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ABSTRACT

This paper presents a robotic 3D printer specifically designed for ultraviolet (UV)-curable thermo-
sets, whose printing parameters can be selected by using a predictive modeling strategy.
A specialized extruder head was designed and integrated with a UR5e robotic arm. Software
packages were developed to enable the communication between the extruder head and the
robotic arm, and control systems were implemented to regulate the printing process.
A predictive approach using either a feedforward neural network (FNN) or convolution neural
network (CNN) is proposed for estimating the dimensions of future prints based on the process
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parameters. This enables selection of the appropriate parameters for high-quality prints. This
strategy aims to decrease expensive trial-and-error campaigns for material and printing parameter
tuning. Experimental results demonstrate the capabilities of the robotic 3D printer and the

accuracy of the predictive approach.

1. Introduction

Automation for additive manufacturing (AM) technol-
ogies by means of robotics offers greater freedom of
movement compared with conventional gantry
designs, larger print volumes from system mobility
around the printing space on wheels or rails, and
reduced human supervision and interaction Tiryaki,
Zhang, and Pham (2019a). These lead to a potential
reduction in manufacturing cost, labor, and time, while
providing an increase in productivity. Academia and
industry have capitalized on these benefits to create
commercially viable options for polymers and their
composites, mostly focusing on thermoplastic 3D
printing, including fiber-reinforced thermoplastics
Urhal et al. (2019); Arevo (2022); Miri et al. (2022). AM
of thermoset resins and their composites have gained
research momentum in the past years because of their
excellent thermal stability, specific strength and stiff-
ness, and potential for multifunctionality and free-
standing printing Li et al. (2019); Wu et al. (2019);
Hershey et al. (2019); Gao, Qiu, and Wang (2022);
Abedin et al. (2022a); Deng et al. (2023). Their use is
however limited because curing behavior needs to be
accurately controlled during deposition to enable high

dimensional stability. To achieve such capabilities, one
approach is to use ultraviolet (UV)-assisted curing for
a photopolymer resin as it is extruded. However, to
obtain a polymer viscosity suitable for AM extrusion,
incorporating fillers or fibers may be required, which
increases the complexity of using such materials with
robotic systems. Nevertheless, success has been
achieved with thermoset photopolymers and robotic
manipulators to manufacture objects of various sizes,
reinforced with continuous fibers Moi Composites
(2022); Continuous Composites (2022). However,
those systems and end-effector extruders are not read-
ily commercially available at affordable costs, which
this paper aims to address.

To be effective and to produce high accuracy
results, robotic 3D printers require significant tuning
strategies and trial-and-error campaigns, leading to
expensive manufacturing processes. Predictive mod-
eling and analysis is a promising approach to reduce
development costs and to increase the applicability of
robotic systems for AM with thermosets. Overviews of
modeling approaches for AM were presented in the
literature (Bikas, Stavropoulos, and Chryssolouris
(2016); El Moumen, Tarfaoui, and Lafdi (2019), which
summarized main research challenges based on
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manufacturing technologies. Dimensional accuracy
modeling was seen as one of the main approaches
to understand the outcomes of AM, including the
importance of process parameters on part quality
Westbeek et al. (2020).

Data-driven approaches, such as machine learn-
ing (ML), have had great success in modeling and
analysis for both robotics Carlucho, Stephens, and
Barbalata (2021); Costa et al. (2019) and material
science Yan et al. (2021); Yan et al. (2021). In
recent years, neural networks have been investi-
gated for sample quality evaluation or layer
dependencies, showing the capabilities of these
approaches for predictive modeling when standard
3D printers are used Li et al. (2019); Banadaki et al.
(2022). Learning from previous studies, this paper
aims to advance the area of AM by proposing
a data-driven predictive framework capable of esti-
mating the dimensions of future 3D printed speci-
mens when robotic manipulators and UV-curable
thermosets are integrated, as seen in Figure 1. The
proposed approach will enable users to select
printing parameters and adjust material properties
to improve print quality without expensive trial-
and-error campaigns, reducing cost and material

URSe ROBOTIC
MANIPULATOR

LIGHTS

NEMA 23

waste. Thus, this paper will make the following
technical contributions:

¢ Design of a specialized end-effector for robotic
systems using UV-curable thermosets in an AM
process.

e Development of a data-driven predictive archi-
tecture to estimate dimensions of future 3D
printed specimens, based on material character-
istics and robotic parameters.

