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robust shape memory vitrimers by establishing a
new machine learning framework†

Cheng Yan, *a Xiaming Feng,bc John Konlan,b Patrick Mensaha and
Guoqiang Li b

Shape memory vitrimers (SMVs) are an emerging class of advanced materials that have garnered

significant interest from researchers in the past five to six years. These materials can return to their

original shape when exposed to a stimulus, while also healing damage they have sustained. However,

achieving both high healing/recycling efficiency and a high glass transition temperature (Tg) in SMVs has

been challenging, due to the conflicting requirements between molecular chain mobility and the

formation and reaction of dynamic covalent bond exchange. Based on the understanding of chemo-

physical properties, this study first leverages machine learning (ML), involving supervised and

unsupervised learning approaches, to navigate this complex design space of SMVs. Furthermore, we

elaborated the basic mathematical frameworks of ML approaches and comprehensively compared their

performances. Based on the best performing model, we designed four types of thermally robust shape

memory vitrimers (TRSMVs), which boast high recycling efficiency, elevated Tg, and exemplary shape

memory effects, overcoming conventional barriers. One of the discovered samples exhibited

outstanding performance with a Tg of 233.5 1C, a recycling efficiency of 84.1%, and a recovery stress of

33 MPa in experiments. It aligns well with ML predictions, showcasing the potential of our ML framework

in driving innovative materials design and advancing the field of smart polymers.

1. Introduction

Based on the response to heat, the formation processes of
polymers are different, resulting in two types: thermoplastic
polymers and thermosetting polymers. Each type has its own
advantages and disadvantages. Thermoplastic polymers have
physical crosslinks or entanglement of polymer chains, which
allow for easy recycling. However, these polymers are not
suitable for applications requiring rubbery solids or high
temperature stability, as the physical crosslinks or entangled
chains can break down under high temperature conditions. In
contrast, thermosetting polymers have stable chemical cross-
links formed by covalent bonds, which grant them excellent
rubbery stiffness and thermal stability. Nevertheless, due to the
excellent stability of covalent crosslinks, it is difficult to reuse

thermosetting polymers. Fortunately, the recent discovery of
vitrimers overcomes the limitations of both polymers. Accord-
ing to Zee and Nicolaÿ,1 vitrimers can empower permanent
chemical networks with recycling capability through dynamic
covalent bonds, allowing the polymer network to change topol-
ogy but maintain the number of chemical bonds at temperature
below decomposition. Since Montarnal et al.2 found the first
vitrimer in 2011, this polymer has gained significant interest
and attention in a short time span of about 10 years.1,3–6

Compared to traditional thermoplastic polymers, vitrimers
exhibit higher mechanical strength and longer service life,
leading to a reduction in resource waste.7,8 So far, vitrimers
have found wide applications, including shape memory
polymers (SMPs),9,10 3D printing,11 in-space assembly for the
complex structure,12 flame-resistant material,13–15 etc.

Synthesis of vitrimers with high recovery efficiency and
comparatively low glass transition temperatures (0 1C o Tg o
150 1C) has been widely reported in previous research
work.16–19 However, it remains challenging to increase the Tg
of vitrimers while maintaining high recovery efficiency. In
previous studies, only a few samples have achieved this
goal,19,20 as demonstrated in Fig. 1. The difficulty in simulta-
neously achieving high Tg and high recovery efficiency arises
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from the fact that a high Tg needs low mobility of polymeric
chains and segments, while high healing/recovering efficiency
needs high mobility of the polymeric chains and segments.
In other words, these high Tg polymers exhibit low mobility,
which is unfavorable for the formation and reaction of dynamic
covalent bond exchange. Another challenge is that the intrinsic
healing of vitrimers depends on the formation of reversible
dynamic covalent bonds at a certain high temperature, which is
the topology freezing transition temperature (Tv). Usually, Tv is
higher than Tg. Therefore, vitrimers with high Tg may make the
Tv close to or even higher than the decomposition temperature,
leading to difficulty in maintaining self-healing. Nevertheless,
developing vitrimers with high Tg and high recovery efficiency
would significantly broaden their application windows. For
example, vitrimer-made structures are able to perform self-
healing in a wider temperature range and perform under heavy
load-carrying conditions, as high Tg vitrimers typically possess
high strength. Additionally, polymers with high Tg offer notable
advantages in outer space. For example, the temperature on
the surface of Mars can reach 120 1C, while on Venus, the
temperature can even soar up to 462 1C. Polymers with high Tg
can maintain their mechanical strength under these extreme
conditions, making them highly desirable for potential future
colonization on other planets and presenting a promising
application outlook. Meanwhile, tough working conditions
in outer space often necessitate polymers to exhibit multiple
functionalities. As such, we aim to design vitrimers with
exceptional shape recovery performance, allowing them to
assume two different shapes upon actuation. This shape mem-
ory effect is desired especially in their application in deployable
structures21 or in damage self-healing.22 In addition to space
structures, shape memory polymers with high Tg are highly
desired as proppants or lost circulation materials in the oil and
gas and geothermal drilling applications.23,24 In this study, we
refer to these new materials as ‘‘thermally robust shape mem-
ory vitrimers (TRSMVs)’’.

Due to the conflicting design requirement between the
mobility of molecular segments and glass transition, it is
challenging for the design of TRSMVs. Although innovative
materials such as shape memory polymers,25 vitrimers,2 piezo-
electric materials26 have been developed, creating cutting-edge
materials typically requires significant talent, time, domain

knowledge, and a bit of luck, rendering the process difficult
to perform and slow. Particularly, when we design TRSMVs, the
different properties and functionalities, such as high thermal
stability, shape memory, and dynamic covalent bonds, may
reside in different composition spaces. Identifying the over-
lapping compositional space becomes more challenging.
Hence, developing a comparatively easy material design
method is highly desired.

According to Yan and Li,27 the key for polymer design is to
understand the relationship between microscopical structures
and macroscopical properties, such that

S ¼ f wð Þ; w ¼ argmin
w

L wð Þ (1)

where S represents the appropriate polymer structure, w is the
input tensor, and L is the loss function or objective function.

