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Abstract—Causal structure learning from observational data
is an active field of research over the past decades. Although
many approaches exist, such as constrained-based methods and
score-based methods including the emerging deep learning-based
methods, most of them address the static, non-dynamic setting. In
this paper, we propose a score-based causal discovery algorithm
named Neural Time-invariant Causal Discovery (NTiCD), which
learns summary causal graphs from multivariate time series
data based on the principle of Granger causality. NTiCD is
a continuous optimization-based technique that leverages the
power of deep neural networks to compute the score values.
To this end, we use an LSTM to obtain the hidden non-linear
representations of temporal variables in the time series data.
Then, these features are aggregated using graph convolutional
networks and decoded using an MLP that outputs the forecast of
the future data values in the time series. The model is optimized
based on a score function subject to regularized loss. The final
output is a summary causal graph that captures the time-
invariant causal relations within and between time series. We
evaluate the performance of our algorithm on several synthetic
and real datasets. The result analysis over a number of different
datasets demonstrates the improvement in the accuracy of causal
structure discovery of temporal data compared to other state-of-
the-art methods.

Index Terms—causal discovery, time series, summary causal
graph, encoding-decoding framework, graph convolutional net-
works

I. INTRODUCTION

Inferring the causal relations from observational data is
a critical problem in many fields of science, economics,
philosophy, etc. [8]. The traditional way of detecting causal-
ity involved carrying out controlled randomized experiments
to introduce interventions that are often expensive, time-
consuming, and in many cases, unethical or impossible [23].
With the widespread availability of digital data these days,
it has become easier to extract causal information from the
analysis of such data. Thus, data-driven approaches utilizing
machine learning and artificial intelligence techniques have
come to play a vital role in causal discovery. Existing causal
discovery approaches can be categorized into two major
classes, constraint-based and score-based methods. The first
approach involves conditional independence testing between
the variables to determine the causal direction according to
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some constraints [14]. The latter approach like [12] learns a
Bayesian network by optimizing some predefined score func-
tion that assigns a score to each causal graph. Specifically, the
deep learning extension to the score-based approach leverages
the advantages of continuous optimization to minimize the
score function (see survey [32]).

Although past studies of causality mostly involved non-
temporal static data, many applications around us involve
temporal data, for example, identifying causality in climate
data [16], or analyzing influences among different regions of
the brain using fMRI [27]. The causal discovery of time series
involves identifying the underlying causal relationships among
the variables in the temporal data. Models that can handle
temporal data to infer causal relations are an important part
of the field of causal discovery.

There has been increasing attention to causal discovery
in time series data in recent decades [3], [8], [11]. One
major principle of causal discovery in the temporal domain is
Granger causality [9]. It states that a time series is a cause of
another time series if the past values of the former can predict
the future values of the latter, assuming that there are no
hidden confounders. Based on that, both constraint-based and
score-based approaches have been proposed. Deep learning
methods for temporal causal discovery have also been studied
in recent years [1], [17], [19], [20]. However, due to complex
dynamics in time series, most methods are unable to capture
the time-invariant causal relationship encoded in the data. They
usually infer multiple window causal graphs with specific time
lags instead of a single summary causal graph that captures
the causal relations within and between time series without
specifying the time information. In addition, these models are
often limited to assumptions of linear equations.

In this paper, we propose a score-based causal discovery
algorithm named Neural Time-invariant Causal Discovery
(NTiCD). It discovers time-invariant causal structures as sum-
mary causal graphs for multivariate time series. Our method
leverages the power of deep neural networks and continuous
optimization. The architecture of NTiCD consists of three
main components: encoding, aggregation, and decoding. The
encoding component is a long short-term memory (LSTM)
network that aims to obtain the hidden non-linear represen-
tations of temporal variables in the time series data. The ag-
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gregation component is a graph convolutional network (GCN)
with the adjacency matrix of the causal graph as trainable
parameters. It takes the representations from the encoding
component as the input and outputs the aggregated information
from the local neighborhood of each temporal variable. The
decoding component is a multilayer perceptron (MLP) that
predicts future data values in the time series based on aggre-
gated encoded information. The loss function is regularized to
control the magnitude of the adjacency matrix. Finally, we
conduct end-to-end training to simultaneously optimize the
parameters of all networks as well as the adjacency matrix
of the causal graph.

