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Abstract
Individual phases are commonly considered as the building blocks of materials.
However, the accurate theoretical prediction of properties of individual phases
remains elusive. The top-down approach by decoding genomic building blocks of
individual phases from experimental observations is nonunique. The density
functional theory (DFT), as a state-of-the-art solution of quantum mechanics,
prescribes the existence of a ground-state configuration at 0 K for a given system.
It is self-evident that the ground-state configuration alone is insufficient to describe
a phase at finite temperatures as symmetry-breaking non-ground-state configura-
tions are excited statistically at temperatures above 0 K. Our multiscale entropy
approach (recently terms as Zentropy theory) postulates that the entropy of a phase
is composed of the sum of the entropy of each configuration weighted by its
probability plus the configurational entropy among all configurations. Conse-
quently, the partition function of each configuration in statistical mechanics needs
to be evaluated by its free energy rather than total energy. The combination of the
ground-state and symmetry-breaking non-ground-state configurations represents
the building blocks of materials and can be used to quantitatively predict free
energy of individual phases with the free energy of each configuration predicted
from DFT as well as all properties derived from free energy of individual phases.
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1 | INTRODUCTION

Inspired by the success of Human Genome Project (HGP),[1]

CALPHAD (CALculation of PHAse Diagrams) modeling
method,[2] and CALPHAD-based systems materials
design,[3] the author of the present paper introduced the term
“Materials Genome”® in 2002[4] when incorporating his
company Materials Genome, Inc.,[5] shortly after he joined
the Pennsylvania State University and became the Editor-In-
Chief of the CALPHAD Journal.[6] At the same time, the
author started the integration of first-principle calculations
based on density functional theory (DFT), the CALPHAD

modeling, phase field simulations, and finite element anal-
ysis.[7] The author agreed for the use of Materials Genome
by the US government[8] for the Materials Genome Initiative
(MGI)[9] and trademarked the term.[5]

In the CALPHAD method, the models of Gibbs energies of
individual phases are developed with model parameters
evaluated from computational and experimental thermody-
namic data. The CALPHAD modeling starts from pure ele-
ments to binary and ternary systems, which are then
extrapolated to multicomponent systems, and individual
phases were thus considered by the author as the building
blocks of materials[10] with their free energies[11] and
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diffusivity[12] predicted from DFT-based calculations using
the ground-state configuration.[13] The impact of the CAL-
PHAD approach was reviewed in a recent special issue that
collects the lectures given at the CALPHAD Global 2021
Virtual conference.[14–19] The CALPHAD method was pio-
neered by Kaufman as described in the monograph by Kauf-
man and Bernstein.[2] There are two additional books[20,21]

dedicated to the CALPHAD method and other books[22–25]

that discussed the method. The CALPHAD community con-
sists of the CALPHAD journal, the CALPHAD annual con-
ference, and a nonprofit foundation (CALPHAD, Inc.).[26]

There are well developed commercial tools for CAL-
PHAD modeling and a wide range of CALPHAD databases
for education, research, and industrial applications.[27–31]

The author's group started to develop an automated CAL-
PHAD modeling tool, Extensible Self-optimizing Phase
Equilibria Infrastructure (ESPEI), a while ago with limited
success due to the lack of flexible computational engine.[32]

Recently, the group developed an open-source software
package, PyCalphad, for thermodynamic calculations[33,34]

with capability of inserting new models and used it to
develop a complete new ESPEI code[35,36] for optimizing
model fitness and model parameters and performing uncer-
tainty and sensitivity analysis.[37,38]

It is evident that the author's “Materials Genome”® was
originally used to denote the individual phases as the
building blocks of materials in accordance with the CAL-
PHAD method. The input data for the CALPHAD method
include thermochemical data and phase equilibrium data. In
principle, thermodynamic modeling could be performed with
only thermochemical data as they are the derivatives of free
energy, and their integrations give the free energy of each
phase. However, most of the thermochemical data are
derived from measurements of heat that are with large un-
certainty, and Gibbs energies of individual phases are thus
not accurate enough for accurate prediction of transition
temperatures between phases and compositions of phases in
equilibrium with each other. Consequently, the Gibbs energy
model parameters of all phases need to be refined simulta-
neously using experimentally measured phase transition
data, which limit the predictive power of CALPHAD data-
bases for discovery of new materials.