Although the structure–property relationship is well-defined
since all the mechanical behaviors follow Newton’s laws of
motion, quantifying the molecular and topological structures of
polymers is challenging, and the computational cost is often
significantly high.28 Specifically, different from general proper-
ties, both the experiments for dynamic bond exchange and
shape memory effect need a couple of hours to one day, while
the molecular dynamic (MD) approach can only accurately
simulate atomic-level mechanisms of vitrimers on a nano-
second scale (limited by current computational capacity). This
disparity in timescales results in MD simulations being con-
siderably misaligned with experimental results. For instance,
there is a significant discrepancy of 223% between the MD
prediction of recovery stress, which is 55 MPa,29 and the
experimental result of 17 MPa.30 Hence, employing ML
approaches to model the structure–property relationship has
become a wise and attractive solution.

The recent rapid development in both hardware and algo-
rithm for ML has opened up new possibilities for material
discovery. Over the last decade, there has been a surge in the
discovery of new materials, thanks to the application of
ML across various domains.31–33 Specifically, in the realm of
SMPs, addressing the challenge of limited datasets, Yan and his
collaborators innovatively employed a dual-convolutional
network34 and a transfer learning-variational autoencoder
(TL-VAE)35 in their research. This led to the discovery of two
groundbreaking thermoset shape memory polymers (TSMPs),
both surpassing existing performance metrics for SMPs. In a
subsequent cutting-edge development, Yan and colleagues
introduced a novel self-enhanced deep neural network (SDNN)
by first incorporating a self-attention algorithm for the predic-
tion of flame retardancy, resulting in a highly efficacious ML
model.36 In the field of metals and alloys, Lee et al. designed a
MVAE framework that is able to generate 10 new alloy entries
with higher yield strength and ultimate tensile strength.37 In
the field of metamaterials, Adithya et al. designed new cellular
structures and lattice structures with improved properties
(load-carrying capacity, natural frequency, energy absorption
capabilities) using a generative adversarial network (GAN).38,39

Despite the previous successes, no ML-based methods have

Fig. 1 Tg vs. recycling efficiency. It is evident that only a few samples can
exhibit both high Tg (4150 1C) and excellent recovery efficiency (485%).
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been applied to the field of vitrimer discovery, hence we
decided to employ a design framework based on ML to address
the gap in this field.

In our study, three new innovative strategies are employed to
design new TRSMVs, which are our important contributions.
First, by comparing the properties and performance, we
selected the best performing model from four ML models,
which was based on our understanding of different properties.
Second, in the absence of any open database for both vitrimers
and SMPs, we manually gathered data points from references
and created three different databases. Lastly, to perform effec-
tive virtual screening for TRSMVs, we developed a set of novel
screening criteria for virtual material screening, aiming to
overcome the barriers imposed by small datasets.

This article is structured as follows. Section 2 begins with
outlining a material discovery framework for TRSMVs. We then
proceed with a qualitative analysis to identify the key features

for fingerprinting TRSMVs, and further discussed these finger-
printing methods and ML prediction models. After that, we
leveraged four different ML approaches to predict the proper-
ties of TRSMVs, comparing their respective performances.
Furthermore, based on the best-performing ML model, we
identified several promising new TRSMVs and experimentally
validated one of them. Section 3 provides important conclu-
sions drawn from our study.

2. Method
2.1 Machine learning framework

The framework to discover TRSMVs is shown in Fig. 2. It is
primarily composed of two parts, i.e., forward prediction and
inverse mining. Beginning with forward prediction, it operates
based on the data gathered from references shown in Fig. 2a(1).

Fig. 2 Framework to discover TRSMVs: (a) forward prediction and (b) inverse mining.
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This element of the framework involves training three ML
models i.e., MRe (model for recovery efficiency Re), MTg (model
for glass transition temperature Tg), MRm (model for rubbery
modulus Rm), as shown in Fig. 2a(3). The training process
employs an appropriate fingerprinting method (Fig. 2a(2)),
and its details are presented in Section 2.3.

Subsequently, an inverse mining component is employed.
Its objective is to search for the desired samples through the
established database. This involves eight steps (see Fig. 2(b)),
details of which are elucidated as below:

(1) Gather monomers and crosslinkers from references to
create databases for SMVs.

(2) Randomly pair monomers and crosslinkers capable of
polymerization to produce potential SMPs.

(3) Represent potential SMPs as Simplified Molecular Input
Line Entry System (SMILES) strings for fingerprinting purposes.

(4) Input these SMILES groups into pre-trained machine
learning models for recycling efficiency, Tg, and rubbery
modulus. Evaluate and select the best-performing models
comprehensively.

(5) Predict Tg, Re and Rm of all potential TRSMVs using
chosen models.

(6) First, the SMPs with functional groups that can lead to a
bond exchange reaction will initially be selected as targets.
Next, apply a set of screening criteria to remove retardant
targets. Finally, identify material champions for TRSMVs.

(7) Further screen material champions using chemical
knowledge.

(8) Validate the TRSMVs through a series of experimental
testing.

2.2 Key features analysis

In our model design, we aim to predict three targets in the
model, including Tg, recycling efficiency, and recovery stress.
These three targets involve a combination of intricate chemical
and physical processes, necessitating a thorough understanding
to select the suitable fingerprinting method.

