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Abstract

The 3D radial escape-velocity profile of galaxy clusters has been suggested to be a promising and competitive tool
for constraining mass profiles and cosmological parameters in an accelerating universe. However, the observed
line-of-sight escape profile is known to be suppressed compared to the underlying 3D radial (or tangential) escape
profile. Past work has suggested that velocity anisotropy in the phase-space data is the root cause. Instead, we find
that the observed suppression is from the statistical undersampling of the phase spaces and that the 3D radial
escape edge can be accurately inferred from projected data. We build an analytical model for this suppression that
only requires the number of observed galaxies N in the phase-space data within the sky-projected range
0.3� r⊥/R200,critical� 1. The radially averaged suppression function is an inverse power law ( )á ñ = + lZ N N1v 0
with N0= 17.818 and λ= 0.362. We test our model with N-body simulations, using dark matter particles,
subhalos, and semianalytic galaxies as the phase-space tracers, and find excellent agreement. We also assess the
model for systematic biases from cosmology (ΩΛ, H0), cluster mass (M200,critical), and velocity anisotropy (β). We
find that varying these parameters over large ranges can impart a maximal additional fractional change in 〈Zv〉 of
2.7%. These systematics are highly subdominant (by at least a factor of 13.7) to the suppression from N.

Unified Astronomy Thesaurus concepts: Dark energy (351); Cosmological parameters (339); Dark matter (353);
Galaxy groups (597); Cosmology (343); Galaxy clusters (584); Gravitation (661); Orbital motion (1179); Weak
gravitational lensing (1797); General relativity (641); N-body simulations (1083); Extragalactic astronomy (506)

1. Introduction

Galaxy clusters are the largest most recently formed
cosmological objects. Galaxies inside the potential are sparsely
distributed and represent a small fraction of the baryonic
content. The majority of the baryons in clusters are in the
mostly smooth gaseous intracluster medium. In the current
ΛCDM paradigm, the cluster potential is dominated by dark
matter, which, except gravitationally, is not known to interact
with the baryons. Through the Poisson equation, the cluster
potential governs the dynamics of all massive tracers in the
cluster, including the galaxies. In this scenario, we expect
tracers on elliptical orbits to have been accelerated to escape
speeds at their closest approach and that these tracers will be
largely unaffected by dynamical friction, tidal interactions, or
encounters with other tracers (see Aguilar 2008 for a review).
At any given radius away from the cluster center, there will be
tracers that are moving at the escape speed. Therefore, the
escape-velocity profile becomes a property of clusters repre-
senting the underlying potential with few astrophysical
systematic issues (Miller et al. 2016).

The escape-velocity profile, vesc(r), of a cluster is a clearly
defined edge in the radius/velocity phase-space diagram. Only
the tracers with the maximum possible radial or tangential 1D
speed will contribute to this edge (Behroozi et al. 2013). The
power of utilizing the observed vesc(r) is in its direct connection
to the total potential, enabling cluster-mass estimations and
tests of gravity on the largest scales in the weak-field limit and
placing constraints on the ΛCDM cosmological parameters

(Gifford & Miller 2013; Gifford et al. 2013; Stark et al.
2016b, 2017).
Up until now, simulations have always shown that the

observed edge is lower than the underlying radial or tangential
vesc profile. Because of this, most mass profile modelers using
caustics have utilized N-body simulations to calibrate the
amount of suppression in the projected escape-velocity profile
(Diaferio & Geller 1997; Diaferio 1999; Serra et al. 2011;
Gifford et al. 2013). However, Stark et al. (2016a) used a novel
technique where they combined weak-lensing mass profiles and
cluster phase-space data to observationally constrain the
suppression without simulations. Combined, these studies find
that the projected edge is about 60%–80% suppressed in
comparison with the 3D radial escape edge. This is the
dominant systematic when using the observed phase-space
edge to infer cluster-mass profiles or in cosmological parameter
estimation.
In this work, we take a new approach to determine the

amount of projected escape-edge suppression, which does not
require simulations or weak-lensing observations. Our
approach is rather simple and is based on populating mock
halos with galaxies on realistic orbits. While these mock phase
spaces do not contain the full dynamical information of a true
massive and fully evolved halo, we show that the 3D radial and
projected phase-space edges closely match those of evolved
cosmological N-body simulations.
The plan of the paper is following. We start with Sections 2

and 3, where we review the connection between the escape-
velocity profile, the gravitational potential, and cosmology as
motivation for understanding the suppression of the projected
escape profile. In Section 4 we develop an analytical approach
to model the escape profile of cluster phase spaces. In Section 5
we apply our model to mock cluster samples and in N-body
simulations. We finish with a summary and discussion.
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Throughout the paper and where necessary, we use a flat
standard cosmology with ΩM= 0.3 and ΩΛ= 1−ΩM, and
H0= 100h km s−1 Mpc−1 with h= 0.7 is assumed. We refer to
the following quantities R200 and M200 as the radius and the
mass of clusters at the point when the cumulative interior
density drops to 200ρc,z, where ρc,z= 3H2/(8πG) is the critical
density of the universe at redshift z and ( ) ( )= =E z H z H0

( )W + W +L z1M
3 . The connection between R200 and M200

for spherical systems is by definition ( )r= pM R200200
4
3 c,z 200

3 .

2. Motivation

2.1. Escape-velocity Profile in an Expanding Universe

The main conclusion of general relativity is the Einstein
equation, which relates matter/energy density to the curvature
of spacetime (Einstein 1916; Jacobson 1995). Through the
Poisson equation, this curvature in turn governs the dynamical
behavior of the local matter. Nandra et al. (2012) derived an
invariant fully general relativistic expression, valid for arbitrary
spherically symmetric systems, for the force required to hold a
test particle at rest relative to the central point mass in an
accelerating universe. As then also noted by Behroozi et al.
(2013), in a ΛCDM universe there is a location in space (req)
that is well defined and relative to a massive body (like a
cluster), where the radially inward gravitational force acting on
a tracer from the massive object is equivalent to the effective
radially outward force due to the acceleration of the underlying

spacetime,

⎜ ⎟⎛⎝ ⎞⎠( ) ( )
( )= -r

GM
q z H z

, 1eq 2

1 3

where G is the gravitational constant, M is the mass of the
cluster, H(z) is the Hubble expansion parameter, and the
deceleration parameter is ( ) ( ) ( )= W - WLq z z z1

2 m . In the flat
standard cosmology, req is ∼8–9 times greater than r200.
An important observational consequence of Equation (1) is

in the definition of the escape velocity on cosmological scales.
In the Newtonian or weak-field limit, the escape velocity is
defined by the potential