The natural next step is to seek approaches to accurately
predict the free energies of individual phases so that the
phase equilibrium data are not needed as they are not
available for new materials to be discovered or designed. In
this brief overview, the efforts from the author's group in last
15 years in searching for building blocks for individual
phases are discussed.[4] From the viewpoint of statistical
mechanics, an individual phase can be considered as a sta-
tistical mixture of various configurations that the phase as a
system embraces in accordance with statistical mechanics
developed by Gibbs.[39] Starting from the ground-state
configuration of a system in terms of DFT at 0 K, the sys-
tem embraces symmetry-breaking non-ground-state config-
urations at temperatures above 0 K. With the free energies of
these configurations predicted from the DFT-based

calculations, it is shown that the phase transitions and related
property anomalies can be calculated accurately, showing
remarkable agreement with experimental observations for
magnetic[40–42] and ferroelectric materials,[43] including
singularity at critical points. Consequently, those configura-
tions can be defined as the building blocks and used to
predict unknown properties of individual phases in terms of
the statistical mechanics. Furthermore, the free energies of
individual configurations should be used in calculations of
their partition functions since those configurations are not
pure quantum configurations. The key challenge in this
approach is to sample all configurations that the phase em-
braces under the experimental conditions.

2 | EFFECTIVE HAMILTONIAN
APPROACHES IN THE LITERATURE

DFT[44,45] is the state-of-the-art solution of the multibody
Schrödinger equation[46,47] with several approxima-
tions.[13,18] It represents the outcome of the many-body in-
teractions involving both the nuclei and the electrons by a set
of one-electron Schrödinger's equations, one for each
valence electron. It articulates that there is a ground-state
configuration at 0 K in each system with the lowest energy
that is defined by a unique electron density. The first set of
internal degree of freedom (DOF) of the system is the de-
viation of electron density away from the ground-state
electron density as discussed by Kohn and Sham[45] in
calculating the free energy of the system using the Mermin
formalism. The second set of internal DOF is the phonons
due to the displacement of atomic nuclei or lattice vibrations,
which can be calculated by either supercell method or linear
response theory.[11,48,49] Both electron and phonon DOF
preserve the symmetry of the ground-state configuration.

It is important to note that building on the local density
approximation (LDA), Perdew and coworkers developed the
generalized gradient approximation (GGA),[50–52] in which
the exchange-correlation energy is treated as a function of both
the local electron density and its gradient, resulting in more
accurate predictions of electronic structure and the energy of
the ground-state configuration. Their latest strongly con-
strained and appropriately normed (SCAN) meta-GGA[53,54]

with quantitatively correct ground-state results considers the
symmetry breaking for some systems regarded as strongly
correlated.[55,56]

At finite temperatures, a system embraces both symme-
try-preserving and symmetry-breaking configurations as
stipulated by statistical mechanics,[39] while an experimental
measurement samples the response of the statistical mixture
of all configurations with respect to external stimuli. The
common approaches to treat internal symmetry-breaking
DOF in the literature are to construct an effective Hamilto-
nian (eH) and to evaluate the model parameters by fitting to
DFT-based calculations of the ground-state configurations
and some selected symmetry-breaking configurations fol-
lowed by Monte Carlo (MC) or molecular dynamic (MD)
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simulations to sample the statistical mixtures of configura-
tions and average their properties.