Tg is primarily influenced by factors such as the polymer
structure, molecular weight, intermolecular forces, crosslink
density, and degree of polymerization. Among them, the most
pivotal factor is segment mobility, which is determined by the
polymer structure. For example, rigid chains (e.g., benzene ring)
result in high Tg, while soft chains (e.g., long aliphatic chains)
lead to low Tg. Nonetheless, the current discussion provides
only an approximated, qualitative description of Tg, selectively
omitting several factors for the sake of brevity. As presented
above, the molecular mass has an important role in determin-
ing Tg, a relationship that has been rigorously investigated and
validated by prior studies. For instance, the works of Novikov
and Rössler,40 as well as Wolf et al.,41 have elucidated the
quantitative relationship between Tg and molecular mass.
Meanwhile, Zhang and Xu42 have employed molecular traceless
quadrupole moment and molecule average hexadecapole
moment in a machine learning model to predict Tg, marking
another notable approach in this multifaceted exploration.
Furthermore, it’s imperative to acknowledge that Tg is

influenced not only by the static factors mentioned but is also
significantly affected by thermodynamic state changes, a con-
cept explored by the Random First-Order Transition (RFOT)
theory.43 Recycling efficiency hinges on three decisive factors.
First, the monomers used for vitrimer synthesis play a vital role,
as they directly determine the number of dynamic bonds.
Polymer networks with more dynamic bonds generally yield
more dynamic chemical reactions, thus improving recycling
efficiency. Taking phosphate vitrimer as an example, a phos-
phate vitrimer synthesized using phosphoric acid 2-hydroxyethyl
methacrylate ester and EPON-82644 has higher recycling effi-
ciency than the vitrimer synthesized by bis[2-(methacryloyloxy)
ethyl]phosphate15 due to a larger number of dynamic bonds in
phosphates (99% vs. 75.5%). Specifically, phosphoric acid
2-hydroxyethyl methacrylate ester has three dynamic bonds,
while bis[2-(methacryloyloxy)ethyl]phosphate has one dynamic
bond, hence the former can lead to more recycling efficiency
under suitable reaction conditions. Secondly, recycling efficiency
is partially determined by Tg; a low Tg requires a lower recycling
temperature, resulting in less aging, hence leading to high
recycling efficiency. Specifically, the recycling temperature
of vitrimers should exceed their Tg, establishing that a lower Tg
typically corresponds to a lower recycling temperature. In this
context, operating at a diminished recycling temperature
decreases the likelihood of chain scission and cross-linking,
thereby ensuring a minimal attenuation of the mechanical
properties of SMVs. Concurrently, reduced aging sustains super-
ior molecular mobility and potentially lessens the packing
density in the polymeric glass, thereby amplifying reactivity
during the chemical recycling process. For example, epoxy
vitrimers were synthesized by curing bisphenol A diglycidyl ether
(DGEBA) with adipic acid (AA) possessing a low Tg = 471, hence
resulting in a high recycling efficiency Re = 97%.45 In contrast, a
SMV formulated using bisphenol A glycerolate dimethacrylate
(BPAGMA) exhibits a Tg of 1501, which corresponds to a lower
recycling efficiency Re = 69.5%.10 Lastly, activation energy plays a
role in determining recycling efficiency. A lower activation energy
means a less energy threshold to activate a dynamic bond,
rendering more occurrences of dynamic reactions and improv-
ing the recycling efficiency. Activation energy is typically deter-
mined by the types of functional groups and network structures.
For instance, Zhu et al. synthesized a vinylogous urethane
vitrimer with acetoacetylated castor oil (ACO) and aminated
DL-limonene (ADL). This vitrimer has a low activation energy of
26 kJ mol�1, resulting in a relatively high recycling efficiency Ere
of 103.63%.46 On the other hand, Ma et al. developed a vitrimer
named MDS-EPO using 4,40-methylenedianiline (MDA) and
IS-EPO.47 This vitrimer possesses an activation energy of
106 kJ mol�1 and displays amedium recycling efficiency Ere of 82.6%.

Recovery stress prediction is challenging due to the interplay
between experimental conditions and microscopic structures.
However, based on general experience, a higher rubbery mod-
ulus correlates with higher recovery stress. Hence, we employed
a rubbery modulus prediction model as a surrogate for
the recovery stress prediction model, a method proven effec-
tive in previous works.35 The rubbery modulus is primarily
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determined by the number of rigid chains in the polymer
network, and this is also viewed as macroscopic expression
arising from physical behavior of the underlying macroscopic
structures. Fig. 3 displays the qualitative correlations for all the
three prediction targets. Upon reviewing the three prediction
targets, it becomes apparent that the molecular structure is the
most crucial factor for all of them, followed by functional group
rank. As a result, our feature extraction should prioritize
by capturing these structural details. In ML, the Simplified
Molecular Input Line Entry System (SMILES) is a widely used
chemical linear notation for representing 3D molecular struc-
tures. While the SMILES effectively captures the primary
elements and bond types, it has limitations in representing
complex structures. Direct SMILES encoding places great
emphasis on individual elements and is highly dependent on
underlying dictionary.35 As a result, it may not yield satisfactory
performance for model prediction. Consequently, it is essential
to select a fingerprinting method that is able to further capture
more topological structures of a polymer network. To account
for functional group factors, we employed multiple screening
approaches to enhance our model prediction, which will be
demonstrated in Section 2.5.2.

2.3 Fingerprinting methods

In this study, we applied two different feature extraction
approaches: (1) Transferred Variational Autoencoder (TL-VAE)
and (2) Morgan fingerprinting. Detailed descriptions of each
approach are provided below.

2.3.1 TL-VAE model. In a previous study, Yan et al.35

demonstrated that the Transferred TL-VAE is a better option
than the direct SMILES encoding for featurization of polymer
network structures. In this study, we continue to employ this
feature extraction method. The TL-VAE is a reasonable choice

for two reasons. First, the input of the TL-VAE is derived from
the SMILES, making it naturally capture the features of primary
elements and functional groups. When coupled with the molar
ratio between monomers and crosslinkers used in polymer
synthesis (detailed in Section 2.5.1), this method can effectively
capture the type of functional groups and reaction types.
Second, the VAE often requires a large amount of data points.
In our previous study, it was shown that drug molecules have
exhibited similar structures with monomers or crosslinkers of
SMPs. Therefore, in our case, the TL-VAE model can also resort
to this large dataset of drug molecules, rendering it an appro-
priate approach for our purpose. It should be mentioned
that we have adopted two parameter optimizations for the
TL-VAE model, including the dimension of latent space and
loss function (see supporting information in our previous
publication35). To implement this model in our current study,
we first trained the model with 420 000 drug molecules and
then trained the last two layers with 389 monomers or cross-
linkers from SMPs or vitrimers (see Fig. 4). The rationale for
employing Transfer Learning Variational Autoencoders (TL-VAEs)
can be appreciated from three perspectives. First, the TL-VAE
must effectively grasp the syntax of the SMILES, a linear notation
system that can be challenging, particularly when dealing with
monomers featuring multiple ring structures. For instance, accu-
rately mapping the high-dimensional vector of 40-diaminodi-
phenyl sulfone (DDS), which has four rings, back to its original
SMILES representation is a complex task. The SMILES notation for
DDS is ‘‘CQCCc4ccc(OCC1CO1)c(c2cc(CCQC)ccc2OCC3CO3)c4’’.
To achieve precise mapping, the VAE model must correctly identify
the number of rings and match all closing brackets, a task that
often poses a challenge to this model. Second, the crosslinkers
and monomers of SMVs possess unique functional groups
not found in drug molecules, necessitating fine-tuning of the

