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A robotic 3D printer for UV-curable thermosets: dimensionality prediction using 
a data-driven approach
Luis Velazquez, Genevieve Palardy and Corina Barbalata

Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA

ABSTRACT
This paper presents a robotic 3D printer specifically designed for ultraviolet (UV)-curable thermo
sets, whose printing parameters can be selected by using a predictive modeling strategy. 
A specialized extruder head was designed and integrated with a UR5e robotic arm. Software 
packages were developed to enable the communication between the extruder head and the 
robotic arm, and control systems were implemented to regulate the printing process. 
A predictive approach using either a feedforward neural network (FNN) or convolution neural 
network (CNN) is proposed for estimating the dimensions of future prints based on the process 
parameters. This enables selection of the appropriate parameters for high-quality prints. This 
strategy aims to decrease expensive trial-and-error campaigns for material and printing parameter 
tuning. Experimental results demonstrate the capabilities of the robotic 3D printer and the 
accuracy of the predictive approach.

ARTICLE HISTORY 
Received 22 December 2022  
Accepted 7 August 2023 

KEYWORDS 
UV-curable thermosets; 
robotic system; additive 
manufacturing; machine 
learning

1. Introduction

Automation for additive manufacturing (AM) technol
ogies by means of robotics offers greater freedom of 
movement compared with conventional gantry 
designs, larger print volumes from system mobility 
around the printing space on wheels or rails, and 
reduced human supervision and interaction Tiryaki, 
Zhang, and Pham (2019a). These lead to a potential 
reduction in manufacturing cost, labor, and time, while 
providing an increase in productivity. Academia and 
industry have capitalized on these benefits to create 
commercially viable options for polymers and their 
composites, mostly focusing on thermoplastic 3D 
printing, including fiber-reinforced thermoplastics 
Urhal et al. (2019); Arevo (2022); Miri et al. (2022). AM 
of thermoset resins and their composites have gained 
research momentum in the past years because of their 
excellent thermal stability, specific strength and stiff
ness, and potential for multifunctionality and free- 
standing printing Li et al. (2019); Wu et al. (2019); 
Hershey et al. (2019); Gao, Qiu, and Wang (2022); 
Abedin et al. (2022a); Deng et al. (2023). Their use is 
however limited because curing behavior needs to be 
accurately controlled during deposition to enable high 

dimensional stability. To achieve such capabilities, one 
approach is to use ultraviolet (UV)-assisted curing for 
a photopolymer resin as it is extruded. However, to 
obtain a polymer viscosity suitable for AM extrusion, 
incorporating fillers or fibers may be required, which 
increases the complexity of using such materials with 
robotic systems. Nevertheless, success has been 
achieved with thermoset photopolymers and robotic 
manipulators to manufacture objects of various sizes, 
reinforced with continuous fibers Moi Composites 
(2022); Continuous Composites (2022). However, 
those systems and end-effector extruders are not read
ily commercially available at affordable costs, which 
this paper aims to address.

To be effective and to produce high accuracy 
results, robotic 3D printers require significant tuning 
strategies and trial-and-error campaigns, leading to 
expensive manufacturing processes. Predictive mod
eling and analysis is a promising approach to reduce 
development costs and to increase the applicability of 
robotic systems for AM with thermosets. Overviews of 
modeling approaches for AM were presented in the 
literature (Bikas, Stavropoulos, and Chryssolouris 
(2016); El Moumen, Tarfaoui, and Lafdi (2019), which 
summarized main research challenges based on 
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manufacturing technologies. Dimensional accuracy 
modeling was seen as one of the main approaches 
to understand the outcomes of AM, including the 
importance of process parameters on part quality 
Westbeek et al. (2020).

Data-driven approaches, such as machine learn
ing (ML), have had great success in modeling and 
analysis for both robotics Carlucho, Stephens, and 
Barbalata (2021); Costa et al. (2019) and material 
science Yan et al. (2021); Yan et al. (2021). In 
recent years, neural networks have been investi
gated for sample quality evaluation or layer 
dependencies, showing the capabilities of these 
approaches for predictive modeling when standard 
3D printers are used Li et al. (2019); Banadaki et al. 
(2022). Learning from previous studies, this paper 
aims to advance the area of AM by proposing 
a data-driven predictive framework capable of esti
mating the dimensions of future 3D printed speci
mens when robotic manipulators and UV-curable 
thermosets are integrated, as seen in Figure 1. The 
proposed approach will enable users to select 
printing parameters and adjust material properties 
to improve print quality without expensive trial- 
and-error campaigns, reducing cost and material 

waste. Thus, this paper will make the following 
technical contributions:

● Design of a specialized end-effector for robotic 
systems using UV-curable thermosets in an AM 
process.

● Development of a data-driven predictive archi
tecture to estimate dimensions of future 3D 
printed specimens, based on material character
istics and robotic parameters.

The structure of the paper is a follows: the literature 
review is presented in Section 2, followed by 
a description of the experimental setup in Section 3 
and the predictive architecture in Section 4. These will 
be followed by conclusions and proposed future work in 
Section 5.

2. Background

This section provides an overview of main technolo
gies used for additive manufacturing printing with 
thermosets, and introduces robotic systems and data- 
driven approaches integrated in AM.

Figure 1. (a) robotic 3D printer with custom-designed end-effector, and (b) detailed schematic of end-effector.
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2.1. Additive manufacturing technologies for 
thermosets

Current additive manufacturing technologies for 
thermosets typically use liquid resins (generally 
acrylic, epoxy, or vinyl ester) to manufacture parts 
through vat polymerization or extrusion-based 
techniques. The first category includes commercial 
processes such as Stereolithography (SLA) and 
Digital Light Processing (DLP), which rely on a UV 
light source or a digital micro-mirror device, 
respectively, to cure a part layer by layer. While 
they allow for high resolution, they are limited to 
planar configurations and confined to the resin vat 
Park et al. (2022). Extrusion-based processes 
encompass Direct Ink Writing (DIW), which has 
gained popularity in the past years for a range of 
feedstock materials Gao, Qiu, and Wang (2022); 
Romberg et al. (2021). It consists of either material 
extrusion or droplet deposition on a substrate and 
has been studied with a wide range of in-situ 
curing methods for thermosets (unreinforced or 
fiber-reinforced), including reaction curing, UV irra
diation curing, temperature curing, or 
a combination of methods Gao, Qiu, and Wang 
(2022); Wang et al. (2020); Uitz et al. (2021); 
Wang et al. (2019); Ziaee, Johnson, and 
Yourdkhani (2022); Kopatz et al. (2021). UV curing, 
implemented with DIW, is a promising approach 
for free-standing printing of thermoset polymers. 
Its free-form capabilities were demonstrated with 
modified desktop printers or gantry systems Wu 
et al. (2019); Mizuno, Pardivala, and Tai (2018); 
Abedin et al. (2022b); Tu and Sodano (2021); 
Chen et al. (2018); Farahani et al. (2014) and cus
tom-designed 5-axis systems Asif et al. (2018). The 
extruder head designs typically include micro- 
pumps, syringe pumps, or pneumatic regulators 
to deliver resin to the nozzle, and multiple laser 
diodes to cure resin as it is extruded. AM of con
tinuous fiber-reinforced UV-curable thermosets has 
also been investigated through desktop systems 
equipped with a dispensing syringe fitted with 
a pneumatic regulator (Abdullah et al. 2023); He 
et al. (2021). In those studies, through extensive 
experiments, complex interactions between resin 
viscosity and formulation, nozzle geometry, and 
printing speed were observed and those 

parameters were important to control the quality 
of printed specimens.