These approaches inevitably introduce errors in both the
selection of eH formalisms and the truncation and the fitting
parameters of eH. In most cases, microscopic DOF is evalu-
ated for one given configuration in terms of local occupation
with the Ising model, magnetic spins with the Heisenberg
model, or the electric dipoleswith the Landau theory.Coupling
between different types of DOFs is not included automatically
but accommodated as additional, specialized terms.[42]

Furthermore, each snapshot in MC/MD simulations represents
one statistical mixture of ground-state and symmetry-breaking
non-ground-state configurations under given external
constraints. It is possible that not all statistical mixtures of
configurations are sampled due to the limited simulation
time scale. These limitations prevent quantitative predictions
in comparison with experimental observations. There are
approaches that directly couple DFT with MD and MC such
as ab initio molecular dynamics (AIMD)[57–59] and quantum
Monte Carlo (QMC)[60–64] with reduced errors, but more
limited simulation time scale.

3 | ZENTROPY THEORY: COARSE
GRAINING OF ENTROPY AS A
QUANTITATIVE PREDICTIVE
APPROACH

To improve the agreement between theoretical predictions and
experimental observations, the author's team developed a
multiscale entropy approach (recently termed as the zentropy
theory) that considers both ground-state and symmetry-
breaking non-ground-state configurations of a system.[65–67]

Similar to discrete pure quantum configurations in quantum
statistical mechanics,[68] the zentropy theory considers that a
phase is statistically composed of discrete ground-state and
symmetry-breaking non-ground-state configurations, which
are not pure quantum configurations. There are two key fea-
tures of the zentropy theory. The first feature is that the free
energies of all configurations are predicted from the DFT-
based first-principle calculations. This feature is necessary
to include the quantum contributions to entropy, which
represent the intrinsic properties of each configuration.
Another important aspect of the first feature is its capability to
include coherently DOFs related to thermal electronic distri-
bution, phonon vibration, local occupation, magnetic spin, and
electric dipole through internal DOFs of individual configu-
rations. The main challenge here is the limitation on the
supercell size in DFT-based calculations due to the constraint
of current computing power. A minor challenge is the ergo-
dicity of configurations. Both need to be systematically tested
so that the predicted free energy of the phase is converged.

The second feature of the zentropy theory is to use the
free energy of each configuration in calculating its partition
function instead of total energy in statistical mechanics
derived by Gibbs[39] and commonly used in the literature.
This feature enables the complete counting of total entropy

of the phase from its quantum scale to the experimental scale
and maintains the quantum contributions to all scales. This
originates from the fact that the ground-state and symmetry-
breaking non-ground-state configurations used in DFT-based
calculations are not pure quantum configurations, and their
entropies are not zero at finite temperatures and must be
included in order to be able to accurately evaluating the total
entropy of the phase. As it will be shown in the following,
this does not only affect the total entropy of the phase but
also changes the probability of each configuration.

The zentropy theory has been successfully applied to
predict phase transitions in magnetic materials in last
decade[40,41] and more recently in ferroelectrics.[43] In mag-
netic materials, the symmetry-breaking non-ground-state
configurations can be constructed through spin flipping. Un-
der the consideration of collinear magnetic configurations, the
total number of ergodic configurations equals to 2n = m in a
supercell with n magnetic atoms. The zentropy theory stipu-
lates that the entropy of the system is the weighted sum of the
entropy of each configuration and the statistical entropy
among configurations as follows[18,41,42,65–67,69,70]:

S ¼
Xm

k¼1
pkSk − kB

Xm

k¼1
pkln pk ð1Þ

where pk and Sk are the probability and entropy of configu-
ration k. The above equation represents the integration of the
bottom-up approach from individual configurations, that is,
the first summation, and the top-down approach among in-
dividual configurations, that is, the second summation,
which is schematically shown in Figure 1.