Fig. 3 Correlation between basic features and ground truths.
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model. Third, VAEs typically involve a large number of fitting
parameters (our model includes 1 087 565 parameters), making
it essential to train it with sufficient data points. Otherwise, we
inevitably encounter overfitting. As illustrated in Fig. 4, the 389
SMP monomer or vitrimer monomer SMILES is insufficient for
our TL-VAE model.

VAEs can be mainly divided into encoders and decoders. The
encoder maps inputs into vectors in a hidden space, which can
be written as

E = q(z|x) (2)

where x and z represent the input and the vector in the hidden
space. In contrast, the decoder maps the vector in the hidden
space back to the inputs, such that

D = q(x|z) (3)

The aim of the VAE model is to render the output close to
the input as much as possible, hence we leverage ‘‘categorical
cross entropy’’ as the loss function, which can be written as

L p; qð Þ ¼ �
XN
1

p xð Þ log q xð Þ (4)

where p(x) is the expected value and q(x) is the predicted
probability for the expected value, and N is the number of
categories, i.e., the number of symbols in the dictionary for the
SMILES in a batch.

The VAE model is composed of four types of layers, i.e.,
convolutional layer (CNN), long-short term memory layer
(LSTM), flatten layer and fully connected layer (FL). Among

them, the CNN layer aims at extracting features from the binary
image representing SMILES, which can be written as

g = f * h (5)

where f is the filter tensor, h is the image tensor, and ‘‘*’’
represents the convolution operation. The piecewise function
‘‘Relu’’ and piecewise function ‘‘Softmax’’ are the activation
functions used in the network and which read as

sRe xð Þ ¼
0 if x � 0

x if x4 0

(
(6)

ss xð Þi¼
exiPk

j¼1

exj

(7)

A LSTM is a type of recurrent neural network (RNN). The basic
cell for a LSTM is shown in Fig. 5. It is believed that the current
state is dependent not only on the last state but also on the
previous history, so it defines two types of hidden states,
namely ct and ht. With input vector xt in ith state and the last
hidden state inputs ct�1 and ht�1, the intermediate vector Qt

(which can be ft, it, gt, ot, see Fig. 5) can be calculated using the
same method as

Qt = f(Wtxt + Utht�1 + Bt) (8)

where I is the identity tensor, Wt, Ut and Bt are the weight tensor
for an input, the weight tensor for hidden state and the bias vector,
respectively. Evidently, a total of four weight tensors and four bias
tensors are calculated. It is important to note that the calculation
between weights and inputs involves matrix multiplication. f is an

Fig. 4 Training strategy for the network of the VAE model. The detailed model pipeline can be found in the ESI.†
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activation function, which can be either the logistic function (s) or
the hyperbolic function (tanh) and is read as

s xð Þ ¼ 1

1þ e�x
(9)

tanh xð Þ ¼ e2x � 1

e2x þ 1
(10)

The two hidden states ct and ht can be calculated using

ct = ft}gt�1 + it}gt, ht = ot}tanh(gt) (11)

where } represents the Hadamard product.
Based on the network architecture we have designed (refer to

the ESI† for details), the loss function (as per eqn (4)) can be
characterized as a function with a multitude of parameters. Our
objective is to accurately estimate these parameters. To achieve
this, we employ Taylor’s theorem. Consequently, the loss func-
tion or objective function at the (i + 1)th step can be expressed
as a function of weights and biases48

L(yi+1) = L(hi) + [rL(hi)]
T(hi+1 � hi) + O8hi+1 � hi8, h = [W,B]T

(12)

where h is the updatable tensor (which represents weight tensor
W and bias tensor b). Stipulating a positive learning rate a
(a constant) and let hi+1 � hi = �arL(hi), then the loss function
eqn (12) can be written as

L(hi+1) = L(hi) � a8rL(hi)8
2 + O8hi+1 � hi8 (13)

Apparently, the loss function continues to reduce with iterative
updating of y. In other words, the comprehensive error between
prediction and ground truth can be minimized. This model
took about 20 hours for training in our workstation equipped
with RTX2080 Ti.

2.3.2 Morgan fingerprinting. In addition, we utilized
Morgan fingerprinting to extract features, which has been
commonly recognized as an effective finger printing approach
for structure featurization. We implemented this method for
comparison purposes. Morgan fingerprinting is also good at
describing polymer network structures. The method was ori-
ginally proposed by Rogers and Hahn,49 which can be simply
described as follows. First, using the daylight atomic invariants
rule,50 identity information is assigned to each non-hydrogen
atom in the molecule, i.e., atomic number, atomic mass,
number of nearest-neighbor atoms, etc. Secondly, bond infor-
mation around an atom is described based on the first step,
which generates a new vector group for each atom and can then
produce a new identity using a hash function. Through multi-
ple iteration (in each iteration, radius expands by 1, as shown in
Fig. 6), every atom and their neighbors are finally fingerprinted
as a new vector with desired length. In this process, the
repeated molecule fragments will be deleted, and the radius

Fig. 5 The basic structure of a LSTM cell.

