The dynamics of
the true system (True A) has multiplicative noise (True
> a;A;). Both system models Sysy,,, and Sysyp;, have
imperfect, incorrect information on the dynamics of the
true system (Model A). Sysypr, assumes dynamic multi-
plicative noise (Model > a; A;). This model multiplicative
noise captures partial information of edges of the true
dynamic network (True A - Model A) assuming (a; = 0.1)
and does not completely capture the true multiplicative
noise (True Y a;A;) which is assumed to be unknown to
the model. The initial state is assumed to be g = 10x 1,,,
and we use the corresponding metric (9a). We use (10)
with an upper bound Jy,.x = 108 over a simulation time
horizon of 200 steps.

Numerical results ~We run greedy actuator selection on
Sysnom and Sysypr, separately. The cost function (2)
for Sysypr, can be adapted for Sysy,, by setting «; =
B; = 0V 4,j. The resultant actuator sets shown in the
corresponding models in Fig. 1b are different, indicating
that the multiplicative noise in the dynamics influences
optimal actuator selection. We then simulate the true
system with its modelled unknown disturbances using the
gains and feedback from each model. The cost trajectories
and difference in cost are plotted in Fig. 2 with the
corresponding steady-state values in Table 1.

Table 1. Control cost comparison: Simulation of the True

System using Sysyom VS Sysypr, for multiplicative noise

in dynamics. The last two columns shows the signed mag-

nitude and % of cost improvement of actuator selection
using Sysypr, With reference to Sysyom-

|S| SysNom SYysMPL SysNom = SysMPL [% Cost Improvement

1 - - -

2

3 -

4 5.70e+06

5 - 8.76e+04 - -

6 1.75e+05 3.42e+04 1.41e+05 80.4%

7 3.84e+04 2.25e+04 1.59e+-04 41.5%

8 1.91e404 1.15e+04 7.57e+03 39.7%

9 1.32e+04 5.85e+-03 7.32e4-03 55.6%

10 6.54e4-03 4.85e+03 1.69e+03 25.9%
Discussion ~ We see benefits of Sysypr, over SysSyom in

all three cases: (1) time to failure when both models fail,
(2) size of the smallest actuator set for feasible control
and (3) control cost for a fixed actuator set when both
are feasible. We see that controllers designed for Sysyen,
fails over a significantly shorter time horizon than those
from Sysyipy,- Disturbances in the current simulation are
identical for both test models and we see that there is a
significant difference in time to failure. This is an indicator
of better resilience of control using Sys,;p;, to uncertainties
in the system dynamics.
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True A Model A

True > a;4;

Model > o, A;

(a) True system has dynamics True A and multiplicative noise
True ZaiAi. Nominal model Sysy,, assumes dynamics Model
A. Multiplicative system Sysy;p;, assumes dynamics Model A and
multiplicative noise Model Z ;A

Nominal B MPL B

B4 B B4 B

B3\. ‘ ‘ ./310 Bﬁ\. ; ‘ ./BQ
Bo—(@®) @—s8 BLO—@ @—-ss

P00, g%
ot anSat

(b) Greedy actuator selection order for Sysyy, and Sysypr,. Actua-
tor B1 in orange refers to the first greedy actuator, B2 is the second
and so on.

Fig. 1. True System, modelled Sysy,, and Sysyp;, and
their corresponding greedy actuator set selection

Note that control fails for |S| < 3 for both cases. The stan-
dard greedy algorithm would fail to select any actuators
as cost metrics (9) fail, while the proposed algorithm uses
the time metric (10) as the next priority to continue the
selection algorithm.

For an actuator set constraint |S| = {4,5}, we see that
Sysypr, succeeds in controlling the system despite the
imperfect information in the modelling while Sysy,, fails.
This indicates better control guarantees for smaller actu-
ator set constraints for multiplicative noise modelling.

When 6 < |S] < 10, we see that both models have
feasible controllers despite the differences in the actuator
set until |S| = 10 = n corresponding to full actuation.
From the last column of Table 1, we see that there is a
significant reduction in costs when using Sysy;p;, compared
to SysSyom- This difference can be quite substantial for
smaller actuator sets and decreases as we approach full
actuation. For fully actuated models, the only difference
comes from the multiplicative noise model in the dynamics
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Fig. 2. The plots describe the benefits of multiplicative
noise modelling in system dynamics. The top graph
shows the cost over time for simulations of the true
system over range of |.S| of Sysyon and Sysypr, greedy
actuators in solid and dotted lines respectively. The
bottom graph shows the difference in cost over time
for range of |S| with final values in Table 1.

and its effect on the feedback gains from the Riccati
equation. This emphasizes value of the multiplicative noise
modelling in system dynamics even under full actuation.

