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Abstract—Causal structure learning from observational data
is an active field of research over the past decades. Although
many approaches exist, such as constrained-based methods and
score-based methods including the emerging deep learning-based
methods, most of them address the static, non-dynamic setting. In
this paper, we propose a score-based causal discovery algorithm
named Neural Time-invariant Causal Discovery (NTiCD), which
learns summary causal graphs from multivariate time series
data based on the principle of Granger causality. NTiCD is
a continuous optimization-based technique that leverages the
power of deep neural networks to compute the score values.
To this end, we use an LSTM to obtain the hidden non-linear
representations of temporal variables in the time series data.
Then, these features are aggregated using graph convolutional
networks and decoded using an MLP that outputs the forecast of
the future data values in the time series. The model is optimized
based on a score function subject to regularized loss. The final
output is a summary causal graph that captures the time-
invariant causal relations within and between time series. We
evaluate the performance of our algorithm on several synthetic
and real datasets. The result analysis over a number of different
datasets demonstrates the improvement in the accuracy of causal
structure discovery of temporal data compared to other state-of-
the-art methods.

Index Terms—causal discovery, time series, summary causal
graph, encoding-decoding framework, graph convolutional net-
works

I. INTRODUCTION

Inferring the causal relations from observational data is

a critical problem in many fields of science, economics,

philosophy, etc. [8]. The traditional way of detecting causal-

ity involved carrying out controlled randomized experiments

to introduce interventions that are often expensive, time-

consuming, and in many cases, unethical or impossible [23].

With the widespread availability of digital data these days,

it has become easier to extract causal information from the

analysis of such data. Thus, data-driven approaches utilizing

machine learning and artificial intelligence techniques have

come to play a vital role in causal discovery. Existing causal

discovery approaches can be categorized into two major

classes, constraint-based and score-based methods. The first

approach involves conditional independence testing between

the variables to determine the causal direction according to
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some constraints [14]. The latter approach like [12] learns a

Bayesian network by optimizing some predefined score func-

tion that assigns a score to each causal graph. Specifically, the

deep learning extension to the score-based approach leverages

the advantages of continuous optimization to minimize the

score function (see survey [32]).

Although past studies of causality mostly involved non-

temporal static data, many applications around us involve

temporal data, for example, identifying causality in climate

data [16], or analyzing influences among different regions of

the brain using fMRI [27]. The causal discovery of time series

involves identifying the underlying causal relationships among

the variables in the temporal data. Models that can handle

temporal data to infer causal relations are an important part

of the field of causal discovery.

There has been increasing attention to causal discovery

in time series data in recent decades [3], [8], [11]. One

major principle of causal discovery in the temporal domain is

Granger causality [9]. It states that a time series is a cause of

another time series if the past values of the former can predict

the future values of the latter, assuming that there are no

hidden confounders. Based on that, both constraint-based and

score-based approaches have been proposed. Deep learning

methods for temporal causal discovery have also been studied

in recent years [1], [17], [19], [20]. However, due to complex

dynamics in time series, most methods are unable to capture

the time-invariant causal relationship encoded in the data. They

usually infer multiple window causal graphs with specific time

lags instead of a single summary causal graph that captures

the causal relations within and between time series without

specifying the time information. In addition, these models are

often limited to assumptions of linear equations.

In this paper, we propose a score-based causal discovery

algorithm named Neural Time-invariant Causal Discovery

(NTiCD). It discovers time-invariant causal structures as sum-

mary causal graphs for multivariate time series. Our method

leverages the power of deep neural networks and continuous

optimization. The architecture of NTiCD consists of three

main components: encoding, aggregation, and decoding. The

encoding component is a long short-term memory (LSTM)

network that aims to obtain the hidden non-linear represen-

tations of temporal variables in the time series data. The ag-



gregation component is a graph convolutional network (GCN)

with the adjacency matrix of the causal graph as trainable

parameters. It takes the representations from the encoding

component as the input and outputs the aggregated information

from the local neighborhood of each temporal variable. The

decoding component is a multilayer perceptron (MLP) that

predicts future data values in the time series based on aggre-

gated encoded information. The loss function is regularized to

control the magnitude of the adjacency matrix. Finally, we

conduct end-to-end training to simultaneously optimize the

parameters of all networks as well as the adjacency matrix

of the causal graph.