Fig. 6 A typical iteration process for generating the Morgan fingerprinting tris[2-(acryloyloxy)ethyl]isocyanurate, a monomer molecule of the shape
memory polymer. Starting with element 4 (oxygen) as the center, the Morgan fingerprinting progressively expands its radius to represent molecular
structures (see the highlighted regions). With R = 13, the iteration process will count all the elements.
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range should be defined according to the complexity extent of
the molecules. Considering that some monomers possess a
couple of benzene rings, we employed a larger radius, i.e., R = 13,
which aims to avoid the potential confusions due to a smaller
radius definition.

2.3.3 TSMP fingerprinting. By utilizing the Variational
Autoencoder (VAE) model or Morgan fingerprinting, it is pos-
sible to extract features from any monomer or crosslinker
through the use of an encoder. Subsequently, a thermoset
shape memory polymer (TSMP) network can be characterized
through fingerprinting. Let’s consider that a TSMP network is
synthesized using ‘n’ distinct types of monomers or crosslinkers.
These can be represented as vectors, denoted as m1, m2,. . ., mn.
In parallel, their corresponding molar percentages are repre-
sented as a1, a2,. . ., an. Consequently, this polymer network can
be depicted as a high-dimensional resultant vector as

S = m1�a1 + m2�a2 + m3�a3 + . . .mn�an (14)

This vector will be used in the following forward prediction
model as features for input.

2.4 ML model

For the forward prediction model, we leveraged two types of ML
models in this study, i.e., artificial neural network (ANN) and
support vector method (SVM).51 Their basic math frameworks
are illustrated as follows.

2.4.1 ANN model. ANN is a type of engineering optimization
method and aims to solve a minimization problem through the
high-dimensional Taylor theorem. The network architecture is
shown in Fig. 7. In a regression problem, we employed the activation
functions ‘‘ReLU’’ and ‘‘linear’’ function, which can be written as

ReLU xð Þ ¼
x if x4 0;

0 otherwise:

(
Linear xð Þ ¼ x (15)

The function for output can be represented as

f Xð Þ ¼LinearðW7 �ReLUðW6 �ReLUðW5 �ReLU

�ðW4 �ReLUðW3ReLUðW2�ReLU W1Xþb1ð Þþb2Þþb3Þ

þ b4Þþb5Þþb6Þþb7Þ
(16)

The loss function that we chose is the ‘‘mean average percentage
error (MPAE)’’, which can be expressed as

L yð Þ¼

Pi
1

y�y
_

i

h i
i

(17)

where yi and yi are prediction outcome and ground truth, respec-
tively. The loss can be reduced using eqn (13). Also, the weights and
bias in the ANN model can also be optimized following hi+1 � hi =
�arL(hi) (learn rate a can be found in Table 1).

2.4.2 Support vector regression (SVR). Another ML method
that we used here is SVR. The structure–property relation for
SVR yields a non-linear relation given by52

f xð Þ ¼ w � f xð Þ þ b with w ¼
XN
i¼1

aiþ � ai�ð Þf xið Þ (18)

where ai and a�i are Lagrange multipliers, and b is bias. f(x) is
the feature mapping function. The dual form of eqn (18) can be
written as

f xð Þ ¼
XN
i¼1

aiþ � ai�ð ÞK xi; xð Þ þ b (19)

The kernel function K is the radial basis function (RBF), which
can be expressed as

K(xi,x) = exp(�8xi � x82) (20)

Fig. 7 Basic pipeline structures for the artificial neural network.
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The objective function is to minimize the error outside the e-
insensitive tube and model complexity, which can be expressed
as a function as shown below,

min C
XN
i¼1

xi
þ þ xi

�ð Þ þ 1

2

X
i;j

wk k2
 !

subject to ti � yi þ eþ xþ

and ti � yi � eþ x�

(21)

where C is a constant, xi
+ and xi

� are the upper boundary and
lower boundary, respectively. N is the total number of samples,
and e is a small margin. This objective function can be written
as the dual formula by introducing Lagrange multipliers ai

+, ai
�

as shown below,

max
aiþ;ai�

XN
i¼1

aiþ � ai�ð Þti � e
XN
i¼1

aiþ � ai�ð Þ � 1

2

"

X
i;j

aiþ � ai�ð Þ ajþ � aj�
� �

K xi; xj
� �# (22)

subject to

0 � ai
þ � C; 0 � ai

� � C and
XN
i¼1

ai
þ � ai

�ð Þ ¼ 0 8i (23)

where N is the total number of samples. Our aim is to solve
the Lagrange multipliers and bias. By leveraging quadratic
programming, this problem can be quickly solved. This

can be realized using a software machine learning library,
Scikit-learn.53

It is apparent that both of the aforementioned approaches
involve intricate iterative computations. However, leveraging
the robust parallel processing capabilities of Graphics Proces-
sing Units (GPUs), these models (ANN and SVR) can be effi-
ciently executed within a matter of minutes.

2.4.3 Result comparison. By integrating two fingerprinting
methods and two supervised learning methods, we employed
four unique approaches to predict Tg, rubbery modulus and
recycling efficiency, respectively. The results are exhibited in
Table 2 and Fig. 8 and 9, respectively. Herein, we introduced
three different indices, including mean average percentage
error (MAPE), coefficient of determination (R2) and percentage
of correct point (PCP) to evaluate the performance of the
models. Given more datapoints for Tg and less data points for
rubbery modulus and recycling efficiency in the training data-
set, we established a prediction accuracy threshold. For Tg,
prediction with an error of 15% or less was considered accu-
rate, while for rubbery modulus and recycling efficiency, pre-
diction with an error of 20% or less was deemed accurate. Upon
thoroughly comparing with the four approaches, we found that
the approaches ‘‘VAE + ANN’’ and ‘‘Morgan encoding + ANN’’
exhibit the best performance among the group. We can math-
ematically understand this outcome by examining the forms of
fitting functions and fitting parameters. First, the assumed
function for the ANN appears to be better than the function
for the SVM. The comparison reveals that SVM’s results are not
well-performed, implying that the assumed exponential func-
tion in the SVM (eqn (20)) might not well fit the structure-
relation of TRSMVs. In contrast, the combinations of 5 linear
piecewise functions (ReLU) are employed in the ANN, proving
to be a more suitable choice. Second, the number of fitting
parameters in the two ML approaches differs. In the SVM, the
number of parameters can be calculated as