2.2. Robotic additive manufacturing

The main advantage of robotics in AM is the realiza
tion of large-scale, complex 3D printed parts in rela
tively short periods of time. A complete overview of 
different robotic AM strategies using extrusion or 
direct metal deposition was given in Jiang, Newman, 
and Zhong (2021). Furthermore, a summary of poly
mers directly relevant for robotic applications was 
presented in Delda et al. (2021), highlighting their 
benefits in both industry and academia. A robotic 
manipulator for AM and its integration with deposi
tion modeling techniques was described in Bin Ishak, 
Fisher, and Larochelle (2016) and further discussed in 
Luu and Hung Manh (2021), expanding on the extru
der’s control system and using polylactic acid (PLA). In 
the latter, an Arduino microcontroller was used to 
regulate the filament extrusion rate and the tempera
ture at the nozzle. In Wu et al. (2017), a collaborative 
UR3 robot was utilized as a continuously moving 
printing platform with an Fused Deposition 
Modelling (FDM) extruder fixed on a frame, enabling 
printing of complex shapes and focusing on the fab
rication sequence planning. Motion planning is one of 
the main areas of interest in the robotic 3D printing 
community. The design of an extrusion based end- 
effector was presented in Velazquez, Palardy, and 
Barbalata (2021), which can be integrated with 
robotic manipulators and UV-curable polymers. In 
Shembekar et al. (2019), an algorithm was developed 
to produce non-planar trajectories for AM robotic 
arms. Motion planning for mobile manipulators per
forming large-scale robotic AM using cement was 
presented in Tiryaki, Zhang, and Pham (2019b) and 
Zhang et al. (2018). While Tiryaki, Zhang, and Pham 
(2019b) focused on the coordination of the base, the 
manipulator, and the extruder deposition rate for 
a single robot, a multi-agent system was introduced 
in Zhang et al. (2018).

In industry, companies such as Continuous 
Composites, Inc. (USA) and Moi Composites (Italy), 
have demonstrated AM of continuous fiber- 
reinforced/UV-curable thermosets with robotic 
manipulators and custom-designed printing heads 
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Tyler (2014). However, they use continuous fiber- 
reinforced thermosets, a different type of material 
than our proposed work, for which no commercial 
end-effector is available. With this work, we aim to 
further expand the capabilities of robotic additive 
manufacturing by designing a specialized extruder 
head for UV-curable thermosets that can be inte
grated with collaborative robotic manipulators, such 
as the UR5e robotic system.

2.3. Data-driven approaches in additive 
manufacturing

Machine learning techniques were shown effective 
when applied to AM processes, given their good 
performance in pattern recognition and regression 
tasks. For example, they were used in image pro
cessing architectures to assess the quality of 3D 
printed thermoplastics . This may also enable real- 
time adjustment of printing parameters to address 
problems as they arise. A Neural Network (NN) was 
used as a pre-processing step in AM to predict part 
deformation due to residual stresses and create 
new geometries that would result in higher dimen
sional accuracy Nycz et al. (2021). A Long Short- 
Term Memory (LSTM) network was presented in 
Zhang, Wang, and Gao (2020) for the study of the 
dependencies between the layer-by-layer printing 
process and the final product quality. The FDM 
process was studied, considering the quality eva
luation based on the tensile strength of the 
printed parts. A similar approach was discussed in 
Chen et al. (2021), where a generalized recurrence 
network was applied on the AM spatial image data 
to predict the behavior in each printed layer. Delli 
et al. leveraged support vector machine (SVM) to 
predict the quality of 3D printed samples with 
a conventional FDM printer Delli and Chang 
(2018). The model was used to classify the samples 
into”good” or”defective” categories using images 
gathered with an overhead camera. A CNN was 
developed in Garfo et al. (2020) for the automatic 
detection of surface defects in 3D printed concrete 
structures. In Xiong et al. (2014), a FNN was used 
to predict weld bead geometry, which showed 
promise as an effective approach to estimate the 
quality of printed specimens.

ML approaches were investigated for process 
planning as well, a crucial component of robotic 

additive manufacturing. Zohdi et al. used a genetic 
algorithm and gradient-based scheme to optimize 
the behavior of a robotic arm with a specialized 
extruder for additive manufacturing Zohdi (2018). 
A model-based reinforcement learning technique 
was presented in Dharmawan et al. (2020) to 
understand the effect of process parameters in 
multi-layer deposition in wire arc additive manu
facturing (WAAM). Furthermore, the proposed 
approach corrected for inter-layer geometric 
digressions to ensure high accuracy prints. In 
Nicholas et al. (2020), a NN was used to enable 
a robotic arm to print onto unknown and arbitra
rily shaped 3D substrates. In this case, a generative 
NN was leveraged to create the robotic arm path 
producing high accuracy samples.

There is significant potential for ML in AM since 
there are several technologies and opportunities 
on the manufacturing line where optimization, 
classification, and computer-vision tasks can be 
incorporated. As presented above through 
a literature review, the primary focus is on quality 
assessment using regular printing capabilities, or 
process and motion planning for robotic 3D prin
ters. This work aims to close the gap between the 
two areas and leverage ML approaches to predict 
the quality of future printed specimens when 
robotic manipulators are used in the process. This 
novel approach would decrease the prototyping 
time and reduce expensive trial-and-error cam
paigns when material properties are modified 
and/or new setups are used.

3. Experimental setup: materials and custom 
extrusion head

This section presents the design and implementation 
of a new experimental setup to advance the capabil
ities of robotic AM technology utilizing extrusion of 
UV-curable thermosets. The materials used for robotic 
additive manufacturing and their rheological charac
terization are first presented, followed by 
a description of the custom-based extrusion system 
and its integration with the robotic manipulator. The 
overall robotic additive manufacturing technology 
with the mounted extrusion system is shown in 
Figure 1. Lastly, examples of 3D printed specimens 
with the proposed system are presented in this 
section.

4 L. VELAZQUEZ ET AL.



3.1. Thermoset material and rheological 
characterization

The thermoset resin used in this study is 
a commercially-available acrylic-based photopoly
mer (purchased from Anycubic). It is typically used 
for SLA and DLP printing, and it was shown to 
polymerize under UV exposure during DIW Mizuno, 
Pardivala, and Tai (2018); Velazquez, Palardy, and 
Barbalata (2021); Weger et al. (2022). It has an UV 
wavelength between 365 nm and 410 nm, with 
a viscosity at room temperature (25oC) ranging 
from 150 to 200 mPa.s. As viscosity was expected 
to influence the printed specimens’ dimensional 
stability, fumed silica (FS, AEROSIL R972, from 
VWR), a common filler to modify viscosity of poly
mers, was incorporated at three weight fractions: 
2:8%; 6:0%, and 8:0% Romberg et al. (2021); Tu 
and Sodano (2021); Velazquez, Palardy, and 
Barbalata (2021); Asif et al. (2019).

A parallel plate Discovery Hybrid Rheometer 20 
(DHR-20, Waters TA Instruments) was employed to 
measure shear viscosity for different resin formula
tions (0; 2:8; 6:0, and 8:0 with % FS). Resin samples 
were tested at 25�C with 25 mm diameter parallel 
plates in shear rate sweep mode from 0:1 to 100 s−1. 
This data was used to assess the shear thinning beha
vior of the photopolymer.

A power fit was performed on the viscosity data to 
find a function that could predict the viscosity for the 
actual shear rate found at the extrusion nozzle with 
the given extrusion rate. This function was leveraged 
to generate specific viscosity values for each extrusion 
rate. Equation (1) shows the general relationship 
between viscosity, η (Pa.s), and shear rate, _γ (s−1): 

η ¼ a _γb þ c (1) 

where the terms a, b, and c were found for each resin 
formulation through a power fit. To calculate _γ, stan
dard fluid dynamics principles of shear rate in pipe 
flow were used. The main assumption was to treat the 
nozzle geometry as an approximation of a small dia
meter pipe. Equation (2) shows the general form for 
maximum shear rate in a pipe White (2011): 

_γ ¼
4Q
πr3

n
(2) 

where Q is the volumetric flow rate (m3/s) and rn is the 
nozzle radius (mm). Equation (2) can be further 

simplified as Equation (3), according to the geometry 
and specifications of the extrusion head: 

_γ ¼
Lt

mrntm
(3) 

where LT (mm/rev) and tm (ms) refer to the linear 
travel of the extruding plunger per revolution of the 
shaft and the half-time for one step of the motor, 
respectively. The magnitude per revolution, 
m ¼ 200, is the result of simplifications in 
Equation (2).