It is noted that the statistical mechanics derived by
Gibbs[39] only contains the second summation in Equa-
tion (1), thus only part of the total entropy of the system
unless Sk = 0 for pure quantum configurations as in the
quantum statistical mechanics. Furthermore, it is important
to point out that Gibbs considered “a great number of in-
dependent systems (states) of the same nature (of a system),
but differing in the configurations and velocities which they
have at a given instant, and differing not merely

F I GURE 1 Schematic representation of the zentropy theory with
the top-down statistical mechanics that considers the probabilities of
independent configurations of the system and bottom-up quantum
mechanics with the entropies of ground-state and symmetry-breaking non-
ground-state configurations predicted from the density functional theory.
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infinitesimally, but it may be so as to embrace every
conceivable combination of configuration and velocities”.[39]

He thus broadened the early statistical mechanics from the
consideration of the particles of a system to independent
systems (configurations of a system), that is, each configu-
ration of the system must be under the same external con-
ditions as the system. In a canonical ensemble, each
configuration and the system thus have the same mass (N),
volume (V), and temperature (T), that is, the same NVT.

Based on Equation (1), the general formula of statistical
mechanics under constant NVT can be written as follows:

F ¼
Xm

k¼1
pkEk − TS ¼

Xm

k¼1
pkFk − kBT

Xm

k¼1
pkln pk ð2Þ

Z ¼ e− F
kBT ¼

Xm

k¼1
Zk ¼

Xm

k¼1
e− Fk

kBT ð3Þ

pk ¼
Zk

Z
¼ e−Fk−F

kBT ð4Þ

where F and Z are the Helmholtz energy and partition
function of the system, respectively, and Ek, Fk, and Zk are
the total energy, Helmholtz energy, and partition function of
configuration k, respectively. The key difference is the use of
Fk in Equations (3) and (4) instead of Ek as in the Gibbs
statistical mechanics,[39] which implies Sk = 0 for pure
quantum state as mentioned above. It is thus self-evident that
the properties of all configurations must be evaluated at the
same NVT as the system because the statistical combinations
of the configurations form the system. It is noted that the
similar formula was termed as “coarse graining of the
partition function”[71–74] though no actual calculations were
reported in the literature using the formula by those authors.
Similar approaches were also used by Wentzcovitch's
group[75,76] as reviewed by the present author.[18]

Remarkable agreement between the zentropy-predicted
and experimentally observed transition temperatures for a
number of magnetic materials has been observed as reviewed
previously[40,41] as well as the more recent one on YNiO3 with
strongly correlated physics.[18,42] One of unique outcomes of
the zentropy theory is the prediction of free energy at unstable
states of a system, which are between the stable and metastable
states of the system, including the critical points predicted in
Ce and Fe3Pt where the system changes from stable to unstable
states, resulting in bifurcation of the system into two inho-
mogeneous subsystems.[40] This represents the extreme of
anharmonicity in a system that is usually represented by the
deviation of entropy or heat capacity away from quasi-
harmonic behavior.[77] From Equation (1), it can be seen that
the first summation is the linear combination of entropies of
individual configurations, and the emergent behaviors, that is,
the behaviors that none of the individual configurations
possess, originate from the second summation in the equation.

For ferroelectric (FE) materials with spontaneous electric
polarization, the definition of configurations was more

challenging due to the strong dipole-dipole interactions that
prevent many configurations through simple enumeration of
all polarization directions. We explored the configurations of
ferroelectric materials using PbTiO3 by means of ab initio
molecular dynamics (AIMD) simulations.[58] PbTiO3 is one of
the most extensively studied ferroelectric materials with the
polarized tetragonal ground-state configuration and the
macroscopically non-polarized cubic paraelectric (PE) phase
above the transition temperature based on X-ray and neutron
diffraction data.[78] On the other hand, both experiments[79,80]

and AIMD simulations[58] demonstrated that individual Ti-
caged unit cells exhibit polarized tetragonal configuration
both below and above the FE-PE transition temperature. By
following the trajectories of individual Ti atoms (see Fig. 17 in
Ref. [40]) and their motions (see video in Supplementary
materials in Ref. [43]) using the experimentally determined
macroscopic lattice parameters, it was observed in the AIMD
simulations that the polarized tetragonal Ti-caged unit cells
switch their polarization directions more frequently with the
increase of temperature.[58] This process creates more and
more misoriented polarized tetragonal Ti-caged unit cells next
to each other, resembling the well-known domain walls (DWs)
in ferroelectric materials, but through dynamical switching
between different polarization directions due to thermal fluc-
tuations rather than freezing in statically.

