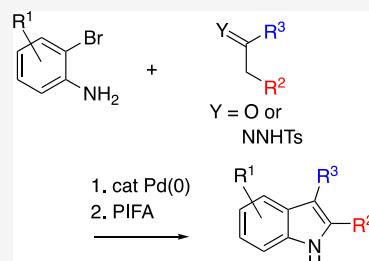


Synthesis of Indoles from *o*-Haloanilines

Assia Chebieb, Young Gyu Kim, and Jin Kun Cha*

Cite This: *J. Org. Chem.* 2023, 88, 10164–10170

Read Online


ACCESS |

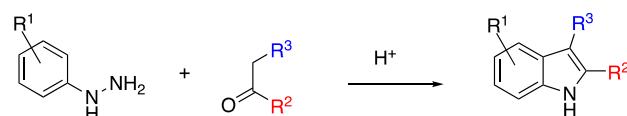
Metrics & More

Article Recommendations

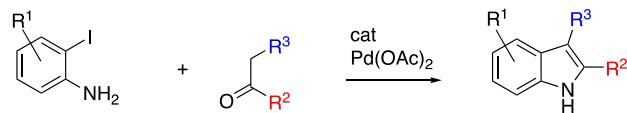
Supporting Information

ABSTRACT: A convenient method for the synthesis of indoles has been developed by the sequential orchestration of the cross-coupling reaction of *o*-haloaniline and PIFA oxidation of the resulting 2-alkenylanilines. A highlight of this two-step indole synthesis is a modular strategy which is applicable to both acyclic and cyclic starting materials. Particularly noteworthy is the regiochemistry that is complementary to the Fischer indole synthesis and related variants. Direct preparation of *N*–H indoles with no *N*-protecting group is also advantageous.

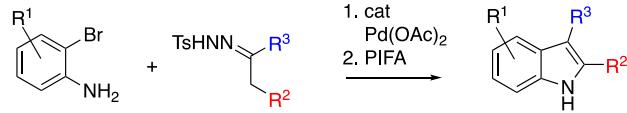
INTRODUCTION


The indole ring motif is found in a large number of natural products and medicinally relevant compounds. The importance of indoles, coupled with a broad range of structural complexities, has spurred the development of many synthetic methods.^{1,2} The venerable Fischer indole reaction is a classical method for preparing indoles from carbonyl compounds.³ The palladium-catalyzed coupling reactions of *o*-haloaniline derivatives offer valuable alternatives to the Fischer indole synthesis.^{4,5} As part of the projected total syntheses of structurally complex indole alkaloids, a flexible method for installing an indole scaffold to an advanced intermediate at a late stage of synthesis was required; and a new approach of employing ketones or aldehydes that are regioisomeric to the substrates for the Fischer indole synthesis and variants was highly desirable.^{3,5} An operationally expedient method for preparing *N*–H indoles without the use of an *N*-protecting group, while accessing all substitution patterns was also ideal. Toward this end, an effective strategy was recently found in oxidative cyclization of 2-alkenylanilines,⁶ which were easily accessible from *o*-haloanilines. We report herein a convenient synthesis of indoles by the sequential implementation of Pd-catalyzed cross-coupling reactions of *o*-haloanilines and oxidative cyclization of the resulting 2-alkenylanilines (Scheme 1).

RESULTS AND DISCUSSION


Our work commenced with the construction of a tricyclic indole nucleus possessing a five-membered or six-membered ring, as this motif is frequently embedded in structurally complex natural products.^{1,7} The known 2-cyclopentenyl and 2-cyclohexenyl anilines 3a and 3b were prepared in 82–86% yields by the Suzuki coupling reaction according to literature procedures (Scheme 2A).⁸ When a THF solution of 3a and 3b was next treated with PhI(OCOCF₃)₂ (PIFA) (1 equiv) at rt, oxidative cyclization proceeded cleanly to afford indoles 5a and

Scheme 1. Representative Synthetic Methods for Indoles


Fischer Indole Synthesis³

Merck Indole Synthesis⁵

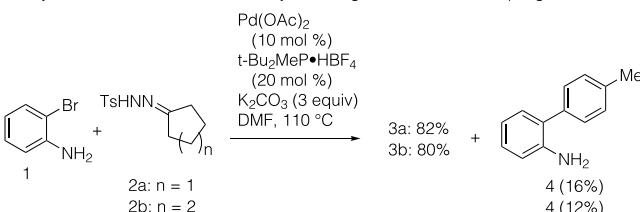
This Work

5b in 80 and 73% yields, respectively, requiring no *N*-protection. Cyclization was facile and took ≤ 10 min. In the literature, other hypervalent iodines or other oxidants had been employed for oxidative cyclization of typically *N*-protected aniline derivatives (e.g., Cbz, Bz, or Ts),⁹ but commercially available PIFA proved to be effective.

During an initial phase of this work the Suzuki coupling of 1 or the Stille reaction of vinyl stannanes (when readily


Received: May 9, 2023

Published: July 6, 2023



Scheme 2. Suzuki and Barluenga–Valdés Coupling toward Indoles

A. Synthesis of Indoles 5a and 5b by Suzuki coupling and PIFA oxidation

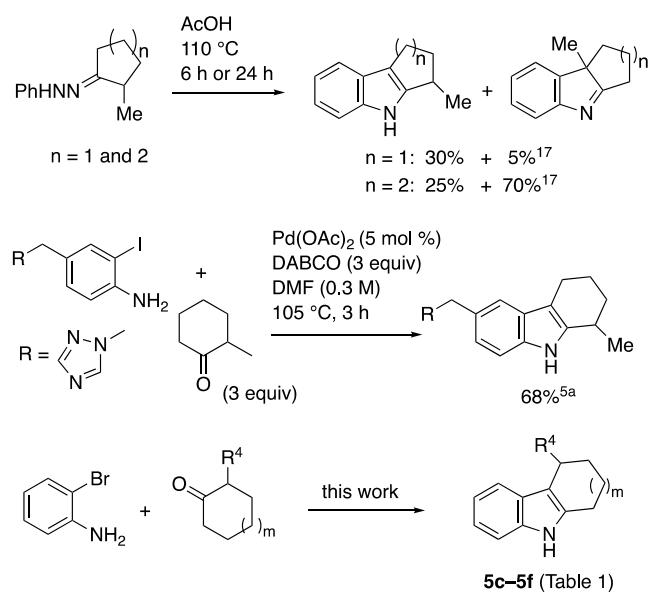
B. Synthesis of Anilines 3a and 3b by Barluenga–Valdés cross-coupling