3.2. End-effector design and integration with 
robotic manipulator

As there is no commercially-available extruder system 
for UV-curable thermosets integrated with robotic 
manipulators, the following paragraphs present the 
design of a specialized extruder head compatible with 
a UR5e manipulator. The end-effector was designed 
to allow for cost-effective and controllable extrusion 
rate of the photopolymer.

As seen in Figures 1 and 2, the extrusion system 
was installed on a UR5e robotic manipulator. It 
included a syringe capable of holding up to 200 mL 
of uncured thermoset resin. The syringe had an inter
changeable nozzle through which material was 
extruded and deposited on a printing platform. The 
inner plunger in the barrel slid on a lead screw driven 
by a NEMA23 stepper motor at a predefined revolu
tions- per-minute (RPM), creating enough internal 
pressure to achieve extrusion rates up to approxi
mately 5:3 mm3/s. The stepper motor provided 
a torque of 1:9 Nm, sufficient to overcome internal 
friction and to extrude viscous resins. Several compo
nents of the extrusion system were 3D printed with 
PLA, including the L-shape connector that serves as 
attachment for the end-effector to the robotic arm, 
the housing of the syringe, the plunger, and the press- 
fit ring to mount the UV spotlights. For the purpose of 
this project, the choice of PLA instead of higher- 
strength materials (e.g. aluminum, acrylonitrile buta
diene styrene (ABS)) offered cost-efficiency, as well as 
rapid and convenient modifications to the design 
during the prototyping phase.

The stepper motor ensured a controllable deposi
tion rate. To achieve the desired extrusion rates, an 
Arduino UNO and a DM556T stepper driver were used 
to set the motor RPM and the rotation direction. 
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Figure 2. SolidWorks models of the assembled extruder and its main components. All dimensions are in mm.

Figure 3. Electronic components of the extrusion system and its electrical connection to the robotic arm.
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Figure 3 shows how the components of the robotic 
3D printer communicate with each other and their 
integration with the robotic manipulator. The stepper 
motor was connected to the driver, further connected 
to the Arduino UNO. Two Digital Output (DO) signals 
from the robotic controller turned the Arduino board 
and stepper motor on and off.

The extruded material was exposed to four 
SkyBeam UV spotlights (10 W, 365 nm wavelength, 
UVitron International) to achieve partial curing of 
the printed specimens. The UV light system had four 
channels, each connected to a 6 mm lens spotlight, 
attached to the syringe through a press-fit ring. 
Irradiance on the extruded material reached 5:6 W/ 
cm2 at a distance of 13 mm, however, only 1% of the 
total power was used to 3D print the specimens, 
based on previous work Velazquez, Palardy, and 
Barbalata (2021). The spotlights angle was 24 degrees 
from all four directions to cover the area where mate
rial was extruded. A DO signal from the robotic arm 
control box directed the lights to turn on and off as 
needed during the extrusion process. In addition, 
voltage dividers ensured that proper voltage was 
delivered to each electronic component in the system 
since the control box output was 24 V.

The flowchart in Figure 4 is a summary of the steps 
to 3D print the designed specimens. The process 
started with a computer aided design (CAD) model 
of the specimen. It was then sliced using Slic3r Slic3r 
(2022), a program with a high degree of customiza
tion for printing parameters, such as velocity, layer 
height, and nozzle diameter. Slic3r output the G-code 
with the coordinates and parameter values of the 
end-effector per individual layer.Figure 5(a) shows 
a rendering of the Slic3r environment where the sam
ples were sliced and Figure 5(b) is an example of the 
RoboDK simulation environment used to generate 
the robot path while avoiding collision with the envir
onment. Furthermore, RoboDK was also used to vali
date the printing behavior for the robot. The 
manufactured samples and their characterization are 
detailed in the following paragraphs.

3.3. Additively manufactured specimens

To first evaluate the performance of the robotic addi
tive manufacturing technology, specimens were 
printed with the proposed system using the UV- 
curable acrylic-based thermoset described in 
Section 3.1. A summary of initial parameters and 

Figure 4. Additive manufacturing process flowchart using a UR5e robotic manipulator.

Figure 5. (a) Slic3r software environment for designed specimen, and (b) RoboDK simulation environment to validate robotic printing 
paths.
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their levels is provided in Table 1, including FS weight 
fraction, robot end-effector velocity, motor RPM 
delay, and layer height. The nozzle diameter and UV 
light power were fixed for all experiments as 2 mm 
and 1% of total power, respectively. After printing, all 
specimens were post-cured in an Intelliray 600 cham
ber (UVitron International) for 60 seconds at 85%

intensity to achieve full cure.
Various geometries were printed to demonstrate 

the capabilities of the proposed robotic system. 
Figure 6(a-c) show cylindrical, pyramidal, and conical 
samples during the printing process, while Figure 6 
(d-e) present different shapes manufactured with the 
robotic system. A cylindrical geometry, as seen in 
Figure 5(a), was selected for future experiments to 
develop the predictive approach. Cylindrical speci
mens were chosen due to their feasibility to be char
acterized with only three dimensions (outer diameter, 

height, and wall width), facilitating dimensional accu
racy analysis.

Figure 7 shows representative cylindrical speci
mens for different material and printing parameters 
listed in Table 1. In general, it was observed that 
viscosity, motor delay, and end-effector velocity 
most noticeably influenced the quality of the prints. 
In addition, notable interactions between those 
parameters were observed, as well as with layer 
height and nozzle geometry, the latter influencing 
the shear rate and viscosity at the nozzle exit, as 
shown in Equations (1) and (3). Overall, during the 
printing experiments, given the complex interac
tions between all parameters and material charac
teristics, extensive fine-tuning of printing 
parameters was required to achieve high-quality 
prints.

The nominal dimensions of the cylinder CAD 
model, as shown in Figure 5(a), were the following: 
outer diameter (OD) of 20 mm, height (H) of 12 mm, 
and wall width (WW) of 1.5 mm. For each printed 
cylinder, the dimensions were measured with 
a digital caliper. For each dimension, four measure
ments were taken and averaged per printed speci
men. For example, the average dimensions for 

Table 1. Experimental parameters for initial 3D printed speci
mens with the robotic system. FS: fumed silica.

Parameter Level 1 Level 2 Level 3

FS weight fraction [wt%] 2:8 6:0 8:0
End-effector velocity [mm/s] 4 7 10
RPM delay [ms] 2000 2500 3000
Layer height [mm] 0:5 1:1 1:2

Figure 6. Additive manufacturing of various geometries: (a) cylinder, (b) pyramid, and (c) cone. Different 3D printed shapes with the 
robotic system: (d) star and (e) cone. The nozzle diameter and UV light power were fixed for all experiments as 2 mm and 1% of total 
power, respectively. Scale bars in (a)-(e): 10 mm.
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specimens in Figure 7(d-f) are the following: (d) OD  
= 23:22 � 0:40 mm, H = 12:75 � 0:39 mm, and WW  
= 3:62 � 0:10 mm, (e) OD = 22:77 � 0:26 mm, H  
= 12:64 � 0:04 mm, and WW = 2:84 � 0:11 mm, and 
(f) OD = 21:46 � 0:23 mm, H = 12:42 � 0:20 mm, and 
WW = 2:15 � 0:05 mm.

4. Predictive dimensional accuracy estimation

The cylindrical specimens were used to better under
stand the connections between the parameters of the 
process. Specifically, these specimens were leveraged to 
predict the dimensional accuracy of future prints, when 

either robotic parameters or material properties are 
modified. The focus of this section is to demonstrate 
the applicability of supervised machine learning 
approaches, such as feedforward neural network (FNN) 
and convolution neural network (CNN), for this problem.