Compared with existing approaches, our method yields a
number of benefits. First, the output of NTiCD is a summary
causal graph that does not assume stationarity, i.e., causal
dependencies are repeated with the same time lag at all time
points, or make any specific assumptions on the lag values.
Second, NTiCD does not assume linear relations between time
series and can be applied to non-linear equations. Third, the
model does not assume that self-causes always exist and can
infer self-causes for each temporal variable.

We conduct experiments using both synthetic and real-world
datasets and compare NTiCD with several baseline methods.
The synthetic data are generated according to predefined non-
linear functions and random summary causal graphs. For real-
world data, we use the Netsim dataset [27] which is made up
of realistic simulated functional magnetic resonance imaging
(fMRI) time series. We evaluate the performance of causal
discovery based on multiple metrics. The results demonstrate
an improvement in the performance of NTiCD over the state-
of-the-art methods.

II. RELATED WORK

The earliest approach for time series causal discovery is the
Granger causality that was introduced almost half a century
ago [9], [26]. Due to the limitation of its applicability to only
linear processes, as addressed by Granger himself, several
extensions have been proposed since then [17], [18], [29]-[31].
Many other methods for Granger causal discovery use vector
autoregressive methods including [10], [13], [22]. VarLinGAM
is a method proposed in [13] that estimates the structural vec-
tor autoregressive (SVAR) models by generalizing the linear
non-Gaussian acyclic model (LiINGAM) [25]. The authors use
the theory of non-Gaussianity to discover causality in temporal
data, however, their method assumes linear models. TCDF
[20] extends the theory of Granger causality to non-linear
settings by using deep learning models. An attention-based
convolutional network is adopted and the causal interpretation
is made based on the kernel weights and attention score
independently for each time series. However, these traditional
Granger causality approaches generally suffer from scalability
issues and do not perform well for a large number of variables.

Constraint-based algorithms can also be extended to time
series data. Early constraint-based algorithms like PC and
Fast Causal Inference (FCI) [28] build a causal graph us-
ing conditional independence testing with Markov condition

and faithfulness assumption. Several algorithms have been
developed based on PC and FCI, for example, PCMCI [24],
LPCMCI [7], tsFCI [5], pu-PC [1], and one of the most
recent FCITMI [2]. FCITMI addresses the problem of learning
summary causal graphs by combining PC-like and FCI-like
algorithms along with some entropy reduction principles. It
uses a temporal mutual-information measure using a sliding-
window technique. However, it is extremely slow for a large
number of variables as it combines two constraint-based
approaches that have large time complexities.

More recent approaches utilize deep learning models to
extend the score-based method. DYNOTEARS [22] proposes
a score-based technique to learn an SVAR model, which
is also known as a dynamic Bayesian network (DBN), to
infer a causal graph from time series. Although the net-
work scales quite well with an increasing number of nodes,
DYNOTEARS is based on a linear VAR model similar to
FCITMI and VarLinGAM. A different framework for inferring
multivariate Granger causality is proposed by [19] using Self-
explaining Neural Networks (SENNs). Their model, referred to
as GVAR, allows the detection of Granger-causal effect signs,
i.e., applicable to both original and time-reversed data. These
approaches decompose the temporal causal relations into dif-
ferent slices where each slice represents the causal relation
with a specific time lag. Different from these approaches, our
method analysis the causal relations between time series as a
whole and directly outputs a summary causal graph.

Other related approaches include Amortized Causal Discov-
ery (ACD) [17], which learns causal relations from data as
different graphs but with shared dynamics using an encoder-
decoder module. A similar approach is proposed in NSM
[32] for both video and time-series data. Minimum Predictive
Information Regularization (MPIR) [33] is another method
that is based on minimizing a mutual information objective
between each pair of time series given other time series.
A similar information-theoretic approach is proposed by [4],
which is a greedy-based algorithm that detects causality by
data compression.

III. METHOD

Consider a dataset X consisting of d time series of equal
length n, such that each time series i is a sequence represented
as X' = X(., ) = {zf,21,...,2(, )} For simplicity,
we consider the case of a one-dimensional sequence, i.e., at
each time step t #i € X' is a scalar. However, our method
can be directly applied to multidimensional sequence cases, as
will be shown in the experiments. A summary causal graph
is a directed graph where each node in the graph represents
a time series. An edge pointing from one node to another
represents that the history of the former time series causes the
future values of the latter time series in any form and with
any lag. If an edge points from one node to itself (i.e., a self-
loop), it means that this time series has a self-cause. We do not
assume that self-causes always exist in every time series. Fig. 1
shows an example of a summary causal graph that consists of
three nodes: X', X2, and X3, each of which represents a

Authorized licensed use limited to: University of Arkansas. Downloaded on March 21,2024 at 15:22:55 UTC from IEEE Xplore. Restrictions apply.