Compared with existing approaches, our method yields a

number of benefits. First, the output of NTiCD is a summary

causal graph that does not assume stationarity, i.e., causal

dependencies are repeated with the same time lag at all time

points, or make any specific assumptions on the lag values.

Second, NTiCD does not assume linear relations between time

series and can be applied to non-linear equations. Third, the

model does not assume that self-causes always exist and can

infer self-causes for each temporal variable.

We conduct experiments using both synthetic and real-world

datasets and compare NTiCD with several baseline methods.

The synthetic data are generated according to predefined non-

linear functions and random summary causal graphs. For real-

world data, we use the Netsim dataset [27] which is made up

of realistic simulated functional magnetic resonance imaging

(fMRI) time series. We evaluate the performance of causal

discovery based on multiple metrics. The results demonstrate

an improvement in the performance of NTiCD over the state-

of-the-art methods.

II. RELATED WORK

The earliest approach for time series causal discovery is the

Granger causality that was introduced almost half a century

ago [9], [26]. Due to the limitation of its applicability to only

linear processes, as addressed by Granger himself, several

extensions have been proposed since then [17], [18], [29]–[31].

Many other methods for Granger causal discovery use vector

autoregressive methods including [10], [13], [22]. VarLinGAM

is a method proposed in [13] that estimates the structural vec-

tor autoregressive (SVAR) models by generalizing the linear

non-Gaussian acyclic model (LiNGAM) [25]. The authors use

the theory of non-Gaussianity to discover causality in temporal

data, however, their method assumes linear models. TCDF

[20] extends the theory of Granger causality to non-linear

settings by using deep learning models. An attention-based

convolutional network is adopted and the causal interpretation

is made based on the kernel weights and attention score

independently for each time series. However, these traditional

Granger causality approaches generally suffer from scalability

issues and do not perform well for a large number of variables.

Constraint-based algorithms can also be extended to time

series data. Early constraint-based algorithms like PC and

Fast Causal Inference (FCI) [28] build a causal graph us-

ing conditional independence testing with Markov condition

and faithfulness assumption. Several algorithms have been

developed based on PC and FCI, for example, PCMCI [24],

LPCMCI [7], tsFCI [5], μ-PC [1], and one of the most

recent FCITMI [2]. FCITMI addresses the problem of learning

summary causal graphs by combining PC-like and FCI-like

algorithms along with some entropy reduction principles. It

uses a temporal mutual-information measure using a sliding-

window technique. However, it is extremely slow for a large

number of variables as it combines two constraint-based

approaches that have large time complexities.

More recent approaches utilize deep learning models to

extend the score-based method. DYNOTEARS [22] proposes

a score-based technique to learn an SVAR model, which

is also known as a dynamic Bayesian network (DBN), to

infer a causal graph from time series. Although the net-

work scales quite well with an increasing number of nodes,

DYNOTEARS is based on a linear VAR model similar to

FCITMI and VarLinGAM. A different framework for inferring

multivariate Granger causality is proposed by [19] using Self-

explaining Neural Networks (SENNs). Their model, referred to

as GVAR, allows the detection of Granger-causal effect signs,

i.e., applicable to both original and time-reversed data. These

approaches decompose the temporal causal relations into dif-

ferent slices where each slice represents the causal relation

with a specific time lag. Different from these approaches, our

method analysis the causal relations between time series as a

whole and directly outputs a summary causal graph.

