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Abstract: Post-disaster reconnaissance is vital for assessing the impact of a natural disaster on
the built environment and informing improvements in design, construction, risk mitigation, and
our understanding of extreme events. The data obtained from reconnaissance can also be utilized
to improve disaster recovery planning by maximizing resource efficiency, minimizing waste, and
promoting resilience in future disasters. This paper aims to investigate existing reconnaissance
reports and datasets to identify the factors that impact the reusability of buildings post-disaster and
to recommend strategies that align with circular economy goals. The study adopted a three-step
research methodology to attain the proposed goals: (1) thematic analysis was used to evaluate types
of damages reported in the reconnaissance reports; (2) a supervised machine-learning algorithm
was employed to analyze reconnaissance datasets; and (3) a concept map was developed based on
interviews of 109 stakeholders in disaster-prone communities to recommend strategies to adopt
circular economy practices post-disaster. The study results highlight the recurring risks of damage to
different parts of the building and how circular economy resilience practices like deconstruction can
minimize waste and maximize resource efficiency during post-disaster recovery. The findings of the
study promote a more regenerative economy to build resilience to the challenges of future extreme
weather events.

Keywords: circular economy; post-disaster resilience; deconstruction; reconnaissance; disaster waste;
sustainability; hurricane; health and wellbeing

1. Introduction

According to United Nations Office for Disaster Risk Reduction, between 1980 and
2019, approximately 11,500 natural disasters were reported worldwide, and the frequency
of occurrence of natural disasters has increased significantly in the last 20 years [1]. This
exponential rise in the frequency of natural disasters reflects adverse consequences in
public health and infrastructure damages [2]. Natural disasters also produce an enormous
amount of construction and demolition waste and have had devastating consequences in
both developed and developing countries. Common challenges faced by both developed
and developing countries post-disaster include the management of disaster waste, lack of
resources for reconstruction, and lack of affordable housing [3,4]. Klotzbach et al. (2018)
highlighted that the increase in damages to buildings and infrastructure during hurricanes
from 1900 to 2017 is largely due to societal factors such as an increase in population and
settlement along the U.S. Gulf and East Coasts [5]. The study highlighted the fact that
coastal communities need to adopt sustainable and resilient practices to adapt to the
increasing frequency of hurricanes in these regions. However, disaster-prone communities
like coastal cities in the U.S. tend to make an effort towards the recovery of pre-event
conditions rather than integrating innovative, resilient, and sustainable practices during
the recovery phase to increase the adaptive capacity of communities [6].
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One of the critical post-disaster activities for faster recovery is an early reconnaissance
of hurricane damage. Different organizations have been established for post-disaster
reconnaissance of hurricane damage in the Caribbean and North America. Structural
Extreme Events Reconnaissance (StEER) is one such organization formed by a consortium
of universities to develop resilience in disaster-prone communities by producing new
knowledge on the built-environment performance through impactful reconnaissance of
damaged buildings after natural disasters [7]. Post-disaster reconnaissance includes a
comprehensive assessment of the damage to the built environment such as that to buildings,
infrastructure, and other physical structures in the affected areas following a natural
disaster, like a hurricane, to accelerate recovery efforts [8]. The assessment process involves
various techniques such as visual inspection, surveys, and other types of data collection,
which are typically conducted by trained professionals including forensic engineers and
emergency management officials. Klepac and Cleary (2022) highlighted that reconnaissance
data provide significant information about the performance of buildings and factors that
impact the performance during a hurricane [9]. The study indicated that factors such as roof
shape and roof covering significantly affect the performance of the building. Additionally,
with the introduction of the Florida Building Code (FBC) in 2002, there was a reduction
in extensive damage to homes in hurricane impact areas, with significantly less damage
to newer homes. Similarly, Hatzikyriakou et al. (2016) highlighted that building distance
from large water bodies/coasts, building age, and building elevation off the ground are the
major factors that impact the vulnerability of a building to damage from a hurricane and its
performance [10]. On the other hand, Yeum et al. (2019) developed a unique approach for
the rapid and autonomous classification of post-disaster reconnaissance building images
that will facilitate engineers and researchers to readily and easily find reports of special
interest [11]. Such an autonomous organization of data would significantly improve
understanding of the scale of impact and any trends in damages.

Kijewski-Correa et al. (2022) conducted a field study in the Bahamas when a category
5 storm, Hurricane Dorian, made landfall in September 2019 with a sustained wind speed
of 295 km/h [12]. The study highlighted that storm surge caused significant damage to the
interior finishes and partitioning of buildings, which did not have any structural damage
based on forensic assessment. Since many of these buildings did not have any insurance
coverage, there was a significant delay in the recovery process, and the reusability of the
buildings was impacted. A natural disaster such as a hurricane creates a multi-hazard
environment in which buildings are vulnerable to both wind and flood damage [13].
Many insurance agencies do not typically reimburse repair costs if the homeowner does
not have flood insurance, and it is unclear whether damages are caused by flood or
wind [14]. Consequently, hurricane-prone communities face severe financial strain, which
delays the recovery and reusability of buildings. Similarly, Lamba-Nieves and Santiago-
Bartolomei (2022) highlighted that low-income households in Puerto Rico are on the verge
of being displaced after the impact of Hurricane Maria due to their inability to access aid
from the Federal Emergency Management Agency (FEMA)’s Individual Assistance (IA)
program [15]. The study highlighted that many vulnerable communities across the U.S.
have faced similar challenges due to denial of support or aid caused by administrative and
procedural criteria that low-income communities are unable to meet. Experiencing a natural
disaster and undergoing reconstruction is a stressful and anxiety-provoking experience for
many low-income communities [16]. As such, there is a pressing need to adopt resilient
practices to improve the health and wellbeing of people during post-disaster recovery.