( )= - Fv 2 , 2esc

where Φ is the total potential that includes the gravitational
potential (f) as well as the potential in the expanding spacetime
(Riess et al. 1998; Calder & Lahav 2008). As discussed in
Behroozi et al. (2013), the 3D radial3 escape-velocity profile is
of the following form:

[ ( ) ( )] ( ) ( )[ ] ( )f f= - - - -v r r q z H z r r2 . 3esc eq
2 2

eq
2

Equation (3) tells us that the slope of the escape-velocity profile
runs downward with radius due to the q(z)H2(z)r2 contribution
and also that the overall amplitude of the escape edge shifts
downward due to req, the latter being the dominant effect.
Equation (3) was tested to high precision and accuracy (percent
level) using N-body simulations (Miller et al. 2016).
We can make an observation of the escape-velocity profile of

a cluster in projection on the sky. Likewise, we can measure the
gravitational potential profile f(r) from the gravitationally
lensed shear of the background galaxies. Combined, such data
make a powerful cosmological probe (Stark et al. 2017). The
issue we address in this paper is the statistical effect of
undersampled phase spaces, which leads to a suppression of the
underlying escape-velocity profile.

2.2. Observed Galaxy Cluster Radius/Velocity Phase Spaces

We acquire galaxy velocities along the line of sight (vlos) by
measuring their redshifts (zg) as well as the redshift of the
cluster redshift center (zc),

( )=
-

+
v c

z z

z1
, 4los

g c

c

where c is the speed of light.
We then infer the galaxy-projected radial distances from the

center of the cluster (r⊥) using a specified cosmology,

⎜ ⎟⎛⎝ ⎞⎠( )
( )ò=

+
¢
¢

qr̂ r
z

c
H

dz
E z

1
1

, 5
z

c 0 0

g

where rθ and r⊥ are the angular and radial separations between
the galaxy and the center of the cluster.4 By knowing both vlos
and r⊥, we create a projected phase space for each cluster, i.e.,

Figure 1. An example projected phase space, i.e., line-of-sight velocity vlos
[km/s] vs. radial distance r⊥ [Mpc] away from the center of a galaxy cluster.
Dots correspond to positions and velocities of individual galaxies. Dashed
black lines correspond to a three-dimensional radial escape-velocity profile
inferred from this cluster’s mass profile using weak-lensing measurements and
a standard ΛCDM cosmology for Equation (3). Solid black lines correspond to
the maximum observed on the projected phase-space diagram velocity profile
measured by using an interloper removal prescription proposed by Gifford
et al. (2013). This paper aims to explain the difference between the amplitudes
of the weak-lensing inferred and observed escape profiles.

3 Objects on tangential escape trajectories require slightly more energy to
escape than those on radial orbits as presented in Behroozi et al. (2013).
However, the difference is small inside the virialized region.
4 We assume that with a large-enough galaxy sample in the phase-space data
(∼100 galaxies), or with ancillary X-ray data, the cluster center can be well
determined. Clusters that show signs of mergers or other significant
substructure can be excluded from this type of scientific analysis.
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vlos versus r⊥ (see an example in Figure 1). The edge in the
projected phase space is the maximum observed velocity
profile vesc,los (see solid lines on Figure 1).

Diaferio & Geller (1997) and Diaferio (1999) laid the initial
foundations for the projected escape-velocity technique using
the idea of “caustics” in the 2D phase-space density. They
worked in potential units, such that they were using the
maximum observed velocity to infer the square of the escape-
velocity profile. Thus, the underlying premise involves a
geometric projection of the classic anisotropy parameter, β.
Formally, the velocity anisotropy is

( )b
s
s

= - q1 , 6
2

r
2

where σθ and σr are tangential and radial velocity dispersions.
The dispersion is

( ) ( ) ( )s = á ñr v r , 72 2

where the v(r) are velocities of individual galaxies measured
with respect to zero (i.e., to the cluster frame of reference) and
the average 〈 · 〉 is over all the galaxies inside a 3D radial bin at
r with a width Δr. Using geometric arguments, Diaferio
posited the following relation between the line of sight and 3D
escape velocity of a cluster:

( ) ( )
( )

( )

( ( ( ))) ( ) ( )

b
b

b

á ñ =
-
-

á ñ

= á ñ-

v r
r
r

v r

g r v r

1
3 2

, 8

esc,los
2

esc
2

1
esc
2

where g(β(r))≡ (3− 2β(r))/(1− β(r)).
The above premise suffers from an important statistical issue

that was never addressed. The problem lies in the fact that it is
based on projected dispersions averaged over projected radii
(see Figure 2). The dispersion measured in the small box B is
not the same as that of the dispersion measured through the
integrated line of sight. By necessity of monotonic potentials
(see Figure 3), the dispersions in boxes A and C must be
smaller than those at B. By including tracers in boxes A and C
as representative of the average dispersion in box B, one is
necessarily biasing the result.

As another approach in assessing the validity of
Equation (8), consider a densely sampled phase space (e.g.,
of dark matter particles). With enough sampling, one would
surely identify a tracer near the escape speed with its velocity
perfectly aligned with the line of sight at a projected radius
identical to the 3D radius (i.e., red arrow at position K in
Figure 2). In this case, one could observe the full 3D escape
speed at this radius regardless of the radially averaged
anisotropy of the underlying system. Any tracer that is not at
position K, but is still along the line of sight, must necessarily
experience a lower potential and escape speed due to the
monotonically decreasing potential (see Figure 3).

3. Line-of-sight Velocities and Escape Speed

3.1. Relative Position

From the perspective of the distant observer, many cluster
galaxies are at the same distance.5 Some of the galaxies are
physically closer to the observer (arrows in box A in

Figure 2(b)), some farther away from the observer (box C),
and some are somewhere at an intermediate distance (box B)
such that the projected radius is close in value to the 3D radius.
The 3D and projected phase-space radial locations of these
boxes are shown in Figure 3. For the distant observer, the
relative position of all of the boxes is equal to OK= R⊥, a cone
that is created by circling the line of sight AC around the ring
KK1.