X2 x3

Fig. 1: An example of summary causal graph.

time series. Here, an arrow from X! to X2 indicates that X!
causes X 2. One can find in the graph the cycles [e.g., X' —
X? — X3], the self-loops [X' — X'], the colliders| X2 —
X! + X3], and the confounders [X' < X? — X?3]. The
goal of causal discovery is to learn a summary causal graph
G from the data that captures the causal relationship among
time series. We leverage the Granger causality for this purpose.

A. Granger Causality

Granger causality is one of the most basic principles in
inferring causal relationships among observational time series
data. It is based on the assumption that causes must precede
their effects in terms of time steps. According to the Granger
causality, if a time series X' ‘Granger’ causes time series
X? then the past of X' will contain statistically significant
information to facilitate the prediction of future values of X2,
The classic Granger causality is mathematically formulated
using linear regression models of stochastic processes [9]. For
example, let X2 be defined by the bivariate linear autoregres-
sive model as follows:

ay = Za(XézﬁXg:j) té
J<t
where « is a linear autoregressive function and €, represents
independent noises. Then, X 1 Granger causes X 2 if the
statistical hypothesis test >~ _, a(Xg,;, Xg,;) is equivalent to
> <1 (X3;) in predicting x7 is rejected.

The major limitation of the classic Granger causality is
that it is not applicable to dynamic non-linear cases. Next,
we introduce the Neural Time-invariant Causal Discovery
(NTiCD) framework that uses deep neural networks to replace
the linear autoregressive function and leverages continuous
optimization to discover Granger causality and the summary
causal graph.

B. Overview of NTiCD

NTiCD is an encoding-decoding framework for learning the
summary causal graph as a d x d adjacency matrix A from the
time series data. Inspired by recent research in static causal
discovery (e.g., [6], [15], [21], [34]-[36]), NTiCD consists
of three components. The first component is an encoding
module, which aims to learn a non-linear hidden representation
to capture the historical information in the time series until
time t. The second component is an aggregation module that
aggregates information from the local neighborhood according
to the adjacency matrix A. The third component is a decoding
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Fig. 2: An overview of the architecture of NTiCD.

module that utilizes the aggregated historical information to
make predictions of future values in the time series. All three
components will be updated simultaneously in the training pro-
cess according to a regularized loss that measures the accuracy
of the prediction and the magnitude of the adjacency matrix
A. Finally, matrix A is converted to the directed graph based
on a certain thresholding technique. The rationale of NTiCD
is that when A is closer to the true causal graph, more relevant
information will be aggregated by the aggregation module
and used by the decoding module for making predictions.
Meanwhile, when the encoding and decoding modules are
updated, they can better capture the significant information for
the prediction. After the training converges, it is expected that
A becomes close to a summary causal graph that demonstrates
Granger causality.

An overview of NTiCD is demonstrated in Fig. 2 which
explains how the input time series is fed to NTiCD to optimize
the loss function and predict the causal relationship in terms
of a summary causal graph via the three components. Below
we explain each component in detail.

C. Architecture of NTiCD

Encoding. In this module, the historical information in
the time series is extracted as non-linear representations. We
leverage a deep neural network to learn what information
should be encoded so that we do not make assumptions about
the time lag of the causal dependencies or linear relations. It
is worth noting that when selecting the network architecture,
the network must be powerful enough to capture significant
information, yet it cannot be too powerful and memorizes
the whole sequence of data. For this purpose, we use a
multi-layer long short-term memory (LSTM) network and
consider a sliding window of size w for encoding. Define
Xy (ttw—1) = {X;(t+w_1); ... ;Xtd:(ter_l)} that consists of
all time series in the sliding window. An LSTM network fy
maps Xy (44w—1) € R**4 to H,,. € R"*4 hidden features
where 0 indicates the parameter of the model, i.e.,

Henc = fQ(Xt:(H»wfl))- (1)
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For each sliding window, we reset all hidden state values to
zero before the computation of encoding. The values of the
last hidden layer H.,. are passed to the next module for the
aggregation of messages.