4.2 Statistics of modelling multiplicative noise in dynamics

In this section, we expand on the benefits of modelling
multiplicative noise in system dynamics by observing the
statistics of actuator selection and control costs over
realizations of random graphs under variations of both
the network generation parameters and the network size.
Our numerical experiments reported here focus on ER
networks, though we also did experiments with BA graphs
and observed qualitatively similar results.

Model Setup ~ We use a similar modelling process as
in Section 4.1 for a true system, a nominal system
model (Sysyom) and a dynamics multiplicative noise model
(Sysyipr,)- The nominal dynamics of each model are scaled
for open-loop stability. The vector of initial states are
randomly generated from a zero-mean normal distribution
with covariance Xy = 10 * I,, where n is the number of
nodes in the test network.

We start with ER network with n = 10 nodes and edge-
probability of p = 0.4. We then expand our analysis to
two more cases of networks: (1) n = 20,30 nodes for fixed
p=0.4 and (2) p =0.2,0.6 with fixed n = 10 nodes.

Numerical results We generate 100 realizations of the
test system. The parameters recorded are the feasibility of
control for a particular actuator set size and the steady-
state cost of control if feasible. The results for the reference
graph of ER are plotted in Fig. 3. We then tested for
variation in network size as plotted in Fig. 4. Additional
test for variation in edge probability of ER graphs were
conducted. The extensive test results are available in the
code and discussed briefly here. For all plots, the bottom
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graph is the fraction of the realizations that had bounded
control costs over the different sizes of the actuator sets.
The top graph plots the mean and median of the control
cost across all realizations. The median value is significant
and finite only when at least half of the tested realizations
have bounded cost and the mean value only when all
realizations have bounded cost for a given actuator set
size.

[
1074 ©— mean(Sysxom) — @ = median(Sysxom)
©— mean(Sysup) ~ @ - median(Sysypr)
krd 5
8 10° 1
) L
s s e
10° 1 ®
o ®
®
* $ P Y G — P O— b S— g
T T T T T
_E . 1.01 P y . & A4 A4 ®
ge .
¢ .9
[ 4 od
»n N
5 g 0.51
E o ¢
Co
32 ¢
o= ®— SySnom —® Sysmpr
O 0.01
T T T T T
2 4 6 8 10

|5

Fig. 3. The plots show the statistics of control cost and the
fraction of n = 10 node ER graph networks (p = 0.4)
with increasing actuator set size for the Sysy,,, and
Sysypr,- Both plots show the better performance of
modelling multiplicative noise.

Discussion ~ We begin our analysis from Fig. 3. The
bottom plot shows us that Sysy;p;, has better fraction
of controllable systems than Sysy,, across all sizes of
actuator sets. There is a significant order of magnitude
difference between median control costs and a difference
in the size of the actuator sets before all the realizations
are controllable and the mean cost becomes a significant
metric of comparison.

When comparing the size of the networks for a constant
edge probability Fig. 4 and the edge probability parameter
for constant network size, we see a significant shift to the
right. As expected, the number of actuators required for
feasible control increases with increasing number of nodes
and Sysy;py, outperforms Sysy,,, in both small actuator
set requirements and lower control costs. There is a more
significant increase of actuator requirements for network
size than degree of connectivity. For networks of n = 30,
SySnom fails to control even half of the test realizations
under full actuation as the optimal feedback fails to keep
the multiplicative noise in check while Sysyp;, achieves
control despite imperfect information.

Numerical experiments with BA graphs also reflect similar
benefits of Sysy;pr, over Sysyom as with ER graphs. Further
variations on the modelling parameters and other random
graph generators can provide further valuable insight
into actuator selection for different network structures.
These experiments demonstrate the benefit of modelling
multiplicative noise in the dynamics for optimal control.
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Fig. 4. The plots show the statistics of control cost and the fraction of n = [10,20,30] node ER graph networks with
p = 0.4 under control using the Sysy,, and Sysyp;, showing the effect of change in network size and the size of

the actuator set.