Recurring natural disasters like hurricanes can cause social disruption, as commu-
nities are disrupted, and individuals are displaced [17]. Such social disruption leads to
the breakdown of social networks and support systems. As such, individuals and com-
munities also become powerless to prevent and mitigate the impact of disasters [18,19].
One of the effective solutions to reduce the financial strain on homeowners is adopting the
building deconstruction method during post-disaster recovery. Deconstruction is a method
for faster recovery of building products, parts, materials, and components to minimize
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environmental impact and maximize economic value through reuse, recycling, repair, and
remanufacture [20]. Denhart (2009a) highlighted that the adoption of the building decon-
struction method instead of demolition in the aftermath of Hurricane Katrina empowered
the victims of the hurricane in terms of: (1) relief achieved through the philanthropic contri-
bution of minority contractors; (2) recovery of salvage materials for reuse or recycling and
donation of salvage materials; (3) regain of control of their property and retained wealth;
and (4) change in attitude towards green practices [21,22]. The study highlighted that
the deconstruction program initiated by Mercy Corps had a transformative impact on the
disaster-prone community in terms of cultural, emotional, and psychological implications.
Hence, similar efforts and investments need to be made in the future after natural disaster
impacts, such that they empower victims of natural disasters and improve the mental
health and wellbeing of impacted communities.

However, to this end, the reconnaissance efforts do not focus on the deconstruction
and recycling or reuse potential of building components in the aftermath of a natural
disaster. Therefore, this study aims to: (1) investigate different types of damages observed
during the early reconnaissance of six major hurricane impacts using thematic analysis;
(2) analyze the damages observed in thousands of buildings during Hurricane Irma’s
impact, such that the factors impacting building reusability can be investigated through a
machine-learning algorithm; and (3) conduct 109 interviews with different stakeholders
to identify ways to reduce the disposal of disaster debris such as those generated during
natural disasters and demolition, among others, in the landfill through a concept-mapping
technique. The research is guided by three research questions: (1) What are the different
types of damages observed in buildings during major hurricane impacts? (2) What are the
critical factors that influence the reusability of buildings post-hurricane impact? (3) How
can we reduce disaster debris disposal in the landfill post-hurricane impact?

2. Materials and Methods

This study utilized Design Safe cyberinfrastructure [23], an open-source database, to
investigate damages observed in the aftermath of different hurricanes and identify factors
that impact the reusability of the building after hurricane impact. The study is structured
into three phases, where each phase is connected to the previous phase, as shown in
Figure 1. First, the study conducted a thematic analysis of available Structural Extreme
Events Reconnaissance (StEER) reconnaissance reports using NVIVO data analysis software
(NVivo version 12) to code different themes that exist in the literature and map different
trends related to types of damages observed in different hurricanes [24]. StEER is a network
that works with extreme event reconnaissance organizations and the Natural Hazards
Engineering Research Infrastructure (NHERI) to: (1) understand the extent of the impact
of extreme events like a hurricane on the community; (2) coordinate with a network of
members for early reconnaissance of disaster-affected areas to make impactful responses to
disasters and accelerate the recovery process; and (3) improve community-driven standards,
best practices, and policy and accelerate learning from natural disasters [23]. Secondly, the
study focused on damages observed in 1122 buildings after the impact of Hurricane Irma
in Florida available in the Design Safe database [25]. The authors selected the Hurricane
Irma dataset because it is the only large, relevant dataset available in the Design Safe
database that incorporates details about building reusability based on observed damages.
The obtained large dataset is then analyzed using a machine-learning algorithm to identify
different factors that impact the building’s reusability in the aftermath of hurricane impact.
Lastly, the study also conducted 109 interviews with homeowners, forensic engineers,
contractors, project managers, and consulting engineers, among others, to identify solutions
to increase the reusability potential of buildings and salvage materials in disaster-prone
zones. The obtained data were then analyzed using the concept-mapping technique. The
succeeding sections discuss the procedures used for thematic analysis, machine-learning
analysis, and concept mapping.
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Conduct a review of
reconnaissance reports from
StEER related to hurricanes in
the U.S. Gulf Coast, East Coast
and Caribbean Sea

Manually read each report to
identify themes related to
damages observed in different
reconnaissance reports

Use NVivo to organize and
code the themes

Do the reports
include a
larger
reconnaissance
dataset?

Categorize the identified
themes into common groups
and present the information in
a table format

Conduct data preprocessing to transform or
encode the features of data, which can be
casily interpreted by the machine learning

algorithm

Identify relevant independent variables for the
dependent variable “building reusability”.
Then, utilize train-test split and use r squared,
mean square error, and mean absolute error to
evaluate the performance of different machine
learning algorithms

Use supervised machine learning algorithm
with highest r-squared value or accuracy to
develop a regression model and feature
importance plot

Does the
model have
independent

variables that
impact
building
cusability?,

Conduct 109 interviews with
industry professionals to identify
strategic solutions for recycling or
reusing materials from buildings
that are not reusable

Analyze the qualitative data from
interviews and identify different
concepts

Organize the concepts in a
concept map and provide nature
of the relationship between the
concepts.

Provide detailed information about
the structure of the concept map
and how it provides roadmap to

adopting circular economy
practice in post-disaster recovery

Figure 1. Research framework showing the connection between each phase.