Figure 8 presents the data-driven predictive pipe
line proposed in this work. Training data was col
lected from samples printed with the robotic system 
described in Section 3. The robotic and material para
meters were configured before the printing process 
began, while the set of dimensional parameters char
acterizing each sample was extracted after full cure, 
detailed in the previous section. The predictive model 

Figure 7. Cylindrical specimens manufactured with different material and printing parameters: (a) 2.8 wt% FS, 10 mm/s velocity, 2500 
ms RPM delay, and 0.5 mm layer height, (b) 6 wt% FS, 4 mm/s velocity, 2500 ms RPM delay, and 1.1 mm layer height, (c) 8 wt% FS, 
4 mm/s velocity, 2500 ms RPM delay, and 1.1 mm layer height, (d) 8 wt% FS, 4 mm/s velocity, 2000 ms RPM delay, and 1.2 mm layer 
height, (e) 8 wt% FS, 5 mm/s velocity, 2000 ms RPM delay, and 1.2 mm layer height, and (f) 8 wt% FS, 7 mm/s velocity, 2000 ms RPM 
delay, and 1.2 mm layer height. The nozzle diameter and UV light power were fixed for all experiments as 2 mm and 1% of total power, 
respectively. Scale bars in (a)-(f): 10 mm.

Figure 8. Overview of the proposed system for quality evaluation.
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was then used to estimate the dimensions of future 
prints without the need to experimentally test the 
material-robot coordination and parameter selection. 
To validate the proposed approach, several material- 
robotic parameter combinations were used and the 
predicted dimensions were compared to the dimen
sions of the actual specimens printed with the robotic 
system under the same input conditions. In practice, it 
would mean that if the predicted quality of the print is 
considered acceptable, the actual 3D print can take 
place, but if the quality is unacceptable, different 
material-robotic parameters are selected and the pro
cess is repeated. In the following paragraphs, the two 
predictive models considered are described and the 
results of the predictive approach are analyzed.

4.1. Feedforward neural networks

As presented in Mitchell (1997), FNNs can map highly 
non-linear data and create a target function resilient 
to errors or noise. As such, FNNs is appropriate for 
estimating dimensional accuracy of 3D prints using 
UV curable thermosets, as acrylic-based photopoly
mers tend to deform as they undergo curing, introdu
cing dimensional noise in the dataset.

Figure 9 shows the architecture of the FNN used to 
predict the dimensions of the 3D printed specimens. 
The proposed FNN had a total of four layers: one 
input, two hidden, and one output. The two hidden 
layers had 30 neurons each. The input variables were 

the motor RPMs, layer height, end-effector velocity, 
and resin viscosity. The latter was controlled by the FS 
weight fraction and nozzle geometry, as calculated 
from Equations (1)-(3) in Section 3.1. The outputs of 
the network were the dimensions measured from the 
cured printed specimens: height, wall width, and out
side diameter.

For this application, back-propagation was used to 
update the weights. The loss function was based on 
the mean-squared error (MSE), as seen in Equation (4): 

L ¼
1
N

XN

i¼1

xi � yið Þ
2 (4) 

where N represents the total number of data points, xi 

is the returned model prediction, and yi is the mea
sured value of the i-th sample. This loss function 
computed the output error of the network, describing 
how close the predicted values were to the targets of 
the problem.

4.1.1. Training procedure
The strategy to collect the data consisted of varying 
one of the input variables within a range while keep
ing the other three constant. For each parameter 
combination, a cylinder was printed, post-cured, and 
its dimensions (outputs) measured with a digital cali
per. A total of 187 specimens were obtained and for 
each dimension, measurements at four locations were 
taken and averaged. Table 2 summarizes the input 
variable ranges that were investigated. As previously 

Figure 9. Architecture of the proposed FNN with two hidden layers.
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mentioned, the resin viscosity range was estimated 
from the procedure described in Section 3.1, using the 
nozzle geometry (1:5 mm or 2 mm diameter) and 
power fit over the rheological data.

Random testing sets were selected out of the total 
number of samples, containing approximately 20% of 
the total number of data points, or 37 samples. The 
rest of the data set (150 data points) was used for 
training. The 80% � 20% ratio between training and 
testing samples was shown to be appropriate for 
generating the best results, avoiding over-fitting 
Gholamy, Kreinovich, and Kosheleva (2018). Out of 
all the samples used for training, 30% were used for 
validation, following the same principle highlighted 
above. Furthermore, to guarantee that over-fitting 

was prevented, data augmentation was performed 
by adding Gaussian noise to the input data, creating 
a new training data set consisting of 300 samples. This 
approach ensured that the learned features were 
robust and also enhanced the generalization capabil
ity of the model.

4.1.2. Testing results
To evaluate the performance of the architecture, 
the testing set was used to predict the printed 
cylinder height, wall width, and outside diameter. 
These were then compared with the measured 
dimensions of the real printed specimens to eval
uate the success of the approach. Training and 
testing took place on an Intel(R) Core(TM) 
i7 � 9750H CPU @2:60GHz. As the data set avail
able had a limited number of samples, training and 
testing procedures were repeated multiple times, 
by randomly selecting the testing set and using 
the remainder of the samples for training, leading 
to 10 training-testing scenarios.

Table 2. Input variable ranges for a three-layer FNN.
Input Variable Range

Resin viscosity at nozzle [Pa.s] 1:5 – 70:0
RPM delay [ms] 900 – 3800
Layer height [mm] 0:25 – 1:20
End-effector velocity [mm/s] 2:0 – 13:5

Figure 10. Comparison between the FNN cylinder dimensions prediction (”NN predictions”) and the actual cylinder values (”Targets”).
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In the case with no data augmentation, the average 
Root-Mean-Square Error (RMSE) for the FNN configura
tion was 0:24 mm over 10 training-testing scenarios, 
with an average time of 10 seconds during training. 
This average includes the RMSE values of the height, 
wall width, and outside diameter for the FNN predic
tions, when compared to the actual targets from the 
testing set. An example of the results is shown in 
Figure 10, where it is observed that the predicted 
dimensions for almost all samples are in close proxi
mity to those measured on the real samples. During 
these 10 training-testing runs, the minimum and max
imum absolute errors were computed together with 
the standard deviation, as presented in Table 3. These 
results show the variability in the predicted dimensions 
with some samples closely estimated, while others dis
played errors over 2 mm for one dimension.

4.1.2.1. Data augmentation. With data augmenta
tion, the RMSE for the predicted height, width, and 
outside diameter values are shown in Table 4 for 10 
different training-testing runs. For each test, the 

training set consisted of 300 samples while the testing 
set had 37 randomly selected samples. Similar results 
were observed over all tests with comparable RMSE 
for all dimensions considered. Based on the minimum 
and maximum absolute errors and the standard 
deviation summarized in Table 5, the highest and 
smallest variability were both obtained for the outside 
diameter.

4.2. Cascade neural networks

To further demonstrate the capabilities of predictive 
parameter selection, a CNN that moves the informa
tion forward, while each layer is connected to every 
subsequent layer of the network, was also considered. 
These additional connections in the CNN could 
improve the data distribution over the network and 
reveal more information about the nature of the rela
tionship between the inputs and outputs of the 
model Alkhasawneh and Tien Tay (2018); 
Mohammadi et al. (2021). The proposed CNN had an 
identical architecture to the proposed FNN, with the 
exception of the added links between the layers. The 
chosen architecture is illustrated in Figure 11, where 
the inputs and outputs of the network are similar to 
the ones used in the FNN approach.

4.2.1. Training procedure
An identical procedure to the FNN was followed to 
evaluate the performance of the CNN in terms of pre
dictions made on randomly selected test sets of the 
same data, consisting of 187 specimens, out of which 
37 were used for testing. Two hidden layers, each with 
30 neurons, were used. The loss function was defined 
in Equation (4), using a tan-sigmoid as the transfer 
function for the hidden layers. Weights and bias were 
updated according to a Levenberg-Marquardt optimi
zation. Similarly to the FNN approach, data augmenta
tion was also investigated using Gaussian noise, 
increasing the number of training samples to 300.

4.2.2. Testing results
The proposed CNN configuration proved to be as 
accurate as the FNN to predict the geometrical 
dimensions of the samples. The average RMSE 
obtained after 10 training-testing scenarios (no data 
augmentation) was 0:108 with an average training 
time of 8 seconds. An example of one of those tests 
is presented in Figure 12. In Table 6, the minimum and 

Table 3. Minimum and maximum errors with standard deviation 
for dimensions prediction with the FNN approach.