Other related approaches include Amortized Causal Discov-

ery (ACD) [17], which learns causal relations from data as

different graphs but with shared dynamics using an encoder-

decoder module. A similar approach is proposed in NSM

[32] for both video and time-series data. Minimum Predictive

Information Regularization (MPIR) [33] is another method

that is based on minimizing a mutual information objective

between each pair of time series given other time series.

A similar information-theoretic approach is proposed by [4],

which is a greedy-based algorithm that detects causality by

data compression.

III. METHOD

Consider a dataset X consisting of d time series of equal

length n, such that each time series i is a sequence represented

as Xi := Xi
0:(n−1)

:= {xi
0, x

i
1, . . . , x

i
(n−1)}. For simplicity,

we consider the case of a one-dimensional sequence, i.e., at

each time step t xi
t ∈ Xi is a scalar. However, our method

can be directly applied to multidimensional sequence cases, as

will be shown in the experiments. A summary causal graph

is a directed graph where each node in the graph represents

a time series. An edge pointing from one node to another

represents that the history of the former time series causes the

future values of the latter time series in any form and with

any lag. If an edge points from one node to itself (i.e., a self-

loop), it means that this time series has a self-cause. We do not

assume that self-causes always exist in every time series. Fig. 1

shows an example of a summary causal graph that consists of

three nodes: X1, X2, and X3, each of which represents a



Fig. 1: An example of summary causal graph.

time series. Here, an arrow from X1 to X2 indicates that X1

causes X2. One can find in the graph the cycles [e.g., X1 →
X2 → X3], the self-loops [X1 → X1], the colliders[X2 →
X1 ← X3], and the confounders [X1 ← X2 → X3]. The

goal of causal discovery is to learn a summary causal graph

G from the data that captures the causal relationship among

time series. We leverage the Granger causality for this purpose.

A. Granger Causality

Granger causality is one of the most basic principles in

inferring causal relationships among observational time series

data. It is based on the assumption that causes must precede

their effects in terms of time steps. According to the Granger

causality, if a time series X1 ‘Granger’ causes time series

X2 then the past of X1 will contain statistically significant

information to facilitate the prediction of future values of X2.

The classic Granger causality is mathematically formulated

using linear regression models of stochastic processes [9]. For

example, let X2 be defined by the bivariate linear autoregres-

sive model as follows:

x2
t =

∑

j<t

α(X1
0:j , X

2
0:j) + εt

where α is a linear autoregressive function and εt represents

independent noises. Then, X1 Granger causes X2 if the

statistical hypothesis test
∑

j<t α(X
1
0:j , X

2
0:j) is equivalent to∑

j<t α(X
2
0:j) in predicting x2

t is rejected.

The major limitation of the classic Granger causality is

that it is not applicable to dynamic non-linear cases. Next,

we introduce the Neural Time-invariant Causal Discovery

(NTiCD) framework that uses deep neural networks to replace

the linear autoregressive function and leverages continuous

optimization to discover Granger causality and the summary

causal graph.

B. Overview of NTiCD

NTiCD is an encoding-decoding framework for learning the

summary causal graph as a d×d adjacency matrix A from the

time series data. Inspired by recent research in static causal

discovery (e.g., [6], [15], [21], [34]–[36]), NTiCD consists

of three components. The first component is an encoding

module, which aims to learn a non-linear hidden representation

to capture the historical information in the time series until

time t. The second component is an aggregation module that

aggregates information from the local neighborhood according

to the adjacency matrix A. The third component is a decoding

Fig. 2: An overview of the architecture of NTiCD.

module that utilizes the aggregated historical information to

make predictions of future values in the time series. All three

components will be updated simultaneously in the training pro-

cess according to a regularized loss that measures the accuracy

of the prediction and the magnitude of the adjacency matrix

A. Finally, matrix A is converted to the directed graph based

on a certain thresholding technique. The rationale of NTiCD

is that when A is closer to the true causal graph, more relevant

information will be aggregated by the aggregation module

and used by the decoding module for making predictions.