4.8 Benefits of modelling multiplicative noise in actuators

Multiplicative noise models of uncertainties scaling with
inputs also have a significant effect on feedback control
performance and actuator selection.

Model setup  We consider a network size of n = 10 nodes.
The dynamics matrix is fixed and deterministic with
(|Amax(A)| = 0.8). We assume a set of |[B| = 10 actuators
are available with multiplicative disturbances 3; for j €
[1,n]. The nominal model (Sysy,,) assumes actuators
are deterministic while the multiplicative model (Sysypr,)
uses a multiplicative noise model for the actuators but
with incorrect matching of multiplicative input noise to
actuator. The initial state is sampled from the zero-mean
distribution of Xy = 10 % I,, and use the corresponding
metric (9a). We use (10) with Jyax = 10% as the upper
bound on (9¢) to bound the most unstable cost mode over
a simulation time horizon of 200 steps.

Numerical results  The procedure is identical to Section
4.1. We run greedy actuator selection on both models
separately, then use the actuator set and feedback from
each to run simulations of the true system. The results are
shown in Fig. 5 with the steady-state cost values in Table
2.

Discussion  Our analysis from Fig. 5 shows that all non-
empty actuator sets from both models provide feasible
control for the system. We extend our comparison to the
cost of control.

For simulations of the true system using Sysy;py,, We see
a monotonic decrease in control costs with increasing
actuator set size as in Table 2. The overall difference
between control costs for |[S| = 1 and |S| = 10 is
quite small with minimal improvements with saturation
of actuators.

10*
~
10°
_______________________ Model Type
—— Nom —-- MPL
0 25 50 75 100 125 150 175 200
3
< 10t
~
3
U) 5
|10
g
=z s
g 1 3 5 7 9
) 108 1 2 4 6 8 10
=~ Ul T T T T T " " :
0 25 50 75 100 125 150 175 200

t

Fig. 5. The plots describe the benefits of multiplicative
noise modelling in control inputs. The top graph
shows the cost over time for simulations of the true
system over range of |S| of Sysy,,, and Sysypr, greedy
actuators in solid and dotted lines respectively. The
bottom graph shows the difference in cost over time
for range of |S| with final values in Table 2.

Comparing these results to simulations using Sysyoms
we see a wide fluctuation in control costs in Table 2.
Simulations of the true system with the same models for
different realizations of the noise resulted in inconsistent
overall trends of control cost with increasing actuator
set sizes. For small actuator set sizes, adding a new
actuator increases the noise influencing the system. As the
system is saturated with actuators, the noise influence is
better controlled as illustrated by the reduced magnitude
of change in costs as they converge. However, even at
|S| = 10 = n, we see a significant difference in costs which
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Table 2. Cost comparison: Simulation of the True System

using Sysyom VS Sysypr, for multiplicative noise in actua-

tors. The last two columns shows the signed magnitude

and % of cost improvement of actuator selection using
Sysypr, With reference to Sysyopm-

|S| SysNom SysMPL SysNom — SysMPL |% Cost Improvement
1 7.45e+02 4.80e+02 2.66e+02 35.6%
2 1.26e+03 4.75e+02 7.85e+02 62.3%
3 2.17e4+03 4.73e+02 1.69e4-03 78.2%
4 4.85e+03 4.70e+02 4.38e+03 90.3%
5 7.87e+03 4.68e+02 7.41e+03 94.1%
6 7.82e+03 4.67e+4-02 7.35e+03 94.0%
7 1.15e+04 4.66e+02 1.10e+4-04 95.9%
8 1.23e+04 4.65e+02 1.19e+04 96.2%
9 1.61e+04 4.65e+02 1.56e+4-04 97.1%
10 1.63e+4-04 4.65e+02 1.58e4-04 97.1%

is a result of the difference in feedback. The benefits of
Sysyipr, Over Sysyo, for multiplicative noise models of the
actuators despite the model errors compared to the true
system are evident from the control costs.

5. CONCLUSION

Our illustrations and analysis have shown the benefits
of modelling multiplicative noise in both dynamics and
actuators for optimal control and the effectiveness of
the multi-metric greedy selection of actuators. Analysis
of different noise models can give us further insights to
how network topology may influence actuator selection
and control performance. Actuator selection for dynamic
games with multiplicative noise, the dual problem of sensor
selection, and the problem of simultaneous actuator and
sensor selection for the generalized system framework
would be interesting for future work.
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