Height Wall Width Outside Diameter

Minimum absolute error [mm] 0.003 0.015 0.008
Maximum absolute error [mm] 2.03 1.38 2.79
Standard deviation [mm] 0.30 0.33 0.40

Table 4. RMSE for each dimension estimation when FNN is used 
with data augmentation.

Test # Height RMSE [mm] Width RMSE [mm] Diameter RMSE [mm]

1 0:43 0:16 0:12
2 0:27 0:20 0:12
3 0:33 0:40 0:52
4 0:35 0:20 0:25
5 0:33 0:47 0:24
6 0:27 0:53 0:29
7 0:42 0:30 0:25
8 0:43 0:30 0:13
9 0:35 0:32 0:36
10 0:26 0:22 0:25

Table 5. Minimum and maximum errors with standard deviation 
for dimensions prediction using data augmentation with the 
FNN implementation.

Height Wall Width Outside Diameter

Minimum absolute error [mm] 0:07 0:11 0:01
Maximum absolute error [mm] 4:33 4:58 5:04
Standard deviation [mm] 0:42 0:54 0:55
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Figure 11. Architecture of the proposed CNN with two hidden layers and 30 neurons in each layer.

Figure 12. Comparison between the CNN cylinder dimension predictions (”NN predictions”) and the actual 3D printed cylinder values 
(”Targets”).
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maximum absolute errors were computed with the 
standard deviation for the 10 training-testing scenar
ios. In this case, there are smaller deviations among 
tests, compared to the FNN approach.

4.2.2.1. Data augmentation. With data augmenta
tion, the minimum and maximum absolute errors are 

shown in Table 7 over the 10 training-testing scenar
ios, where the testing data set was randomly selected 
for each run. The estimated deviations for the wall 
width and outside diameter were consistent among 
each other, while a larger deviation was obtained for 
the samples’ height. These results are generally con
sistent with the case when no data augmentation was 
used.

4.3. Discussion

Before employing the FNN and CNN approaches for 
estimating the dimensions of future 3D prints, regres
sion analysis was considered. Nevertheless, due to the 
multi-dimensional formulation of the problem and no 
linear correlations between the features and target 
outputs, this approach did not produce good accu
racy, even on the training data. An example of the 
outputs of the linear regression is shown in Figure 13, 
where the predictions result in an average of the 
actual target measures, for all three dimensions 
considered.

Table 6. Minimum and maximum errors with standard deviation 
for dimensions prediction with the CNN approach.

Height Wall Width Outside Diameter

Minimum absolute error [mm] 0:01 0:03 0:007
Maximum absolute error [mm] 1:00 2:49 1:73
Standard deviation [mm] 0:24 0:35 0:34

Table 7. Minimum and maximum errors with standard deviation 
for dimensions prediction using data augmentation with the 
CNN implementation.

Height Wall Width Outside Diameter

Minimum absolute error [mm] 0:002 0:01 0:04
Maximum absolute error [mm] 5:15 3:09 2:31
Standard deviation [mm] 1:04 0:56 0:55
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Figure 13. Comparison between regression predictions (”Regression predictions”) and the actual 3D printed cylinder dimensions 
(”Targets”).
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Although the data set was relatively small, 
machine learning approaches such as FNN and 
CNN architectures, were beneficial to approximate 
the dimensions of future prints, as shown in 
Figures 10 and 12. Two different networks were 
tested to demonstrate the feasibility of predictive 
dimension analyses, given limited experimental 
data sets. To address concerns regarding the 
small data sets and overfitting, data augmentation 
was performed. The results with and without data 
augmentation showed similar trends and success
ful estimation of the dimensions of 3D printed 
specimens when the input parameters were 
altered. The maximum error of 5:15 mm 
(Table 7) was obtained for the height of 
a sample for which the target was 18 mm. The 
average RMSE for each training-testing scenario 
and all network configurations is presented in 
Figure 14. All experiments returned an RMSE well 
under 1 mm, confirming that both FNN and CNN 
configurations are feasible.

The training sample size is important for any neural 
network predictive approach, as increasing the num
ber of samples and their ranges can improve the 
performance of the model. Training was performed 
with 150 and 93 samples, for both the FNN and CNN 
approaches. When using the CNN to predict samples’ 
dimensions, maximum prediction errors of 5:05 mm 
and 9:08 mm were obtained for the height when 150 
and 93 samples were used, respectively. For the FNN 
approach, the maximum errors were 2:03 mm and 

3:05 mm for the height when 150 and 93 samples 
were used, respectively. Nevertheless, if a large train
ing set with similar characteristics is employed, the 
performance of the system can decrease due to over
fitting, as was observed from Tables 7 and 4, where 
the maximum errors for the height of the samples 
increases compared to the case when no data aug
mentation was used. The proposed approach, work
ing with a limited number of samples for training 
indicates that predictive models for 3D printed speci
men dimensions can successfully help reduce the 
time spent manually tuning process parameters and 
the cost due to material waste. As novel materials are 
discovered, especially in the field of AM, such models 
are valuable to identify suitable process parameters 
and material characteristics leading to high-quality 
prints, reducing costs incurred by extensive experi
mental campaigns.

5. Conclusions

This paper introduced the design of a robotic additive 
manufacturing system capable of utilizing UV-curable 
thermosets. The system was used to additively man
ufacture various specimens and data-driven 
approaches were leveraged to predict printed sam
ples’ dimensions. The following conclusions and 
recommendations can be formulated:

● A custom-designed extruder head was inte
grated with a UR5e collaborative manipulator. 
Cylindrical, pyramidal, and conical samples with 
heights in the range of 10 � 20 mm, and outside 
diameters or widths of 20 � 35 mm were pro
duced. As complex interactions were observed 
between printing parameters, material character
istics (i.e. viscosity), and printed specimens’ qual
ity, there was a need to create a data-driven 
predictive architecture to estimate dimensions 
of future AM specimens.

● Machine learning approaches were leveraged, 
such as feedforward neural network (FNN) and 
convolution neural network (CNN), to demon
strate their capabilities for predictive modeling. 
The proposed methods used the material and 
processing parameters as inputs, and the future 
3D print dimensions as outputs, showing how 
the inputs affected dimensional accuracy. The 

0 5 10
Training - Testing Scenario #

0

0.1

0.2

0.3

0.4

0.5

0.6
R

M
S

E
 [m

m
]

FNN
FNN aug
CNN
CNN aug

Figure 14. Comparison between RMSE for different network 
configurations of the proposed predictive estimation.
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data set consisted of 150 cylindrical samples for 
training and 37 samples for testing. All predic
tions had an RMSE under 1 mm. Data augmen
tation was also considered resulting in 300 
samples for the training dataset, and the results 
from both networks showed similar perfor
mance to the case without data augmentation. 
Overall, the proposed neural networks can be 
used to identify suitable robotic AM process 
parameters without extensive trial-and-error 
tuning campaigns.

In the future, larger experimental data sets will be 
created, with more complex geometries to further 
validate the proposed data-driven architecture, giving 
special attention to overhanging structures. In addi
tion, more advanced predictive methods will be 
designed to increase the accuracy of the predictions. 
Finally, the extruder end-effector will be modified to 
allow continuous fiber-reinforced materials in the 
printing process.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Louisiana Board of Regents 
[LEQSF-EPS(2022)-LAMDASeed-Track1B-11]; Louisiana Board of 
Regents [LEQSF-EPS(2021)-LAMDASeed-Track1B-01]; Office of 
Integrative Activities [OIA1946231].

References

Abdullah, A. M., Y. Ding, X. He, M. Dunn, and Y. Kai. (2023) 
“Direct-Write 3D Printing of UV-Curable Composites with 
Continuous Carbon Fiber.” Journal of Composite Materials 
0 (0): 00219983221127182. https://doi.org/10.1177/ 
00219983221127182.

