
Communication-Efficient and Error-Free Gradecast
with Optimal Resilience

Jianjun Zhu, Fan Li, Jinyuan Chen
Louisiana Tech University

Department of Electrical Engineering, Ruston, LA 71272, USA
{jzh013, fanli, jinyuan}@latech.edu

Abstract—Gradecast is a variant of the Byzantine broadcast
problem introduced by Feldman and Micali in 1988. In Grade-
cast, n processors would like to agree on a value sent from a
leader, as well as a grade in {0, 1, 2}, such that the following
three requirements are satisfied: 1) Every non-faulty processor
outputs the leader’s initial value and grade 2 if the leader is
non-faulty; 2) For any two non-faulty processors, if their decided
grades are greater than zero, then they output the same value;
and 3) For any two non-faulty processors, the difference of their
decided grades is less than 2. In this work, we present a new
Gradecast protocol with a total communication complexity of
O(nℓ+n2 log n) bits, given t < n/3, where ℓ is the message size
and t is the maximum number of faulty processors tolerated in
n consensus processors. The proposed protocol is an error-free
and deterministic Gradecast protocol that does not rely on the
authentication techniques such as signatures and secret sharing.
The proposed protocol is also information-theoretic secure, i.e.,
it satisfies the above three requirements even if the computation
power of the adversary is unbounded.

I. INTRODUCTION

Graded-broadcast or Gradecast is a relaxed version of
the Byzantine broadcast problem [1], [2]. In the Byzantine
broadcast problem, n processors would like to agree on a value
sent from a leader who is potentially dishonest or faulty, such
that: 1) All non-faulty processors output the leader’s initial
value if the leader is non-faulty (validity); 2) All non-faulty
processors should have the same output (consistency); and 3)
All non-faulty processors eventually terminate (termination)
[3], [4]. In Gradecast, n processors would like to agree on
a value sent from a leader, as well as a grade in {0, 1, 2},
such that the following three requirements are satisfied: 1)
All non-faulty processors output the leader’s initial value and
grade 2 if the leader is non-faulty (validity); 2) For any two
non-faulty processors, if their decided grades are greater than
zero, then they output the same value (non-equivocation); and
3) For any two non-faulty processors, the difference of their
decided grades is less than 2 (confidence). As we can see,
Gradecast does not require strict conditions in termination and
consistency like Byzantine broadcast.

Recently, Gradecast was studied in [5], [6] in terms of
communication complexity. Specifically, the authors in [5]
proposed a Gradecast protocol with a total communication
complexity of O(nℓ+n3 log n) bits, where ℓ is the size of the

This work was supported in part by the NSF EPSCoR-Louisiana Materials
Design Alliance (LAMDA) Program under Grant OIA-1946231.

TABLE I
COMPARISON OF DIFFERENT GRADECASTS.

Reference Resilience Communication Error-

Complexity Free

[1], [2] n ≥ 3t+ 1 O(n2ℓ) Yes

[5] n ≥ 3t+ 1 O(nℓ+ n3 log n) Yes

[6] n ≥ 3t+ 1 O(nℓ+ n2 log n) No

This Paper n ≥ 3t+ 1 O(max{nℓ, nt log t}) Yes

message. This communication complexity performance was
improved in [6] to O(nℓ + n2 log n) bits, however, at a cost
of non-zero error probability.

In this work we focus on the error-free Gradecast
protocol. Specifically, we propose an error-free Gradecast
protocol that achieves the communication complexity of
O(max{nℓ, nt log t}) bits, given t < n/3, where t is the
maximum number of faulty processors tolerated in the con-
sensus network. The proposed Gradecast protocol is error-
free, i.e., it guarantees that the three requirements of validity,
non-equivocation, and confidence of Gradecast are satisfied
in all executions. The proposed Gradecast protocol is also
information-theoretic secure, i.e., it satisfies the above three
requirements even if the computation power of the adversary
is unbounded. The proposed protocol is built from the COOL
protocol in [7], [8], which was originally designed for the
Byzantine broadcast and agreement problems. The comparison
of different Gradecast protocols is shown in Table I.

Gradecast is the fundamental building block in various
protocols for secure multi-party computation and Byzantine
agreement. In this work, we show that the proposed Gradecast
protocol could also be applied to some other settings such as
all-to-all Gradecast and approximate agreement.