3.2. The Maximum Observed Velocity

We next address the tracer-projected velocity in the context
of its maximum because we are concerned with the maximum
velocity at any radius (i.e., the escape speed). The total velocity
can be written down in terms of three individual vector

Figure 2. This figure describes the geometry of our spherical systems. (a)
While in reality the areas A, B, and C are spatially separated, for the outside
observer they have the same position on the sky. The gray ring KK1 represents
the area that is equally separated from the center of the cluster O. Any galaxy in
this ring as well as on the sphere KK1 will be in the gray band R⊥ on the three-
dimensional phase space in Figure 3(a). All galaxies in the cone that is created
by circling the line of sight AC around the ring KK1 will be in the gray band
R⊥ in Figure 3(b). (b) Arrows represent the velocities of individual galaxies.
Black (red) arrows are the galaxies with velocity directions not aligned
(aligned) with the line of sight AC. Any vector velocity of a galaxy (see
Equation (9)) is a sum of the tangential, radial (green arrows in the box C), and
azimuthal (not presented due to direction pointing in/out of the plane of the
figure) velocity components. The magnitude of the line-of-sight velocity (blue
arrow in box C) can be expressed in terms of tangential and radial components
(see Equation (10)). The angle ò between the line of sight AC and the line that
connects the center of the cluster O and the observer is much smaller in reality
due to the distance from the observer to the cluster being much larger in
comparison to the size of a cluster. The distances between different points:
OC = rC, OB = rB, OK = R⊥ and OA = rA. OK ⊥AC.

5 In the full statistical analysis, we include interlopers that are projected into
the cluster but lie well outside the virial radius.
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components as

( ) ( ) ( ) ( ) ( )= + +q fv v v vr r r r , 9r

where vθ(r), vf(r), and vr(r) (see the green vectors in
Figure 2(b)) are the tangential, azimuthal, and radial compo-
nents of the total velocity v(r).

The projected component of v(r) along the line of sight (see
the blue vector in Figure 2(b)) is

⎛⎝ ⎞⎠( ) ( ) ( ) ( )p
y y= - -qv r v r v rcos

2
cos , 10los C C r C

where ψ=ROCB and rC is the actual distance between point C
and the center of the cluster O. We can rewrite expression (10)
relative to the cluster center as

( ) ( ) ( ) ( ) ( )= -
-

q^
^ ^v r r v r

r
r

v r
r r

r
, , 11los r

2 2 1 2

where rC (R⊥) has been substituted by r (r⊥).
The maximum velocity vesc,los is what we actually observe as

an edge in the phase space (see the solid lines in Figure 1), and
it can be derived by solving the partial differential equation
∂vesc,los(r, r⊥)/∂r= 0.
The maximum observed velocity (vesc,los) is a function of

both vr and vθ. Because of the monotonic nature of the cluster
potential (and escape) profiles, this maximum should only
occur where = = ^r r rmax . However, this would happen rarely
because few galaxies have r⊥ close to r and have a velocity at
the escape speed and aligned along the line of sight. In highly
sampled systems, these rare alignments should happen often
enough to accurately trace the 3D escape edge in projected
coordinates. As the sampling becomes more sparse, these
chance alignments become increasingly rare, thus suppressing
the escape edge. We test this hypothesis in the following
sections.

3.3. Quantifying the Escape-velocity Suppression

To quantify the escape-velocity suppression, we introduce
the factor Zv by which the 3D radial escape velocity (vesc) is
suppressed in order to produce the observed maximum velocity
vesc,los,

( ) ( )
( )

( )=^
^

^
Z r

v r
v r

. 12v
esc

esc,los

4. AGAMA-based Phase Spaces

Our statistical approach uses the Action-based Galaxy
Modeling Architecture (AGAMA) (Vasiliev 2019) framework
(see Section 4.1.3 below) to forward model a cluster phase
space that would mimic the basic characteristics of a predefined
galaxy cluster (observed or simulated). There is one free
parameter in the model that we later constrain, which is the
suppression function Zv. This parameter is not expressed
analytically and must be calculated after the 3D phase spaces
are projected onto the plane of the sky.
We employ a statistical analysis called approximate

Bayesian computation (ABC), which is designed for scenarios
where a full analytical likelihood is not readily available. The
goal of ABC is to develop a forward map and apply it with
input parameters to simulate real observations, thus bypassing a
direct calculation of a likelihood. The model parameters are
drawn from some prior distribution. The simulated data are
then reduced into a summary statistic. A posterior probability
distribution is then approximated by comparing the forward
modeled summary statistic to the same statistic from an
observed data set (e.g., the data histogram or mean, etc.). This
model-to-data comparison can be done in different ways and a
typical approach is rejection, where any parameter set that

Figure 3. A toy model of the phase-space edge for tracers in Figure 2. (a) The
phase-space envelope, i.e., the peculiar velocity (km/s) vs. distance r (Mpc)
away from the center of the cluster. The vesc(r) line is a measure of gravitational
potential (see formula 2). Gray bands rB, rA, and rC represent areas on the
phase space where galaxies from dark small ellipses (Figure 2(a)) and boxes
(Figure 2(b)) B, A, and C would be observed. Box Q represents the area, where
all the galaxies with vesc(R⊥) from the thin shell with radius R⊥ and center O
would be observed in the phase space. (b) Observed phase-space envelope, i.e.,
observed peculiar velocity (km/s) vs. radial distance r⊥ (Mpc) away from the
center of the cluster. The vesc,los(r⊥) lines are the maximum observed velocities
that can be obtained by taking the partial derivative ∂vesc,los(r, r⊥)/∂r = 0.
Similarly, the solid black lines in Figure 1 are the observed maximum
velocities. The gray band R⊥ represents where galaxies from the ellipses
(Figure 2(a)) and the boxes (Figure 2(b)) B, A, and C would be observed in the
observed phase space. Note, while the phase space in (a) is always positive
(presenting the absolute value of velocity relative to the center of the cluster),
the observed phase space can be negative as well due to galaxy velocities being
able to point toward and away from the observer.
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produces a summary statistic that differs from the observed
data by more than some prespecified threshold is rejected.
Recent examples in astronomy where ABC forward modeling
has been applied include Type Ia supernova cosmology, weak-
lensing peak counts, and galaxy demographics (Cameron &
Pettitt 2012; Weyant et al. 2013; Lin & Kilbinger 2015).

Unlike most ABC use cases where the posteriors of all (or
most) of the model parameters are constrained, we choose to
focus on Zv and treat all of the other known parameters with
strong priors. In other words, while our ABC forward-modeling
approach enables one to simultaneously constrain all of the
parameters that go into the observed vesc profile, we choose to
focus only on Zv.

