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ABSTRACT

Improving the fireproof performance of polymers is crucial for ensuring human safety and enabling future space colonization. However, the
complexity of the mechanisms for flame retardant and the need for customized material design pose significant challenges. To address these
issues, we propose a machine learning (ML) framework based on substructure fingerprinting and self-enforcing deep neural networks
(SDNN) to predict the fireproof performance of flame-retardant epoxy resins. Our model is based on a comprehensive understanding of the
physical mechanisms of materials and can predict fireproof performance and eliminate the needs for properties descriptors, making it more
convenient than previous ML models. With a dataset of only 163 samples, our SDNN models show an average prediction error of 3% for the
limited oxygen index (LOI). They also provide satisfactory predictions for the peak of heat release rate PHR and total heat release (THR),
with coefficient of determination (R2) values of 0.87 and 0.85, respectively, and average prediction errors less than 17%. Our model outper-
forms the support vector model SVM for all three indices, making it a state-of-the-art study in the field of flame retardancy. We believe that
our framework will be a valuable tool for the design and virtual screening of flame retardants and will contribute to the development of safer
and more efficient polymer materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152195

Polymer materials are widely used in modern society due to their
high performance and low cost. However, their flammability remains
a significant issue, posing a threat to human life and property.
Currently, epoxy resins are commonly used in construction, automo-
tive, electronics, and aerospace industries, and they are highly flamma-
ble. In addition, flame retardant additives have been developed to
improve their flame retardancy, which is essential for human space
colonization. That is, the spacecraft cabin environment, with its
enriched oxygen atmosphere, is highly susceptible to fire. Traditional
development of flame-retardant polymers relies on experiments or
modeling, both of which have limitations. Experiment-based material
design, constrained by scientists’ domain knowledge, is costly and
time-consuming. Analytical1,2 and numerical3,4 modeling approaches,
while helpful, involve simplifications or are time-consuming.
Therefore, developing an efficient predictive model for fireproof epoxy
resins is highly desirable.

Fortunately, the recently developed machine learning (ML)
methods provide a promising tool for this intractable problem.
Essentially, the majority of engineering problems can be considered as
tasks to formulate governing equations and subsequently solve them.
However, these equations are difficult to establish, not to mention to
solve. On the other hand, ML can directly explore structure-property
relation through fitting, eliminating the need to derive governing equa-
tions and solve them. Furthermore, the dramatic advances in hardware
significantly arouse the interest for researchers to leverage ML. Since
1990s,5,6 investigators began to design or predict polymer performance
with ML techniques. To date, ML has obtained some gratifying
achievements in the design of multiple types of polymers, such as the
prediction of electron affinity (EA) and ionization based on graph con-
volutional neural network (GCNN),7 shape memory properties predic-
tion based on dual-convolutional-model framework,8 and transfer
learning-variational autoencoder.9 So far, a couple of excellent review
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papers have been published in this field,10–15 and a comprehensive
framework to design polymer materials with ML approach was pro-
posed by Yan and Li.11

In the field of flame retardancy, ML also began to cut a figure
and a few papers have been published. For example, the heat release
properties of flammable fiber-reinforced polymer laminates were pre-
dicted using the algorithms of multiple linear regression (MLR) and
Bayesian regularized artificial neural network with Gaussian prior
(BRANNGP).16 Chen et al. leveraged posynomial and other four ML
approaches (conventional linear regression, nonlinear artificial neurol
networks, and their combination of Lasso, Ridge, and ANN) to opti-
mize the flame retardancy of polymer nanocomposites.17,18 Chen Z
et al. applied properties descriptor and regression to design organic
phosphorus-containing flame retardants composite.19 However, the
usage of ML in analyzing and exploring flame retardants epoxy resins
has never been done before. Furthermore, the approaches that all the
four papers16–18 applied are not easy enough to implement. To be spe-
cific, all they leveraged are the quantitative structure properties or frac-
tion of certain components for a specified flame retardant to analyze
the properties, which possess an apparent limitation. That is, extensive
computational resources could be needed to obtain properties descrip-
tors. In addition, the fraction or molar ratio of flame retardant often
plays significant role for fireproofing, but it was also omitted by all the
previous studies.16–19 Meanwhile, previous studies have focused on
developing flame retardant composite, whereas current trend in
research is to utilize grafting techniques to achieve fireproofing. Thus,
developing a ML framework that does not rely on descriptors, but
account for fraction and can handle flame retardant polymer, is highly
desired, which is one of the motivations and contributions of this
paper.