The structure of the paper is a follows: the literature
review is presented in Section 2, followed by
a description of the experimental setup in Section 3
and the predictive architecture in Section 4. These will
be followed by conclusions and proposed future work in
Section 5.

2. Background

This section provides an overview of main technolo-
gies used for additive manufacturing printing with
thermosets, and introduces robotic systems and data-
driven approaches integrated in AM.

LEAD SCREW

SYRINGE
BARREL

UNCURED
RESIN

PRESS-FIT
©""riNe |_L|

= |CYLINDER

SAMPLE (b)

PRINTING PLATFORM

Figure 1. (a) robotic 3D printer with custom-designed end-effector, and (b) detailed schematic of end-effector.
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2.1. Additive manufacturing technologies for
thermosets

Current additive manufacturing technologies for
thermosets typically use liquid resins (generally
acrylic, epoxy, or vinyl ester) to manufacture parts
through vat polymerization or extrusion-based
techniques. The first category includes commercial
processes such as Stereolithography (SLA) and
Digital Light Processing (DLP), which rely on a UV
light source or a digital micro-mirror device,
respectively, to cure a part layer by layer. While
they allow for high resolution, they are limited to
planar configurations and confined to the resin vat
Park et al. (2022). Extrusion-based processes
encompass Direct Ink Writing (DIW), which has
gained popularity in the past years for a range of
feedstock materials Gao, Qiu, and Wang (2022);
Romberg et al. (2021). It consists of either material
extrusion or droplet deposition on a substrate and
has been studied with a wide range of in-situ
curing methods for thermosets (unreinforced or
fiber-reinforced), including reaction curing, UV irra-
diation  curing, temperature  curing, or
a combination of methods Gao, Qiu, and Wang
(2022); Wang et al. (2020); Uitz et al. (2021);
Wang et al. (2019); Ziaee, Johnson, and
Yourdkhani (2022); Kopatz et al. (2021). UV curing,
implemented with DIW, is a promising approach
for free-standing printing of thermoset polymers.
Its free-form capabilities were demonstrated with
modified desktop printers or gantry systems Wu
et al. (2019); Mizuno, Pardivala, and Tai (2018);
Abedin et al. (2022b); Tu and Sodano (2021);
Chen et al. (2018); Farahani et al. (2014) and cus-
tom-designed 5-axis systems Asif et al. (2018). The
extruder head designs typically include micro-
pumps, syringe pumps, or pneumatic regulators
to deliver resin to the nozzle, and multiple laser
diodes to cure resin as it is extruded. AM of con-
tinuous fiber-reinforced UV-curable thermosets has
also been investigated through desktop systems
equipped with a dispensing syringe fitted with
a pneumatic regulator (Abdullah et al. 2023); He
et al. (2021). In those studies, through extensive
experiments, complex interactions between resin
viscosity and formulation, nozzle geometry, and
printing speed were observed and those

parameters were important to control the quality
of printed specimens.