available) was employed for the preparation of the requisite 2-alkenylanilines.⁶ Our attention was shifted to a more expedient option of the Barluenga–Valdés cross-coupling reaction involving typically crystalline tosylhydrazones to bypass the otherwise necessary pre-functionalization (e.g., the intermediacy of enol triflates and/or boronates) of carbonyl compounds.^{10,11} Barluenga’s seminal application of tosylhydrazones as diazo precursors¹² provides new routes to an array of alkenes. However, we were concerned that the presence of an unprotected amine ortho to the bromide might be problematic;¹³ only one example had been reported for coupling of *o*-bromo-*N*-methylaniline.^{10e} An effective solution was found in the Houpis–Chen protocol [Pd(OAc)₂, *t*Bu₂MeP·HBF₄, and K₂CO₃ in DMA], which was designed specifically for cross-coupling of *o*-halo unprotected aniline derivatives: its adaptation to **2a** and **2b** indeed afforded **3a** and **3b** in good yields (Scheme 2B).^{14,15,16a} In accordance with previous observations by the Janssen team, 4'-methylbiphenyl-2-amine (**4**) was also obtained in significant amounts (16 and 12%, respectively). The formation of this *p*-tolyl adduct, derived from the tosylhydrazone moiety, seems to be a general limitation for Janssen’s reaction conditions designed for aryl halide coupling partners having an *o*-nitrogen functionality. A hydrazone containing an electron-withdrawing group (e.g., *p*-nitrosulfonylphenylhydrazones) was reported to offer an effective solution to avert the formation of **4**.¹⁴ Importantly, however, the formation of this side product in the Barluenga coupling reaction interfered with neither subsequent PIFA oxidation of 2-alkenylanilines **3a**/**3b**, nor the isolation of pure indole products.^{16b} Since our overriding objective was the indole synthesis by the sequential implementation of the key steps, inexpensive costs prompted us to employ tosylhydrazones.

The scope of our indole synthesis was next examined with cyclopentanone- and cyclohexanone-derived tosylhydrazones with particular emphasis on regioselective formation of the indole products **5a**–**5f** (Table 1). Coupling of 2-alkyl substituted derivatives proceeded with complete regioselectivity to afford the less substituted alkenes **3c**–**3f** as the sole regioisomers, resulting in regioselective formation of indoles **5c**–**5f**. The latter is illustrative of the synthetic utility of this

Table 1. Additional Tricyclic Indoles

2a–2f	anilines 3a–3f^a	indoles 5a–5f^b
	 3a: 82% + 4: 16%	 5a: 80%
	 3b: 80% + 4: 12%	 5b: 73%
	 3c: 75% + 4: 13%	 5c: 76%
	 3d: 76% + 4: 18%	 5d: 69%
	 3e: 71% + 4: 19%	 5e: 83%
	 3f (α,β): 74%, 9:1 + 3f (β,γ): 14%	 5f: 68%


^a1 (1 equiv), 2a–2f (1.2 equiv), Pd(OAc)₂ (10 mol %), *t*Bu₂MeP·HBF₄ (20 mol %), K₂CO₃ (3 equiv), DMF, 90–110 °C, 5–6 h.

^bPIFA (1 equiv), THF (0.3 M), rt, 10 min.

method, compared to the Fischer indole synthesis and its Merck’s variant (Scheme 3).^{3,5a,17} Particularly noteworthy are the different regiochemical outcomes of the latter procedure and our method, leading to the constitutional indole isomers starting from the same ketone substrates. The alternative regioselectivity would be valuable in synthetic planning of complex indole alkaloids, as it offers greater flexibility.

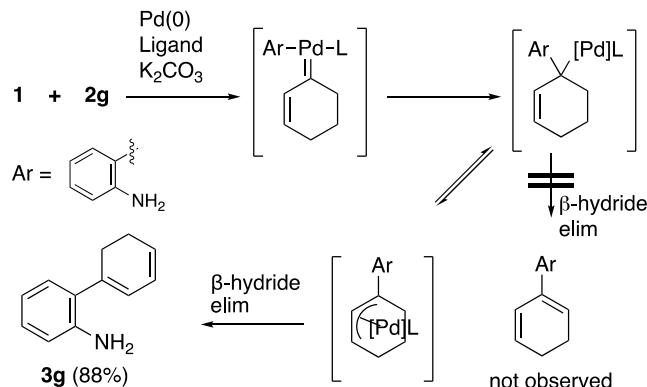
The formation of dehydroindoles (dihydrocarbazoles) was next probed starting from cyclohexenone-derived tosylhydrazones via oxidative cyclization of 1,3-dienylanilines **3g**–**3i** (Table 2). Not surprisingly, indole formation was accompanied by over-oxidation to the corresponding carbazoles (e.g., **5g** + **5g'** and **5i** + **5i'**: **5g** was separated from **5g'**). In the case of **2i** the first (coupling) step produced the over-oxidation product **3i'** in 16% yield in addition to the desired product **3i** (72%). When the latter was subjected to PIFA oxidation, an inseparable mixture of **5i** and **5i'** was obtained in a combined yield of 79%. These results suggest that related application of

Scheme 3. Comparison of Regiochemical Outcomes in the Indole Synthesis

cyclohexenone derivatives could offer new access to carbazoles, as a useful alternative to oxidative cyclization of 2-amino-biaryls, which recently attracted extensive attention.^{18,19}

The regioselective formation of **3g** was in accordance with the intermediacy of the pi-allyl palladium complex (Scheme 4).^{10b,c} Several known examples notwithstanding,¹⁰ the cross-coupling reaction of cyclohexenones is under-explored. For example, no examples were previously reported in the literature for the Barluenga coupling of 3-alkylcyclohexenone (e.g., endocyclic enone having a 3-alkyl substituent) tosylhydrazones.^{10,20} We note, in passing, that the Suzuki coupling reaction of a 2-dioxaborolany-1,3-cyclohexadiene²¹ would afford the cyclohexadienyl aniline, which is regiosomeric to **3g** (corresponding to the coupling methods A and B in Scheme 2); a judicious choice of cross-coupling reactions would thus provide a regiodivergent route to both dehydroindoles, which underscores the versatility of the centerpiece method.