Furthermore, in order to better predict the properties of flame
retardants, we must establish an approach that aligns with its chemical
mechanisms, which previous models fallen short of addressing.16–19

Historically, various flame retardants have been developed to enhance
polymer fire resistance, with different mechanisms based on their
chemical elements and structures.20 Flame retardants can be grouped
as brominated, phosphorus-based, nitrogen-based, and metallic com-
pound,21 each functioning differently. Brominated flame retardants
rely on gaseous phase mechanisms, where bromine radicals form HBr,
consuming high-energy H and OH radicals, stabilizing the fire

tetrahedron, and suppressing combustion. Phosphorus-based flame
retardants exhibit mixed mechanisms.22 Phosphate flame retardants
primarily involve condensed phase mechanisms, where phosphates
degrade into acids, promoting intumescent char layer formation,
which suppresses heat and fuel/oxygen transfer. Some phosphorus-
containing structures, like hypophosphite23 and 9,10-dihydro-9-oxa-
10-phosphaphenanthrene-10-oxide (DOPO),24 combine gaseous and
condensed phase mechanisms, employing both free radical trapping
and catalytic charring. Overall, chemical elements in flame retardants
primarily improve fire retardancy, while molecular structures play pro-
motive and supplemental roles. Thus, in this study, we decompose
molecules structure into elements and substructures for feature identi-
fication, making our approach a suitable choice for predicting property
of flame retardants. Moreover, as the performance of fireproofing can
be influenced by the varying weights of different substructures, we
have developed a self-enforcing deep neural network (SDNN) that can
effectively account for these difference in weight. This is the other
main contribution of this paper.

The aim of this study is to develop an ML framework that is able
to reasonably predict and optimize the performance of flame retardant
based on its structures. The paper is organized as follows. First, we
introduce the detailed fingerprint method and mathematical frame-
work of the SDNN model. Following that, we investigate the data dis-
tribution and validate the performance of two models using collected
experimental data. Finally, we derive significant conclusions from our
findings.

As exhibited in Fig. 1, the pipeline of prediction for the perfor-
mance of flame retardants can be divided into four steps.

(1) Fingerprinting (1! 2). In this step, 2D chemical structures are
fingerprinted by Morgan fingerprinting and one-hot, which will
lead to a high-dimensional binary vector.

(2) Enforcing mapping (2! 3). The binary vector will be input
into component 1 of the ML model for further mapping with
an enforcing method. The mapping will be another latent
vector.

(3) Formation of new input (3,4! 5). The new latent vector will be
combined with the input 2 (molar ratio) to form a new input 5.

(4) Prediction (6! 7). The new input will be continuously fed into
component 2 of the ML model (5! 6) to predict the perfor-
mance of flame retardant.

In this study, we collected a total of three types of datasets (LOI,
PHRR, and THR), belonging to 56 different flame retardants. In com-
bination with different molar ratios, we found a total of 163 combina-
tions for LOI, 131 combinations for THR, and 126 combinations for
PHRR (see the supplementary material). The flame retardants include
small molecules and macromolecules, and their corresponding molar
ratio is considered. The detailed method to handle molar ratio is
shown in supplementary material S1.