2.1. Thematic Analysis

Thematic analysis is a method to identify, analyze, and interpret patterns of meaning

within qualitative data [26]. The primary goal of thematic analysis is to construct themes to
reinterpret, connect, or reframe elements of the data. The themes developed in this method
are actively constructed patterns obtained from a dataset to address a research question
through coding [27], as shown in Figure 2. In the first stage, the literature obtained from the
Design Safe database was coded using the elemental and exploratory coding approach. The
elemental coding method is the first step of thematic analysis, in which a focused review
of data is used for developing foundations for future coding, and the exploratory method
focuses on experimental and empirical coding of the data [28].

Figure 2. Step-by-step process of thematic analysis in NVIVO.
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The authors developed relevant categories and sub-categories for each topic from the
existing literature after coding information. Only six StEER reconnaissance reports from
recent hurricane impacts were available in the database. Therefore, the authors downloaded
these reports from the Design Safe database to investigate different building damages
observed post-disaster. These damages were categorized into different categories such
as destroyed, major damage, minor damage, and inaccessible location based on Federal
Emergency Management Administration (FEMA) guidelines [29]. Each of these categories
had a sub-category including roof, interior, foundation, or whole building structure to
determine which parts of the building had prominent damages. Therefore, the analysis
provides a comprehensive understanding of different building parts that are commonly
damaged and cannot be reused or recycled.

2.2. Machine-Learning Algorithm

To identify the most effective regression model that is capable of predicting the reusabil-
ity of buildings after hurricane impact with high accuracy, the authors made a comparison
between the most widely used supervised machine-learning algorithms [30]. The authors
then utilized a train-test split to evaluate the performance of different algorithms. The
dataset was split into a training and test set in an 80:20 ratio, such that it can fit different
models on the training set, and the performance of the test set can be evaluated using r
squared, mean square error, and mean absolute error. The algorithms tested in this study
are discussed below.

A. Decision tree: A decision tree is an algorithm for regression and classification problems
that are generally utilized to develop a tree-based model [31]. Each node in the
decision tree represents an attribute, and each branch highlights the outcome of the
attribute test. On the other hand, each leaf provides details about the decision taken
after the computation of all the attributes.

B. Random forest regressor: A random forest regressor is an ensemble learning method
that combines multiple decision trees to make more accurate predictions of a continu-
ous numerical value (i.e., a regression problem) based on a set of input features [32,33].
It is a popular technique that can handle both categorical and numerical data and
easily identify important features for prediction.

C. Linear regression: Linear regression is a supervised machine-learning algorithm
that is used to predict continuous numerical values based on a set of input features,
such that it can find linear relationships between the input features and the output
variable [34]. Linear regression is a simple and interpretable algorithm, making it easy
to understand.

D. K-nearest neighbor (KNN): KNN is a machine-learning algorithm used for classifi-
cation and regression to find the k-closest data points in the training data to a new
data point and make predictions based on the majority class or average value of the
k-nearest neighbor [35].

E. Gradient boosting: Gradient boosting is an ensemble learning method that combines
weak models to create a strong model by iteratively adding weak models to the
ensemble, with each new model correcting the errors of the previous ones [36]. It is a
powerful algorithm that can handle complex non-linear relationships in the data.

The study defined building reusability as the dependent variable for developing a
regression model using a supervised machine-learning algorithm. On the other hand, the
independent variables included building age, roof cover damage, roof structure damage,
wall structure damage, wall cover damage, number of stories, wall sheathing, window
damage, and door damage. Since these were the only variables available in the dataset,
other independent variables that could impact building reusability have not been consid-
ered in the analysis. To ensure the quality of the results from the regression analysis, the
dependent variable must be continuous and should be approximately normally distributed.
Therefore, a normality test was initially performed, where most of the data satisfied the con-
ditions of normalization of data to proceed with the analysis. Additionally, the independent
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variables in the regression models were tested for multicollinearity. Multicollinearity is an
interdependency condition that shows the symptom of poor experimental design. If the
independent variables for the regression model are multicollinear, then this indicates that
there are large variances in regression coefficients as well as the low information content
of observed data and the low quality of the resulting parameter estimate. Therefore, the
independent variables in the model were found to have a lower Pearson’s correlation
coefficient, indicating that there is no multicollinearity issue in the regression model.

After identifying the machine-learning algorithm with the highest accuracy, the au-
thors developed the regression model and evaluated the impact of each variable using a
feature importance plot. The feature importance plot shows the relative importance of each
feature in the model. It can help identify which features are most predictive of the target
variable [37]. The study utilized R-squared to check the accuracy of the machine-learning
algorithm. This is a common metric that measures the proportion of the variance in the
target variable that can be explained by the model. The study also calculated the mean
square error (MSE) and mean absolute error (MAE) to determine the reliability of the model.
The mean square error is a measure of the quality of an estimator, indicating how close the
estimator is to the true value of the quantity being estimated. In the context of a regression
model, MSE measures the average squared difference between the predicted values and
the actual values. Lower MSE and higher R-squared values indicate better performance of
the model. On the other hand, the mean absolute error measures the average magnitude of
the errors in a set of predictions, without considering their direction. A value of 0 for MAE
would mean that the model’s predictions are perfect, and a value of 1 would mean that the
predictions are off by an average of 1 unit.