Aggregation. The idea of this module is to use the adja-
cency matrix A to represent a weighted summary graph where
elements in column j represent the parental contributions of
all time series to time series j. Then, all time series are
weighted by A and aggregated using a graph neural network.
To normalize the weights, we first define a matrix A € R4
as trainable parameters that are randomly initialized. It is then
passed through a sigmoid function o to convert each of the
weights to a probability that represents the normalized weights
of each edge in the causal graph, i.e., A = o(A).

One challenge of this module is that the model may not
be sensitive to the accuracy of the adjacency matrix and it
may tend to aggregate the information from all time series. To
improve the performance of the model, we consider two parts
in message aggregation. The first part is a one-layered graph
convolutional network (GCN) that provides an aggregation of
the encoded information from the input matrix H.,. directly
according to the parents of each time series given in A.
The aggregated features are then passed through a linear
transformation, as shown in Eq. (2) where W; € Rhixhs jg
the parameter matrix. The second part is a two-layer GCN as
shown in Eq. (3), where Wy € RM*"2 and W5 € R2xhs
are weight matrices of the stacked layers and ReLU is the
activation function. The two parts are balanced by a parameter
« before summing together to adjust the effect of each term
as required. In this way, the aggregation layer accumulates the
messages from all variables and passes them to the decoder
module. The reason we consider the second part is that it
represents how the predicted features of the parents can be
used to predict the future values of a time series. It increases
the sensitivity of the model to the accuracy of the adjacency
matrix A to the true causal graph since the more accurate the
matrix A is, the more useful predicted features of the parents
can be obtained. In the experiments, we observed that o = 0.9
achieved the best performance.

Haggl = AHencWI ()
HaggQ = AReLU(AHpn('WQ)W3) (3)
Hygg = - Hoggr + (1 — @) - Haggo “)

Decoding. This module is a multilayer perceptron (MLP)
network with one fully connected layer followed by a sigmoid
layer to output a normalized prediction. The MLP decodes
the aggregated message from the previous module into the
predicted values of the time series at the next time step, i.e.,

Xter = g¢(Hagg)- (5)
D. Loss Function and Thresholding

To learn the causal structure A, we define the score function
as a regularized loss as shown in Eq. (6):
n—w—1
Y Kirw—Xipw) A All2+ (A= 4)%), (6)
t=0

1

n—w

where A represents the column-wise mean of A. The loss
function consists of three parts. The first part is the mean
squared error that measures the accuracy of the reconstruction
of the time series data. The second part is the L2 norm
that controls the magnitude of matrix A. The last part is a
regularization term that aims to reduce the difference between
each value in A and the mean of the column to which this
value belongs. The purpose is to use the mean of each column
as the threshold for determining the edges in the causal graph.
Finally, we convert A to a summary causal graph such that
there is an edge pointing from time series ¢ to time series j if
A; j is greater than the mean of column j.

E. Training

The entire model is continuously optimized by gradient
descent to minimize the above loss function. The data are first
normalized to fall in the range [0-1] before the training. Then,
as mentioned above, a sliding-window technique is used to
preprocess the input data. We use a sliding window of length
w to divide each time series into (n — w) slices, moving the
window by 1 step each time. As a result, the training data
is giVCl’l by X = {X():(wfl)axlzwa ---aX(nfwfl):(n72)}' For
each window, the model predicts the values of the next time
step in the time series. Thus, the target value for prediction
is defined as X; for each window X (;_,).¢—1), such that
Y ={Xuw, Xwi1,., Xn_1}. In the experiments, we use the
window size w = 5. The preprocessed X is fed to our model
batch-wise in a sequential manner, one variable after another.
During the training, the adjacency matrix A is updated such
that the weights of the correct parents are increased and the
prediction error is minimized. The training stops when the loss
converges.

IV. EXPERIMENTS
A. Experimental Setting

In the experiments, we perform gradient descent using the
full dataset for every training iteration. For the GCN layer,
we use hy = hy = hsz, with a = 0.9. We train the
model to learn the adjacency matrix; the normalized matrix is
converted to a binary matrix using the column-wise mean as
the threshold. We evaluate our model on several synthetic data
and a real-world dataset. All the experiments are implemented
in PyTorch and run on a Ubuntu 20.04.4 LTS computer with
Intel(R) Core(TM) i9-10900X CPU and NVIDIA GeForce
RTX 3080 10GB GPU. All the data and code are available
at https://anonymous.4open.science/r/NTiCD/.