In this stage, we utilized substructure fingerprinting composed of
two methods, i.e., substructure decomposition and one-hot encoding.
The substructure decomposition is based on Morgan fingerprinting.25

The main idea can be divided into three steps. In the first step, distinct
integers are assigned to each atom in the chemical structure [see
Fig. 2(a)]. Second, every atom is iteratively updated by gradually
enlarging the radius of bond. For example, when radius¼ 0, only each
element itself is identified. When radius¼ 1, only the single bonds that

TABLE I. Hyperparameters adopted in the training of the SDNN model.

Hyperparameters names Values or item

Ratio between training data and test data 80/20
Batch size 32
Learning rate 0.01
Number of filter 1–2 64,64
Activation function for 1–8 hidden layers Relu
Activation function for 9th hidden layer Linear
Neuron number in hidden layers 1–9 4160, 4160, 4160, 4160,

4160, 1024, 512,
512, 256, 128

Random state in LOI model, PHRR model,
and THR model

6, 49, 7
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neighbor the core atom are considered. Finally, all substructures can
be found by this method with gradually expanded radius. For the
flame retardant EGN-Si/P in Fig. 2, there are a total of 103 substruc-
tures. In this process, the repetitive substructures will be deleted.
Through studying a set of molecules, many substructures can be
found, and every unique substructure will be assigned an integer, it
can be performed by open sourced software package RDKit.26 Next,
we adopted one-hot to further convert these integer vectors into binary
vectors. One example of this one-hot can be found in supplementary
material S2.

As mentioned earlier, both elements and substructures contribute
to the fireproofing performance and their respective role carry differ-
ent weights. By realizing this, we leveraged a SDNN model. The main
idea is inspired from self-attention mechanism.27 As shown in Fig. 3,
the binary vector representing molecule structure interacts with the
vector derived from one component of the DNN. This interaction gen-
erates a new vector that is subsequently fed into the other component
of SDNN for further processing and computation. Specifically, the
binary vector v1 is initially fed into four fully connected layers
(FL1–FL4) for learning. This process results in a vector v2 and reads

FIG. 1. Pipeline of prediction for the per-
formance of flame retardants.

FIG. 2. Iteration process for the molecule
of a flame retardant EGN-Si/P. (a) Integer
assignment for each atom. (b)–(d)
Involved elements when radius¼ 0, 1,
and 2, respectively.
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v2 ¼ h 4ð Þ ¼ z 4ð Þðwð4Þx 3ð Þ þ b4Þ; (1)

where h 4ð Þ indicates the output from 4th fully connected layer. w(4) and
b4 denote the weight and bias tensors in fourth layer, respectively. x(3) is
the output from third layer. z4 represents a rectified linear (ReLU) func-
tion in fourth layer, which is a piecewise function and reads

z 4ð Þ xð Þ ¼ 0 if x � 0
x if x > 0:

�
(2)

This activation function is also applied for fully connected layers FL
2–FL 8. This vector v2 will enhance the binary input v1 (fingerprinted
from molecule structures) by endowing different weights through a
dot product as

v3 ¼ v1 � v2: (3)

Subsequently, v3 serves as an augmented input, which is passed to the
subsequent layer for further processing. After that, v2 interact with the
molar ratiom by

v4 ¼ v3 �m: (4)

The SDNN model in this study is essentially a type of deep neural
network (DNN). The aim of the DNN is to solve a problem of mini-
mum, i.e., minimize the compressive error between ground truth and

predictions. The input of nth layer of the DNN can be mathematically
expressed as

h nð Þ ¼ z nð Þ hðnÞx n�1ð Þð Þ; (5)

where h is the updatable tensor that is composed of the weight tensor
w and bias tensor b, i.e., h¼ [w, b]T.