Abedin, R., X. Feng, J. Pojman, S. Ibekwe, P. Mensah, I. Warner, 
and L. Guoqiang. 2022. “A Thermoset Shape Memory 
Polymer-Based Syntactic Foam with Flame Retardancy and 
3D Printability.” ACS Applied Polymer Materials 4 (2): 
1183–1195. https://doi.org/10.1021/acsapm.1c01596.

Abedin, R., F. Xiaming, P. John Jr., I. Samuel, M. Patrick, W. Isiah, 
and L. Guoqiang. 2022. “A Thermoset Shape Memory 
Polymer-Based Syntactic Foam with Flame Retardancy and 
3D Printability.” ACS Applied Polymer Materials 4 (2): 
1183–1195. https://doi.org/10.1021/acsapm.1c01596.

Alkhasawneh, M. S., and L. Tien Tay. 2018. “A Hybrid Intelligent 
System Integrating the Cascade Forward Neural Network 
with Elman Neural Network.” Arabian Journal for Science 
and Engineering 43 (12): 6737–6749. https://doi.org/10. 
1007/s13369-017-2833-3 .

Arevo. 2022. “Making the World Lighter.” https://arevo.com/ .
Asif, M., J. Hyun Lee, M. J. Lin-Yip, S. Chiang, A. Levaslot, 

T. Giffney, M. Ramezani, and A. Kean Chin. 2018. “A New 
Photopolymer Extrusion 5-Axis 3D Printer.” Additive 
Manufacturing 23:355–361. https://doi.org/10.1016/j. 
addma.2018.08.026.

Asif, M., M. Ramezani, K. Ahmed Khan, M. A. Khan, and A. Kean 
Chin. 2019. “Experimental and Numerical Study of the Effect 
of Silica Filler on the Tensile Strength of a 3D-Printed 
Particulate Nanocomposite.” Comptes Rendus Mécanique 
347 (9): 615–625. https://doi.org/10.1016/j.crme.2019.07. 
003.

Banadaki, Y., N. Razaviarab, H. Fekrmandi, L. Guoqiang, 
P. Mensah, S. Bai, and S. Sharifi. 2022. “Automated Quality 
and Process Control for Additive Manufacturing Using Deep 
Convolutional Neural Networks.” Recent Progress in Materials 
4 (1): 1–1. https://doi.org/10.21926/rpm.2201005.

Bikas, H., P. Stavropoulos, and G. Chryssolouris. 2016. “Additive 
Manufacturing Methods and Modelling Approaches: 
A Critical Review.” The International Journal of Advanced 
Manufacturing Technology 83 (1–4): 389–405. https://doi. 
org/10.1007/s00170-015-7576-2 .

Bin Ishak, I., J. Fisher, and P. Larochelle. 2016. “Robot Arm 
Platform for Additive Manufacturing Using Multi-Plane 
Toolpaths.” In International Design Engineering Technical 
Conferences and Computers and Information in Engineering 
Conference, Florida, Vol. 50152, V05AT07A063. American 
Society of Mechanical Engineers.

Carlucho, I., D. W. Stephens, and C. Barbalata. 2021. “An 
Adaptive Data-Driven Controller for Underwater 
Manipulators with Variable Payload.” Applied Ocean 
Research 113:102726. https://doi.org/10.1016/j.apor.2021. 
102726 .

Chen, K., X. Kuang, L. Vincent, G. Kang, and H. Jerry Qi. 2018. 
“Fabrication of Tough Epoxy with Shape Memory Effects by 
UV-Assisted Direct-Ink Write Printing.” Soft Matter 14 (10): 
1879–1886. https://doi.org/10.1039/C7SM02362F.

Chen, R., P. Rao, L. Yan, E. W. Reutzel, and H. Yang. 2021. 
“Recurrence Network Analysis of Design-Quality 
Interactions in Additive Manufacturing.” Additive 
Manufacturing 39:101861. https://doi.org/10.1016/j.addma. 
2021.101861.

Continuous Composites. 2022. “Continuous Fiber 3D Printing.” 
https://www.continuouscomposites.com/ .

Costa, M. A., B. Wullt, M. Norrlöf, and S. Gunnarsson. 2019. 
“Failure Detection in Robotic Arms Using Statistical 
Modeling, Machine Learning and Hybrid Gradient 
Boosting.” Measurement 146:425–436. https://doi.org/10. 
1016/j.measurement.2019.06.039.

Delda, R. N. M., R. Balisalisa Basuel, R. Peralta Hacla, D. William 
Carpiano Martinez, J.-J. Cabibihan, and J. Ryan Cortez Dizon. 
2021. “3D Printing Polymeric Materials for Robots with 

16 L. VELAZQUEZ ET AL.

https://doi.org/10.1177/00219983221127182
https://doi.org/10.1177/00219983221127182
https://doi.org/10.1021/acsapm.1c01596
https://doi.org/10.1021/acsapm.1c01596
https://doi.org/10.1007/s13369-017-2833-3
https://doi.org/10.1007/s13369-017-2833-3
https://arevo.com/
https://doi.org/10.1016/j.addma.2018.08.026
https://doi.org/10.1016/j.addma.2018.08.026
https://doi.org/10.1016/j.crme.2019.07.003
https://doi.org/10.1016/j.crme.2019.07.003
https://doi.org/10.21926/rpm.2201005
https://doi.org/10.1007/s00170-015-7576-2
https://doi.org/10.1007/s00170-015-7576-2
https://doi.org/10.1016/j.apor.2021.102726
https://doi.org/10.1016/j.apor.2021.102726
https://doi.org/10.1039/C7SM02362F
https://doi.org/10.1016/j.addma.2021.101861
https://doi.org/10.1016/j.addma.2021.101861
https://www.continuouscomposites.com/
https://doi.org/10.1016/j.measurement.2019.06.039
https://doi.org/10.1016/j.measurement.2019.06.039


Embedded Systems.” Technologies 9 (4): 82. https://doi.org/ 
10.3390/technologies9040082.

Delli, U., and S. Chang. 2018. “Automated Process Monitoring in 
3D Printing Using Supervised Machine Learning.” Procedia 
Manufacturing, 46th SME North American Manufacturing 
Research Conference, NAMRC 46 26: 865–870. Texas, USA, 
https://www.sciencedirect.com/science/article/pii/  
S2351978918307820 .

Deng, K., C. Zhang, and F. Kun Kelvin. 2023. “Additive 
Manufacturing of Continuously Reinforced Thermally 
Curable Thermoset Composites with Rapid Interlayer 
Curing.” Composites Part B Engineering 257:110671. https:// 
doi.org/10.1016/j.compositesb.2023.110671.

Dharmawan, A. G., Y. Xiong, S. Foong, and G. Song Soh. 2020. 
“A Model-Based Reinforcement Learning and Correction 
Framework for Process Control of Robotic Wire Arc 
Additive Manufacturing.” In 2020 IEEE International 
Conference on Robotics and Automation (ICRA), 4030–4036. 
IEEE.

El Moumen, A., M. Tarfaoui, and K. Lafdi. 2019. “Additive 
Manufacturing of Polymer Composites: Processing and 
Modeling Approaches.” Composites Part B Engineering 
171:166–182. https://doi.org/10.1016/j.compositesb.2019. 
04.029.

Farahani, R. D., L. Laberge Lebel, and D. Therriault. 2014. 
“Processing Parameters Investigation for the Fabrication of 
Self-Supported and Freeform Polymeric Microstructures 
Using Ultraviolet-Assisted Three-Dimensional Printing.” 
Journal of Micromechanics and Microengineering 24 (5): 
055020. https://doi.org/10.1088/0960-1317/24/5/055020.

Gao, C., J. Qiu, and S. Wang. 2022. “In-Situ Curing of 3D Printed 
Freestanding Thermosets.” Journal of Advanced 
Manufacturing and Processing 4 (3): e10114. https://doi.org/ 
10.1002/amp2.10114.

Garfo, S., M. A. Muktadir, and Y. Sun. 2020. “Defect Detection on 
3D Print Products and in Concrete Structures Using Image 
Processing and Convolution Neural Network.” Journal of 
Mechatronics and Robotics 4 (1): 74–84. https://doi.org/10. 
3844/jmrsp.2020.74.84.