Throughout this work, [n] denotes the set of integers from 1
to n. Majority(•) is a function that returns the most frequent
value of the inputs. Logarithms are in base 2. The rest of
this paper is organized as follows. Section II describes the
system models. The main results are provided in Section III.

TABLE II
APPLICATIONS OF GRADECAST.

Applications Reference Resilience Communication Round

Complexity Complexity

All-to-All Gradecast

[1], [2] n ≥ 3t+ 1 O(n3ℓ) O(1)

[9] n ≥ 3t+ 1 O(n2tℓ) O(1)

This Paper n ≥ 3t+ 1 O(max{n2ℓ, n2t log t}) O(1)

Approximate Agreement

[10] n ≥ 3t+ 1 O(n2ℓτ) O(log n)

[11] n ≥ 3t+ 1 O(n3ℓτ) O(log n/ log log n)

[9] n ≥ 3t+ 1 O(n2tℓτ) O(log n/ log log n)

This Paper n ≥ 3t+ 1 O(n2ℓτ) O(log n/ log log n)

The proposed Gradecast protocol is discussed in Section IV.
Some Gradecast-based applications are discussed in Section V.
Finally, this work is concluded in Section VI.

II. SYSTEM MODELS

We consider the Gradecast problem in a synchronous
setting. Particularly, every pair of processors are connected
through a reliable and private message-passing channel. One of
the n processors, designated as the leader, sends its initial input
value to all the processors in the network. In this network,
up to t processors may be Byzantine processors who have
complete knowledge of the state of the other processors.
All of the non-faulty processors will perform according to
the protocol design. We provide the formal definitions of
Gradecast as follows:

Definition 1 (Gradecast). Let P be a protocol in which one of
the n processors {P1, ..., Pn}, publicly known as the leader,
holds an initial input value w of ℓ bits, while every processor
Pi outputs a pair (wi, gi), where gi ∈ {0, 1, 2} (see Fig. 1).
We say P is a Gradecast protocol if the following conditions
hold:

• Validity: If the leader is non-faulty, then all non-faulty
processors output the leader’s value w and grade 2.

• Non-equivocation: For any two non-faulty processors Pi and
Pj , if gi > 0 and gj > 0, then wi = wj .

• Confidence: For any two non-faulty processors Pi and Pj ,
|gi − gj | ≤ 1.

Definition 2 (All-to-All Gradecast). All-to-all Gradecast con-
sists of n parallel Gradecasts, where the ith Gradecast corre-
sponds to the standard Gradecast defined in Definition 1, with
the ith processor being the leader.

Definition 3 (Approximate Agreement). Assume that each
non-faulty processor starts with a real input value. For any
preassigned ϵ > 0 (as small as desired), an approximate

w

(w1, g1)

1 2 n

(w2, g2) (wn, gn)

Leader

1 2 n

Fig. 1. One-to-All Gradecast

agreement algorithm is said to be t-correct if the following
two conditions hold:
• Agreement: All non-faulty processors eventually halt with

output values that are within ϵ of each other.
• Validity: Every non-faulty processor’s output must be within

the range of the initial input values of non-faulty processors.

Remark 1. Communication complexity refers to the total
amount of communication in bits. Resilience is the maximum
number of faulty processors that the protocol can tolerate
while maintaining robustness. Round complexity refers to the
expected number of rounds to exchange information.

III. MAIN RESULTS

In this work, we propose an error-free Gradecast protocol
called EFGradecast. The performance of EFGradecast is pro-
vided below.

Theorem 1 (Gradecast). The proposed EFGradecast is an
error-free graded broadcast protocol with a total communica-
tion complexity of O(max{nℓ, nt log t}) bits, given n ≥ 3t+1.

Proof. The proof of Theorem 1 is provided in Section IV (See
Lemmas 1-5). Lemma 1 shows that the proposed EFGradecast
has a communication complexity of O(max{nℓ, nt log t}) bits.

Algorithm 1 : EFGradecast protocol, code for Pi, i ∈ [n]

Phase 1:
1: The leader sends w to Pi. Pi sets w(i) = w, ∀i ∈ [n].

2: Pi encodes w(i) into n symbols as y
(i)
j ≜ hT

jw
(i), j ∈ [n].

3: Pi sends (y
(i)
j , y

(i)
i) to Pj , j ∈ [n] \ i.

4: Pi sets a binary link indicator ui(j) as 1 if (y(j)i , y
(j)
j) == (y

(i)
i , y

(i)
j); otherwise, Pi sets ui(j) as 0.