The activation function in ninth layer (last layer) is a linear func-
tion, which reads

z 9ð Þ xð Þ ¼ x: (6)

Its objective function (loss function) can be represented by first-order
approximation on high-dimensional Taylor theorem as

L hiþ1ð Þ ¼ L hið Þ þ rL hið Þ½ �T hiþ1 � hið Þ þOkhiþ1 � hik: (7)

Given a positive constant a (learning rate) and let hiþ1�hi
¼�arL(hi), then the loss function Eq. (7) can be written as

L hiþ1ð Þ ¼ L hið Þ � akrL hið Þk2 þOkhiþ1 � hik: (8)

Therefore, the loss function continually reduces with iterations. In this
study, we employed mean absolute value as loss function, which can
be written as

FIG. 3. Basic pipeline structures for the
SDNN. FL represents fully connected
layer. The model hyperparameters is
shown in Table I.
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L hð Þ ¼

Xi

1

jhð9Þ hð Þ � yij

i
; (9)

where i represents the total number of ground truth in a batch. h(9)

denotes the output of 9th fully connected layer. The activation func-
tion for the ninth fully connected layer is a identify function

z 9ð Þ xð Þ ¼ x: (10)

The dataset is split into two segments: 80% is allocated for train-
ing data, while the remaining 20% is reserved for testing purposes. In
order to thoroughly check the performance of our model, we
employed 3 evaluation metrics, i.e., coefficient of determination (R2)
and mean average percentage error (MAPE) and percentage of correct
point (PCP). The first two are defined as

R2 ¼ 1�

Xn
i¼0

yi � ŷ ið Þ2

Xn
i¼0

yi � �yið Þ2
; (11)

MAPE ¼ 1
n

Xn
i¼1

���� yi � ŷ i
yi

����; (12)

where ŷ i, �yi, and yi are prediction outcome, average ground truth,
and ground truth, respectively; and n is the total number of sample
in the training data. As for the metrics “percentage of correct point
(PCP),” we employed the word “correct” to indicate the difference
between the prediction and the ground truth is within a bearable
margin. Here, we established different PCPs for the three metrics.
Namely, LOI has the largest dataset and smaller number range (the
numbers range from 22 to 60), while PHRR and THR possess
smaller datasets and larger number range (0–80). Therefore, we
assign a smaller PCP for LOI and a larger PCP for PHRR and THR.
Specifically, we consider the percentage error for LOI within 10% as
“correct” and the percentage error for PHRR and THR within 20%
is deemed correct, respectively.

From the scatterplot for the ground truth and prediction (Fig. 4),
we found that the attained generally satisfactory performance for LOI,
PHRR, and THR. Also, it can be clearly seen from Table II that the R2

of test data for LOI, PHRR, and THR are 0.86, 0.87, and 0.85, respec-
tively. This suggests that at least 85% of variances for the indices can
be explained by the features from substructure fingerprinting.
Simultaneously, both the MAPE for the test data of PHRR and THR
fall within the acceptable range (17% and 15%, respectively). Notably,
the model demonstrates best performance in predicting LOI, wherein
a mere 3% MAPEs, and 96.97% errors are below 10% in the test data.
Given that there are only 100–200 data points in each database, we
believe that the chosen fingerprinting effectively capture the essential
features of elements and substructures. Moreover, these results that
our design for the ML model design is reasonable.

Meanwhile, the reliability of the SDNN model is evident.
Generally, the difference in MAPE between the training data and test
data should not exceed 20% to avoid overfitting. As shown in Table II,
the difference in MAPE between the training data and test data for
LOI is merely 2%, indicating a well-fitted model without overfitting
occurs. Additionally, the differences of MAPE between the training

data and test data of PHRR and THR are both 10%, which are consid-
ered satisfactory results, given the small training dataset.

The primary errors can be attributed to two sources. First, the col-
lected dataset is not exhaustive. Due to the inherent randomness and
small volume of collected data, none of the three datasets conform to
either normal distribution or uniform distribution. This can be roughly
observed through the histograms in Fig. 5. It can also be validated by
D’Agostino and Pearson’s test. We discovered that the measure of depar-
ture from normality, K2, for all the three datasets is 71.07, 11.346, and
15.976, respectively. Consequently, all the three databases deviate from
normal distribution. Second, the datasets in the original references are, to
some extent, artificially skewed by researchers. As reported Yan et al.,9