For instance, we could define a grid of values for all of the
required parameters that produce a projected phase space
including the potential shape parameters, the cosmological
parameters, the number of galaxies in the projected phase
space, Zv, as well as the parameters describing the distributions
of the galaxy orbits. Given this forward map, we could quantify
the n-dimensional posterior of those parameters for an observed
galaxy cluster by keeping all allowable combinations where the
modeled projected phase-space edge matches the observed
projected phase-space edge. We could also jointly constrain the
phase-space data to the projected density profile as well as the
projected velocity dispersion profile. We plan to investigate this
generalized approach in future work. For now, we focus solely
on a single parameter: Zv. Our aim is therefore simplified to
address how well Zv can be characterized in a constrained
parameter space.

4.1. Phase-space Algorithm

4.1.1. Step #1: Characterize the Sample Inputs

We begin by defining an example cluster with the following
a priori known constraints:

1. The cosmology (ΩΛ, H0 in a flat universe).
2. The parameters that describe the radially symmetric

matter density distribution (ρw).
3. The number of galaxies in the projected phase space in

the area 0.3 r200< r⊥< r200. The symbol N is used
throughout this work to refer to this quantity.

Given the above information, we then use the AGAMA
framework to generate phase spaces for clusters characterized
by their density profiles and their N.

4.1.2. Step #2: Density Profiles

There exist analytic formulae that have been shown to fit the
density profiles of halos in N-body simulations. We use the
Dehnen profile (Dehnen 1993) and solve the Poisson equation
to have an analytic representation of the potential in a
noncosmological context:

( ) ( )
( )

( )r
p

=
-

+ -
r

n r
r r r

3 M
4

1
13a

n n
0

0
4

⎜ ⎟⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥( )

( )

f =-
-

-
+

¹

=
+

=

-

r
r n

r
r r

n

r
r

r r
n

GM 1
2

1 , 2

GM
ln , 2. 13b

n

0 0

2

0 0

We can then use Equation (3) to build an analytic representa-
tion of the escape-velocity profile given the density fit
parameters r0, M, and n as well as the cosmological parameters
via Equation (13a). An example Dehnen fit to a density profile
measured on the particles in the Millennium simulation is
shown in Figure 4 (top). We note that it is now established that
massive halos have significantly steeper outer density profiles
than a classic Navarro, Frenk, and White model (Navarro et al.
1996; Diemer & Kravtsov 2015; Miller et al. 2016).

4.1.3. Step #3: AGAMA Implementation

AGAMA is a software library that offers a wide range of
functionality for dynamical studies of gravitational systems in a
noncosmological context (Vasiliev 2019). For this work, we

Figure 4. Density profile for a single cluster in the Millennium halo sample
(ID: 109000144053659, M200 = 4.04 × 1014Me, r200 = 1.46 Mpc). This
density profile is measured from the particles and then fit with a Dehnen
profile (Equation (13a)). These fit parameters (M = 1.11 × 1014Me,
r0 = 1.12 Mpc, n = 1.19) are then used to generate a mock AGAMA phase
space based on the density and assuming β = 0. Then, the AGAMA density
profile is measured (orange) from the phase-space tracer data (red) and
compared to the AGAMA analytical expectation (green). Also, the location of
R200 is shown from the simulation and from the AGAMA phase-space data. For
clarity, the log10 difference is compared to the particles in the lower panel.
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use AGAMA to generate six-dimensional phase spaces for
spherically symmetric galaxy clusters. We use the Cuddeford–
Osipkov–Merritt model (Osipkov 1979; Merritt 1985; Cudde-
ford 1991) for a spherically anisotropic form of the distribution
function with anisotropy based on the functional form

( ) [ ( ) ] [ ( ) ]b b= + +r r r r r1a a0
2 2 (if ra<∞ , the aniso-

tropy coefficient tends to 1 at large r (Osipkov Merritt profile),
otherwise it stays equal to β0 everywhere and the models with
constant β are found by setting ra=∞). This is described in
Appendix 6.1 and Section 2.5.3 of Vasiliev (2018). We then
draw positions and velocities from a physically realistic
dynamical system for a given Dehnen-based density profile
and constant (prespecified) velocity anisotropy β. Unless
otherwise stated, we use β= 0 (isotropy) as our fiducial value,
and we test whether this choice affects the measured projected
suppression of the escape edge.

4.1.4. Step #4: Culling Escaped Tracers

As noted above, AGAMA is designed to work in a
noncosmological context. However, the real universe (and the
simulations we will test against) is in a ΛCDM cosmological
background. The effect of the accelerating spacetime on the
phase-space data is discussed in Section 2. In a universe with a
cosmological constant, galaxies traveling along radial orbits,
perpendicular to the line of sight, and above the escape speed
would reach the virial radius of the cluster in ∼500 Myr. For
galaxies above the escape speed but on radial orbits aligned
with the line of sight, the current expansion rate (i.e., Hubble
flow) would increase their velocity relative to the cluster to
>100 km s−1 above the escape edge on a similar timescale
(where we assume a virial radius of 1.5Mpc). In N-body
simulations, these tracers naturally escape and can be cleanly
separated using the phase-space data (Behroozi et al. 2013;
Miller et al. 2016). To incorporate cosmology onto the
AGAMA phase-space data, we remove all tracers that have a
3D velocity that is higher than the cosmological escape speed
given by Equation (3). We illustrate this step in Figure 5.

4.1.5. Step #5: Line-of-sight Projection

After we cull these tracers, we project along lines of sight
from a distance of 30Mpc. We follow the same procedure as
described in Gifford et al. (2013) to build the projections, and
we treat the viewing angle as a random variable along the z-
axis. We then calculate the projected phase-space escape edges
as described in Gifford et al. (2013, 2017). Note that we
generate the AGAMA phase-space data out to 10Mpc.
Therefore, the projected phase spaces have some interlopers.
A more realistic treatment of interlopers would come from N-
body simulations.

4.2. Phase-space Realizations

Based on steps #1–5 above, we can create any number of
cluster phase-space realizations through this forward modeling.
However, we need a set of cluster density profiles to build the
model phase spaces. There are a few options that we could
employ to define the parameter values for the cluster phase
space we wish to forward model. We could use real data such
as the SDSS-C4 sample (Miller et al. 2005). We could use a
Jeans analysis of the density and projected dispersion profile
(Stark et al. 2019). However, our choice is to use a cluster
sample based on the Millennium N-body simulation. This
allows us to quantitatively assess realistic effects like
nonsphericity, hyper-escape-speed galaxies, and interlopers.
We want to stress that we are not calibrating any free parameter
in our model to this simulation. The Millennium halos simply
provide a representative cluster sample with density profiles,
sampling rates, and 3D and projected tracer velocities, all
within a fixed and known cosmology.
We use the sample of 100 clusters defined in Gifford et al.