Meanwhile, when the encoding and decoding modules are

updated, they can better capture the significant information for

the prediction. After the training converges, it is expected that

A becomes close to a summary causal graph that demonstrates

Granger causality.

An overview of NTiCD is demonstrated in Fig. 2 which

explains how the input time series is fed to NTiCD to optimize

the loss function and predict the causal relationship in terms

of a summary causal graph via the three components. Below

we explain each component in detail.

C. Architecture of NTiCD

Encoding. In this module, the historical information in

the time series is extracted as non-linear representations. We

leverage a deep neural network to learn what information

should be encoded so that we do not make assumptions about

the time lag of the causal dependencies or linear relations. It

is worth noting that when selecting the network architecture,

the network must be powerful enough to capture significant

information, yet it cannot be too powerful and memorizes

the whole sequence of data. For this purpose, we use a

multi-layer long short-term memory (LSTM) network and

consider a sliding window of size w for encoding. Define

Xt:(t+w−1) := {X1
t:(t+w−1); . . . ;X

d
t:(t+w−1)} that consists of

all time series in the sliding window. An LSTM network fθ
maps Xt:(t+w−1) ∈ R

w×d to Henc ∈ R
h1×d hidden features

where θ indicates the parameter of the model, i.e.,

Henc = fθ(Xt:(t+w−1)). (1)



For each sliding window, we reset all hidden state values to

zero before the computation of encoding. The values of the

last hidden layer Henc are passed to the next module for the

aggregation of messages.
Aggregation. The idea of this module is to use the adja-

cency matrix A to represent a weighted summary graph where

elements in column j represent the parental contributions of

all time series to time series j. Then, all time series are

weighted by A and aggregated using a graph neural network.

To normalize the weights, we first define a matrix Ã ∈ R
d×d

as trainable parameters that are randomly initialized. It is then

passed through a sigmoid function σ to convert each of the

weights to a probability that represents the normalized weights

of each edge in the causal graph, i.e., A = σ(Ã).
One challenge of this module is that the model may not

be sensitive to the accuracy of the adjacency matrix and it

may tend to aggregate the information from all time series. To

improve the performance of the model, we consider two parts

in message aggregation. The first part is a one-layered graph

convolutional network (GCN) that provides an aggregation of

the encoded information from the input matrix Henc directly

according to the parents of each time series given in A.

The aggregated features are then passed through a linear

transformation, as shown in Eq. (2) where W1 ∈ R
h1×h3 is

the parameter matrix. The second part is a two-layer GCN as

shown in Eq. (3), where W2 ∈ R
h1×h2 and W3 ∈ R

h2×h3

are weight matrices of the stacked layers and ReLU is the

activation function. The two parts are balanced by a parameter

α before summing together to adjust the effect of each term

as required. In this way, the aggregation layer accumulates the

messages from all variables and passes them to the decoder

module. The reason we consider the second part is that it

represents how the predicted features of the parents can be

used to predict the future values of a time series. It increases

the sensitivity of the model to the accuracy of the adjacency

matrix A to the true causal graph since the more accurate the

matrix A is, the more useful predicted features of the parents

can be obtained. In the experiments, we observed that α = 0.9
achieved the best performance.

Hagg1 = AHencW1 (2)

Hagg2 = AReLU(AHencW2)W3) (3)

Hagg = α ·Hagg1 + (1− α) ·Hagg2 (4)

Decoding. This module is a multilayer perceptron (MLP)

network with one fully connected layer followed by a sigmoid

layer to output a normalized prediction. The MLP decodes

the aggregated message from the previous module into the

predicted values of the time series at the next time step, i.e.,

X̂t+w = gφ(Hagg). (5)

D. Loss Function and Thresholding
To learn the causal structure A, we define the score function

as a regularized loss as shown in Eq. (6):

L =
1

n−w

n−w−1∑

t=0

(Xt+w−X̂t+w)
2+λ(||A||2+(A−Ā)2), (6)

where Ā represents the column-wise mean of A. The loss

function consists of three parts. The first part is the mean

squared error that measures the accuracy of the reconstruction

of the time series data. The second part is the L2 norm

that controls the magnitude of matrix A. The last part is a

regularization term that aims to reduce the difference between

each value in A and the mean of the column to which this

value belongs. The purpose is to use the mean of each column

as the threshold for determining the edges in the causal graph.