DWs in ferroelectric materials are discussed extensively
in the literature in terms of experimental and computational
investigations.[81,82] Based on the experimental and compu-
tational results in the literature, there are two types of DWs
for tetragonal PbTiO3, namely 90° and 180° DWs as twins
on the (101) and (100) planes, respectively,[83] resulting in
three unique configurations including the one without the
domain wall. Using the DW energies at 0 K predicted by the
DFT-based first-principles calculations in the literature,[83]

the macroscopic FE-PE transition temperature predicted by
the zentropy theory shows remarkable agreement with
experimental measurements.[43] The author's group is
currently calculating the Helmholtz energy of each config-
uration, anticipating better agreements between predicted
and measured values.

4 | CONFIGURATION-BASED
MATERIALS GENOME DATABASE

As discussed above, the significance of the statistical me-
chanics by Gibbs[39] is on the consideration of independent
configurations that the system embraces with the same NVT
as the system, substantially different from the consideration
of individual particles in the system, which is not tractable
for real materials systems. This is in analogy to the parable
of the blind men and the elephant showing the study of the
same complex problem from different perspectives and the
importance to integrate their insights together,[55] that is,
seeing both a forest (top-down) and the trees in the forest
(bottom-up). The key capability needed is thus to see the
trees in the context of a forest rather than individual trees
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only, that is, the possible configurations and their properties
in a system, exactly as Gibbs envisioned when he created the
statistical mechanics.[39]

Historically, knowledge has been primarily accumulated
through observations and experimentations, followed by
mechanistic understanding and development of fundamental
laws. For complex phenomena, phenomenological and me-
chanical mathematical models were then established with the
model parameters fitted to experimental observations and
used to predict the macroscopic properties of systems,
including materials. As any models are intrinsically incom-
plete and cannot fully represent the complexity underneath
observations in general, it is inevitable that there are many
different models that are continuously being improved over
time along with more in-depth observations. Quantum me-
chanics developed in the 1920s[46,47] fundamentally changed
our understanding of how nature works, and DFT developed
in the 1960s enabled the digitization of quantum me-
chanics.[44,45] DFT starts from the opposite end of the tem-
perature spectrum, that is, 0 K, and the unique ground-state
configuration of a given system at 0 K. The current mathe-
matical and computational approaches have enabled the ac-
curate prediction of the ground-state configuration of a
system, its electronic structure, and associated properties,
and more recently, its free energy as a function of volume,
temperature, and other internal variables.

The missing piece between the observations with multiple
configurations and DFT with the ground-state configuration
only is thus the symmetry-breaking non-ground-state config-
urations in observations that are not considered in typical DFT
calculations. In principle, since those configurations are
observable, they are metastable and not unstable, and their
properties can thus be predicted by DFT in the same way as
those of the ground-state configuration. It is self-evident that
the ground-state configuration alone is not sufficient to
reproduce the observations that also depend on non-ground-
state configurations as stipulated by statistical mechanics.

One beauty of statistical mechanics is that the partition
function of the system is a simple summation of the partition
functions of independent configurations as shown in Equa-
tion (3). Consequently, the free energy of the system can be
easily obtained as follows:

F ¼ −kBTlnZ ¼ −kBTln

 
Xm

k¼1
Zk
!