(2013), which are all below z= 0.15, similar to the depth of the
SDSS main spectroscopic sample. We extract an average
projected profile for each cluster based on 100 random lines of

Figure 5. 3D phase space generated with AGAMA (the same parameters as in
Figure 4 are used). The square root of the squared 3D velocity is plotted. The
escape profile without (black) and with (red) ΩΛ is shown. For the AGAMA
cluster phase-space realizations, tracers above the cosmological escape speed
(above the red line) are removed before measuring the projected edges and
calculating the suppression Zv.

Figure 6. Radial profiles of escape-velocity suppression: comparison of
predictions from an AGAMA modeled cluster to a halo in the Millennium
simulation. This example is for HaloID = 34010484000003 with
m200 = 4.52 × 1014Me. The two clusters have the same density profile we
sample number N. The thin blue lines are the velocity ratio (Zv = vesc/vesc,los)
of 30 lines of sight to the AGAMA cluster. The thick blue line and blue shaded
region are the mean and 68% scatter. The thick black line is the mean Zv of the
Millennium cluster. The x-axis covers the radial range 0.3 r200 � r � 1.5 r200.
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sight within a 60h−1 Mpc box. These simulated data stem from
the Millennium N-body simulation (Springel et al. 2005).6

Particles from these simulations are used to calculate a Dehnen
mass-density profile (Equation (13a)), which can be used to
also calculate the radial escape profile from Equation (13b) and
Equation (3).

The cluster masses in this sample are widely spread
(9.3× 1013− 1.03× 1015Me) with the average mass
〈M〉= 2.34× 1014Me and 〈R200〉= 0.95Mpc. We show an
example density profile fit in Figure 4. Note that a full
statistical characterization of the Dehnen profile fits to these
systems is presented in Miller et al. (2016). The accuracy and
precision are generally quite good over the virial region, as
shown in the example cluster in Figure 4.

Given the density fits, a known cosmology, and a specified
tracer sampling rate, we can create projected phase-space
realizations using steps 1–5. We then characterize the suppres-
sion function Zv as the ratio of the underlying radial escape
profile to the subsampled and projected phase-space profile edge.

Note that we can also do this directly on the N-body simulation
data. We use both the particles and the semianalytic galaxies
from Guo et al. (2011). The use of the semianalytic galaxies
limits the maximum limit of the phase-space sampling. To cover
a typical range of the number of phase-space galaxies per cluster
(N) as expected for real data, we create subsets of projected
galaxy positions and velocities for the projected galaxies in the
simulated halos by varying the apparent magnitude limits. The
semianalytic galaxy data set with the bright magnitude limit
provides clusters with the number of galaxies in the projected
phase space from 19<Nl< 257 with the average number
〈Nl〉= 58, while the deeper data set contains around twice as
many galaxies per cluster as the set Nl: 40<Nh< 525 with the
average 〈Nh〉= 118. Note these sets are different descriptions of
the same halos, with the only difference being a higher number of
dimmer and less massive galaxies per cluster.

In Figure 6 we present an analysis that compares our modeled
suppression for 30 lines of sight to a single cluster. The median
and 68% scatter around the median are shown as the blue band.
In this figure, we defined the cluster parameters from a specific
halo in the Millennium simulation for which we also measure Zv
using a set of semianalytic galaxy positions and velocities (see
Section 5). Because the Millennium simulation contains the
cosmological acceleration, we do not alter the simulation phase-
space data. The projections and the escape surfaces are otherwise
calculated identically to the AGAMA tracers, for which we
match the number of semianalytic galaxies in the simulation
halo. We find that the suppression quantified from the forward
model matches the suppression from the N-body simulation
(black). We conclude that our model is working and that the
realistic treatment of interlopers in the simulation data is not a
significant contributing factor to the model.
The analytical approach enabled by the AGAMA framework

allows us to systematically test the suppression function against
simulations and in controlled environments, where we can
create multiple realizations. For instance, Figure 7 shows
example projected phase spaces for the same cluster with
different samplings. From this figure we can see how the
suppression is apparent in the low-sampled system, but almost
nonexistent in the (unrealistic) highly sampled system.

5. Results

From here on we describe the algorithm defined in the
previous section as our “analytical model.” This is because it is
based purely on an analytic description of the distribution
function of precessed orbits in an extended mass profile and in
a cosmological background.

5.1. The Dependence of Zv on Cosmology, Mass, and Velocity
Anisotropy

Given some starting parameters that allow us to measure Zv,
we ask whether that measurement is sensitive to changes in
those initial parameters. We now test whether the suppression

Figure 7. A mock AGAMA cluster line-of-sight projected phase space is generated as described in the text. On the left, a few hundred tracers in the phase space are
sampled. On the right, ( )105 tracers are used. Also, the measured projected edge (dashed line), which is clearly more suppressed at low sampling, is shown. The
suppression is measured relative to the cosmological 3D escape edge from Equation (3) (black). Also, the 3D escape-velocity profile as measured using just the
tangential component of the velocity vector for tracers at the edge using ( )106 tracers (green) is shown. Given enough sampling, the 3D escape edge is observable in
projected data, and suppression is purely statistical.

6 The Millennium N-body simulation was done with ΩΛ = 0.75, which is
higher than the value of ΩΛ = 0.685 inferred from the Planck Collaboration
et al. (2020) cosmic microwave background data.
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depends on the underlying mass of the cluster, the cosmology,
or the velocity anisotropy.

Recall that in order to measure Zv, we are required to define a
cluster through its density profile and the number of galaxies in
the projected phase space N. Even if we do not require a precise
match between the predefined mass/density profile to the
modeled system, we still need some starting point to build the
phase space. So, we rephrase this new test in such a way as to
ask whether the ratio of 3D escape to a projected profile has
any quantifiable dependence on the underlying cluster total
mass, the cosmology, or the velocity anisotropy.

Imagine the scenario where a weak-lensing mass profile is
made available and followed up with spectroscopy to produce
∼100 or so galaxies in the range 0.3� r⊥/R200� 1. In practice
and given the correct underlying cosmology, the weak-lensing-
based prediction of the escape edge and the measured escape
edge should agree (to within some degree of scatter), with the
only free parameter being the suppression due to the under-
sampling of the projected phase-space data. However, we want to
be sure that the suppression term we infer from our analytical
model is unbiased, regardless of the input weak-lensing mass to
the model. This is because the weak-lensing mass could in fact be
wrong. If the suppression term is independent of the underlying
cluster mass and cosmology, then the escape-profile-based mass
becomes a powerful tool to characterize weak-lensing systematics
(or cosmology, which could also be varied).