Finally, we convert A to a summary causal graph such that

there is an edge pointing from time series i to time series j if

Ai,j is greater than the mean of column j.

E. Training

The entire model is continuously optimized by gradient

descent to minimize the above loss function. The data are first

normalized to fall in the range [0-1] before the training. Then,

as mentioned above, a sliding-window technique is used to

preprocess the input data. We use a sliding window of length

w to divide each time series into (n − w) slices, moving the

window by 1 step each time. As a result, the training data

is given by X = {X0:(w−1),X1:w, ...,X(n−w−1):(n−2)}. For

each window, the model predicts the values of the next time

step in the time series. Thus, the target value for prediction

is defined as Xt for each window X(t−w):(t−1), such that

Y = {Xw, Xw+1, ..., Xn−1}. In the experiments, we use the

window size w = 5. The preprocessed X is fed to our model

batch-wise in a sequential manner, one variable after another.

During the training, the adjacency matrix A is updated such

that the weights of the correct parents are increased and the

prediction error is minimized. The training stops when the loss

converges.

IV. EXPERIMENTS

A. Experimental Setting

In the experiments, we perform gradient descent using the

full dataset for every training iteration. For the GCN layer,

we use h1 = h2 = h3, with α = 0.9. We train the

model to learn the adjacency matrix; the normalized matrix is

converted to a binary matrix using the column-wise mean as

the threshold. We evaluate our model on several synthetic data

and a real-world dataset. All the experiments are implemented

in PyTorch and run on a Ubuntu 20.04.4 LTS computer with

Intel(R) Core(TM) i9-10900X CPU and NVIDIA GeForce

RTX 3080 10GB GPU. All the data and code are available

at https://anonymous.4open.science/r/NTiCD/.

B. Baselines

We compare NTiCD with five baselines, VarLinGAM [13]

TCDF [20], DYNOTEARS [22], GVAR [19], and FCITMI [2].

The baselines were chosen to cover the categories of Granger

causality-based, constraint-based, and score-based techniques.

VarLiNGAM is Granger causal discovery approach that

combines the non-Gaussian instantaneous model with autore-

gressive models to estimate a structural vector autoregression



(SVAR) model. It is a temporal extension of LiNGAM, where

the model is estimated through a least-square procedure.

Temporal Causal Discovery Framework (TCDF) is a deep

learning-based framework that learns both window and sum-

mary causal graphs using an attention-based convolutional

neural network. Their model has four steps: Time Series

Prediction, Attention Interpretation, Causal Validation, and

Delay Discovery. It uses different independent attention-based

CNNs, with the same architecture, to predict the different time

series in the data. We have used the hyperparameter values as

suggested by the authors to run our synthetic data: a kernel

of size 4, a dilation coefficient equal to 4, 1 hidden layer, a

learning rate of 0.01, and 5000 epochs.

DYNOTEARS is a method for learning dynamic Bayesian

networks that can simultaneously estimate both contempora-

neous (intra-slice) and time-lagged (inter-slice) relationships

between the variables in time series data. It is a score-based

technique that optimizes by minimizing a loss, based on the

acyclicity constraint. We have set the hyperparameters to their

recommended values for all the experiments.

Generalized vector autoregression (GVAR) is also a score-

based framework for learning non-linear multivariate Granger

causality using an extension of self-explaining neural networks

(SENNs). The uniqueness of this method is that, apart from

inferring the causal relations, GVAR can also detect signs of

Granger-causal effects and inspect their variability over time.