¼ −kBTln

 
Xm

k¼1
e− Fk

kBT

! ð5Þ

The probability of each configuration can also be directly
calculated arithmetically from Equation (4). Since the
calculation of F does not involve any minimizations, the
Helmholtz energy of the system thus obtained represents the
Helmholtz energy landscape of the system as a function of
internal and external variables of the system, including
apexes and valleys. Under given external constraints, the

minimization of the Helmholtz energy with respect to in-
ternal variables determines whether the system will be in a
single-phase state or a multiple-phase state where the prob-
abilities of configurations in all phases are different from
each other, commonly referred as a miscibility gap in the
literature.[22,23] The point between the single-phase and
multiphase states is defined as the critical point where the
macroscopically homogeneous single-phase state loses its
stability and becomes unstable with the derivative of a po-
tential to its conjugate molar quantity, that is, the second
derivative of the internal or free energy to the molar quantity,
approaching from positive to zero. The physical properties of
the system defined by the derivatives of a molar quantity to
its conjugate potential, that is, the inverse of the above sta-
bility derivative, which is also the second derivative of free
energy to the potential, diverge and become positive infinite.
However, the divergence of properties between a molar
quantity and a nonconjugate potential can either be positive
or negative as the stability criteria do not prescribe their
signs. The predictions of the critical points in Ce and Fe3Pt
showed remarkable agreement with experimental observa-
tions, including the positive and negative divergences of
thermal expansions, that is, the derivative of volume to
temperature, for Ce and Fe3Pt, respectively, that is, the anti-
INVAR and INVAR phenomena in these two materials.[70]

Another significance of the Helmholtz energy landscape
is the prediction of free energy of the transition state along
the pathways between neighboring states in the system,
including the inflection points and the free energy of un-
stable states between the inflection points. Particularly, the
free energy at the apex point represents the free energy
barrier of the transition, a critical value for the kinetics of the
transition. It is important to point out that each configuration
itself is stable, that is, the derivatives between conjugate
variables are positive for each configuration, and it is the
statistical competition among all configurations that results
in those derivatives of the system becoming zero at the in-
flection points and negative in the unstable states.[18,23,40,41]

It is known that the free energy barrier of transition between
two states is related to the interfacial and strain energies
between them.[84] In the zentropy theory, the strain energy is
taken into account by the requirement that the free energies
of all configurations in Equation (3) are evaluated under the
same NVT, while the interfaces are built into individual
configurations. For systems with defects such as vacancies,
dislocations, grain boundaries, or grain, they need to be
treated as additional internal DOFs and thus independent
internal variables of free energy.[18] Such a free energy
landscape can be used to predict the transport properties in
terms of the theory of cross phenomena newly developed by
the present author as shown in Table 1.[18,41]

Based on the discussions above, the ground-state and
symmetry-breaking non-ground-state configurations of a
system are the fundamental building blocks of individ-
ual phases in the system, which further form the building
blocks for microstructures of materials. The collection of
ground-state and symmetry-breaking non-ground-state
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configurations can be considered as the materials genome
database for prediction of properties of individual phases
and properties of materials.

5 | SUMMARY AND PERSPECTIVES

The present overview paper articulates that the ground-state
and symmetry-breaking non-ground-state configurations
derived from the internal DOFs of the ground-state config-
uration of a system can be considered as building blocks of
individual phases of the system. It is relatively simple to
determine the symmetry-breaking non-ground-state config-
urations in magnetic and ferroelectric phases as demon-
strated in our publications due to their straightforward
internal DOFs. Particularly for ferroelectric materials, the
number of DW configurations is relatively few.[81] However,
for phases of multiferroics, doped with other elements, or
containing defects, the number of configurations can be very
large, requiring more efficient approaches to predict their
free energies. This is where artificial intelligence (AI) can
play a very important role,[85,86] so free energies of config-
urations can be efficiently predicted. Consequently, this
configuration-based materials database can be used to
accurately predict properties of materials based on the zen-
tropy theory without experimental inputs and enable more
efficient discovery of new materials and improvement of
existing materials for emergent behaviors. New knowledge
and data can thus be created and accumulated theoretically
and validated by experiments to ultimately enable the full
digitization of both cyber and physical spaces of any systems
of interest as the core of fourth industry revolution.[87]
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