Finally, the formation of indoles **5j–5m** from acyclic substrates was examined to establish the broad substrate scope (Table 3); overall yields were comparable to those of the aforementioned synthesis of tricyclic indoles (Tables 1 and 2).²² Indole **5j** was prepared uneventfully. As expected, **3k** having the less substituted terminal alkene (from beta-hydride elimination at the methyl position with preference to the methine position) was obtained in 78% yield; and the corresponding indole **5k** was next obtained in 81% yield. A low level of regioselectivity was observed for the corresponding coupling of **2l** to afford a mixture of **3l** and **3l'** (an *E/Z* mixture) (~1 + 1.4 in 61% yield). Regioselectivity for a methyl vs a methylene position (~2:3) was generally poor.^{10a} These results are in sharp contrast to the exclusive preference for a methyl or methylene position over a methine position (e.g., **2k** → **3k** in addition to **2c–2f** → **3c–3f**). The use of an α -siloxy group was next examined as a regiocontrol element that is suitable for subsequent elaboration and indeed afforded **3m** as a single regioisomer (as 3:2 geometrical isomers) in 74% yield. Since the N–H indole product was expected to be prone to elimination of the siloxy moiety, PIFA oxidation of the


Table 2. Tricyclic Dehydroindoles

2g–2i	anilines 3g–3l ^a	indoles 5g–5l ^b
2g	3g: 88% + 4 (6%)	5g: 47% + 5g': 31%
2h	3h + 3h': 63%, 1:1 + 4 (17%)	5h + 5h': 70% (1 : 1)
2i	b. ↓ 3i (72%) + 3i' (16%) + 4 (5%)	5i + 5i': 79% (2.6 : 1)

^a1 (1 equiv), 2a–2f (1.2 equiv), Pd(OAc)₂ (10 mol %), ^tBu₂MeP-HBF₄ (20 mol %), K₂CO₃ (3 equiv), DMF, 90–110 °C, 5–6 h.

^bPIFA (1 equiv), THF (0.3 M), rt, 10 min.

Scheme 4. Mechanism for the Synthesis of 3g

corresponding *N*-sulfonamide was carried out to deliver **5m** in 77% yield: this oxidation expectedly took longer (5 h) compared to that of *N*–H anilines (10 min), but PIFA was equally effective. Ultimately, Suzuki coupling could be relied on to achieve a regioselective synthesis of indoles from acyclic

Table 3. Indoles from Acyclic Ketones

2j–2m	anilines 3j–3m ^a	indoles 5j–5m ^b

^a1 (1 equiv), 2a–2f (1.2 equiv), Pd(OAc)₂ (10 mol %), *t*Bu₂MeP-HBF₄ (20 mol %), K₂CO₃ (3 equiv), DMF, 90–110 °C, 5–6 h.

^bPIFA (1 equiv), THF (0.3 M), rt, 10 min. ^cPIFA (3 equiv), THF (0.3 M), rt, 5 h.

substrates (involving a methyl vs methylene position of ketones) by regioselective formation of the prefabricated enol boronates.^{8,21}

CONCLUSIONS

In conclusion we have developed an expedient method for the synthesis of indoles by the sequential implementation of the Pd-catalyzed cross-coupling reaction of *o*-haloaniline and PIFA oxidation of the resulting 2-alkenylanilines. Highlights of this modular synthesis include the regiochemical outcome that is complementary to the Fischer indole synthesis and related variants, and direct preparation of free N–H indoles without requiring an N-protecting group. Application in total synthesis of structurally complex indole alkaloids will be reported in due course.

EXPERIMENTAL SECTION

All materials were obtained from commercial vendors and used without further purification unless otherwise noted. Air- and moisture-sensitive manipulations were carried out under a nitrogen or argon atmosphere using oven-dried glassware and standard syringe/septa techniques. Thin-layer chromatography (TLC) analysis was run on SiO₂ TLC plates that were visualized with UV light (254 nm) and phosphomolybdc acid, anisaldehyde, I₂, or a ninhydrin staining solution. Column chromatography was performed with silica gel 60 (70–230 mesh). The ¹H and ¹³C NMR spectra were measured

at 400 and 100 MHz in CDCl₃, respectively. The chemical shifts (δ) of the ¹H and ¹³C NMR spectra were reported with reference to the NMR solvent signals at 7.26 and 77.2 ppm, respectively. High resolution mass spectra were obtained with an Orbitrap mass analyzer.

Representative Procedure for the Preparation of 2-Alkenylanilines. *Representative Procedure for the Suzuki Coupling Reaction.* A suspension of Pd(PPh₃)₂Cl₂ (0.28 g, 0.40 mmol), K₂CO₃ (2.21 g, 16.00 mmol), and *o*-iodoaniline (0.941 g, 4.3 mmol) in a 2:1 DMF/H₂O mixture (15 mL) was stirred at rt, followed by addition of cyclopenten-1-yl boronic acid pinacol ester (1.0 g, 5.1 mmol) in DMF (3 mL). The reaction mixture was heated in an oil bath to 80 °C for 30 min. The reaction was quenched with water (10 mL), and the resulting mixture was extracted with diethyl ether (10 mL \times 3). The combined organic extracts were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified with column chromatography using 8:1 hexane–EtOAc (R_f 0.30) to give 562 mg (82%) of 3a⁸ as a colorless oil: ¹H NMR (400 MHz, CDCl₃): δ 7.12 (dd, J = 7.6, 1.3 Hz, 1H), 7.04 (td, J = 7.6, 1.4 Hz, 1H), 6.76–6.70 (m, 2H), 6.00 (t, J = 1.8 Hz, 1H), 3.93 (br s, 2H), 2.72–2.68 (m, 2H), 2.58–2.54 (m, 2H), 1.97 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.0, 141.3, 128.3, 128.2, 127.6, 123.7, 118.2, 115.8, 36.4, 33.9, 23.2; MS (EI) *m/z*: 159 (M, 100), 144 (49), 130 (67), 117 (18), 103 (9), 90 (6), 77 (12), 63 (5), 50 (2).