The authors used K-layered multilayer perceptrons (MLPs) to

represent the non-linear function of the vector autoregression

for lag K. They train two different GVAR models with original

and time-reversed data for more stable structure identification

in order to deduce the final output binary relationship. We used

all the hyperparameter values recommended by the authors for

their experiments on linear VAR: 2 hidden layers, each of size

50, 64 batch sizes, 0.0001 learning rate, and 1000 training

epochs.

FCITMI is a constraint-based method that learns summary

causal graphs on time series by combining the two famous

algorithms PC and FCI. They use a new mutual information

measure determined by a sliding window technique for the

conditional independence test. However, they assume first-

order self-causation of the time series, unlike our method. The

result of FCITMI is a PAG that outputs a matrix that includes

an undetermined relationship. Thus, we ignore all undirected

edges of their output graph to convert their result to a summary

causal graph comparable with our method.

Since VarLiNGAM, DYNOTEARS, and TCDF output win-

dow causal graphs, we convert them to a summary graph by

considering an edge from one variable to another if there’s

an edge with any lag between the corresponding variables in

the window causal graph. The rest of the methods provides a

summary causal graph that can be directly compared with our

method.

C. Datasets

1) Synthetic Data: We generate synthetic data based on two

settings: Syn-1 is the scalar-valued time series dataset where

each of the variables in the time series is one-dimensional;

Syn-2 is the multidimensional time series dataset, as discussed

below. This aims to assess NTiCD’s performance in two areas:

first, how it compares with the state-of-the-art approaches for

inferring the summary causal graph; second, how it measures

up to itself for scalar and vector-valued variables. The sub-

sequent discussion includes a thorough explanation of data

production and experimental findings.

Syn-1. In this setting, we construct multivariate data with

scalar values using the approach outlined below:

Xt = AT
5∑

j=1

βj cos(Xt−j + 1) + ε (7)

where Xt represents a vector of d variables at time step t, β is

the regression coefficient, and ε represents standard Gaussian

noise. The noise scale is less than 1 and is proportional to

the value of d. The cos function is used to create a non-linear

relationship between time series. We use a window size of

5 and define the initial values X0:4 at random. We generate

multiple datasets with different underlying causal graphs and

different numbers of nodes by selecting different ground truth

adjacency matrices A randomly.

Syn-2. In this setting, we generate multisequence time series

data in a way similar to Syn-1, with the exception that the

variables have multiple features as shown in Eq. (8).

Xt[s] = AT
5∑

j=1

βs
j cos(Xt−j [s] + 1) + ε[s] (8)

where Xt[s] represents the sth feature at time-step t, which

is a vector of size d. The underlying causal structure of all s-

sequences is the same, with only the regression coefficients

and noise being different (as indicated by ε[s]). With this

configuration, we examine the vector-valued case of NTiCD.

This means that the dimension of each of our data sets is

n × d × s. In our experiments, we use the s = 5 features.

Our model architecture is able to handle multi-dimensional

data and all the preprocessing and computations are done in

a similar way to Syn-1.

2) Real Data: To see how NTiCD performs in a real-

world setting, we apply our model to the Netsim dataset

[27]. It is made up of realistic simulated functional magnetic

resonance imaging (fMRI) time series data that represents the

blood-oxygen-level-dependent (BOLD) across several regions

of the human brain. The underlying connectivity in this case

demonstrates the causal relationships between the various

brain regions, hence the adjacency matrix here depicts the

connection relationship and the nodes represent various brain

regions. The dataset consists of simulations of a large number

of different brain areas and underlying causal matrices, from

which we use the third simulation Sim-3.mat. This data set

includes samples from 15 different brain areas, each of which

has a length of 200 for 50 participants. We adopted this

simulation because the underlying causal graph is the same

for all of the subjects.



TABLE I: Hyperparameter values used for training NTiCD

with different datasets.