2.3. Semi-Structured Interview

An Institutional Review Board (IRB) approval was pursued to maintain the confiden-
tiality of any personal or proprietary information collected during semi-structured inter-
views from individuals that provided data to support the research effort. Semi-structured
interviews are an exploratory method that relies on asking open-ended questions within
a predetermined thematic framework [38]. This study adopted a semi-structured inter-
view approach, because it allows for the collection of comparable and reliable data and
the flexibility to ask follow-up questions and design a conceptual framework [39]. The
authors conducted semi-structured interviews through the purposive sampling method,
which is a judgmental sampling technique in which the individuals are selected to be
part of the sample based on the researcher’s judgment as to which individuals would
be most useful or representative of the entire population. Similarly, the snowball sam-
pling technique was implemented to increase the reach of the project by requesting the
targeted individuals to suggest other individuals with similar expertise [40]. The authors
targeted different stakeholders who are involved in the post-disaster recovery phase to
document their experience and understand the challenges of adopting deconstruction from
the perspective of different professionals who play a unique role in the ecosystem. As
shown in Figure 3, the authors conducted 109 interviews with stakeholders, including
18 homeowners, 29 consulting engineers, 24 contractors, 12 forensic engineers, 4 lawyers,
4 LEED professionals, 8 project managers, 3 city code inspectors, 4 building materials and
tools suppliers, and 4 insurance staff who had hands-on experience with post-disaster
recovery challenges, especially during extreme weather events. The interview questions
mainly focused on the experience of each stakeholder during the post-disaster recovery
phase, challenges related to adoption of building deconstruction, aspirations related to
circular economy practices, and recommendations about effective post-disaster recovery.
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= Contractors
Homeowners
Project Managers
Consulting Engineers
— = Forensic Engineers

= City Code Inspectors

16% = Lawyers
= LEED Professionals

= Suppliers

26% 7%

= Insurance Agent

Figure 3. Distribution of stakeholders participating in the interview, n = 109.

According to Noble and Smith (2015), qualitative studies such as semi-structured
interviews rely on the concepts of truth value (i.e., clear and accurate presentation of partic-
ipants’ perspectives), consistency (i.e., the trustworthiness of the adopted methodology),
and applicability (consideration for replicability of methods and findings in a different
context, setting, or group) to ensure the credibility of the study findings and to show that
the study has considered a representative sample [41]. To satisfy the truth value, this
study conducted 109 interviews using the purposive and snowball sampling method to
reach a point of saturation. Saturation is the point at which collecting new qualitative data
yields redundant information or has no significant addition to what has been collected
and analyzed [42]. The authors used coding in NVIVO version 12 to conduct thematic
analysis, organize themes, and test the attainment of saturation. Secondly, this study
achieved consistency through the triangulation of data. To achieve this, the authors utilized
different sources or different kinds of data such as the literature and Federal Emergency
Management Administration (FEMA) and Environmental Protection Agency (EPA) reports
to check whether they provide a consistent meaning or interpretation. This method not
only established trustworthiness but also validated the concept map created from the
thematic analysis. Thus, the methodology used in this study is easy to adopt and can
be replicated in different contexts, settings, or groups to achieve applicable results with
practical application.

The obtained qualitative data from the interviews were analyzed and represented
through a concept map. A concept map is a commonly used method to analyze themes,
interconnections, and findings in qualitative research [43]. One of the advantages of a
concept map is that it supports the theoretical underpinning of qualitative data and helps
to lay out linkages, reduce the data volume, and provide a complete picture of the solution
being presented for the given problem. Conceigao et al. (2017) highlighted the strengths,
limitations, and scope of three different approaches for using concept mapping as a tool,
which include relational, cluster, and word frequency [44]. The study demonstrated some
ways to determine the applicability of different concept map approaches, which include:
(1) the use of word frequency for analyzing a significant amount of textual data; (2) the
use of a cluster approach to analyze qualitative data using a quantitative approach; and
(3) the use of a relational approach to concept mapping for showing the relationship
between concepts that are connected by a line that links two concepts. This study utilizes
a relational concept-mapping technique: (1) to organize and represent knowledge on
selective dismantling and recycling or reuse of salvage materials post-disaster; and (2) to
understand the theory, concepts, and the relationship between them. This study used Cmap
tools to construct the concept map based on the obtained themes. The Cmap tool is the
most commonly used tool for constructing and modifying concept maps developed at the
Institute for Human and Machine Cognition [45].
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3. Results

This section presents the results of the thematic analysis of Structural Extreme Events
Reconnaissance (StEER) reports, machine-learning analysis of Hurricane Irma reconnais-
sance data, and a circular economy resilience framework to reduce disaster debris in
landfills and promote resource efficiency based on semi-structured interviews. The re-
sults are divided into three phases. The first phase highlights different types of damages
observed during the early reconnaissance of six major hurricane impacts that were the
only reports available in the Design Safe database. The results of the first phase provide a
broader perspective on common damage patterns observed in buildings after hurricane
impact. The second phase narrows the focus to damages observed in thousands of build-
ings during Hurricane Irma’s impact, such that the factors impacting building reusability
can be investigated through a machine-learning algorithm. On the other hand, the third
phase provides recommendations on ways to reduce disaster debris disposal in the landfill
through concept-mapping techniques based on the qualitative data obtained from 109
interviews with stakeholders.

3.1. Thematic Analysis of Extent of Building Damage Post-Disaster

This phase investigated the first research question by conducting a thematic analysis
of StEER reports that provided information on different types of building damages after
a hurricane event. Table 1 shows the thematic framework developed based on coding in
NVIVO. The authors identified themes in this stage by following the guidelines of the
deductive coding process (i.e., a top-down process in which coding is started with a set
of pre-determined codes, and excerpts are identified to fit those codes). First, the extent
of damage observed in reconnaissance was coded into the first-tier node, and sub-factors
were coded into the second tier. With this coding system, the level of damage to different
building components was identified in the six most recent powerful hurricanes that have
been assessed by the StEER team, and these were the only available reports in the Design
Safe website database. The six studied hurricanes included: (1) Hurricane Irma (Category
5, 2017); (2) Hurricane Florence (Category 4, 2018); (3) Hurricane Michael (Category 5,
2018); (4) Hurricane Dorian (Category 5, 2019); (5) Hurricane Laura (Category 4, 2020); and
(6) Hurricane Ida (Category 4, 2021).