Np = Ntrain�NLag (24)

wheren Ntrain and Nlag are the numbers of training samples for
Tg and the numbers of Lagrange multipliers (it can be clearly

Table 1 Hyperparameters adopted in the training of the ANN model

Hyperparameter names Values or items

Ratio between training data and test data 80/20
Batch size 32
Learning rate 0.01
Activation function for 1–5 hidden layers ReLU
Activation function for the output layer Linear
Neuron number in hidden layers 1–6 2048, 1024, 256, 64, 64, 32
Random state in Tg, Re, Rm 24, 1, 7

Table 2 The comparison of prediction discrepancies among the VAE + ANN model, VAE + SVM, Morgan encoding + SVM, Morgan encoding + ANN

Fingerprinting
methods

Supervised learning
model

Model
output

R2 in training
data

PCP in
training (%)

MAPE in
training data (%)

R2 in
test data

PCP in
test (%)

MAPE in
test data (%)

VAE encoding VAE + ANN MTg 0.98 99.68 1.25 0.64 94.87 4.33
MRe

0.98 99.15 1.95 0.65 76.67 15.90
MRm

0.99 91.67 7.60 0.89 63.27 25.75

VAE encoding VAE + SVR MTg
0.76 93.57 5% 0.65 96.15 5

MRe
0.56 82.05 16.00 0.19 73.33 38.00

MRm
0.33 61.98 35 0.52 42.86 44.00

Morgan encoding Morgan encoding + SVR MTg 0.81 94.53 4 0.43 94.87 5
MRe

0.64 83.76 14.00 0.26 70.00 37.00
MRm

0.3 65.10 31.00 0.48 36.73 47.00

Morgan encoding Morgan encoding + ANN MTg
0.96 99.68 2.06 0.54 92.31 5.55

MRe
0.84 97.44 7.59 0.57 63.33 16.80

MRm
0.99 96.35 6.82 0.95 61.22 29.81

PCCP Paper

Pu
bl

is
he

d 
on

 2
0 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 L
ou

is
ia

na
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
3/

19
/2

02
4 

10
:5

3:
57

 P
M

. 
View Article Online

https://doi.org/10.1039/d3cp03631f


30058 |  Phys. Chem. Chem. Phys., 2023, 25, 30049–30065 This journal is © the Owner Societies 2023

seen that Nlag = 2 in eqn (22)). In the ANN, the number of
parameters can be calculated using

Np ¼
Xn
2

Nneon �Nneonþ1
þNneon (25)

where Nneon�Nneon+1 calculates the number of weights from the
(n � 1)th layer to the nth layer. Nneon represents the number of
biases in the nth layer. Accordingly, the number can only reach
up to 389 � 2 = 778 in the SVM, while there are a total of
2 909 633 parameters in the ANN. As polymer features are

Fig. 8 Visualization comparisons for Tg, Re and Rm based on the VAE + ANN model.
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relatively complex, more parameters are essentially needed to fit.
This further enhances the results of the ANN model. Among
them, VAE + ANN possesses a slight advantage. It means that TL-
VAE does extract some hidden structural features from the initial

SMILES notation, including the number of rigid chains, number
of soft chains and the influences of different fragments, etc.

Consequently, our model proves to be a viable and effective
option and will work as the desired ML model for subsequent

Fig. 9 Visualization comparisons for Tg, Re and Rm based on the Morgan + ANN model.
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virtual screening. In addition, the other reason why we choose
TL-VAE is that this model has the potential to produce new
monomers or crosslinkers, which has been validated in our
previous research.35

Among the models for the three different design targets, the
model for Tg exhibits superior performance over the other two
models, which can be partially understood by the larger num-
ber of data points and close to Gaussian data distributions.
Evidently, the dataset of Tg has more data points than the other
two datasets, thus allowing the ML model capture more under-
lying patterns and relationships in the datasets. Furthermore,
as illustrated in Fig. 10, the distribution of Tg closely resembles
a Gaussian distribution, while the distributions of the other
two datasets show neither Gaussian distribution nor uniform
distribution. As a result, the data points for Tg may possess
better generalization capabilities. These discrepancies could
arise from the current research trend, which focuses on high-
recycling efficiency vitrimers or extremely softer polymers.
Consequently, more extreme values emerge, increasing the
likelihood of overfitting and reducing generalization for the
models with recycling efficiency and rubbery modulus. It
should be noted that we did not implement cross validation
in this work. That is, our datasets, comprised of 390, 147, and
250 data points for the three respective datasets, posed unique
challenges that rendered traditional methods like cross-
validation less suitable. One primary concern was the skewed
distribution within our datasets, which could severely impact
the predictive performance of our model if cross-validation was

employed. For instance, due to the skewed selection of aca-
demic journals (only excellent results have the chance to be
reported), only a scant number of SMPs can achieve a rubbery
modulus exceeding 220 MPa as depicted in Fig. 1 of the
manuscript. Should these entries be excluded from the training
data, our model might struggle to identify vitrimers with high
recovery efficiency owing to the inherent fitting nature of our
machine learning models. This scenario could lead to conven-
tional cross-validation to magnify biases, detrimentally affect-
ing predictive performance in the chemical space. To address
this, we adopted an alternative approach. We explored
50 distinct random states from 1 to 50, aiming to find an
optimal data split that ensures model performance while con-
trolling overfitting. This method, although unconventional,
was deemed necessary due to the constraints of our data
collection methodology. Our results, as presented in Table 2,
support our approach. The variance in MAPE between training
and testing sets for all models is consistently below 20%. When
this is considered in conjunction with two other performance
metrics, we observe only minimal signs of overfitting. Thus, we
are confident that our chosen method provides a balanced and
pragmatic solution to the challenges inherent in our datasets.

2.5 New TRSMV discovery

2.5.1 Chemical space creation. In order to discover new
TRSMVs, we initially created a vast chemical space and then
screened for the desired polymers within it. First, we gathered
184 crosslinkers and monomers from our dataset, which

Fig. 10 Histograms for Tg, recycling efficiency and rubbery modulus in the training datasets, which consists of 389, 147 and 250 data points,
respectively.