Similarly, 597 mg (86%) of 3b⁸ was prepared as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.04 (td, J = 7.6, 1.5 Hz, 1H), 6.98 (dd, J = 7.6, 1.5 Hz, 1H), 6.74–6.68 (m, 2H), 5.75 (m, 1H), 3.76 (br, 2H), 2.26–2.22 (m, 2H), 2.20–2.12 (m, 2H), 1.78–1.74 (m, 2H), 1.72–1.66 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.2, 136.5, 130.5, 128.7, 127.5, 126.8, 118.3, 115.4, 29.4, 25.5, 23.2, 22.2; MS (EI) *m/z*: 173 ([M]⁺, 100), 144 (100), 119 (26), 93 (7), 77 (12), 51 (4).

Representative Procedure for the Barluenga–Valdés Coupling Reaction. 2 mmol-Scale Experiment. A solution of Pd(OAc)₂ (26.6 mg, 0.12 mmol), *t*Bu₂MeP-HBF₄ (63.6 mg, 0.26 mmol), and K₂CO₃ (828 mg, 6 mmol) was placed in degassed DMF (1.6 mL) under an atmosphere of argon. *o*-Bromoaniline (1) (224 mL, 2 mmol) was then added. The reaction mixture was placed under vacuum and backfilled with argon. After the mixture had been heated to 110 °C, a solution of tosylhydrazone 2a (604 mg, 2.4 mmol) in degassed DMF (2 mL) was added over 2 h by using a syringe pump. The resulting mixture was stirred at 110 °C in an oil bath for an additional 5 h (until the starting aniline 1 was consumed). The reaction mixture was then cooled to rt and water (6 mL) was added. The mixture was extracted with EtOAc (2 \times 15 mL). The organic extracts were washed with brine (6 mL), dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by flash silica gel column chromatography using 9:1 hexane/EtOAc as the eluent to afford 245 mg (78%) of aniline 3a as a colorless oil.

0.5 mmol-Scale Experiment. A solution of Pd(OAc)₂ (11.2 mg, 0.05 mmol), *t*Bu₂MeP-HBF₄ (26.5 mg, 0.10 mmol), and K₂CO₃ (207 mg, 1.5 mmol) was placed in degassed DMF (0.4 mL) under an atmosphere of argon. *o*-Bromoaniline (1) (56 μ L, 0.5 mmol) was then added. The reaction mixture was placed under vacuum and backfilled with argon. After the mixture had been heated to 110 °C, a solution of tosylhydrazone 2a (151 mg, 0.6 mmol) in degassed DMF (0.8 mL) was added over 1 h by using a syringe pump. The resulting mixture was stirred at 110 °C in an oil bath for an additional 5 h (until the starting aniline 1 was consumed). The reaction mixture was then cooled to rt and water (2 mL) was added. The mixture was extracted with EtOAc (2 \times 8 mL). The organic extracts were washed with brine (3 mL), dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by flash silica gel column chromatography using 9:1 hexane/EtOAc as the eluent to afford 64 mg (82%) of aniline 3a as a colorless oil.

Representative Procedure for Oxidative Cyclization with PIFA. 0.36 mmol Scale Experiment. A solution of bis-(trifluoroacetoxy)iodo)benzene (PIFA) (162 mg, 0.36 mmol) in THF (1.2 mL) was added dropwise (over a 5 min period) to a solution of *o*-cyclopentenylaniline (3a) (60 mg, 0.36 mmol) in THF

(1.2 mL) under an atmosphere of argon. The resulting mixture was stirred at rt for an additional 5 min (until TLC indicated the disappearance of 3a), filtered through a short pad of silica gel, and concentrated under reduced pressure to give 31 mg (80%) of indole **5a**²³ as a white solid by flash column chromatography using hexane/EtOAc (9:1); mp 106–107 °C; R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (400 MHz, CDCl_3): δ 7.83 (br s, 1H), 7.43 (dd, J = 6.6, 2.2 Hz, 1H), 7.3 (dd, J = 6.4, 2.0 Hz, 1H), 7.10–7.06 (m, 2H), 2.88–2.85 (m, 2H), 2.83 (m, 2H), 2.57–2.51 (m, 2H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3): δ 143.6, 141.0, 124.7, 120.5, 119.8, 119.4, 118.4, 111.2, 28.6, 25.8, 24.4; MS (EI) m/z : 157 ([M]⁺, 100), 130 (25), 115 (4), 102 (4), 77 (8), 65 (4).

1 mmol Scale Experiment. A solution of bis(trifluoroacetoxy)-iodo)benzene (PIFA) (430 mg, 3.5 mmol) in THF (3.5 mL) was added dropwise (over a 5 min period) to a solution of *o*-isopropenylaniline (3j) (133 mg, 1 mmol) in THF (3.5 mL) under an atmosphere of argon. The resulting mixture was stirred at rt for an additional 5 min (until TLC indicated the disappearance of 3j), filtered through a short pad of silica gel, and concentrated under reduced pressure to give 105 mg (80%) of indole **5j**³⁰ as a white solid by flash column chromatography using hexane/EtOAc (9:1); mp 95–96 °C; R_f 0.4 (hexane/EtOAc 9:1). The characterization data are listed below. An initial experiment in a smaller (0.35 mmol) scale experiment afforded 78% yield (as shown in Table 1).

Indole 5b.²⁴ 13 mg (73%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.67 (br s, 1H), 7.46 (d, J = 7.0 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.09 (dt, J = 7.0, 1.3 Hz, 2H), 2.75–2.70 (m, 4H), 1.90 (m, 4H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 138.7, 135.6, 134.0, 127.8, 121.0, 119.1, 117.7, 110.2, 23.3, 23.2, 23.1, 20.9.

Indole 5c.²⁵ 29 mg (76%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.78 (br, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.30 (dd, J = 7.2, 1.5 Hz, 1H), 7.07–7.05 (m, 2H), 3.36 (m, 1H), 2.89 (m, 1H), 2.81 (m, 1H), 2.73 (m, 1H), 2.03 (m, 1H), 1.36 (d, J = 6.8 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 142.9, 141.1, 124.8, 124.6, 120.6, 119.6, 118.3, 111.5, 38.3, 33.4, 25.6, 21.5.