5: Pi sets a binary success indicator si as 1 if
∑n

j=1 ui(j) ≥ n− t; otherwise, Pi sets si as 0 and w(i) as ⊥.
6: Pi sends si to Pj , j ∈ [n] \ i.
7: Pi creates two sets: S1 = {j : sj = 1, j ∈ [n]}, S0 = {j : sj = 0, j ∈ [n]}.

Phase 2: Pi whose si is 1

8: Pi updates ui(j) to 0, ∀j ∈ S0.
9: if

(∑n
j=1 ui(j) < n− t

)
then

10: Pi sets si = 0 and w(i) = ⊥.
11: Pi sends si to Pj for j ∈ [n] \ i and updates S1 and S0.

Phase 3: Pi whose si is 1

12: Pi updates ui(j) to 0, ∀j ∈ S0.
13: if

(∑n
j=1 ui(j) < n− t

)
then

14: Pi sets si = 0 and w(i) = ⊥.
15: Pi sends si to Pj and updates S1 and S0.

16: Pi sets a binary voting indicator vi as 1 if
∑n

j=1 sj ≥ 2t+ 1; otherwise, Pi sets vi as 0.
17: Pi sends vi to Pj , j ∈ [n] \ i.

Phase 4 and Output:

18: Pi sets a binary ready indicator ri as 1 if
∑n

j=1 vj ≥ t+ 1; otherwise, Pi sets ri as 0.
19: Pi sends ri to Pj , j ∈ [n] \ i.
20: if

(∑n
j=1 rj ≥ 2t+ 1

)
then

21: if si == 0 then
22: Pi updates y

(i)
i ← Majority({y(j)i : j ∈ S1}).

23: Pi sends updated y
(i)
i to Pj , ∀j ∈ S0.

24: Pi decodes the message w(i) using {y(j)j : j ∈ [n]}.
25: Pi outputs (w(i), 2) if

∑n
j=1 vj ≥ 2t+ 1; otherwise Pi outputs (w(i), 1).

26: else
27: Pi outputs (⊥, 0).

Lemmas 3-5 reveal that the proposed EFGradecast satisfies
the validity, non-equivocation, and confidence conditions of
Gradecast.

The proposed EFGradecast can be applied to all-to-all
Gradecast by invoking the proposed EFGradecast n times in a
parallel manner (called A2A-EFGradecast). A2A-EFGradecast
is an error-free all-to-all Gradecast protocol with a total
communication complexity of O(max{n2ℓ, n2t log t}) bits.
The comparison of different all-to-all Gradecast protocols is
provided in Table II.

The proposed EFGradecast can also be extended to approx-
imate agreement. The protocol is provided in Algorithm 2
(see Section V-B). This protocol has a total communication
complexity of O(n2ℓτ) bits, where τ is the number of rounds.
Table II provides the comparison of different approximate
agreement protocols.

IV. EFGRADECAST

The proposed EFGradecast protocol is shown in Algo-
rithm 1. In this protocol, each processor receives an initial
message from the leader. This message might be updated in
each phase. The key idea is to ensure that at the end of Phase 3,

there exists at most 1 group of non-faulty processors that
hold the same non-empty updated message (see Lemma 2). In
the protocol design, the (n, k) Reed-Solomon error correction
code will be used in order to reduce the communication
complexity. The (n, k) Reed-Solomon error correction code
can correct up to

⌊
n−k
2

⌋
errors. In what follows, we will

provide the proof of Theorem 1.

Lemma 1 (Communication Complexity). The total com-
munication complexity of the proposed EFGradecast is
O(max{nℓ, nt log t}) bits.

Proof. The communication complexity of each phase in Al-
gorithm 1 is analyzed as follows:

• Phase 1: The leader sends an ℓ-bit message to all the
processors in the network. Thus, the communication com-
plexity of this step is nℓ bits (see Line 1 in Algorithm 1).
Since each encoded symbol has c bits, the communication
complexity of exchanging a pair of symbols is 2cn(n−1)
bits (see Line 3 in Algorithm 1), where c and k are
designed as

c≜
⌈max{ℓ, (t/5 + 1) · log(n+ 1)}

k

⌉
, k≜

⌊ t
5

⌋
+ 1.

Since the success indicator is binary, the communication
complexity of sending success indicators is n(n−1) bits
(see Line 6 in Algorithm 1).