2.2. Robotic additive manufacturing

The main advantage of robotics in AM is the realiza-
tion of large-scale, complex 3D printed parts in rela-
tively short periods of time. A complete overview of
different robotic AM strategies using extrusion or
direct metal deposition was given in Jiang, Newman,
and Zhong (2021). Furthermore, a summary of poly-
mers directly relevant for robotic applications was
presented in Delda et al. (2021), highlighting their
benefits in both industry and academia. A robotic
manipulator for AM and its integration with deposi-
tion modeling techniques was described in Bin Ishak,
Fisher, and Larochelle (2016) and further discussed in
Luu and Hung Manh (2021), expanding on the extru-
der’s control system and using polylactic acid (PLA). In
the latter, an Arduino microcontroller was used to
regulate the filament extrusion rate and the tempera-
ture at the nozzle. In Wu et al. (2017), a collaborative
UR3 robot was utilized as a continuously moving
printing platform with an Fused Deposition
Modelling (FDM) extruder fixed on a frame, enabling
printing of complex shapes and focusing on the fab-
rication sequence planning. Motion planning is one of
the main areas of interest in the robotic 3D printing
community. The design of an extrusion based end-
effector was presented in Velazquez, Palardy, and
Barbalata (2021), which can be integrated with
robotic manipulators and UV-curable polymers. In
Shembekar et al. (2019), an algorithm was developed
to produce non-planar trajectories for AM robotic
arms. Motion planning for mobile manipulators per-
forming large-scale robotic AM using cement was
presented in Tiryaki, Zhang, and Pham (2019b) and
Zhang et al. (2018). While Tiryaki, Zhang, and Pham
(2019b) focused on the coordination of the base, the
manipulator, and the extruder deposition rate for
a single robot, a multi-agent system was introduced
in Zhang et al. (2018).

In industry, companies such as Continuous
Composites, Inc. (USA) and Moi Composites (Italy),
have demonstrated AM of continuous fiber-
reinforced/UV-curable thermosets with robotic
manipulators and custom-designed printing heads
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Tyler (2014). However, they use continuous fiber-
reinforced thermosets, a different type of material
than our proposed work, for which no commercial
end-effector is available. With this work, we aim to
further expand the capabilities of robotic additive
manufacturing by designing a specialized extruder
head for UV-curable thermosets that can be inte-
grated with collaborative robotic manipulators, such
as the UR5e robotic system.

2.3. Data-driven approaches in additive
manufacturing

Machine learning techniques were shown effective
when applied to AM processes, given their good
performance in pattern recognition and regression
tasks. For example, they were used in image pro-
cessing architectures to assess the quality of 3D
printed thermoplastics . This may also enable real-
time adjustment of printing parameters to address
problems as they arise. A Neural Network (NN) was
used as a pre-processing step in AM to predict part
deformation due to residual stresses and create
new geometries that would result in higher dimen-
sional accuracy Nycz et al. (2021). A Long Short-
Term Memory (LSTM) network was presented in
Zhang, Wang, and Gao (2020) for the study of the
dependencies between the layer-by-layer printing
process and the final product quality. The FDM
process was studied, considering the quality eva-
luation based on the tensile strength of the
printed parts. A similar approach was discussed in
Chen et al. (2021), where a generalized recurrence
network was applied on the AM spatial image data
to predict the behavior in each printed layer. Delli
et al. leveraged support vector machine (SVM) to
predict the quality of 3D printed samples with
a conventional FDM printer Delli and Chang
(2018). The model was used to classify the samples
into”"good” or”defective” categories using images
gathered with an overhead camera. A CNN was
developed in Garfo et al. (2020) for the automatic
detection of surface defects in 3D printed concrete
structures. In Xiong et al. (2014), a FNN was used
to predict weld bead geometry, which showed
promise as an effective approach to estimate the
quality of printed specimens.

ML approaches were investigated for process
planning as well, a crucial component of robotic

additive manufacturing. Zohdi et al. used a genetic
algorithm and gradient-based scheme to optimize
the behavior of a robotic arm with a specialized
extruder for additive manufacturing Zohdi (2018).
A model-based reinforcement learning technique
was presented in Dharmawan et al. (2020) to
understand the effect of process parameters in
multi-layer deposition in wire arc additive manu-
facturing (WAAM). Furthermore, the proposed
approach corrected for inter-layer geometric
digressions to ensure high accuracy prints. In
Nicholas et al. (2020), a NN was used to enable
a robotic arm to print onto unknown and arbitra-
rily shaped 3D substrates. In this case, a generative
NN was leveraged to create the robotic arm path
producing high accuracy samples.