Gholamy, A., V. Kreinovich, and O. Kosheleva. 2018. Why 70/30 
or 80/20 Relation Between Training and Testing Sets: A 
Pedagogical Explanation. UTEP-CS-18-09. Texas: The 
University of Texas at El Paso.

He, X., Y. Ding, Z. Lei, S. Welch, W. Zhang, M. Dunn, and Y. Kai. 
2021. “3D Printing of Continuous Fiber-Reinforced 
Thermoset Composites.” Additive Manufacturing 40:101921.  
https://doi.org/10.1016/j.addma.2021.101921.

Hershey, C., J. Lindahl, S. Romberg, A. Roschli, B. Hedger, 
M. Kastura, B. Compton, and V. Kunc. 2019. Large-Scale 
Reactive Extrusion Deposition of Sparse Infill Structures with 
Solid Perimeters. Technical Report. Oak Ridge National Lab. 
(ORNL), Oak Ridge, TN (United States).

Jiang, J., S. T. Newman, and R. Y. Zhong. 2021. “A Review of 
Multiple Degrees of Freedom for Additive Manufacturing 
Machines.” International Journal of Computer Integrated 
Manufacturing 34 (2): 195–211. https://doi.org/10.1080/ 
0951192X.2020.1858510.

Kopatz, J. W., J. Unangst, A. W. Cook, and L. N. Appelhans. 2021. 
“Compositional Effects on Cure Kinetics, Mechanical 
Properties and Printability of Dual-Cure Epoxy/Acrylate 
Resins for DIW Additive Manufacturing.” Additive 
Manufacturing 46:102159. https://doi.org/10.1016/j.addma. 
2021.102159.

Li, A., A. Challapalli, and L. Guoqiang. 2019. “4D Printing of 
Recyclable Lightweight Architectures Using High Recovery 
Stress Shape Memory Polymer.” Scientific Reports 9 (1): 1–13.  
https://doi.org/10.1038/s41598-019-44110-9.

Luu, Q. K., and L. Hung Manh. 2021. “A 3-Dimensional Printing 
System Using an Industrial Robotic Arm.” In 2021 IEEE/SICE 
International Symposium on System Integration (SII) 443–448. 
Japan. IEEE.

Miri, S., J. Kalman, J.-P. Canart, J. Spangler, and K. Fayazbakhsh. 
2022. “Tensile and Thermal Properties of Low-Melt Poly Aryl 
Ether Ketone Reinforced with Continuous Carbon Fiber 
Manufactured by Robotic 3D Printing.” The International 
Journal of Advanced Manufacturing Technology 122 (2): 
1041–1053. https://doi.org/10.1007/s00170-022-09983-7 .

Mitchell, T. M. 1997. Machine Learning. McGraw-Hill Science/ 
Engineering/Math.

Mizuno, Y., N. Pardivala, and B. L. Tai. 2018. “Projected UV-Resin 
Curing for Self-Supported 3D Printing.” Manufacturing Letters 
18:24–26. https://doi.org/10.1016/j.mfglet.2018.09.005.

Mohammadi, M.-R., A. Hemmati-Sarapardeh, M. Schaffie, 
M. M. Husein, and M. Ranjbar. 2021. “Application of Cascade 
Forward Neural Network and Group Method of Data Handling 
to Modeling Crude Oil Pyrolysis During Thermal Enhanced Oil 
Recovery.” Journal of Petroleum Science and Engineering 
205:108836. https://doi.org/10.1016/j.petrol.2021.108836 .

Moi Composites. 2022. “Composites Production Made Simple.” 
https://www.moi.am/ .

Nicholas, P., G. Rossi, E. Williams, M. Bennett, and T. Schork. 
2020. “Integrating Real-Time Multi-Resolution Scanning and 
Machine Learning for Conformal Robotic 3D Printing in 
Architecture.” International Journal of Architectural 
Computing 18 (4): 371–384. https://doi.org/10.1177/ 
1478077120948203.

Nycz, A., Y. Lee, M. Noakes, D. Ankit, C. Masuo, S. Simunovic, 
J. Bunn, L. Love, V. Oancea, A. Payzant, C. M. Fancher, et al. 
2021. “Effective Residual Stress Prediction Validated with 
Neutron Diffraction Method for Metal Large-Scale Additive 
Manufacturing.” Materials & Design 205:109751. https://doi. 
org/10.1016/j.matdes.2021.109751.

Park, S., W. Shou, L. Makatura, W. Matusik, and F. Kun Kelvin. 
2022. “3D Printing of Polymer Composites: Materials, 
Processes, and Applications.” Matter 5 (1): 43–76. https:// 
doi.org/10.1016/j.matt.2021.10.018.

Romberg, S. K., M. A. Islam, C. J. Hershey, M. DeVinney, 
C. E. Duty, V. Kunc, and B. G. Compton. 2021. “Linking 
Thermoset Ink Rheology to the Stability of 3D-Printed 
Structures.” Additive Manufacturing 37:101621. https://doi. 
org/10.1016/j.addma.2020.101621.

Shembekar, A. V., Y. Jung Yoon, A. Kanyuck, and S. K. Gupta. 
2019. “Generating Robot Trajectories for Conformal 
Three-Dimensional Printing Using Nonplanar Layers.” 

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 17

https://doi.org/10.3390/technologies9040082
https://doi.org/10.3390/technologies9040082
https://www.sciencedirect.com/science/article/pii/S2351978918307820
https://www.sciencedirect.com/science/article/pii/S2351978918307820
https://doi.org/10.1016/j.compositesb.2023.110671
https://doi.org/10.1016/j.compositesb.2023.110671
https://doi.org/10.1016/j.compositesb.2019.04.029
https://doi.org/10.1016/j.compositesb.2019.04.029
https://doi.org/10.1088/0960-1317/24/5/055020
https://doi.org/10.1002/amp2.10114
https://doi.org/10.1002/amp2.10114
https://doi.org/10.3844/jmrsp.2020.74.84
https://doi.org/10.3844/jmrsp.2020.74.84
https://doi.org/10.1016/j.addma.2021.101921
https://doi.org/10.1016/j.addma.2021.101921
https://doi.org/10.1080/0951192X.2020.1858510
https://doi.org/10.1080/0951192X.2020.1858510
https://doi.org/10.1016/j.addma.2021.102159
https://doi.org/10.1016/j.addma.2021.102159
https://doi.org/10.1038/s41598-019-44110-9
https://doi.org/10.1038/s41598-019-44110-9
https://doi.org/10.1007/s00170-022-09983-7
https://doi.org/10.1016/j.mfglet.2018.09.005
https://doi.org/10.1016/j.petrol.2021.108836
https://www.moi.am/
https://doi.org/10.1177/1478077120948203
https://doi.org/10.1177/1478077120948203
https://doi.org/10.1016/j.matdes.2021.109751
https://doi.org/10.1016/j.matdes.2021.109751
https://doi.org/10.1016/j.matt.2021.10.018
https://doi.org/10.1016/j.matt.2021.10.018
https://doi.org/10.1016/j.addma.2020.101621
https://doi.org/10.1016/j.addma.2020.101621


Journal of Computing and Information Science in Engineering 
19 (3): 3. https://doi.org/10.1115/1.4043013.

Slic3r. 2022. “Slic3r - Open Source 3D Printing Toolbox.” https:// 
slic3r.org/ .

Tiryaki, M. E., X. Zhang, and Q.-C. Pham. 2019a. “Printing-While- 
Moving: A New Paradigm for Large-Scale Robotic 3D 
Printing.” In 2019 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS) Macau, 2286–2291.

Tiryaki, M. E., X. Zhang, and Q.-C. Pham. 2019b. “Printing-While- 
Moving: A New Paradigm for Large-Scale Robotic 3D 
Printing.” In 2019 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS) Macau, 2286–2291. 
IEEE.

Tu, R., and H. A. Sodano. 2021. “Additive Manufacturing of 
High-Performance Vinyl Ester Resin via Direct Ink Writing 
with UV-Thermal Dual Curing.” Additive Manufacturing 
46:102180. https://doi.org/10.1016/j.addma.2021.102180.