• Phase 2: Because the success indicator is binary, the
communication complexity of sending success indicators
is n(n− 1) bits (see Line 11 in Algorithm 1).

• Phase 3: Since the success indicator and the voting indi-
cator are both binary, the total communication complexity
of exchanging these two indicators is 2n(n− 1) bits (see
Lines 15 and 17 in Algorithm 1).

• Phase 4: Given that the ready indicator is binary, the
communication complexity of sending ready indicators is
n(n−1) bits (see Line 19 in Algorithm 1). Each encoded
symbol has c bits, then the communication complexity
of sending a symbol is cn(n − 1) bits (see Line 23 in
Algorithm 1).

Therefore, the total communication complexity of the pro-
posed EFGradecast is O(max{nℓ, nt log t}) bits.

Lemma 2. [7, Lemma 3] Given n ≥ 3t + 1, there exists at
most one group of non-faulty processors that have the same
non-empty updated message at the end of Phase 3.

Lemma 3 (Validity). If the leader is non-faulty, then all non-
faulty processors output the leader’s value w and grade 2.

Proof. If the sender is non-faulty, then all of the non-faulty
processors will receive the same message w in Phase 1. In
this case, for any non-faulty processor Pi and Pj , we have

(y
(j)
i , y

(j)
j) = (y

(i)
i , y

(i)
j) (1)

where y
(i)
j ≜ hT

jw
(i); and hj is the jth encoded vector that

can be constructed by Lagrange polynomial interpolation [12],
as shown below

hj ≜
[
hj,1, hj,2, · · ·, hj,k

]T
(2)

and hj,m ≜
k∏

p=1,p ̸=m

j − p

m− p
, j ∈ [n], m ∈ [k]. (3)

w(i) is the message received by Pi, for i, j ∈ [n]. After ex-
changing information, every non-faulty processor can receive
at least 2t+ 1 success indicators of 1s, that is,

n∑
j=1

sj ≥ 2t+ 1 (4)

where sj is the success indicator of Pj for j ∈ [n] (see Line 5
in Algorithm 1). In this case, every non-faulty processor sets a
binary voting indicator as 1. Then, every non-faulty processor
in Phase 4 sends a ready indicator of 1. In this case, every non-
faulty processor will go to Lines 20-25 of Algorithm 1, from
which every non-faulty processor decodes the same message
with grade 2.

Lemma 4 (Non-equivocation). For any two non-faulty pro-
cessors Pi and Pj , if gi > 0 and gj > 0, then wi = wj .

Proof. For any two non-faulty processors decoding with non-
zero grades, they must have received at least 2t + 1 ready
indicators as ones (see Lines 20 and 25 in Algorithm 1), out
of which at least t + 1 ready indicators are sent from non-
faulty processors. Therefore, at least one non-faulty processor
sets and sends a voting indicator as one (see Lines 16 and 18 in
Algorithm 1). This implies that at least 2t+1 processors have
sent out success indicators as ones, out of which at least t+1
non-faulty processors have sent out success indicators as ones
(see Line 16 in Algorithm 1). Based on the result of Lemma 2,
at the end of Phase 3, it is guaranteed that at most 1 group
of non-faulty processors hold the same non-empty updated
messages. This means that the size of non-faulty processors
holding the same non-empty updated message is greater than
or equal to t+1. All of the other non-faulty processors outside
this group have the same empty updated messages. In this case,
all of the non-faulty processors in the set of S0 can calibrate
their coded symbols based on the majority rule (see Line 22
in Algorithm 1), and then output the same message as other
non-faulty processors (see Line 24 in Algorithm 1).

Lemma 5 (Confidence). For any two non-faulty processors
Pi and Pj , it is true that |gi − gj | ≤ 1.

Proof. Let us consider the case where one non-faulty pro-
cessor outputs with a grade of 2 while the other non-faulty
processor outputs with a grade of 0. This is the only case
that violates the condition of |gi − gj | ≤ 1, for i, j ∈ [n].
We will prove that this case is not existing. If a non-faulty
processor outputs with a grade of 2, it implies that at least

2t+1 processors have sent out voting indicators as ones (see
Line 25 in Algorithm 1), out of which at least t+1 non-faulty
processors have sent out voting indicators as ones. In this case,
all of the non-faulty processors will send ready indicators as
ones (see Lines 18-19 in Algorithm 1). In this case, every non-
faulty processor can receive at least 2t+1 ready indicators as
ones (see Line 20 in Algorithm 1). This means that all of the
non-faulty processors will go to Lines 20-25 in Algorithm 1.
Therefore, if a non-faulty processor outputs a grade 2, then
none of the non-faulty processors will output grade as 0.