Table 1. Themes for patterns of building damages in the six most recent and powerful hurricanes.

Extent of Damage

Building Component Description References

Destroyed

1. Hurricane Michael completely wiped several
older homes built during the 1970s era from
their foundations in Mexico Beach, Florida.

2. Hurricane Dorian completely destroyed
several homes, especially small cottages with
slab-on-grade foundations and structures
elevated at heights from 4 ft up to
approximately 8 to 10 ft on concrete columns
in the Bahamas.

Whole structure 3.  Hurricane Laura completely destroyed [7,46-48]

several mobile/manufactured
homes in Louisiana.

4. The combination of high wind and storm
surge from Hurricane Ida caused the
complete structural collapse of several
residential buildings in New Orleans.
Several elevated houses were swept off
their pilings.
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Table 1. Cont.

Extent of Damage Building Component

Description

References

Roof

1.

Hurricane Irma caused the uplift of portions
of the wood roof structure in a few
single-family residential homes near Ponte
Vedra, FL. Large sections of the roof were
also removed in a group of condominiums
due to hurricane wind near Crescent

Beach, FL.

Major damage to a pre-Florida Building
Code (FBR) 2002 roof was observed in a
five-story hotel building in Key West during
Hurricane Irma impact.

Hurricane Michael caused major damage to
residential buildings, with loss of sheathing
and framing in the roof system in Mexico
Beach, Florida.

Hurricane Laura caused major roof cover
failures in early 2000-era houses with older
asphalt shingle roofing systems. During
hurricane wind, shingles were torn away,
initiating roof cover failures within
reattachment zones where positive pressures
were produced with a field of the roof.
During Hurricane Ida, many single-family
residences had failures of roof coverings,
including asphalt shingle and discontinuous
metal roofing systems, that consequently
resulted in extensive water leaks.

[7,47,49,50]

Major damage

Wall system

Hurricane Irma caused the collapse of
several upper-story walls in three of the
three-story condominium buildings near
Crescent Beach, FL.

Ten single-family homes in Marathon
suffered severe damage to walls, sliders,

windows, and doors during Hurricane Irma.

Hurricane Florence caused major damage in
21 residential buildings, including
wind-driven damage to the building
envelope and loss of vinyl siding and asphalt
shingles, within North Carolina.

Some of the metal buildings in the Bahamas
had major damage due to the loss of the
building envelope during Hurricane Dorian.
Structural failures such as the collapse of
gable end walls caused by the lifting of
exterior walls within light-framed wood
metal plate trusses were observed during
Hurricane Ida’s impact in New Orleans.

[7,46,49,50]
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Table 1. Cont.

Extent of Damage

Building Component Description References

Major damage

1. After Hurricane Dorian’s impact in the
Bahamas, several wall-to-foundation failures
were observed despite the presence of
anchor bolts.

2. Many elevated houses were severely
damaged when the connection of the

Foundation superstructure to the piles failed during [7,46]

Hurricane Ida’s impact in New Orleans.

3. Many mobile/manufactured homes were
prone to overturning from high winds
caused by poor anchorage practices during
Hurricane Ida in New Orleans.

Minor damage

Roof

1.  Building structures in Miami suffered

minimum damage to the barrel tile roofs

during Hurricane Irma.
2. Hurricane Florence caused minor damage to

roof shingles and siding of 38

residential buildings. [48-50]
3. During Hurricane Laura’s impact in

Louisiana, modern residential construction

had minimal damage, such as minor roof

cover loss and garage door failures.

1.  Isolated retail buildings had a failure of wall

Wall system cladding systems as well as partial collapse  [4g]

during Hurricane Laura.

Inaccessible

1.  Extensive flooding was observed in a few
neighborhoods in Naples, due to which the
buildings were inaccessible for assessment
during Hurricane Irma.

2. Some of the residential houses along the

Whole structure eastern shore roads of the Bahamas were not [46,49,50]

accessible for assessment during Hurricane
Dorian’s impact.

3. During Hurricane Laura, street view surveys
were conducted, but these were not able to
discern interior damage due to water ingress.

3.2. Machine-Learning Analysis to Predict Building Reusability

The study utilized the Hurricane Irma dataset from the Design Safe database to
investigate the second research question, because it was a larger dataset with many variables
in comparison to other reconnaissance datasets available in the database. In particular, the
dataset consisted of 1122 pieces of data related to damage observed in different types of
residential buildings and the potential reusability of the building. This study developed a
regression model by identifying the regression statistical analysis with the highest accuracy
using a machine-learning technique referred to as a train-test split. Table 2 shows the
accuracy, mean absolute error (MAE), and mean square error (MSE) of different machine-
learning algorithms in a train-test slip test. The train-test split test of five different machine-
learning algorithms indicated that decision tree, random forest, linear regression, KNN, and
gradient boosting have an accuracy of 0.394, 0.654, 0.483, 0.24, and 0.667, respectively. Since
the gradient-boosting algorithm has the highest accuracy, it is selected as the algorithm for
the regression model for this study. An R-squared value of 0.667 indicates that 66.7% of
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the variability in the actual reusability of the building can be explained by the predicted
reusability using the model. It also indicates that the model has moderate predictive power.