B. Baselines

We compare NTiCD with five baselines, VarLinGAM [13]
TCDF [20], DYNOTEARS [22], GVAR [19], and FCITMI [2].
The baselines were chosen to cover the categories of Granger
causality-based, constraint-based, and score-based techniques.

VarLiNGAM is Granger causal discovery approach that
combines the non-Gaussian instantaneous model with autore-
gressive models to estimate a structural vector autoregression
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(SVAR) model. It is a temporal extension of LINGAM, where
the model is estimated through a least-square procedure.

Temporal Causal Discovery Framework (TCDF) is a deep
learning-based framework that learns both window and sum-
mary causal graphs using an attention-based convolutional
neural network. Their model has four steps: Time Series
Prediction, Attention Interpretation, Causal Validation, and
Delay Discovery. It uses different independent attention-based
CNNs, with the same architecture, to predict the different time
series in the data. We have used the hyperparameter values as
suggested by the authors to run our synthetic data: a kernel
of size 4, a dilation coefficient equal to 4, 1 hidden layer, a
learning rate of 0.01, and 5000 epochs.

DYNOTEARS is a method for learning dynamic Bayesian
networks that can simultaneously estimate both contempora-
neous (intra-slice) and time-lagged (inter-slice) relationships
between the variables in time series data. It is a score-based
technique that optimizes by minimizing a loss, based on the
acyclicity constraint. We have set the hyperparameters to their
recommended values for all the experiments.

Generalized vector autoregression (GVAR) is also a score-
based framework for learning non-linear multivariate Granger
causality using an extension of self-explaining neural networks
(SENNSs). The uniqueness of this method is that, apart from
inferring the causal relations, GVAR can also detect signs of
Granger-causal effects and inspect their variability over time.
The authors used K-layered multilayer perceptrons (MLPs) to
represent the non-linear function of the vector autoregression
for lag K. They train two different GVAR models with original
and time-reversed data for more stable structure identification
in order to deduce the final output binary relationship. We used
all the hyperparameter values recommended by the authors for
their experiments on linear VAR: 2 hidden layers, each of size
50, 64 batch sizes, 0.0001 learning rate, and 1000 training
epochs.

FCITMI is a constraint-based method that learns summary
causal graphs on time series by combining the two famous
algorithms PC and FCI. They use a new mutual information
measure determined by a sliding window technique for the
conditional independence test. However, they assume first-
order self-causation of the time series, unlike our method. The
result of FCITMI is a PAG that outputs a matrix that includes
an undetermined relationship. Thus, we ignore all undirected
edges of their output graph to convert their result to a summary
causal graph comparable with our method.

Since VarLiNGAM, DYNOTEARS, and TCDF output win-
dow causal graphs, we convert them to a summary graph by
considering an edge from one variable to another if there’s
an edge with any lag between the corresponding variables in
the window causal graph. The rest of the methods provides a
summary causal graph that can be directly compared with our
method.

C. Datasets

1) Synthetic Data: We generate synthetic data based on two
settings: Syn-1 is the scalar-valued time series dataset where

each of the variables in the time series is one-dimensional;
Syn-2 is the multidimensional time series dataset, as discussed
below. This aims to assess NTiCD’s performance in two areas:
first, how it compares with the state-of-the-art approaches for
inferring the summary causal graph; second, how it measures
up to itself for scalar and vector-valued variables. The sub-
sequent discussion includes a thorough explanation of data
production and experimental findings.

Syn-1. In this setting, we construct multivariate data with
scalar values using the approach outlined below:

5
Xy =AY Bjcos(X;;+1)+e 7

j=1

where X; represents a vector of d variables at time step ¢, [ is
the regression coefficient, and e represents standard Gaussian
noise. The noise scale is less than 1 and is proportional to
the value of d. The cos function is used to create a non-linear
relationship between time series. We use a window size of
5 and define the initial values Xg.4 at random. We generate
multiple datasets with different underlying causal graphs and
different numbers of nodes by selecting different ground truth
adjacency matrices A randomly.

Syn-2. In this setting, we generate multisequence time series
data in a way similar to Syn-1, with the exception that the
variables have multiple features as shown in Eq. (8).