nearly all the reported results in references do not conform to Gaussian
random distribution. This is because, although experimental results are
supposed to yield a Gaussian distribution, researchers often report
selected results, implying that only specific flame retardants were
reported. For example, only the flame retardants with excellent fireproof-
ing index were reported, while the major part (the flame retardants with
moderate and weak fireproofing index) was involuntarily ignored. In
particular, flame retardants with a LOI below 25 are more likely be omit-
ted by the researchers because of their poor performance. Conversely, if
the identified flame retardant has a LOI greater than 30, there is a high
likelihood that it would be reported. This trend can be partially observed
from histogram of LOI [Fig. 5(a)]. Despite the bias database, the model
still shows strong performance across the three evaluation metrics, lead-
ing us to conclude that our SDNNmodel is reliable.

We also predict three indices by support vector machine (SVM)
with same fingerprinting method (see supplementary material S3).
The prediction results of SVM for the three indices are exhibited in
Fig. S3 and Table S1. Upon comparing with the two model performan-
ces (see Tables II and S1), the SVM model shows inferior results for
every index in the test data. This variation primarily stems from the
distinct models utilized in each approach. Essentially, the two ML
models in this study can be viewed as a mathematical optimization
method based on curve fitting. We can examine this problem by con-
sidering the form of fitting functions and their respective number of
trainable parameters. We investigated the number of fitting parame-
ters in SDNN and SVM models, separately. First, the SDNN model
has a total of 34 696 909 parameters, while the SVM model has
200–400 trainable parameters (2�number of training data points).
Given that the fireproofing parameters are relatively complex, the
model with more parameters could be effective. Specifically, the model
with more parameters is more flexible and adaptable, enabling them to
capture non-linear relationships and intricate patterns within the data.
This increased flexibility allows them to better model complex prob-
lems that may involve numerous interacting factors or dependencies.
Second, the fitting function in two ML techniques is distinct: the SVM
model presumed an exponential function, while the SDNN employed
multiple piecewise functions (Relu). For this specific problem, the
piecewise functions could be more suitable to describe the nature of
fireproofing performance. Therefore, these two reasons contribute to
the significant superiority of the SDNNmodel.

Simultaneously, the overfitting in the SVM model is notably
more severe than in the SDNN model. Specifically, the R2 differences
between training and test data for the three indices (0.44, 0.36, and
0.28) are significantly larger than those of the SDNN model (0.12,
0.06, and 0.07). Concurrently, the SVM’s MAPE differences exceed
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those of the SDNN model (4% vs 2%, 29% vs 10%, and 15% vs 10%,
respectively).

In order to delve deeper into the performance of our model, we
employed conventional property descriptors for fingerprinting, as
comprehensively outlined in Section S4. Our analysis highlights that
this model, when utilizing property descriptors, yields comparable
results for LOI prediction to those achieved with the MSDþSDNN

approach. However, it exhibits a marked reduction in performance
when applied to the other two predictive scenarios. These observations
lead us to conclude that, while the property descriptor-based model
demonstrates proficiency in predicting certain aspects of fireproof per-
formance, it exhibits limitations when tasked with predictions for
smaller datasets. This underlines the necessity for a more robust
approach when dealing with limited data.

FIG. 4. Scatter plot of structure decompo-
sition þ SDNN model (MSDþSDNN) predic-
tions vs ground truth: (a) LOI training
data; (b) LOI test data; (c) PHRR training
data; (d) PHRR test data; (e) THR training
data; and (f) THR test data.
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In this paper, based on our understanding for structure-
property relation for flame retardants, we proposed a ML framework
by employing substructure fingerprinting and enhanced SDNN
model. Through this framework, we are able to provide satisfactory
predictions for the three important indices of flame retardants on
basis of small datasets. Comparing with previous works, this work
can directly predict the unknown or de novo flame retardant without
requiring the quantifications of their properties; thus, it provides dis-
tinct application advantages over previous methods. Moreover, it
can work as an effective tool for fine-tuning the properties of flame
retardants, as well as enabling inverse design for their development.
However, it is noted that, while the prediction of flame retardants
for epoxy resin has been conducted in this study, the modeling on
relationship between flame retardants and polymer matrices is
needed to fully establish the prospects of machine learning in devel-
oping flame retardants, which will be also comprehensively studied
in our future works. In addition, as mentioned above, the fireproof-
ing performance still possesses a complex mechanism, which influ-
ences the convergence of prediction. In the future, we anticipate
collecting more data and integrating the effects of catalyst, resulting
in a more practical model.