Table 2. R-squared value of different machine-learning algorithms in a train-test split test.

S.N. Machine-Learning Algorithm Accuracy MAE MSE
1. Decision tree 0.394 0.135 0.357
2. Random forest 0.654 0.113 0.259
3. Linear regression 0.483 0.213 0.213
4. K-nearest neighbor 0.240 0.384 0.384
5. Gradient boosting 0.667 0.129 0.253

In the context of predicting building reusability using a gradient-boosting algorithm,
the model obtained an MAE of 0.129, which means that on average, the model’s predictions
are off by 0.129 units of reusability. This could be considered a relatively low error, based
on the scale and distribution of the reusability values in the dataset. Similarly, the model
obtained a value of 0.253 for MSE, which indicates that on average, the predicted reusability
values are 0.253 units away from the actual reusability values. Such a lower MSE value
indicates better model performance, as it means the model’s predictions are closer to the
actual values.

The study also developed a feature importance plot for the gradient-boosting regressor
model. Feature importance values are calculated based on how much each feature in the
regressor model contributes to reducing the mean square error in the model. Features
that are used more often in splitting the training data in the model and lead to greater
reductions in the mean square error are assigned higher importance values. As shown
in Figure 4, the feature importance plot shows the most important feature for predicting
building reusability. The importance of each feature in the order of decreasing importance
are roof structure damage (0.467), roof cover damage (0.160), wall sheathing damage (0.118),
building age (0.101), wall cover damage (0.054), door damage (0.042), window damage
(0.039), number of stories (0.009), and wall structure damage (0.007). These values indicate
the importance of each feature and determine the degree of usefulness of a specific feature
for the current model and prediction of building reusability. If a feature has a lower value,
such as that of wall structure damage (0.007), then it will have a smaller effect on the
model that is being used to predict a certain variable. On the other hand, a higher value,
such as that of roof structure damage (0.467), means that the extent of damage to the roof
structure has the highest impact on the predicted building reusability score. These results
align with the findings in the literature, which indicated that roof structure is an important
factor that impacts the performance of a building during a hurricane and after hurricane
impact [9]. Since damage to the roof structure is very common during hurricane impact, as
indicated by the results of phase 1, many buildings are recommended to be demolished
when they are not reusable. This traditional approach not only causes financial strain on
homeowners but also overwhelms landfill sites due to the sudden inflow of disaster debris
as well as demolition waste [21]. As such, it is critical to adopt circular economy practices
such as deconstruction methods and design for disassembly principles to maximize the
reuse and recycling of building components post-disaster. The information from the feature
importance plot can be used to prioritize repairs and maintenance efforts for buildings in
order to maximize their reusability.
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Figure 4. Feature importance plot for gradient-boosting regressor model.

3.3. A Framework for Circular Economy Resilience during Post-Disaster Recovery

The authors collected qualitative data through semi-structured interviews of 109 stake-
holders in seven weeks. Out of 109 stakeholders, 91 stakeholders had industry experience.
Overall, 38 professionals had 1-10 years of experience, 16 professionals had 11-20 years
of experience, 12 professionals had 21-30 years of experience, 10 professionals had 31 to
40 years of experience, and 6 professionals had more than 40 years of experience. Many
homeowners indicated that they have an emotional investment towards their property
and developed trauma from living through a hurricane. After the hurricane impact, their
mental health and wellbeing were severely impacted when they could not recover their
property due to lack of access to funding and resources. They reported that if services
were available that would allow them to recover salvage materials from their home, they
would adopt a deconstruction approach to repurpose the materials so that they could
reduce the cost of reconstruction. Similarly, consulting engineers who assessed damages
after Hurricane Ian impact indicated that many houses in Naples, Florida had flooding
on the first floor, which generated mold post-disaster, whereas the second floor had no
damages. In such cases, homeowners are recommended to demolish the house by con-
sulting engineers/forensic engineers, even if salvage materials can be recovered from the
second floor of the house. Similarly, as reported by forensic engineers, damage to the roof
is extremely critical, because the roof is important for protecting the materials inside. They
indicated that if 50% of the building is damaged, it is considered a total loss by FEMA
and insurance companies. Such buildings are also recommended to be demolished by
forensic engineers and consulting engineers. As reported by a demolition contractor, the
choice of the method during demolition would depend on what would be the cheapest
for the owner and the fastest during the permitting process. However, insurance agents
indicated that low-income families normally do not have insurance, and sometimes they
cannot access public funds for demolition and reconstruction. Therefore, deconstruction
can be a potential solution for the recovery of salvage materials, which can later be used in
low-income house construction for underprivileged families who cannot afford demolition
and reconstruction. Based on deconstruction contractors, deconstruction can be used for
cost-efficiency and can reduce any generation of waste during the restoration process. The
contractor also indicated that a significant amount of salvage materials can be diverted from
the landfill to help underprivileged families. Moreover, the contractor also reported that
all buildings may not be suitable for deconstruction, and only those inhabitable buildings
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that have non-structural damages, buildings that need to be relocated, and buildings with
partial damages with a lower cost of reconstruction in comparison to repair can be assessed
properly for safe deconstruction.