Experiment d h1 # Layers LR Batch-size Epochs

Syn-1
6 128 5 10−5 128 1500

10, 20, 50 128 5 10−5 128 3000
Syn-2 6, 10 128 5 10−5 128 10000

Netsim data 15 50 2 10−4 16 10000

d = no. of variables, h1 = size of LSTM layer

TABLE II: The performance of NTiCD for multisequence data

of Syn-2.

Data Accuracy Precision Recall F1-score

6-var 0.81 ± 0.06 0.87 ± 0.11 0.64 ± 0.02 0.73 ± 0.12
10-var 0.86 ± 0.4 0.94 ± 0.03 0.64 ± 0.08 0.76 ± 0.07

D. Results

We evaluate the performance of our model in terms of

four metrics: accuracy, precision, recall, and F1-score. The

hyperparameters used for training NTiCD for each of the

datasets discussed in the above subsection are provided in

Columns 3-7 of Table I, where d is the number of variables,

h1 is the size of each layer, # Layers indicates the number

of layers of LSTM, and LR denotes learning rate. We used a

smaller dimension of the hidden layer and mini-batch size for

the Netsim dataset since the length of each data is only 200.

1) Evaluating Causal Discovery Performance: First, we

perform experiments with single sequence data according to

Syn-1 to evaluate the performance of NTiCD in discovering

the summary causal graph. The results compared with the five

baselines for synthetic data with 6 and 10 variables are shown

in Fig. 3. We show the mean and standard deviation of 3

simulations for each number of variables in our experiments

where we trained the model separately on 3 different causal

graphs for each variable number. As can be seen, NTiCD

produces the best F1-score, precision, and accuracy among

all methods in both the 6-variable and 10-variable settings.

VarLiNGAM and DYNOTEARS have high recall but low

precision, implying that they tend to predict more edges in the

graph. On the other hand, TCDF produces the second highest

precision but extremely low recall, implying that it tends to

predict a sparse graph.

Next, we inspect the behavior of NTiCD for multisequence

data as generated in Syn-2. We provide the results of 6 and 10-

variable multisequence data in Table II. Since all the baselines

are not compatible with multi-dimensional data, we only show

the results of our method. Similarly, we compute the mean

and standard deviation of the results across 3 simulations for

three different causal graphs. The results show that NTiCD is

well-suited for multidimensional variables and performs better

compared to single sequence data, implying that NTiCD is

capable of leveraging the advantage of multisequence data.

We apply our model to the Netsim dataset to assess its

performance in real world setting. The results are provided

in Fig. 4, where we show the mean values of the simulation

TABLE III: Evaluating the scalability of NTiCD, TCDF, and

DYNOTEARS with single sequence data.

Method d Accuracy Precision Recall F1-score

TCDF

6 0.69 ± 0.032 0.61 ± 0.15 0.39 ± 0.07 0.48 ± 0.09
10 0.56 ± 0.03 0.53 ± 0.40 0.12 ± 0.07 0.16 ± 0.07
20 0.52 ± 0.01 0.64 ± 0.08 0.12 ± 0.13 0.07 ± 0.04
50 0.50 ± 0.01 0.39 ± 0.11 0.009 ± 0.01 0.02 ± 0.01

DYNOTEARS

6 0.49 ± 0.04 0.42 ± 0.02 0.94 ± 0.10 0.58 ± 0.03
10 0.43 ± 0.11 0.41 ± 0.09 0.74 ± 0.43 0.46 ± 0.11
20 0.54 ± 0.03 0.57 ± 0.06 0.28 ± 0.12 0.36 ± 0.09
50 0.05 ± 0.01 0.5 ± 0.06 0.16 ± 0.12 0.23 ± 0.25