Indole 5d.²⁶ 28 mg (69%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.65 (br s, 1H), 7.56 (dd, J = 7.8, 1.4 Hz, 1H), 7.28 (dt, J = 8.1, 0.9 Hz, 1H), 7.13–7.03 (m, 2H), 3.11 (m, 1H), 2.72–2.69 (m, 2H), 2.02–1.94 (m, 2H), 1.81 (m, 1H), 1.58 (m, 1H), 1.37 (d, J = 6.9 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 136.0, 134.0, 127.6, 121.0, 119.2, 118.9, 115.3, 110.6, 32.3, 27.3, 23.7, 21.4, 20.6.

Indole 5e.²⁷ 45 mg (83%) as a white solid by flash column chromatography using hexane/EtOAc (8:1); R_f 0.5 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.79 (br s, 1H), 7.31–7.22 (m, 3H), 7.22–7.17 (m, 3H), 7.05 (ddd, J = 8.2, 6.7, 1.5 Hz, 1H), 6.89–6.80 (m, 2H), 4.21 (m, 1H), 2.92–2.74 (m, 2H), 2.24 (m, 1H), 2.00 (m, 1H), 1.89–1.79 (m, 2H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 146.3, 136.0, 135.6, 128.4, 128.3, 127.6, 126.1, 121.1, 119.4, 119.2, 112.2, 110.4, 40.0, 34.6, 23.6, 21.3.

Indole 5f. 12 mg (68%) as a brown solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.77 (br s, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.10 (dd, J = 7.9, 6.8 Hz, 1H), 7.03 (dd, J = 8.0, 7.9 Hz, 1H), 2.99–2.90 (m, 2H), 2.63 (dt, J = 11.7, 6.8 Hz, 1H), 2.09 (m, 1H), 1.89 (m, 1H), 1.60 (m, 1H), 1.39 (m, 1H), 1.28 (d, J = 6.9 Hz, 3H), 1.08 (d, J = 6.9 Hz, 3H), 0.70 (d, J = 6.9 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 124.9, 123.0, 120.6, 119.6, 118.9, 110.5, 110.4, 109.4, 39.4, 31.1, 28.9, 22.7, 22.0, 21.1, 20.0, 17.0; HRMS (ESI) m/z : calcd for $\text{C}_{16}\text{H}_{21}\text{N}$ [M]⁺, calcd 227.1674; found, 227.1621.

Indole 5g.²⁸ 27 mg (47%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.80 (br s, 1H), 7.748 (m, 1H), 7.29 (m, 1H), 7.12–7.07 (m, 2H), 6.42 (d, J = 9.7 Hz, 1H), 5.97 (dt, J = 9.7, 4.4 Hz, 1H), 2.90 (t, J = 9.2 Hz, 2H), 2.51 (m, 2H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 128.3, 126.0, 121.5, 120.5, 119.9, 119.6, 118.7, 118.4, 111.1, 110.7, 24.5, 19.3.

Indoles 5h + 5h'. 37 mg (70%) as a brown waxy solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.34 (dd, J = 16.8, 8.5 Hz, 4H), 7.16 (d, J = 8.5 Hz, 1H), 7.13–7.08 (m, 2H), 6.70 (d, J = 8.5 Hz, 1H), 5.77 (s, 1H), 5.55 (s, 1H), 5.35 (s, 1H), 4.69 (s, 1H), 2.35–2.16 (m, 4H), 1.68 (s, 3H), 1.66 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H) 1.12 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (of one regiosomer) (CDCl_3): δ 137.2, 136.5, 130.3, 129.6, 126.9, 124.0, 123.73, 120.1, 82.02, 77.4, 45.7, 33.4, 32.8, 29.3, 18.4; HRMS (ESI) m/z : calcd for $\text{C}_{15}\text{H}_{17}\text{N}$ [M]⁺, calcd 211.1361; found, 227.1309.

Indoles 5i + 5i'. 33 mg (in 57 and 22% yields) as a yellow waxy solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); for **5i**: ^1H NMR (CDCl_3): δ 8.16 (br s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.19 (m, 1H), 7.12 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.84 (m, 1H), 2.77 (s, 3H), 2.50–2.48 (m, 3H), 1.36 (t, J = 7.1 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 168.1, 130.8, 127.0, 121.0, 120.2, 119.7, 119.4, 114.6, 113.1, 111.2, 110.8, 60.7, 25.8, 22.1, 19.3, 15.2; for **5i'**: ^1H NMR (CDCl_3): δ 8.09 (d, J = 8.2 Hz, 1H), 7.93 (m, 1H), 7.51–7.44 (m, 2H), 7.28–7.22 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 2.77 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 168.3, 141.0, 139.3, 126.8, 126.6, 125.4, 123.1, 122.6, 121.9, 121.1, 119.9, 117.2, 110.9, 60.1, 14.8, 14.4; HRMS (ESI) m/z : calcd for $\text{C}_{16}\text{H}_{17}\text{NO}_2$ [M]⁺, calcd 255.1259; found, 255.1252.

Indole 5j.³⁰ 19 mg (78%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.87 (br s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.19 (ddd, J = 8.0, 7.0, 1.3 Hz, 1H), 7.12 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.97 (m, 1H), 2.34 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 136.5, 128.5, 122.0, 121.7, 119.3, 119.0, 111.9, 111.1, 9.8.

Indole 5k.³⁰ 35 mg (81%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 7.88 (br s, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.18 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.11 (ddd, J = 7.8, 7.0, 1.1 Hz, 1H), 6.96 (d, J = 2.3 Hz, 1H), 3.22 (m, 1H), 1.37 (d, J = 6.9 Hz, 6H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 127.0, 124.3, 122.0, 119.6, 119.4, 119.2, 114.6, 111.3, 25.6, 23.5.