Paper PCCP

Pu
bl

is
he

d 
on

 2
0 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 L
ou

is
ia

na
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
3/

19
/2

02
4 

10
:5

3:
57

 P
M

. 
View Article Online

https://doi.org/10.1039/d3cp03631f


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 30049–30065 |  30061

consisted of 9 alcohol molecules (–OH), 30 carboxylic acid
molecules (–COOH), 38 epoxy molecules (–OH3C2), 55 amine
molecules (–NH2), 11 thiol molecules (–SH), and 41 alkene
molecules (–CQC). This chemical space can produce virtual
thermosetting polymers synthesized through five classic
chemical reactions, including: (1) epoxy-amine reaction, (2)
epoxy-hydroxy group reaction, (3) thiol–ene click reaction
(CQC reacting with –SH), (4) hydroamination (CQC reacting
with –NH2), and (5) dimerization (CQC reacting with CQC).
These five reaction types result in 7959 virtual thermosetting
polymers. To decrease the computational workload, we
restricted our space to dimers synthesized from only two
monomers.

We assume that a total of 1 mol molecules participates in
the reaction. By varying the molar ratio of the two monomers
between 0.1 : 0.9 and 0.9 : 0.1, we generated a vast chemical
space containing 71 631 virtual thermosetting polymers. Since
our training dataset only includes 389 polymers, at least 99.45%
of the polymers in the chemical space are new polymers.

Furthermore, to accurately calculate the molecules participating
in the reactions, we introduce an effective stoichiometric ratio to
model the varying crosslink densities. For instance, for epoxy
(EPON 826) cured by a rigid isophorone diamine (IPD), given the
molar ratios 0.1 : 0.9, the effective stoichiometric ratios are
0.1 : 0.05, which is different from the initial molar ratio provided.
Apparently, the actual chemical reactions also involve experi-
mental conditions and catalysts; however, we have chosen to
discard these factors and assumed that all chemical reactions
can fully occur. This comprehensive chemical space can be
explored through virtual screening to identify promising poly-
mers with desired properties.

2.5.2 Virtual screening. Unavoidably, our model prediction
has some discrepancy. To further improve the screening
accuracy, we applied three screening criteria: threshold value
screening, dynamic bond screening, and flexible chain screen-
ing. First, three threshold values are established for initial
screening: Er 4 250 MPa, Re 4 70%, and Tg 4 473K. Given
that the highest Tg in our database is approximately 572 K and

Table 3 ML discovered TRSMVs and their predicted target properties, as well as experimental validation for one TRSMV

No. Combination Chemical structures of monomers Tg (K) Er (MPa) Re (%)

1 HMA : TAI = 0.2 : 0.8 ML 518.43 352.27 75.72

2 BIS-GMA : TAI = 0.2 : 0.8

ML 520.51 374.28 72.83
Expt. 506.5 332.2 81.4

3 HMA : TAI = 0.3 : 0.7 ML 503.71 259.39 78.55

4 BIS-GMA : TAI = 0.4 : 0.6 ML 492.82 348.68 73.19
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no crosslinker has the functionality exceeding three, we antici-
pate that the highest Tg of our new TRSMVs will not signifi-
cantly exceed this value, setting Tg o 600 K. Secondly, while all
the combinations of monomers and crosslinkers can be synthe-
sized as thermosetting polymers, they may not necessarily have
the ability to possess the recyclability. Therefore, we performed
further screening based on the presence of dynamic bonds. We
counted the number of dynamic bond groups in each thermo-
setting polymer, selecting only those that contained at least one
carboxyl group (–COOH) and one hydroxyl functional group
(–OH), or at least one imine functional group (CQN), or at least
one disulfide bridge (S–S). This ensures that all selected poly-
mers can form esters, carbonate, urethanes, or imines, or
disulfides and related groups. Thirdly, to guarantee better
structural rigidity in the screened polymers, we eliminate any
polymers containing long flexible chains. Specifically, if a
monomer or crosslinker had more than 20 flexible chains, they
were eliminated from the target materials. This screening
process ensures that the virtual screening results are reliable.
Ultimately, we obtained four potential TRSMVs, their corres-
ponding monomers and crosslinkers as well as their three
targets, which are listed in Table 3. It can be seen that all the
four candidates use the triazine ring as a crosslinker, which is
typically a rigid ring with a robust thermostable structure;
hence the discovered SMVs should process excellent rubbery
modulus and high Tg. Meanwhile, given that candidates 1 and 2
have a higher percentage of triazine rings, they should be
more satisfied with requirements of thermally robust shape
memory vitrimers (TRSMVs). Furthermore, the monomer BIS-
GMA (a type of BPA) in candidate 2 should have better strength
and thermostability than the bicyclic compound structure
in TAI in candidate 1. However, it is worth noting that the
presence of rigid chains (triazine ring and BPA) could poten-
tially impact their recycling efficiency. That is, rigid chains
might reduce the mobility of polymer chains, making it harder
for the material to flow during remolding or reprocessing steps
in the recycling process. This challenge could be mitigated
through strategic adjustments in the recycling experiments,
such as optimizing processing temperature, employing isother-
mal curing, reducing the size of waste material, etc. In sum-
mary, candidate 2 stands out as a particularly promising type of
TRSMV, harmonizing robust thermal properties with the shape
memory effect and the potential for efficient recycling through
methodical experimental design.

2.5.3 Experimental validation. In order to further validate
the predictability of theML framework, we synthesized the second
new TRSMV listed in Table 3. The polymer can be produced by
two pairs of monomers (crosslinkers). One is bisphenol A glycerol
dimethacrylate (BPAGMA) cured by a photoinitiater, 2-hydroxy-2-
methyl-propiophenone (HMP), purchased from Sigma-Aldrich.
The other was synthesized by curing the tris[2-(acryloyloxy)ethyl]
isocyanurate monomer (TAI) with a photo-initiator, diphe-
nyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), also purchased
from Sigma-Aldrich. To prepare the polymer network, we began by
mixing 50 g of the BPAGMA monomer with 1.5 g of the photo-
initiator HMP in a 250 mL beaker and preheated it at 70 1C for 1

hour to decrease the viscosity and allow efficient mixing. Next, we
added 200 g of TAI and 15.05 g of the TPO photo initiator to the
BPAGMA/HMP mixture, resulting in a BPAGMA :TAI weight ratio
of 20 : 80. The mixture was further stirred using a magnetic stirrer
at 90 1C for a duration of 2 hours. It was cured in a UV chamber
(IntelliRay 600, Uvitron International, USA) for 40 s under 50%
irradiation intensity (232 nm,B45mW cm�2) followed by 3 hours
of thermal curing at 220 1C.