NTiCD

6 0.80 ± 0.04 0.71 ± 0.07 0.78 ± 0.12 0.74 ± 0.06
10 0.69 ± 0.12 0.64 ± 0.09 0.65 ± 0.14 0.64 ± 0.11
20 0.56 ± 0.02 0.55 ± 0.04 0.50 ± 0.02 0.52 ± 0.03
50 0.50 ± 0.01 0.50 ± 0.01 0.37 ± 0.03 0.43 ± 0.02

of five data (subjects 1-5). We also provide the performance

results of the five baseline methods. We have used the hy-

perparameter values for the baselines as suggested by the

authors in their studies. For VarLinGAM, we use α = 0.01
and τ = 1. For DYNOTEARS, we set the τw value to 0.3, and

use other hyperparameters values as before. We changed the

kernel size to 1, the learning rate to 10−3, and used 2000

epochs for TCDF. In the case of GVAR, the batch-size is

changed to 256 and the number of hidden layers to 1, while

the rest of the hyperparameters are the same as discussed in

Section IV-B. We used a slightly smaller LSTM (as provided

in Table I) for this dataset as it has a smaller number of time

steps (200), thus a complex architecture would overfit the data

resulting in worse performance. As we see from the results in

Fig. 4, the best-performing model in terms of F1-score and

accuracy is VarLinGAM, indicating that the fMRI data follow

a linear pattern [2]. However, NTiCD still achieves comparable

performance to VarLinGAM and produces the highest recall

among all methods.

2) Evaluating Scalability: In order to evaluate the scalabil-

ity of NTiCD, we generate 20 and 50 variable synthetic data

following Syn-1. We compare the results of NTiCD with those

of DYNOTEARS and TCDF as other baselines do not scale

well to large datasets. The summary of the results is provided

in Table III. From these simulations, we can see that the

performance of NTiCD does not degrade too much when the

number of variables increases. It outperforms DYNOTEARS

and TCDF in most cases in terms of all metrics. On the other

hand, the performance of TCDF degrades significantly when

the number of variables is 50, producing almost zero recall.

3) Evaluating Impact of α: Finally, we inspect the signif-

icance of varying the parameter α, as defined in Eq. (4), on

the overall performance of NTiCD for causal graph discovery.

We use synthetic data with six variables for this purpose. We

run several experiments with varying α on three causal graphs,

and show the variation of mean performance for a range of

α in Fig. 5. As seen in the graph, the peak performance is

obtained at α = 0.9, which has been used for simulation in

all our experiments.



(a) 6-variable

(b) 10-variable

Fig. 3: Causal discovery performance of different methods on Syn-1 data with both 6-variable and 10-variable settings in terms

of F1-score, precision, recall, and accuracy.

Fig. 4: Causal discovery performance of different methods on Netsim dataset in terms of F1-score, precision, recall, and

accuracy.

V. CONCLUSION

In this paper, we proposed a graph neural network-based

causal discovery algorithm, referred to as NTiCD. It is a

score-based method that learns a summary causal graph from

multivariate temporal data using the principle of Granger

Causality. It applies an encoder-decoder model where we use

an LSTM as the encoder to learn the complex hidden features

of the variables in the observational time series. These features

are then passed to a graph convolutional network (GCN) layer

to aggregate the message from all nodes to pass to a simple

MLP that works as the decoder. Thus, the model uses time

series prediction to discover the causal structure in the data.

We conducted several experiments with synthetic and real-

world datasets to evaluate the performance of our model.

NTiCD is applicable to both single and multi-sequence data,

as well as to both linear and non-linear data. We proved the

performance of the proposed method for various datasets by

comparing it with five other state-of-the-art baseline methods.

Since NTiCD does not presume acyclicity, it can also identify

self-loops in the data. One limitation of the model is data



Fig. 5: The change in causal discovery performance of NTiCD

with the variation of α in terms of accuracy, precision, recall,

and F1-score.

scaling: NiTCD does not perform as well as it does for small

datasets. In future work, we will improve the data efficiency

of the model by learning hidden representations for exogenous

variables.
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