Indoles 5l + 5l'.^{30,31} 37 mg (62%) as a white waxy solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); for **5l**: ^1H NMR (CDCl_3): δ 7.66 (br s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.19 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H) 7.14–7.04 (m, 2H), 6.98 (s, 1H), 2.80 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 135.4, 130.8, 129.6, 120.6, 119.1, 118.1, 110.1, 11.7, 8.6; for **5l'**: ^1H NMR (CDCl_3): δ 7.88 (br s, 1H), 7.25 (d, J = 7.3 Hz, 1H), 7.46 (dd, J = 6.9, 1.9 Hz, 1H), 7.14–7.04 (m, 2H), 2.37 (s, 3H), 2.23 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 136.6, 127.6, 122.1, 121.1, 119.2, 119.1, 111.2, 18.5, 14.6.

Indole 5m. 45 mg (77%) as a white solid by flash column chromatography using hexane/EtOAc (9:1); R_f 0.4 (hexane/EtOAc 9:1); ^1H NMR (CDCl_3): δ 8.17 (dd, J = 8.0, 1.2 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.55 (dd, J = 8.2 Hz, 2H), 7.24–7.17 (m, 2H), 7.14 (d, J = 8.2 Hz, 2H), 4.73 (t, J = 7.0 Hz, 1H), 2.54 (s, 3H), 2.32 (s, 3H), 1.90 (m, 1H), 1.70 (m, 1H), 0.81–0.78 (m, 3H), 0.77 (s, 9H), −0.06 (s, 3H), −0.38 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 144.4, 136.8, 136.3, 131.9, 129.6, 129.0, 126.1, 123.8, 123.7, 123.0, 120.7, 114.7, 70.1, 31.3, 25.7, 21.4, 18.1, 13.1, 10.4, −5.3, −5.2; HRMS (ESI) m/z : calcd for $\text{C}_{19}\text{H}_{20}\text{NO}_2$ [M − OTBS]⁺, calcd 326.1215; found, 326.1302.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its [Supporting Information](#).

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.3c01047>.

Representative procedures, spectral listing, and NMR spectra (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Jin Kun Cha – Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States;
ORCID.org/0000-0003-4038-3213; Email: ao1929@wayne.edu

Authors

Assia Chebieb – Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States; Laboratory of Catalysis and Organic Synthesis LCSCO, University of Tlemcen, Tlemcen 13000, Algeria

Young Gyu Kim – Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.joc.3c01047>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the BK-21 program, Samsung Electronics and Samsung Electro-Mechanics (Y.G.K.), and the National Science Foundation (CHE-2203224) (J.K.C.) for generous financial support.

■ REFERENCES

- (1) Recent reviews: (a) Gribble, G. W. Recent developments in indole ring synthesis –methodology and applications. *J. Chem. Soc., Perkin Trans. 1* **2000**, 1045–1075. (b) Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. *Chem. Rev.* **2005**, 105, 2873–2920. (c) Humphrey, G. R.; Kuethe, J. T. Practical methodologies for the synthesis of indoles. *Chem. Rev.* **2006**, 106, 2875–2911. (d) Inman, M.; Moody, C. Indole synthesis – something old, something new. *J. Chem. Sci.* **2013**, 4, 29–41. (e) Youn, S. W.; Ko, T. Y. Metal-Catalyzed Synthesis of Substituted Indoles. *Asian J. Org. Chem.* **2018**, 7, 1467–1487. (f) Bugaenko, D. I.; Karchava, A. V.; Yurovskaya, M. A. Synthesis of indoles: recent advances. *Russ. Chem. Rev.* **2019**, 88, 99–159.
- (2) (a) Barluenga, J.; Rodríguez, F.; Fañanás, F. Recent advances in the synthesis of indole and quinoline derivatives through cascade reactions. *Chem.—Asian J.* **2009**, 4, 1036–1048. (b) Beccalli, E. M.; Christodoulou, M. S.; Foschi, F.; Giofrè, S. Pd-catalyzed domino reactions involving alkenes to access substituted indole derivatives. *Synthesis* **2020**, 52, 2731–2760.
- (3) (a) Hughes, D. L. Progress in the Fischer indole reaction. A review. *Org. Prep. Proc. Int.* **1993**, 25, 607–632. (b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. A palladium-catalyzed method for the preparation of indoles via the Fischer indole synthesis. *J. Am. Chem. Soc.* **1999**, 121, 10251–10263. (c) Heravi, M. M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. *RSC Adv.* **2017**, 7, 52852–52887. (d) Landstrom, E. B.; Akporji, N.; Lee, N. R.; Gabriel, C. M.; Braga, F. C.; Lipshutz, B. H. One-pot synthesis of indoles and pyrazoles via Pd-catalyzed couplings/cyclizations enabled by aqueous micellar catalysis. *Org. Lett.* **2020**, 22, 6543–6546.
- (4) (a) Castro, C. E.; Gaughan, E. J.; Owsley, D. C. Indoles, benzofurans, phthalides, and tolanes via copper(i) acetylides. *J. Org. Chem.* **1966**, 31, 4071–4078. (b) Odle, R.; Blevins, B.; Ratcliff, M.; Hegedus, L. S. Conversion of 2-halo-N-allylanilines to indoles via palladium(0) oxidative addition-insertion reactions. *J. Org. Chem.* **1980**, 45, 2709–2710. (c) Larock, R. C.; Yum, E. K. Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. *J. Am. Chem. Soc.* **1991**, 113, 6689–6690. (d) Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J.-C. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones. *Chem. Soc. Rev.* **2012**, 41, 3929–3968.
- (5) (a) Chen, C.-y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Syntheses of indoles via a palladium-catalyzed annulation between iodoanilines and ketones. *J. Org. Chem.* **1997**, 62, 2676–2677. (b) Nazaré, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. A flexible, palladium-catalyzed indole and azaindole synthesis by direct annulation of chloroanilines and chloroaminopyridines with ketones. *Angew. Chem., Int. Ed.* **2004**, 43, 4526–4528. (c) Jia, Y.; Zhu, J. Palladium-catalyzed, modular synthesis of highly functionalized indoles and tryptophans by direct annulation of substituted o-haloanilines and aldehydes. *J. Org. Chem.* **2006**, 71, 7826–7834. (d) Knapp, J. M.; Zhu, J. S.; Tantillo, D. J.; Kurth, M. J. Multicomponent assembly of highly substituted indoles by dual palladium-catalyzed coupling reactions. *Angew. Chem., Int. Ed.* **2012**, 51, 10588–10591.
- (6) Cha, J. K.; Kim, Y. G.; Kim, J. H.; Lee, S. A.; Jeon, T. S. A unified approach to mono- and 2,3-disubstituted N–H indoles. *Synlett* **2023**, DOI: [10.1055/s-0042-1752656](https://doi.org/10.1055/s-0042-1752656).
- (7) (a) Stork, G.; Dolfini, J. E. The Total Synthesis of *dl*-Aspidospermine and of *dl*-Quebrachamine. *J. Am. Chem. Soc.* **1963**, 85, 2872–2873. (b) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. An efficient approach to Aspidosperma alkaloids via [4 + 2] cycloadditions of aminosiloxides: stereocontrolled total synthesis of (±)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. asymmetric syntheses of (+)-aspidospermidine and (-)-quebrachamine. *J. Am. Chem. Soc.* **2002**, 124, 4628–4641. (c) Sears, J. E.; Boger, D. L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure–function properties. *Acc. Chem. Res.* **2015**, 48, 653–662. (d) Johnson, R. E.; Ree, H.; Hartman, M.; Lang, L.; Sawano, S.; Sarpong, R. Total synthesis of pentacyclic (–)-ambiguine P using sequential indole functionalizations. *J. Am. Chem. Soc.* **2019**, 141, 2233–2237. (e) Barnes, G. L.; Hong, A. Y.; Vanderwal, C. D. A synthesis of alstonlarsine a via alstolucines B and F demonstrates the chemical feasibility of a proposed biogenesis. *Angew. Chem., Int. Ed.* **2023**, 62, No. e202215098.
- (8) (a) Ortgies, S.; Breder, A. Selenium-catalyzed oxidative C(sp²)–H amination of alkenes exemplified in the expedient synthesis of (aza)indoles. *Org. Lett.* **2015**, 17, 2748–2751. (b) Yu, C.; Xu, Y.; Zhang, X.; Fan, X. Synthesis of N-aryliindoles from 2-alkenylanilines and diazonaphthalen-2(1H)-ones through simultaneous indole construction and aryl introduction. *J. Org. Chem.* **2022**, 87, 7392–7404.
- (9) (a) Fra, L.; Millán, A.; Souto, J. A.; Muñiz, K. Indole synthesis based on a modified Koser reagent. *Angew. Chem., Int. Ed.* **2014**, 53, 7349–7353. (b) Andries-Ulmer, A.; Brunner, C.; Rehbein, J.; Gulder, T. Fluorine as a traceless directing group for the regiodivergent synthesis of indoles and tryptophans. *J. Am. Chem. Soc.* **2018**, 140, 13034–13041. (c) Xia, H.-D.; Zhang, Y.-D.; Wang, Y.-H.; Zhang, C. Water-soluble hypervalent iodine(III) having an I–N Bond. A reagent for the synthesis of indoles. *Org. Lett.* **2018**, 20, 4052–4056. (d) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Synthesis of N-substituted indole derivatives via PIFA-mediated intramolecular cyclization. *Org. Lett.* **2006**, 8, 5919–5922. (e) Jang, Y. H.; Youn, S. W. Metal-free C–H amination for indole synthesis. *Org. Lett.* **2014**, 16, 3720–3723. See also: (f) Liwosz, T. W.; Chemler, S. R. Copper-Catalyzed Oxidative Amination and Allylic Amination of Alkenes. *Chem.—Eur. J.* **2013**, 19, 12771–12777.
- (10) (a) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. N-Tosylhydrazones as reagents for cross-coupling reactions: a route to polysubstituted olefins. *Angew. Chem., Int. Ed.* **2007**, 46, 5587–5590. (b) Barluenga, J.; Valdés, C. Tosylhydrazones: new uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. *Angew. Chem., Int. Ed.* **2011**, 50, 7486–7500. (c) Barluenga,