X;[s] = AT Z i cos(Xi—j[s] + 1) + e[s] (8)

j=1

where X, [s] represents the sth feature at time-step ¢, which
is a vector of size d. The underlying causal structure of all s-
sequences is the same, with only the regression coefficients
and noise being different (as indicated by e[s]). With this
configuration, we examine the vector-valued case of NTiCD.
This means that the dimension of each of our data sets is
n X d x s. In our experiments, we use the s = 5 features.
Our model architecture is able to handle multi-dimensional
data and all the preprocessing and computations are done in
a similar way to Syn-1.

2) Real Data: To see how NTiCD performs in a real-
world setting, we apply our model to the Netsim dataset
[27]. It is made up of realistic simulated functional magnetic
resonance imaging (fMRI) time series data that represents the
blood-oxygen-level-dependent (BOLD) across several regions
of the human brain. The underlying connectivity in this case
demonstrates the causal relationships between the various
brain regions, hence the adjacency matrix here depicts the
connection relationship and the nodes represent various brain
regions. The dataset consists of simulations of a large number
of different brain areas and underlying causal matrices, from
which we use the third simulation Sim-3.mat. This data set
includes samples from 15 different brain areas, each of which
has a length of 200 for 50 participants. We adopted this
simulation because the underlying causal graph is the same
for all of the subjects.
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TABLE I: Hyperparameter values used for training NTiCD
with different datasets.

Experiment d hi1 #Layers LR  Batch-size Epochs
Svn-1 6 128 5 10-° 128 1500
Y 10, 20, 50 128 5 10—° 128 3000
Syn-2 6, 10 128 5 10—° 128 10000
Netsim data 15 50 2 10~ 16 10000

d = no. of variables, h1 = size of LSTM layer

TABLE II: The performance of NTiCD for multisequence data
of Syn-2.

Data Accuracy Precision Recall F1-score

6-var  0.81 £+0.06 0.87+0.11 064002 0.73 +0.12

10-var  0.86 + 04 094 +£0.03 0.64 £0.08 0.76 £ 0.07
D. Results

We evaluate the performance of our model in terms of
four metrics: accuracy, precision, recall, and Fl-score. The
hyperparameters used for training NTiCD for each of the
datasets discussed in the above subsection are provided in
Columns 3-7 of Table I, where d is the number of variables,
hy is the size of each layer, # Layers indicates the number
of layers of LSTM, and LR denotes learning rate. We used a
smaller dimension of the hidden layer and mini-batch size for
the Netsim dataset since the length of each data is only 200.

1) Evaluating Causal Discovery Performance: First, we
perform experiments with single sequence data according to
Syn-1 to evaluate the performance of NTiCD in discovering
the summary causal graph. The results compared with the five
baselines for synthetic data with 6 and 10 variables are shown
in Fig. 3. We show the mean and standard deviation of 3
simulations for each number of variables in our experiments
where we trained the model separately on 3 different causal
graphs for each variable number. As can be seen, NTiCD
produces the best Fl-score, precision, and accuracy among
all methods in both the 6-variable and 10-variable settings.
VarLINGAM and DYNOTEARS have high recall but low
precision, implying that they tend to predict more edges in the
graph. On the other hand, TCDF produces the second highest
precision but extremely low recall, implying that it tends to
predict a sparse graph.

Next, we inspect the behavior of NTiCD for multisequence
data as generated in Syn-2. We provide the results of 6 and 10-
variable multisequence data in Table II. Since all the baselines
are not compatible with multi-dimensional data, we only show
the results of our method. Similarly, we compute the mean
and standard deviation of the results across 3 simulations for
three different causal graphs. The results show that NTiCD is
well-suited for multidimensional variables and performs better
compared to single sequence data, implying that NTiCD is
capable of leveraging the advantage of multisequence data.

We apply our model to the Netsim dataset to assess its
performance in real world setting. The results are provided
in Fig. 4, where we show the mean values of the simulation

TABLE III: Evaluating the scalability of NTiCD, TCDF, and
DYNOTEARS with single sequence data.