See the supplementary material that contains the details for cal-
culation of the molar ratio for small molecules and macromolecules,
example of one hot fingerprinting, SVM prediction, and property
descriptors-based prediction.

This work was supported by the U.S. National Science
Foundation under Grant No. OIA-1946231 and the Louisiana Board
of Regents for the Louisiana Materials Design Alliance (LAMDA),
Faculty Fellow Program (FFP)þSummer Undergraduate Research
Funding (SURF) sponsored by NASA & Louisiana Board of Regents,
under Grant No. NASA(2023)-SURF-01, and the National Science
Foundation under Grant No. 1736136.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Cheng Yan and Xiang Lin contributed equally to this work.

Cheng Yan: Conceptualization (lead); Investigation (lead);
Methodology (lead); Software (lead); Writing – original draft (lead).

TABLE II. Prediction of structure decomposition þ SDNN for LOI, PHRR, and THR.

LOI (%) PHRR (kW/m2) THR (MJ/m2)Index

Metrics Training data Test data Training data Test data Training data Test data

R2 0.98 0.86 0.93 0.87 0.92 0.85
PCP(%) 100 96.97 92.31 74.07 96.00 80.77
MAPE(%) 100 3 7 17 5 15

FIG. 5. Histograms for LOI, PHRR, and THR. K2 represents the deviations from normality.

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 122, 251902 (2023); doi: 10.1063/5.0152195 122, 251902-7

Published under an exclusive license by AIP Publishing

 19 M
arch 2024 22:51:01

pubs.aip.org/aip/apl


Xiang Lin: Data curation (lead); Investigation (equal). Xiaming Feng:
Supervision (equal); Writing – review & editing (equal). Hongyu
Yang: Supervision (equal). Patrick Mensah: Resources (equal).
Guoqiang Li: Validation (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
within the supplementary material.

REFERENCES
1S. D. Watt, J. E. J. Staggs, A. C. McIntosh, and J. Brindley, Fire Saf. J. 36, 421
(2001).
2J. E. J. Staggs, Fire Saf. J. 32, 221 (1999).
3P. Patel, T. R. Hull, A. A. Stec, and R. E. Lyon, Polym. Adv. Technol. 22, 1100
(2011).

4C. Vovelle, J. L. Delfau, M. Reuillon, J. Bransier, and N. Laraqui, Combust. Sci.
Technol. 53, 187 (1987).

5V. Venkatasubramanian, K. Chan, and J. M. Caruthers, Comput. Chem. Eng.
18, 833 (1994).

6V. Venkatasubramanian, K. Chan, and J. M. Caruthers, J. Chem. Inf. Comput.
Sci. 35, 188 (1995).

7M. Aldeghi and C. W. Coley, Chem. Sci. 13, 10486 (2022).
8C. Yan, X. Feng, C. Wick, A. Peters, and G. Li, Polymer 214, 123351 (2021).
9C. Yan, X. Feng, and G. Li, ACS Appl. Mater. Interfaces 13, 60508 (2021).

10W. Sha, Y. Li, S. Tang, J. Tian, Y. Zhao, Y. Guo, W. Zhang, X. Zhang, S. Lu, Y.
Cao, and S. Cheng, InfoMat 3, 353 (2021).

11C. Yan and G. Li, Adv. Intell. Syst. 5, 2200243 (2022).
12C. Yan and G. Li, in Encyclopedia of Materials: Plastics and Polymers (Elsevier,
2021), Vol. 2, pp. 267–279.