The thermal behaviors were measured using DMA, where
the glass transition could be identified by the peak of the tan
delta curve, and the rubbery modulus was determined by
examining the plateau region in the respective material’s
mechanical response. The Tg was first determined using
Q800 DMA obtained from TA Instruments (New Castle, DE).
The specimens used had a dimension of 4.91 mm wide,
3.16 mm thick, and an effective length of 12.46 mm. The test
was conducted under the multi-frequency/strain test mode.
The frequency was set to 1 Hz, and the amplitude was selected
to be 20 mm. During the temperature scan, we first equilibrated
the chamber and specimen to �30 1C using liquid nitrogen and
kept at this temperature isothermally for 5 minutes. After this,
we started collecting data by ramping at 3 1C min�1 to 300 1C.
The temperature corresponding to the peak of the tand was
defined as Tg. From Fig. S2 in the ESI,† the Tg was determined
to be 233.5 1C. A DSC 4000 calorimeter made by PerkinElmer
(Waltham, MA) was also used to determine the Tg. Samples of
approximately 4.30 mg were scanned from �50 1C to 350 1C at
10 1C min�1. The tests were performed in a nitrogen environ-
ment with a gas flow rate of 20 mL min�1. The second heating
cycle was used to determine the Tg to remove the effect of
thermal history. From Fig. S3 in the ESI,† the Tg was deter-
mined to be 244.72 1C.

The recycling/healing efficiency of the synthesized polymer
was determined via the tensile test. We first tested the post-cured
specimens with the dimension of 59.98 mm � 5.70 mm �
1.44 mm until fracture. Then the fractured specimens were ball
milled using a machine (PQ-N2 Planetary Ball Mill, Across
International, New Jersey, USA) for 20 hours. The milled powders
were gently introduced into a steel mold and recycled in the
eXpert 2610 MTS (ADMET, Norwood, MA, USA) chamber at a
pressure of 13 MPa for 2 hours at 220 1C. After demolding,
rectangular specimens with dimensions 59.98 mm � 4.95 �
3.52 mm were obtained. The recycling efficiency was calculated
using the equation provided below

Re ¼
sr
s0

� 100% (26)

where sr is the tensile strength of the recycled specimen and s0
is the tensile strength of the initial specimen without damage.
All the tests were repeated 3 times to obtain the mean value and
standard deviation. As given in Table 3, the Tg, rubbery modulus
and recycling efficiency from experimental measurements are
506.5 K (or 233.5 1C), 332.2 MPa and 81.4%, respectively. The
absolute percentage differences between ML predictions and
experimental measurements are 2.77%, 12.67% and 10.52%,
respectively.
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We also tested the shape memory performance of the new
TRSMV. The shape memory effect of the discovered BPAGMA-
TAI polymer was determined by first heating the MTS chamber
for 1 hour at 220 1C to account for thermal expansion of the
metal fixtures and then loading cylindrical samples with
dimensions of 5.75 mm diameter and 8.20 mm height at a
loading rate of 0.5 mm min�1 to achieve a compression
programming strain of 24%. The chamber was then cooled
down to room temperature to fix the programmed shape. Both
stress recovery and free shape recovery tests were conducted.
The recovery stress was estimated by preheating the MTS
chamber at 220 1C to eliminate the thermal expansion of the
fixtures, and the programed cylinder of height 6.2 mm and
diameter of 7.2 mm was quickly constrained in the fixtures. The
recovery stress as a function of time was recorded as stress
versus time curve, with recovery stress measured at approxi-
mately 33 MPa.

In the free shape recovery test, the compression programmed
specimens were placed in the heating chamber at 220 1C for
30 minutes, and the recovered height was measured. The shape
fixity ratio F and shape recovery ratio R were calculated using the
equations provided below:

F ¼ er
el
� 100%; R ¼ ef � er

ef
� 100% (27)

where ef is the fixed strain after load removal, el is the strain
before removing the load, and er is the residual strain after free
shape recovery. The tests were repeated more than 3 times to get
the mean value and standard deviation.

Finally, we obtain the shape fixity ratio and shape recovery
ratio as 99.24% and 98.17%, respectively. In a nutshell, the
discovered new TRSMV possesses high shape memory perfor-
mance and high recycling efficiency, validating the superiority
of our ML framework. The experimental measurement shows
that the recovery stress is about 33 MPa under a compression
programming strain of 24%. This shows that this polymer
possesses a recovery stress almost equal to the highest record
of 35.3 MPa in the previous study.10 Overall, this TRSMV
has high glass transition temperature, high healing/recycling
effciency, and excellent shape memory effect, satisfying the
desired goals in this study.

3. Conclusion

In summary, relying on ML techniques, we developed a feasible
framework to design TRSMVs for overcoming the conflicting
requirements between molecular chain mobility and the
formation and reaction of dynamic covalent bonds. The frame-
work allows us to virtually screen the TRSMVs from a vast
chemical space, and the designed TRSMVs are able to showcase
high recycling efficiency, high Tg, and excellent shape memory
effects. The framework exhibits great potential to design new
polymers during a short period of time. It is expected that this
framework can work as a useful tool for polymer scientists to
design new polymers. Simultaneously, we acknowledge that the
proposed framework still has certain limitations, such as

limited accuracy in rubbery modulus prediction due to the
small training datasets and the absence of suitable property
descriptors. In the future, we aim to gather more datapoints
into our dataset and integrate the property descriptor into our
model for further improvement.
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