V. APPLICATIONS

Gradecast is the fundamental building block in various
protocols for secure multi-party computation and Byzantine
agreement. In this section, we will focus on two applications,
i.e., all-to-all Gradecast and approximate agreement.

A. All-to-All Gradecast

All-to-All Gradecast is a parallel version of Gradecast,
where each processor broadcasts its initial message to all
of the other processors in the network. It can be used as a
building block in distributed computing, where one step is
required to gather the information from all the processors
in order to make an intermediate output for the next step.
The application examples include Byzantine broadcast and
agreement, approximate agreement, interactive consistency,
and clock synchronization. A method was proposed in [9]
to utilize forward error correction codes to mask Byzantine
errors. Since the protocol in [9] invokes n instances of the
original Gradecast protocol, it has a total communication
complexity of O(n3ℓ) bits when t = O(n). In this work,
we propose a new all-to-all Gradecast protocol by invoking
the proposed EFGradecast n times in a parallel manner,
which achieves an improved communication complexity of
O(max{n2ℓ, n2t log t}) bits.

B. Approximate Agreement

Approximate agreement, first introduced in [10], is a variant
of Byzantine agreement that seeks to reach agreement among
a set of processors in the presence of Byzantine faults.
Instead of reaching an agreement on the exact same value,
approximate agreement requires every non-faulty processor to
approximately agree on a value within the range of the initial
values of the non-faulty processors. This allows approximate
agreement to provide a weaker but more efficient guarantee
compared to the Byzantine agreement, especially in situations
where achieving an exact agreement is difficult or impossible
due to network delays, failures, or other factors. Approximate
agreement protocols can be used in a variety of applications,
such as distributed databases, distributed control systems, dis-
tributed sensor networks, and collaborative machine learning.
In [11], a simple Gradecast-based approximate agreement
algorithm was provided with a communication complexity of
O(n3ℓτ) bits. The communication complexity was improved
to O(n2tℓτ) bits in [9]. In this work, we improve the protocols
of [11] and [9] to achieve a communication complexity of

O(n2ℓτ) bits, by replacing the original Gradecast protocol
with our proposed EFGradecast (see Algorithm 2).

Algorithm 2 : Gradecast-based Approximate Agreement
protocol, code for Pi, i ∈ [n]

// Notations
• BAD: a set of processors that will be ignored.
• (Pj ,wi, gi): Pj EFGradecasted wi with grade gi.
• values: a set of received values with grade ≥ 1, and

add "0" to the set until the size of values is n.
• values′: a set of received values with grade 2.
• AV G: a function that eliminates the t lowest and

highest values from the set of values and takes the
average of the rest.

// Initialization

1: Set BAD≜ ⊥.
2: while True do

EFGraadecast(Pi, BAD) with input value wi.
wi = AV G(values).
BAD = BAD ∪{Pj | received(Pj , ∗, gi)withgi ≤ 1}.

3: if there are n− t items in values′ that are at most ϵ
4: apart then
5: break.
6: Do one more iteration.
7: return wi

C. Other applications built on the variants of Gradecast
In addition to the two applications mentioned above, vari-

ants of Gradecast can be applied to Byzantine agreement [1],
[2], [13]–[17], multidimensional graded consensus [18], [19],
interactive consistency [3], [9], [20], and multi-consensus [11],
[21]. The authors in [22] proposed a protocol with multiple
grades, which was used for a randomized broadcast algorithm.
The authors in [23] proposed a moderated Gradecast where a
moderator re-gradecasts the values received from the sender.
It is worth mentioning that Gradecast is also useful for
establishing verifiable secret sharing (VSS) protocols [1], [2],
[5]. For example, Gradecast was used to grade secrets in [1],
[2] and to share more secrets in [5].

VI. CONCLUSION

In this work, we proposed an error-free and determin-
istic Gradecast protocol called EFGradecast. The proposed
EFGradecast achieves a total communication complexity of
O(nℓ + n2 log n) bits given n ≥ 3t + 1. EFGradecast is a
simple protocol with a constant number of rounds. The pro-
posed protocol can be applied to Byzantine agreement, secure
multi-party computation, all-to-all Gradecast, and approximate
agreement problems. One of the future work is to extend
the proposed protocol from the synchronous setting to the
asynchronous setting.