J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Synthesis of dienes by palladium-catalyzed couplings of tosylhydrazones with aryl and alkenyl halides. *Adv. Synth. Catal.* **2010**, *352*, 3235–3240.

(d) Barluenga, J.; Valdés, C. Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines. *Chem. Commun.* **2016**, *52*, 6312–6315.

(e) Barluenga, J.; Escribano, M.; Moriel, P.; Aznar, F.; Valdés, C. Synthesis of enol ethers and enamines by pd-catalyzed tosylhydrazide-promoted cross-coupling reactions. *Chem.—Eur. J.* **2009**, *15*, 13291–13294.

(11) Zhang, Y.; Wang, J. Recent developments in Pd-catalyzed reactions of diazo compounds. *Eur. J. Org. Chem.* **2011**, 1015–1026.

(12) (a) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. The use of tosylhydrazone salts as a safe alternative for handling diazo compounds and their applications in organic synthesis. *Eur. J. Org. Chem.* **2005**, 1479–1492. (b) Shao, Z.; Zhang, H. N-Tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. *Chem. Soc. Rev.* **2012**, *41*, 560–572.

(13) Ojha, D. P.; Prabhu, K. R. J. Palladium catalyzed coupling of tosylhydrazones with aryl and heteroaryl halides in the absence of external ligands: synthesis of substituted olefins. *Org. Chem.* **2012**, *77*, 11027–11033. Since application of this procedure to **1** and **2a** afforded only complex reaction mixtures, it was not pursued.

(14) Tan, H.; Houpis, I.; Liu, R.; Wang, Y.; Chen, Z.; Fleming, M. J. Palladium-catalyzed coupling of sulfonylhydrazones with heteroaromatic 2-amino-halides (Barluenga reaction): exploring the electronics of the sulfonylhydrazone. *Org. Process Res. Dev.* **2015**, *19*, 1044–1048.

(15) The Janssen group reported that typical Barluenga conditions ($\text{LiOBu}-t$ and XPhos in dioxane) gave only trace amounts of the desired product for coupling of the unprotected 2-bromo-3-amino-pyridine.¹⁴

(16) (a) In small-scale experiments, 10 mol % of $\text{Pd}(\text{OAc})_2$ and 20 mol % of $^3\text{Bu}_3\text{MeP}\cdot\text{HBF}_4$ were used to ensure accurate weighing. In turn, the addition time (via a syringe pump) of tosylhydrazones was reduced to 1 h from Janssen chemists' 3 h.¹⁴ A larger scale coupling reaction afforded comparable yields at reduced loadings [e.g., 6 mol % of $\text{Pd}(\text{OAc})_2$] (3 mol % was employed in ref 14). See the Supporting Information for representative experimental procedures. (b) A one-pot protocol of combining both the cross-coupling and PIFA oxidation reactions seemed possible, but was not pursued: although PIFA oxidation did not require column chromatography, it became clean when simple filtration through a pad of silica gel was undertaken.