Method | d

6 0.69 +0.032 0.61 +0.15
10 0.56 £ 0.03 0.53 = 0.40
20 0.52 £0.01 0.64 = 0.08
50 0.50 £0.01 0.39 +0.11

6 049 +0.04 042 +0.02
10 043 £0.11 041 = 0.09
20 0.54 £0.03 0.57 = 0.06
50 0.05 0.0l 0.5=+0.06

6 0.80+0.04 0.71 +0.07
10 0.69 = 0.12 0.64 = 0.09
20 0.56 = 0.02 0.55 = 0.04
50 0.50 £ 0.01 0.50 = 0.01

Recall

0.39 £ 0.07
0.12 £ 0.07
0.12 £ 0.13
0.009 £ 0.01

0.94 £ 0.10
0.74 £ 0.43
0.28 £ 0.12
0.16 £ 0.12

0.78 £ 0.12
0.65 £ 0.14
0.50 £ 0.02
0.37 £ 0.03

F1-score

0.48 £ 0.09
0.16 £ 0.07
0.07 £ 0.04
0.02 £ 0.01

0.58 £ 0.03
0.46 + 0.11
0.36 £ 0.09
0.23 £ 0.25

0.74 £ 0.06
0.64 £ 0.11
0.52 £ 0.03
0.43 £ 0.02

Accuracy Precision

TCDF

DYNOTEARS

NTiCD

of five data (subjects 1-5). We also provide the performance
results of the five baseline methods. We have used the hy-
perparameter values for the baselines as suggested by the
authors in their studies. For VarLinGAM, we use o« = 0.01
and 7 = 1. For DYNOTEARS, we set the 7, value to 0.3, and
use other hyperparameters values as before. We changed the
kernel size to 1, the learning rate to 1073, and used 2000
epochs for TCDF. In the case of GVAR, the batch-size is
changed to 256 and the number of hidden layers to 1, while
the rest of the hyperparameters are the same as discussed in
Section IV-B. We used a slightly smaller LSTM (as provided
in Table I) for this dataset as it has a smaller number of time
steps (200), thus a complex architecture would overfit the data
resulting in worse performance. As we see from the results in
Fig. 4, the best-performing model in terms of Fl-score and
accuracy is VarLinGAM, indicating that the fMRI data follow
a linear pattern [2]. However, NTiCD still achieves comparable
performance to VarLinGAM and produces the highest recall
among all methods.

2) Evaluating Scalability: In order to evaluate the scalabil-
ity of NTiCD, we generate 20 and 50 variable synthetic data
following Syn-1. We compare the results of NTiCD with those
of DYNOTEARS and TCDF as other baselines do not scale
well to large datasets. The summary of the results is provided
in Table IIl. From these simulations, we can see that the
performance of NTiCD does not degrade too much when the
number of variables increases. It outperforms DYNOTEARS
and TCDF in most cases in terms of all metrics. On the other
hand, the performance of TCDF degrades significantly when
the number of variables is 50, producing almost zero recall.

3) Evaluating Impact of o Finally, we inspect the signif-
icance of varying the parameter «, as defined in Eq. (4), on
the overall performance of NTiCD for causal graph discovery.
We use synthetic data with six variables for this purpose. We
run several experiments with varying « on three causal graphs,
and show the variation of mean performance for a range of
a in Fig. 5. As seen in the graph, the peak performance is
obtained at = 0.9, which has been used for simulation in
all our experiments.
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Fig. 3: Causal discovery performance of different methods on Syn-1 data with both 6-variable and 10-variable settings in terms
of Fl-score, precision, recall, and accuracy.
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Fig. 4: Causal discovery performance of different methods on Netsim dataset in terms of Fl-score, precision, recall, and
accuracy.

V. CONCLUSION MLP that works as the decoder. Thus, the model uses time
series prediction to discover the causal structure in the data.
We conducted several experiments with synthetic and real-
world datasets to evaluate the performance of our model.
NTiCD is applicable to both single and multi-sequence data,
as well as to both linear and non-linear data. We proved the
performance of the proposed method for various datasets by
comparing it with five other state-of-the-art baseline methods.
Since NTiCD does not presume acyclicity, it can also identify
self-loops in the data. One limitation of the model is data

In this paper, we proposed a graph neural network-based
causal discovery algorithm, referred to as NTiCD. It is a
score-based method that learns a summary causal graph from
multivariate temporal data using the principle of Granger
Causality. It applies an encoder-decoder model where we use
an LSTM as the encoder to learn the complex hidden features
of the variables in the observational time series. These features
are then passed to a graph convolutional network (GCN) layer
to aggregate the message from all nodes to pass to a simple

Authorized licensed use limited to: University of Arkansas. Downloaded on March 21,2024 at 15:22:55 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5: The change in causal discovery performance of NTiCD
with the variation of « in terms of accuracy, precision, recall,
and F1-score.

scaling: NiTCD does not perform as well as it does for small
datasets. In future work, we will improve the data efficiency
of the model by learning hidden representations for exogenous
variables.
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