REFERENCES

[1] P. Feldman and S. Micali, “Optimal algorithms for Byzantine agree-
ment,” in ACM symposium on Theory of computing (STOC), Jan. 1988.

[2] ——, “An optimal probabilistic protocol for synchronous Byzantine
agreement,” SIAM Journal on Computing, vol. 26, no. 4, pp. 873–933,
Aug. 1997.

[3] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
Apr. 1980.

[4] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, Jul. 1982.

[5] I. Abraham, G. Asharov, S. Patil, and A. Patra, “Asymptotically free
broadcast in constant expected time via packed VSS,” in Theory of
Cryptography (TCC), Nov. 2022, pp. 384–414.

[6] I. Abraham and G. Asharov, “Gradecast in synchrony and reliable broad-
cast in asynchrony with optimal resilience, efficiency, and unconditional
security,” in ACM Symposium on Principles of Distributed Computing
(PODC), Jul. 2022, pp. 392–398.

[7] J. Chen, “Fundamental limits of Byzantine agreement,” 2020, available
on ArXiv: https://arxiv.org/pdf/2009.10965.pdf.

[8] ——, “Optimal error-free multi-valued Byzantine agreement,” in Inter-
national Symposium on Distributed Computing (DISC), Oct. 2021.

[9] J. Bridgman and V. Garg, “All-to-all gradecast using coding with
Byzantine failures,” in Stabilization, Safety, and Security of Distributed
Systems (SSS), vol. 7596, Oct. 2012, pp. 285–298.

[10] D. Dolev, N. Lynch, S. Pinterr, E. Stark, and W. Weihl, “Reaching
approximate agreement in the presence of faults,” Journal of the ACM,
vol. 33, no. 3, pp. 499 – 516, May 1986.

[11] M. Ben-Or, D. Dolev, and E. Hoch, “Simple gradecast based algorithms,”
2010, arXiv preprint arXiv:1007.1049.

[12] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, Jun. 1960.

[13] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith, “De-
tectable Byzantine agreement secure against faulty majorities,” in ACM
Symposium on Principles of Distributed Computing (PODC), Jul. 2002,
pp. 118–126.

[14] S. Goldwasser, E. Pavlov, and V. Vaikuntanathan, “Fault-tolerant dis-
tributed computing in full-information networks,” in IEEE Symposium
on Foundations of Computer Science (FOCS), Oct. 2006, pp. 15–26.

[15] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan, “Byzantine agreement in
the full-information model in o(logn) rounds,” in ACM Symposium on
Theory of Computing (STOC), May 2006, pp. 179–186.

[16] J. Katz and C. Koo, “On expected constant-round protocols for
Byzantine agreement,” in Annual International Cryptology Conference
(CRYPTO), vol. 4117, Aug. 2006, pp. 445–462.

[17] G. Deligios, M. Hirt, and C. Liu-Zhang, “Round-efficient Byzantine
agreement and multi-party computation with asynchronous fallback,” in
Theory of Cryptography (TCC), Nov. 2021, pp. 623–653.

[18] J. Chen and S. Micali, “Algorand,” 2016, arXiv preprint
arXiv:1607.01341.

[19] A. Flamini, R. Longo, and A. Meneghetti, “Multidimensional Byzantine
agreement in a synchronous setting,” Applicable Algebra in Engineering,
Communication and Computing, pp. 1–19, 2022.

[20] J. Helary, M. Hurfin, A. Mostefaoui, M. Raynal, and F. Tronel,
“Computing global functions in asynchronous distributed systems prone
to process crashes,” in IEEE International Conference on Distributed
Computing Systems, Apr. 2000, pp. 584–591.

[21] A. Barnoy, X. Deng, J. Garay, and T. Kameda, “Optimal amortized
distributed consensus,” Information and Computation, vol. 120, no. 1,
pp. 93–100, 1995.

[22] J. Garay, J. Katz, C. Koo, and R. Ostrovsky, “Round complexity of
authenticated broadcast with a dishonest majority,” in IEEE Symposium
on Foundations of Computer Science (FOCS), Oct. 2007, pp. 658–668.

[23] A. Alexandru, J. Loss, C. Papamanthou, and G. Tsimos, “Sublinear-
round broadcast without trusted setup against dishonest majority,” Cryp-
tology ePrint Archive, 2022.