13M. M. Cencer, J. S. Moore, and R. S. Assary, Polym. Int. 71, 537 (2022).
14L. Chen, G. Pilania, R. Batra, T. D. Huan, C. Kim, C. Kuenneth, and R.
Ramprasad, Mater. Sci. Eng., R 144, 100595 (2021).

15A. J. Gormley and M. A. Webb, Nat. Rev. Mater. 6, 642 (2021).
16H. T. Nguyen, K. T. Q. Nguyen, T. C. Le, L. Soufeiani, and A. P. Mouritz,
Compos. Sci. Technol. 215, 109007 (2021).

17F. Chen, J. Wang, Z. Guo, F. Jiang, R. Ouyang, and P. Ding, ACS Appl. Mater.
Interfaces 5, 53425 (2021).

18F. Chen, L. Weng, J. Wang, P. Wu, D. Ma, F. Pan, and P. Ding, Compos. Sci.
Technol. 231, 109818 (2023).

19Z. Chen, B. Yang, N. Song, T. Chen, Q. Zhang, C. Li, J. Jiang, T. Chen, Y. Yu,
and L. X. Liu, Chem. Eng. J. 455, 140547 (2022).

20B. W. Liu, H. B. Zhao, and Y. Z. Wang, Adv. Mater. 34, 2107905 (2022).
21S. T. Lazar, T. J. Kolibaba, and J. C. Grunlan, Nat. Rev. Mater. 5, 259 (2020).
22M. S. €Ozer and S. Gaan, Prog. Org. Coat. 171, 107027 (2022).
23L. A. Savas, F. Hacioglu, M. Hancer, and M. Dogan, Polym. Bull. 77, 291 (2020).
24K. A. Salmeia and S. Gaan, Polym. Degrad. Stab. 113, 119 (2015).
25D. Rogers and M. Hahn, J. Chem. Inf. Model 50, 742 (2010).
26G. Landrum (2013). “RDKit: Open-Source Cheminformatics Software,”
GitHUB https://www.rdkit.org/.

27A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, Adv. Neural Inf. Process. Syst. 30, 5998 (2017).

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 122, 251902 (2023); doi: 10.1063/5.0152195 122, 251902-8

Published under an exclusive license by AIP Publishing

 19 M
arch 2024 22:51:01

https://doi.org/10.1016/S0379-7112(01)00008-X
https://doi.org/10.1016/S0379-7112(98)00045-9
https://doi.org/10.1002/pat.1943
https://doi.org/10.1080/00102208708947026
https://doi.org/10.1080/00102208708947026
https://doi.org/10.1016/0098-1354(93)E0023-3
https://doi.org/10.1021/ci00024a003
https://doi.org/10.1021/ci00024a003
https://doi.org/10.1039/D2SC02839E
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1021/acsami.1c20947
https://doi.org/10.1002/inf2.12167
https://doi.org/10.1002/aisy.202200243
https://doi.org/10.1016/B978-0-12-820352-1.00206-6
https://doi.org/10.1002/pi.6345
https://doi.org/10.1016/j.mser.2020.100595
https://doi.org/10.1038/s41578-021-00282-3
https://doi.org/10.1016/j.compscitech.2021.109007
https://doi.org/10.1021/acsami.1c12767
https://doi.org/10.1021/acsami.1c12767
https://doi.org/10.1016/j.compscitech.2022.109818
https://doi.org/10.1016/j.compscitech.2022.109818
https://doi.org/10.1016/j.cej.2022.140547
https://doi.org/10.1002/adma.202107905
https://doi.org/10.1038/s41578-019-0164-6
https://doi.org/10.1016/j.porgcoat.2022.107027
https://doi.org/10.1007/s00289-019-02746-7
https://doi.org/10.1016/j.polymdegradstab.2014.12.014
https://doi.org/10.1021/ci100050t
https://www.rdkit.org/
https://doi.org/10.48550/arXiv.1706.03762
pubs.aip.org/aip/apl