In order to quantify the smallest possible dependencies, we
use our highest sampled phase spaces with N= 4837, which is
well beyond what could be achieved observationally. For this
analysis, we also increase our line-of-sight sampling to 100
unique views. We tested the statistical normality of line-of-
sight Zv distributions and confirm that they are Gaussian,
justifying the use of means and standard deviations to interpret
the significance of any dependencies.

5.1.1. The Dependence on Mass

Recall that our predefined cluster density profiles cover a
wide range of masses (see Section 4). We divide our sample of
100 clusters into high- and low-mass subsets. We then measure
the suppression as a function of radius. In Figure 8 (left), we

show Zv averaged over 100 lines of sight and over the 50
clusters in each subset. We plot the mean values as well as the
16th and 84th percentiles from the 50 clusters in each high- and
low-mass subset.
The bottom band near unity in Figure 8 (left) is the ratio of the

means of the high-mass and low-mass suppression profiles and
its combined error on those means. We then take the radial
average over the range of interest (0.3� r/R200� 1) and find
0.981± 0.003 with no statistically significant dependence on
radius. We hypothesize that this small variation in Zv as a
function of cluster mass may be a result of holding the number
of phase-space tracers fixed as opposed to holding the density of
tracers fixed (i.e., working in terms of R200 reduces the number
of tracers per radial bin for the high-mass subset in comparison
to the low-mass subset). Because the dependence is so small
compared to the suppression itself, we do not investigate further.

5.1.2. The Dependence on Cosmology

We can also test whether cosmology plays a role in the
characterization of the suppression function. This would be
difficult using the N-body simulations, which rarely cover a
wide range of cosmological parameters. Because the AGAMA
framework is noncosmological, we can choose a variety of
values of the underlying cosmological parameters to cull the
escaped galaxies (see Figure 5). We vary the Hubble constant
(H0= 60, 70, 80, and 90 [km s−1Mpc−1]) and the energy
density of the dark energy (ΩΛ= 0.6, 0.7, 0.8, and 0.9) in our
flat ΛCDM cosmology and remeasure the suppression function
in Figure 8 (middle, right).
As with mass, we find a small dependence on ΩΛ as shown

in Figure 8 (middle). We plot the ratio of two of the mean Zvs
and its error as the band near unity. To plot this ratio, the widest
upper and lower bounds of the observed ΩΛ were used (Planck
Collaboration et al. 2020; Dark Energy Survey et al. 2021). For
this limit, the ratio averaged over the range of interest
(0.3� r/R200� 1) is 1.008± 0.002 with no statistically
significant radial dependence.
We conduct the same analysis for when we vary the Hubble

constant and show the results in Figure 8 (right). The bottom
band is the ratio of two of the mean Zv s. We show this ratio for

Figure 8. Radial profiles of the escape-velocity suppression 〈Zv〉: effects of cluster mass, dark energy parameter, and Hubble constant. AGAMA-generated phase
spaces sampled with N = 4837 tracers. The measurement over 100 lines of sight is averaged, shown as solid lines. The colored bands represent the range containing
68% of the scatter in the measurement. The left panel splits the 100 cluster sample into two mass bins. The middle and right panels use the full set of 100 clusters. The
bottom light blue band shows the ratio of the Zv for the parameter as indicated. The width of this band is the 1σ standard deviation on the ratio using the errors on the
mean Zv.
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the widest observed H0 range based on current high- and low-
redshift measurements (see, e.g., Verde et al. 2019). The ratio
averaged over the range of interest (0.3� r/R200� 1) is
0.997± 0.002 with no statistically significant radial dependence.

5.1.3. The Dependence of Zv on Velocity Anisotropy

Diaferio (1999) introduced the approach of connecting vesc
and vesc,los using the anisotropy parameter β(r). We test this
with our analytical model using the AGAMA framework,
where we can control the anisotropy.

As noted in Section 4, our AGAMA modeling so far is done
using β= 0 (isotropic orbits). The AGAMA Cuddeford–
Osipkov–Merritt distribution function model allows for a range
of −0.5� β� 1. This range is wider than what is found in N-
body simulations and in real data (e.g., see Stark et al. 2019).
We study β=−0.5, 0, 0.5 as well as the case β0= 0 with
ra= 3 (based on the functional form presented in Section 4.1.3)
that more closely resembles the Millennium anisotropy profile
and remake the AGAMA phase-space data, leaving all of the
parameters (e.g., the density fits) fixed. We then measure the
suppression ratio Zv and show the results in Figure 9.

We conduct the same analysis we did for Figure 8. The
bottom band in Figure 9 is the ratio of two of the mean Zv for β
from Wojtak & Łokas (2010) and Mamon et al. (2019). Unlike
the previous parameters, there is a clear radial trend on the
dependence of Z v with β when comparing the upper and lower
parameter bounds. Within R200, the ratio drops from ∼1.02 to
∼0.98 and then levels off. When averaged over the range of
interest (0.3� r/R200� 1), we find that the change in the
suppression is 1.005± 0.01.

5.2. Suppression as a Function of Phase-space Sampling

The analyses and results through this point reinforce the
premise of this paper: the suppression of the radial escape edge
in projected data is due to statistical sampling alone. Having
searched for Zv dependencies on velocity anisotropy, cluster

mass, and cosmology and found little to none, we can now
characterize the suppression Zv simply as a function of the
number of phase-space galaxies.
In Section 4 we showed that when using a cluster with a

predefined density profile, the phase-space sampling affected
how closely we are able to measure the 3D escape edge (see
Figure 7). Our premise is that the suppression value (Zv) should
depend on the number of galaxies in the projected phase space
N: we predict an increase in vesc,los (or a decrease in the
projected suppression) as the number of galaxies per cluster
increases. In Figure 10, left, we show this prediction based on
the analytical model and by averaging the 100 clusters over 30
lines of sight per cluster and each with a different phase-space
sampling N. We see that there is a clear dependence between Zv
(vesc/vesc,los) and N.
We can make the same test using our Millennium clusters.