Figure 5 shows a conceptual framework developed by conducting a thematic analysis
of the interview data in NVIVO. The concept map is developed using the relational concept-
mapping technique to address the third research question. The concept map is built
upon the feedback obtained from 109 industry professionals to provide a framework that
maximizes the adoption of circular economy practices. This framework provides organized
knowledge on the selective dismantling and recycling or reuse of salvage materials post-
disaster to understand the theory, concepts, and the relationship between them. The
structure of the concept map is represented in a non-linear manner, with several feedback
loops that provide a complete picture of the list of things that should be considered for
recapturing, recycling, and reusing disaster debris through deconstruction. The phase 2
results indicated that those buildings with significant damage to the roof structure are not
considered to be reusable. Consequently, thousands of buildings are generally demolished,
and the waste produced is diverted to the landfill for disposal [51]. However, natural
disasters like hurricanes produce a significant amount of disaster debris, and landfill sites
are overwhelmed by such waste. Additionally, there is a sudden surge in demand for
construction resources among disaster-prone communities due to simultaneous projects
being initiated by local, private, governmental, and international organizations.
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Figure 5. Concept map showing different strategies to achieve circular economy resilience post-disaster.
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Therefore, the concept map framework shows different concepts related to strategies
for achieving circular economy resilience post-disaster based on the feedback reported by
interview participants. The concept map consists of four different ways of achieving circular
economy resilience, which can be distinguished through color-coded arrow lines. First, the
strategies guided by the orange line indicate that it is essential to promote the accessibility
of salvage materials in the secondary market and to develop a proper schedule and plan
for the deconstruction process. In order to achieve this objective, the strategy guided by the
blue line highlights that it is important to encourage stakeholders to reduce disaster debris
disposal in landfills by: (1) demolishing older buildings with hazardous materials, such that
this would reduce contamination of salvage materials; (2) recovering salvage materials by
proper scheduling and planning for the deconstruction process; and (3) increasing landfill
disposal cost to encourage diversion and upcycling of salvage materials.

The strategy guided by the green line demonstrates the importance of educating
stakeholders about designing and constructing buildings with more homogeneity, less
hazardous materials, and materials that are easy to disassemble. For easy disassembly of
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a building, a design for disassembly (DfD) principle should be adopted, which includes:
(1) the use of an open building system, modular design, and assembly technologies; (2) easy
access to all parts of the building and all components; (3) joints and connectors designed to
withstand repeated use; (4) allowing for parallel disassembly; (5) the use of prefabricated
subassemblies and a system of mass production; and (6) development of a database for
the building manufacture and assembly process [52,53]. As reported by a deconstruction
contractor in the interview, a normal deconstruction project involving 8 to 10 workers in
a 2000 sq. ft. house will take 3 days to complete and will result in 40% cost savings in
comparison to demolition. Therefore, it can be inferred that deconstruction of inhabitable
buildings are a feasible and viable solution for reducing waste disposal in landfills. The
adoption of a DfD principle would help to deconstruct or maintain buildings after future
extreme weather events.

Lastly, to recover salvage materials from inhabitable buildings or buildings that need
to be relocated post-disaster, deconstruction tools and technology should be utilized to
accelerate the deconstruction process. Additionally, the condition of recovered components
or materials should be properly assessed for any defects, and these should be retrofitted or
repaired before utilizing them during reconstruction of new building. Hence, it is essential
to train as many deconstruction workforce personnel as possible and to educate them about
these strategies, such that the construction of new buildings meet the standards of the
building code. Overall, the conceptual framework in Figure 5 provides all the concepts and
relevant strategies within a picture for achieving circular economy resilience post-disaster
and fostering sustainable post-disaster recovery in disaster-prone communities.

4. Discussion

The results of phase 1 show that during Hurricane Dorian, Hurricane Florence, Hurri-
cane Ida, and Hurricane Irma, the StEER team observed damages to the building envelope,
roofs, and exterior walls in several residential buildings. The results of machine-learning
analysis indicated that the roof structure has the highest impact on the predicted building
reusability. Since buildings with roof damage have no protection against external forces
such as wind, rain, and heat, homeowners are less likely to be able to reside in the building
due to such structural damage. As reported by contractors interviewed in the study, a
damaged roof structure needs to be replaced with updated building codes and design. For
instance, a pyramidal-shaped roof should be used during repair instead of a gable-ended or
hip-shaped roof due to its resistance to uplift during impact of hurricane winds. They also
indicated that retrofitting the damaged building up to the latest high-wind requirements is
neither practical nor cost-effective unless the homeowners aim to rebuild the entire house.
They reported that they generally use roofing cement if there are minor damages and holes
or new metal roofs if there are major damages in the roof structure. However, according to
forensic engineers interviewed in the study, building damage repairs are arduous for many
homeowners due to inflation, difficulty in getting insurance claims, incompatibility of old
and new materials, and expensive new construction methods. Additionally, lower-income
homeowners are less likely to start reconstruction or repair due to their struggle to gain
access to federal funding and recovery resources [54].