Tyler, K. 2014. “Method and Apparatus for Continuous 
Composite Three-Dimensional Printing.” US Patent 2014/ 
0061974 A1,  https ://patents .google .com/patent/  
US20140061974A1/en .

Uitz, O., P. Koirala, M. Tehrani, and C. Conner Seepersad. 2021. 
“Fast, Low-Energy Additive Manufacturing of Isotropic Parts 
via Reactive Extrusion.” Additive Manufacturing 41:101919.  
https://doi.org/10.1016/j.addma.2021.101919.

Urhal, P., A. Weightman, C. Diver, and P. Bartolo. 2019. “Robot 
Assisted Additive Manufacturing: A Review.” Robotics and 
Computer-Integrated Manufacturing 59:335–345. https://doi. 
org/10.1016/j.rcim.2019.05.005 .

Velazquez, L., G. Palardy, and C. Barbalata. 2021. “Design and 
Integration of End-Effector Extruder for 3D Printing Novel 
UV-Curable Shape Memory Polymers with a Collaborative 
Robotic System. The Composites and Advanced Materials 
Expo Dallas, TX.

Wang, B., K. F. Arias, Z. Zhang, Y. Liu, Z. Jiang, H.-J. Sue, 
N. Currie-Gregg, S. Bouslog, Z. (J.) Pei, and S. Wang. 2019. 
“3D Printing of in-Situ Curing Thermally Insulated 
Thermosets.” Manufacturing Letters 21:1–6. https://doi.org/ 
10.1016/j.mfglet.2019.06.001.

Wang, B., Z. Zhang, Z. Pei, J. Qiu, and S. Wang. 2020. “Current 
Progress on the 3D Printing of Thermosets.” Advanced 
Composites and Hybrid Materials 3 (4): 462–472. https://doi. 
org/10.1007/s42114-020-00183-z.

Weger, L., L. Velazquez, C. Barbalata, D. Roy, and G. Palardy. 
2022. “Curing Behavior Simulator for Robotic 3D Printing of 
UV-Curable Thermoset Polymers.” In 2022 SPE Annual 
Technical Conference (ANTEC), SPE, Charlotte, NC.

Westbeek, S., J. J. Remmers, J. A. W. Van Dommelen, and 
M. G. Geers. 2020. “Multi-Scale Process Simulation for 

Additive Manufacturing Through Particle Filled Vat 
Photopolymerization.” Computational Materials Science 
180:109647. https://doi.org/10.1016/j.commatsci.2020. 
109647.

White, F. M. 2011. Fluid Mechanics. McGraw-Hill Series in 
Mechanical Engineering. McGraw Hill. https://books.google. 
com/books?id=egk8SQAACAAJ .

Wu, C., C. Dai, G. Fang, Y.-J. Liu, and C. C. Wang. 2017. 
“RoboFdm: A Robotic System for Support-Free Fabrication 
Using FDM.” In 2017 IEEE International Conference on 
Robotics and Automation (ICRA) 1175–1180. Marina Bay 
Sands Singapore IEEE.

Wu, T., P. Jiang, X. Zhang, Y. Guo, J. Zhongying, X. Jia, X. Wang, 
F. Zhou, and W. Liu. 2019. “Additively Manufacturing 
High-Performance Bismaleimide Architectures with 
Ultraviolet-Assisted Direct Ink Writing.” Materials & Design 
180:107947. https://doi.org/10.1016/j.matdes.2019.107947.

Xiong, J., G. Zhang, H. Jianwen, and W. Lin. 2014. “Bead Geometry 
Prediction for Robotic GMAW-Based Rapid Manufacturing 
Through a Neural Network and a Second-Order Regression 
Analysis.” Journal of Intelligent Manufacturing 25 (1): 157–163.  
https://doi.org/10.1007/s10845-012-0682-1.

Yan, C., X. Feng, and L. Guoqiang. 2021. “From Drug Molecules 
to Thermoset Shape Memory Polymers: A Machine Learning 
Approach.” ACS Applied Materials & Interfaces 13 (50): 
60508–60521. https://doi.org/10.1021/acsami.1c20947.

Yan, C., X. Feng, C. Wick, A. Peters, and L. Guoqiang. 2021. 
“Machine Learning Assisted Discovery of New Thermoset 
Shape Memory Polymers Based on a Small Training 
Dataset.” Polymer 214:123351. https://doi.org/10.1016/j.poly 
mer.2020.123351.

Zhang, J., P. Wang, and R. X. Gao. 2020. “Attention 
Mechanism-Incorporated Deep Learning for AM Part 
Quality Prediction.” Procedia CIRP 93:96–101. https://doi. 
org/10.1016/j.procir.2020.04.051.

Zhang, X., L. Mingyang, J. Hui Lim, Y. Weng, Y. Wei Daniel Tay, 
H. Pham, and Q.-C. Pham. 2018. “Large-Scale 3D Printing by 
a Team of Mobile Robots.” Automation in Construction 
95:98–106. https://doi.org/10.1016/j.autcon.2018.08.004.

Ziaee, M., J. W. Johnson, and M. Yourdkhani. 2022. “3D Printing 
of Short-Carbon-Fiber-Reinforced Thermoset Polymer 
Composites via Frontal Polymerization.” ACS Applied 
Materials & Interfaces 14 (14): 16694–16702. PMID: 
35353492. https://doi.org/10.1021/acsami.2c02076.

Zohdi, T. I. 3. 7. 6. 1. 0. 0. 3. 2018. “Dynamic Thermomechanical 
Modeling and Simulation of the Design of Rapid Free-Form 
3D Printing Processes with Evolutionary Machine Learning.” 
Computer Methods in Applied Mechanics and Engineering 
331:343–362. https://doi.org/10.1016/j.cma.2017.11.030.

18 L. VELAZQUEZ ET AL.

https://doi.org/10.1115/1.4043013
https://slic3r.org/
https://slic3r.org/
https://doi.org/10.1016/j.addma.2021.102180
https://patents.google.com/patent/US20140061974A1/en
https://patents.google.com/patent/US20140061974A1/en
https://doi.org/10.1016/j.addma.2021.101919
https://doi.org/10.1016/j.addma.2021.101919
https://doi.org/10.1016/j.rcim.2019.05.005
https://doi.org/10.1016/j.rcim.2019.05.005
https://doi.org/10.1016/j.mfglet.2019.06.001
https://doi.org/10.1016/j.mfglet.2019.06.001
https://doi.org/10.1007/s42114-020-00183-z
https://doi.org/10.1007/s42114-020-00183-z
https://doi.org/10.1016/j.commatsci.2020.109647
https://doi.org/10.1016/j.commatsci.2020.109647
https://books.google.com/books?id=egk8SQAACAAJ
https://books.google.com/books?id=egk8SQAACAAJ
https://doi.org/10.1016/j.matdes.2019.107947
https://doi.org/10.1007/s10845-012-0682-1
https://doi.org/10.1007/s10845-012-0682-1
https://doi.org/10.1021/acsami.1c20947
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1016/j.procir.2020.04.051
https://doi.org/10.1016/j.procir.2020.04.051
https://doi.org/10.1016/j.autcon.2018.08.004
https://doi.org/10.1021/acsami.2c02076
https://doi.org/10.1016/j.cma.2017.11.030

	Abstract
	1. Introduction
	2. Background
	2.1. Additive manufacturing technologies for thermosets
	2.2. Robotic additive manufacturing
	2.3. Data-driven approaches in additive manufacturing

	3. Experimental setup: materials and custom extrusion head
	3.1. Thermoset material and rheological characterization
	3.2. End-effector design and integration with robotic manipulator
	3.3. Additively manufactured specimens

	4. Predictive dimensional accuracy estimation
	4.1. Feedforward neural networks
	4.1.1. Training procedure
	4.1.2. Testing results
	4.1.2.1. Data augmentation


	4.2. Cascade neural networks
	4.2.1. Training procedure
	4.2.2. Testing results
	4.2.2.1. Data augmentation


	4.3. Discussion

	5. Conclusions
	Disclosure statement
	Funding
	References