The sample is big enough to split into six groups based on the
number of projected phase-space galaxies N: 0–25, 25–50,
50–75, 75–100, 100–150, 150–200, and 200–525. The first
four groups are taken from the bright magnitude data set (Nl),
while the last two groups are from the sample with the deeper
magnitude limit (Nh). We treat these data sets as being realistic
observational data, such that the phase spaces are in principle
observable to these magnitude limits with typical astronomical
instrumentation. Recall that we are sampling the projected
positions and velocities from the Guo et al. (2011) semianalytic
galaxy catalogs projected to a distance of 30Mpc. Figure 10
(right) shows that we see the same behavior in the fully evolved
simulations as we do in the analytical model. The suppression
decreases with increased phase-space sampling.

5.3. Quantifying Zv(N)

We apply our analytical model to create numerous samples
of 3D and maximum observed velocity profiles, and we then
vary the number of tracers in the modeled projected phase
space between 0.3� r⊥/R200� 1. We then calculate the mean
〈Zv〉 over the range 0.3� r⊥/R200� 1 and plot it as a function
of N in Figure 11. We also show the 68% scatter in the data as
the blue band.
We note that in Figure 8, the suppression function Zv(r)

profile shows a slight radial dependence, with a steepening
toward the cluster core and in the outskirts, while being flat in
between. For the analytic mock clusters, the value of the
(negative) slope in the virial region is independent of N for
N> 250 galaxies (i.e., well-sampled cluster phase spaces). This
radial dependence means that the range over which we measure
the average value of Zv(r) plays a role in its value, and the mean
can change by ∼±5% for N> 250 when, for example, the
radial limit used to measure the mean is varied from 0.5R200 to
R200. We also notice similar radial dependencies in the
simulations in Figure 10 (right). Possible explanations could
include three-body interactions (or a lack thereof) and the
cosmological background of galaxies. We leave these to
explore in a future effort.
We find that the suppression factor tends toward 1 at high N.

With samples as large as N= 104, we would expect to measure
a projected escape edge that is only ∼10% suppressed
compared to the underlying radial escape velocity. However,
at low sampling, the edge can be suppressed by as much as a
factor of 2. We fit an inverse power law to the suppression 〈Zv〉

Figure 9. The same as Figure 8 except we vary the anisotropy parameter β. No
dependence of 〈Zv〉 on β is found (see Section 5.1.3).
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over the range 0.3� r⊥/R200� 1:

⎛⎝ ⎞⎠( ) ( )= +
l

Z N
N
N

1 , 14v
0

where N0 and λ are the parameters of the model. We constrain
the fit parameters as N0= 17.818, λ= 0.362. We also measure
the cluster-to-cluster scatter as the range on the parameters
which contains 68% of the models. The bottom dashed (16%)
line has N0= 8.533, λ= 0.378, and the upper dashed line
(84%) has N0= 30.989, λ= 0.356. While the ratio Zv is
presented for the wide range (i.e., 10� N� 104), the fitting
procedure was done by utilizing only the 40� N� 600 range
as this is the typical range of N of the real observed system used
in cosmological analyses (Halenka & Miller 2020). Note the
fits that we provide here are to the percentiles we plot in
Figure 11. Therefore, these fits are not from a linear regression
where the data on the ordinate have error bars. We have not
calculated error bars for our estimates of the 16th, 50th, and
84th percentiles. In this sense, the fits are meant to be exact
representations of these percentiles we plot and Figure 11
provides a range of suppression values that are equally
probable for a given N.

We conduct a comparison using the Millennium simulation.
For this test, we use both the semianalytic galaxies and the
particles. By doing so we can check for whether velocity bias
between the particles and the galaxies plays any role and also
measure the suppression for a higher N than any nominal
galaxy cluster might allow. In Figure 11, we find good
agreement between the predicted Zv(N) to that observed in the
simulation. The constraints from the Millennium simulation on
the fit parameters of the functional form Zv (Equation (14)) are
N0= 14.656, λ= 0.450 (the bottom 16% line: N0= 3.772,
λ= 0.438 and the top 84% line: N0= 32.582, λ= 0.452).

5.4. Alternate Simulation Test and Halo-mass Dependence

Recall that we used the Millennium simulation to enable us
to define realistic density. While we did not calibrate any free
parameter to the Millennium in our Zv(N) model, it is worth
making a blind test against a different simulation. We choose
the Dark Skies simulation (Skillman et al. 2014).
We choose the Dark Skies ds14g simulation because it

balanced a large-enough box size while nearly matching the
Millennium particle mass (i.e., resolution). We specifically chose
the simulation containing 40963 particles of mass 6.1×
108h−1Me in an 8h−1 Gpc box. This simulation has a flat
cosmology with ΩΛ= 0.7048 and H0= 68.81 km s−1Mpc−1 at
z= 0, which is the data we utilize. Dark Skies utilizes the 2HOT
base code, a tree-based adaptive N-body method, as opposed to
the Gadget-based code used in Millennium.
Unlike the Millennium simulation, which carries with it a

number of semianalytic galaxy catalogs (Bower et al. 2006;
Bertone et al. 2007; De Lucia & Blaizot 2007; Guo et al. 2011),
the Dark Skies simulation only provides us with subhalos.
However, there are many more subhalos than there are galaxies
for any realistic halo. For the Millennium semianalytic galaxy
sample, we applied an absolute magnitude limit to define the
phase-space tracer selection (Guo et al. 2011). For the Dark
Skies, we adjust the threshold on the subhalo masses to define
how many galaxies populate the phase space. We keep only the
most massive subhalos above that threshold. Like in the
magnitude thresholding in the Millennium, the subhalo-mass
thresholding mimics targeting in a spectroscopic follow-up
campaign.
We also divided the Dark Skies cluster sample into two halo-

mass bins, with each having approximately 10 systems. The
low-mass bin has 〈M200〉= 1014.34Me, which closely matches
the Millennium sample described at the beginning of
this section. We also created a high-mass sample with
〈M200〉∼ 1015Me. Unlike the Millennium clusters or the low-
mass Dark Skies halos, the Dark Skies massive clusters are

Figure 10. The suppression Zv(r) (Equation (12)) as a function of the number of galaxies per cluster phase space. Left: the predictions from the analytical model.
Right: the measurement of Zv(r) using the semianalytic galaxies from Guo et al. (2011) in the Millennium N-body simulation. Thick lines and shaded regions with the
same colors are the medians and 68% scatters.
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representative of currently available observed weak-lensing and
phase-space data (Stark et al. 2019).