(17) Rodriguez, J.-G.; San Andrés, A. Alkylation of cycloalkanol-[b]indoles via indolylmagnesium salts: synthesis of 3H-indoles and oxidative rearrangement to spiro[cycloalkane-1,2'-indolin]-3'-ones. *J. Heterocycl. Chem.* **1991**, *28*, 1293–1299.

(18) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. Combined C–H functionalization/C–N bond formation route to carbazoles. *J. Am. Chem. Soc.* **2005**, *127*, 14560–14561. (b) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. Oxidative $\text{Pd}(\text{II})$ -catalyzed C–H bond amination to carbazole at ambient temperature. *J. Am. Chem. Soc.* **2008**, *130*, 16184–16186. (c) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, oxidative, intramolecular C–H bond amination and metal-free cross-amination of unactivated arenes at ambient temperature. *Angew. Chem., Int. Ed.* **2011**, *50*, 8605–8608. (d) Cho, S. H.; Yoon, J.; Chang, S. Intramolecular oxidative C–N bond formation for the synthesis of carbazoles: comparison of reactivity between the copper-catalyzed and metal-free conditions. *J. Am. Chem. Soc.* **2011**, *133*, 5996–6005.

(19) The carbazole synthesis, including the use of different oxidants that are more effective than PIFA, is planned. Although the desired dehydrogenation would be more facile than oxidation of the indole ring, the latter is known by means of PIFA, albeit under harsh conditions: see: (a) Mutule, I.; Suna, E.; Olofsson, K.; Pelzman, B. Catalytic direct acetoxylation of indoles. *J. Org. Chem.* **2009**, *74*, 7195–7198. (b) Huang, G.; Liu, K.; Wen, P.; Liu, J. A novel and efficient method for the synthesis of 1H-indol-3-yl acetates. *Synthesis* **2010**, 3623–3626. (c) Liu, Q.; Zhao, Q. Y.; Liu, J.; Wu, P.; Yi, H.; Lei, A. A trans diacyloxylation of indoles. *Chem. Commun.* **2012**, *48*, 3239–3242. (d) Wang, L.; Qu, X.; Fang, L.; Li, Z.; Hu, S.; Wang, F. Synthesis of 3-acetoxyoxindole derivatives by metal-free $\text{PhI}(\text{OAc})_2$ -mediated oxidation of 3-substituted indoles. *Eur. J. Org. Chem.* **2016**, 5494–5501.

(20) The regiochemical preference in the cross-coupling reactions of cyclohexenone derivatives bearing C-3, C-4 and C-6 substituents with respect to steric and electronic effects remains unknown, but must await further studies.

(21) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. Palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with 1-alkenyl halides or triflates: convenient synthesis of unsymmetrical 1,3-dienes via the borylation-coupling sequence. *J. Am. Chem. Soc.* **2002**, *124*, 8001–8006.

(22) The Merck protocol was surprisingly unsatisfactory for acyclic ketones (e.g., a 30% yield of the indole from excess acetone), unless an active compound such as pyruvic acid (82%) was employed.^{5a}

(23) Tong, S.; Xu, Z.; Mamouri, M.; Wang, Q.; Zhu, J. J. Aqueous titanium trichloride promoted reductive cyclization of o-nitrostyrenes to indoles: development and application to the synthesis of rizatriptan and aspidospermidine. *Angew. Chem., Int. Ed.* **2015**, *54*, 11809–11812.

(24) Gore, S.; Baskaran, S.; König, B. Fischer indole synthesis in low melting mixtures. *Org. Lett.* **2012**, *14*, 4568–4571.

(25) Matsui, M.; Tsuzuki, Y.; Kubota, Y.; Funabiki, K.; Inuzuka, T.; Manseki, K.; Higashijima, S.; Miura, H.; Sato, H.; Yoshida, T. J. T. Novel indoline dye tetrabutylammonium carboxylates attached with a methyl group on the cyclopentane ring for dye-sensitized solar cells. *Tetrahedron* **2018**, *74*, 5867–5878.

(26) Kong, C.; Jana, N.; Jones, C.; Driver, T. G. Control of the chemoselectivity of metal N-aryl nitrene reactivity: C–H bond amination versus electrocyclization. *J. Am. Chem. Soc.* **2016**, *138*, 13271–13280.

(27) Yang, G.; Pan, J.; Ke, Y.-M.; Liu, Y. J.; Zhao, Y. Tandem catalytic indolization/enantioconvergent substitution of alcohols via borrowing hydrogen to access tricyclic indoles. *Angew. Chem., Int. Ed.* **2021**, *60*, 20689–20694.

(28) Shen, Y.; Maamor, A.; Abu-Dharieh, J.; Thompson, J. M.; Kalirai, B.; Stitt, E. H.; Rooney, D. W. Moving from batch to continuous operation for the liquid phase dehydrogenation of tetrahydrocarbazole. *Org. Process Res. Dev.* **2014**, *18*, 392–401.

(29) Du, Y.; Xue, W.; Gao, R.; Gu, Y.; Han, L. J. [4+ 2] Annulation of 3-(2, 2-diethoxyethyl)-1, 3-dicarbonyl compounds with indoles catalyzed by Brønsted acid ionic liquid for the synthesis of carbazoles. *Tetrahedron Lett.* **2018**, *59*, 4221–4225.

(30) Kim, Y.; Kim, D.; Chang, S. Ir(III)-Catalysed electrooxidative intramolecular dehydrogenative C–H/N–H coupling for the synthesis of N–H indoles. *Chem. Commun.* **2021**, *57*, 12309–12312.

(31) Zhu, C.; Ma, S. Coupling and cyclization of o-iodoanilines and propargylic bromides via allenes: An efficient entry to indomethacin. *Org. Lett.* **2013**, *15*, 2782–2785.