Maldonado et al. (2016) highlighted that across the country, communities of color and
low-income communities who reside in hurricane-prone areas do not have the financial
resources or access to credit to make their homes safer before a disaster (e.g., by raising
a home on pilings to avoid floodwaters) [55]. Moreover, they cannot afford things like
flood insurance coverage, which would give them more financial capacity to rebuild after
a flood [56]. As such, when there is a constant threat of recurrent natural disasters such
as hurricanes, it can lead to feelings of insecurity, worry, and uncertainty, and this can
have a negative impact on mental health and wellbeing. Hence, it is critical to adopt
deconstruction methods in post-disaster recovery to recover salvage materials that could be
reused or recycled in low-income housing construction for underprivileged communities
that cannot afford new building materials for reconstruction.
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Building deconstruction is one of the most effective solutions for reducing: (1) the
amount of disaster debris disposed of in the landfill; (2) CO, emissions; and (3) the exploita-
tion of natural resources for faster reconstruction [57]. Denhart (2009b) highlighted that
Mercy Corps recovered 32,000 board feet of reusable lumber through deconstruction for
redirecting it into the marketplace in the aftermath of Hurricane Katrina [22]. The study
clearly indicated that it is possible to recover salvage materials from buildings impacted by
hurricanes if proper deconstruction strategies are implemented for the recovery of materials.
McCarthy and Glekas (2020) also highlighted that deconstruction is an effective approach
to preserve heritage by rethinking the idea of waste and promoting sustainable community
development [58]. The study also highlighted that two buildings were deconstructed after
Hurricane Irma impact in Savannah, Georgia. Using a building deconstruction approach,
the project team recovered 65 tons of salvage materials, which amounts to approximately
60% of the materials diverted from the landfill for reuse. These two case studies show
that building deconstruction post-disaster is feasible, and the circular economy resilience
framework proposed in this study facilitates stakeholders in easily adopting deconstruction
approaches by considering the strategies recommended in the framework.

The recovery efforts during post-disaster reconstruction often focus on the traditional
linear economic model of demolition and disposal of disaster debris in the landfill. Such an
approach is unsustainable and reduces the adaptive capacity of a community to respond
effectively to natural disasters. Hence, this study introduces the novel concept of circular
economy resilience to design and implement sustainable practices that not only reduce
the negative impacts of disruptions during a natural disaster but also create opportunities
for innovation and growth. Circular economy resilience can be referred to as the ability of
a system, organization, or community to withstand and recover effectively from natural
disaster impact while minimizing waste and maximizing resource efficiency [59,60]. This
study also highlights the importance of assessing post-disaster recovery sites for the feasi-
bility of building deconstruction, such that salvage materials can be recovered and reused
in the reconstruction process. Additionally, by promoting deconstruction practices, the
study encourages the reduction of embodied energy in the production of new materials by
substituting recovered existing materials as a resource for reconstruction.

5. Limitations and Future Work

This study utilizes a dataset from Hurricane Irma to develop a regression model with
relatively high accuracy. Future work will focus on validating the model by utilizing the
dataset from the most recent hurricane to compare predicted building reusability with
actual reusability. The reconnaissance dataset used in this study also did not include
information related to deconstruction feasibility for recovery of salvage materials. Hence,
future studies can focus on data collection during reconnaissance of building components
with an emphasis on building deconstruction feasibility and the reuse potential of building
materials. The availability of such a dataset would significantly accelerate the adoption of
circular economy practices post-disaster.

6. Conclusions

The grand challenges of post-disaster recovery, such as a lack of resources for re-
construction and the generation of a significant amount of waste, among others, can be
addressed through circular economy resilience. The existing literature lacks a comprehen-
sive framework addressing the integration of resource-efficient approaches to effective
disaster recovery. This study has addressed this literature gap, and the following conclu-
sions were drawn.

6.1. Increase in Extensive Damages

The thematic analysis of hurricane reconnaissance reports indicated that the intensity
of hurricanes has significantly increased over the years. Consequently, there is a signifi-
cant increase in building damage, and a large number of buildings are either completely
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destroyed or have major damage, whereas very few buildings have minor damage. Such
extensive damage leads to demolition of the buildings, and the building components or
materials are diverted to landfills for faster recovery. Such traditional practices and policies
have environmental implications such as land pollution, an increase in greenhouse gas
emissions, and impacts on the health and wellbeing of disaster-prone communities.

6.2. Gradient-Boosting Regression Model

This study made a comparison between the most widely used supervised machine-
learning algorithms to identify the algorithm capable of predicting building reusability with
the highest accuracy. Based on the results, the gradient-boosting regression model had the
highest accuracy of 66.7%, indicating that the model has a moderate predictive power. The
study also developed a feature importance plot for the gradient-boosting regression model,
and the results indicated that roof structure damage has the highest feature importance
value, whereas wall structure damage has the lowest feature importance value. This result
indicated that less damage to the roof structure may significantly increase the reusability
potential of buildings in the aftermath of hurricane impact.

6.3. Circular Economy Resilience Framework

The proposed circular economy resilience framework has several practical applica-
tions. First, circular economy resilience practices help to reduce the loss of culturally
significant structures and to recover salvage architectural and historical building mate-
rials for heritage preservation. The study also recommends solutions such as utilizing
deconstruction methods, constructing buildings with homogeneity and less hazardous
materials, and a plan for easier disassembly of building components, among others, to
maximize circular economy practices. In addition, the construction workforce needs to be
trained and educated about proper deconstruction and recycling or reuse practices. These
practices can potentially accelerate the deconstruction schedule and encourage government
officials and international organizations to invest financial resources in circular economy
practices during the post-disaster recovery phase. The proposed framework also reduces
the environmental footprint of post-disaster reconstruction through the conservation of
resources and a reduction in energy consumption associated with manufacturing new mate-
rials. Consequently, the adoption of such practices would promote resource efficiency and
support climate resilience by reducing the emission of greenhouse gases that are generated
during the extraction and manufacturing of new materials.

The findings of the study contribute to disaster management and sustainable con-
struction bodies of knowledge by highlighting the impact of different factors on building
reusability and creating awareness of circular economy practices among construction stake-
holders and policymakers. The novel contribution of this research is the provision of a
data-driven and systematic approach to recommending sustainable strategies for post-
disaster recovery by using a three-step research methodology that combines thematic
analysis of reconnaissance reports, statistical analysis of datasets through machine-learning
techniques, and insights from a substantial number of interviews.
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