In Figure 11 we show the results of the measured Zv function
for the Dark Skies data. The dashed green lines are for the high-
mass Dark Skies clusters while the solid lines are for the lower-
mass systems. As with the Millennium, we find good
agreement with our predictions from the analytically generated
phase spaces. We can also conclude that our fit to Zv(N) using
the analytical model is not influenced by the use of the
Millennium sample for a set of predefined cluster density
profiles. Best-fit parameters with 1σ errors of the suppression
function (14) are N0= 13.565± 1.460, λ= 0.437± 0.016 for
Millennium particles and N0= 18.647± 1.717, λ= 0.371±
0.014 for the analytical model (we do not provide best-fit
parameters for Dark Skies simulations as there is not enough
data to produce accurate statistics). Note that these best-fit
parameters differ from those presented in Section 5.3, as those
parameters describe the upper and lower ranges that contain
68% of the data.

5.5. Systematic Shift of Zv

As we showed in Section 5.1, there is little to no radial
dependence of Zv on cosmology and velocity anisotropy.
Additionally, there is only a small indication of variations of
〈Zv〉 with the changes in cosmological parameters and velocity
anisotropy. While this analysis was done for the case with
N= 4837 tracers, it is pointed out in Section 5.3 that the real
observational systems used in the cosmological analysis have a

smaller number of galaxies (40� N� 600). In this range of N,
we found small variations in 〈Zv〉. More specifically, by
measuring the average over the range of interest
(40� N� 600) 〈Zv〉 in the range of parameters presented in
Figures 8 and 9, we found the following maximum average
variations:

1. the energy density of the dark energy: áá ññ -W =LZv 0.6
áá ññ =W =LZ 0.037;v 0.9

2. present value of the Hubble parameter: á ñ -=Zv H 700

á ñ ==Z 0.026;v H 600

3. anisotropy parameter: 〈Zv〉β=0− 〈Zv〉β=−0.5= 0.024,

where the notation 〈〈Zv〉〉 used above means that Zv is first
averaged over the radial range 0.3� r/R200� 1 and then it is
averaged over the range of the number of galaxies
40� N� 600. Note, the ranges of parameters used in the
calculation of the above maximum averaged variations are
much wider than what are currently constrained from
observations (see Sections 5.1.2, 5.1.3).
We can draw a couple of important conclusions from these

results. First of all, the maximum variations do not resemble
trends in two of the three cases as the maximum differences of
〈〈Zv〉〉 are between cases H0= 70 km s−1 Mpc−1 and H0=
60 km s−1 Mpc−1 (while the range of explored parameters is
60–90 km s−1 Mpc−1) and between β= 0 and β=−0.5 (while
the range of explored parameters is −0.5 to 0.5). So, it is not
clear if the maximum average variations are due to fluctuations
in the data or there is actual functional dependence on
cosmology and/or velocity anisotropy. We leave this question
to explore in future efforts, and we treat the above variations as
systematic uncertainties.
Our second conclusion is that the changes of 〈Zv〉 due to

cosmological parameters and velocity anisotropy are signifi-
cantly smaller than the change due to the number of galaxies.
The biggest individual change of 〈Zv〉 is between cases with
ΩΛ= 0.6 and ΩΛ= 0.9, and it is 2.7%, while the change of
〈Zv〉 due to the increase in the number of galaxies from N= 40
to N= 600 is 36.5%. The Zv dependence on the number of
galaxies is at least 13.7 times more significant than the
dependence on the cosmological parameters, mass, or velocity
anisotropy. We thus treat the suppression Zv as a function of the
number of galaxies N with percent-level accuracy limited by
systematics from the cosmological parameters, cluster masses,
and velocity anisotropy.

6. Summary

The premise of this paper is to determine the cause of the
suppression of the escape-velocity phase-space edge in
observed cluster phase spaces. We use the AGAMA software
framework to generate mock cluster projected phase spaces
(Vasiliev 2019). We then use our modeled phase spaces to
directly calculate the suppression of the radial escape-velocity
profile under different scenarios (Section 5). We find that with
enough tracers, the underlying escape profile is observable in
projection.
We examine the suppression of the observed phase spaces

(i.e., projected) with tracer samples ( )102 to show that cluster
mass, cosmology, and velocity anisotropy play no statistically
measurable role in the amount of edge suppression. Instead, we
find that the observed suppression of the escape-velocity profile
is due to undersampled phase spaces, modeled by a one plus
power-law relation to the number of phase-space galaxies,

Figure 11. The escape-edge suppression 〈Zv〉 − 1 as a function of the number
of tracers, N. The mean Zv(N) are the blue dots, and the bars capture 68% of the
scatter in the data. The one plus power-law fit to the AGAMA results is the thin
blue line and the blue band is the area between fits to the AGAMA 16% and
84% scatters. Also, the suppression function as calculated on the Millennium
halos using both particles (red dots/bars and 68% scatter) and semianalytic
galaxies (pink plus signs) is shown. Finally, the measured suppression based on
subhalos in the Dark Skies simulations using both massive (dashed green) and
less massive (solid green) halos is shown. Good agreement between the
simulations and our analytic prediction for 〈Zv(N)〉 is found.
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Zv(N). For instance, our model predicts that projected escape
profiles with N= 100 should be suppressed to ∼70% of the
true escape velocity. We confirm this prediction on two
simulation data sets using particles, semianalytic galaxies, and
subhalos as the underlying tracers. If one were able to observe

( )104 tracers in a cluster, the observed edge matches the
underlying radial escape edge to within 10%.

We conclude that our analytical cluster phase-space modeling
enables observed cluster phase-space edges to be “desuppressed”
into the underlying radial escape profile to ∼2 r200. Our
analytical model frees the escape-velocity technique from the
need to calibrate against simulations. By using the absolute
velocity maximum to define the edge, we also remove the need
for the velocity dispersion to calibrate an “edge” as in previous
works. This is important because the dispersion can be biased
according to the tracer type (Biviano et al. 2002; Evrard et al.
2008; Gifford et al. 2013; Bayliss et al. 2017).

Finally, comparing the value of the suppression as a function
of the number of galaxies, the trends in Zv with cosmology,
mass, or the velocity anisotropy are highly subdominant (more
than a factor of 10 smaller in magnitude). This is an important
and significant shift from prior interpretations when using the
escape edge to infer cluster masses or cosmology (Stark et al.
2016a, 2017). Our work provides clear evidence that given a
cosmology, the desuppressed escape profile provides a direct
constraint on the mass profile of a galaxy cluster (see
Equation (3)). Similarly, if a mass profile were already
available from a nondynamical technique (e.g., via the shear
profile/weak lensing), the combination of the escape profile
and mass profile provides a direct constraint on the acceleration
of spacetime through qH2.
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