There is significant potential for ML in AM since
there are several technologies and opportunities
on the manufacturing line where optimization,
classification, and computer-vision tasks can be
incorporated. As presented above through
a literature review, the primary focus is on quality
assessment using regular printing capabilities, or
process and motion planning for robotic 3D prin-
ters. This work aims to close the gap between the
two areas and leverage ML approaches to predict
the quality of future printed specimens when
robotic manipulators are used in the process. This
novel approach would decrease the prototyping
time and reduce expensive trial-and-error cam-
paigns when material properties are modified
and/or new setups are used.

3. Experimental setup: materials and custom
extrusion head

This section presents the design and implementation
of a new experimental setup to advance the capabil-
ities of robotic AM technology utilizing extrusion of
UV-curable thermosets. The materials used for robotic
additive manufacturing and their rheological charac-
terization are first presented, followed by
a description of the custom-based extrusion system
and its integration with the robotic manipulator. The
overall robotic additive manufacturing technology
with the mounted extrusion system is shown in
Figure 1. Lastly, examples of 3D printed specimens
with the proposed system are presented in this
section.
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3.1. Thermoset material and rheological
characterization

The thermoset resin used in this study is
a commercially-available acrylic-based photopoly-
mer (purchased from Anycubic). It is typically used
for SLA and DLP printing, and it was shown to
polymerize under UV exposure during DIW Mizuno,
Pardivala, and Tai (2018); Velazquez, Palardy, and
Barbalata (2021); Weger et al. (2022). It has an UV
wavelength between 365nm and 410 nm, with
a viscosity at room temperature (25°C) ranging
from 150 to 200 mPa.s. As viscosity was expected
to influence the printed specimens’ dimensional
stability, fumed silica (FS, AEROSIL R972, from
VWR), a common filler to modify viscosity of poly-
mers, was incorporated at three weight fractions:
2.8%, 6.0%, and 8.0% Romberg et al. (2021); Tu
and Sodano (2021); Velazquez, Palardy, and
Barbalata (2021); Asif et al. (2019).

A parallel plate Discovery Hybrid Rheometer 20
(DHR-20, Waters TA Instruments) was employed to
measure shear viscosity for different resin formula-
tions (0, 2.8, 6.0, and 8.0 with % FS). Resin samples
were tested at 25°C with 25 mm diameter parallel
plates in shear rate sweep mode from 0.1 to 100 s™".
This data was used to assess the shear thinning beha-
vior of the photopolymer.

A power fit was performed on the viscosity data to
find a function that could predict the viscosity for the
actual shear rate found at the extrusion nozzle with
the given extrusion rate. This function was leveraged
to generate specific viscosity values for each extrusion
rate. Equation (1) shows the general relationship
between viscosity, n (Pa.s), and shear rate, y (s™'):

n=ay’ +c (M

where the terms g, b, and ¢ were found for each resin
formulation through a power fit. To calculate y, stan-
dard fluid dynamics principles of shear rate in pipe
flow were used. The main assumption was to treat the
nozzle geometry as an approximation of a small dia-
meter pipe. Equation (2) shows the general form for
maximum shear rate in a pipe White (2011):

. 4Q

y= s (2)
where Q s the volumetric flow rate (m>/s) and r,, is the
nozzle radius (mm). Equation (2) can be further

simplified as Equation (3), according to the geometry
and specifications of the extrusion head:

L
v= Mrotm

3)

where Ly (mm/rev) and t, (ms) refer to the linear
travel of the extruding plunger per revolution of the
shaft and the half-time for one step of the motor,
respectively. The magnitude per revolution,
m =200, is the result of simplifications in
Equation (2).

3.2. End-effector design and integration with
robotic manipulator

As there is no commercially-available extruder system
for UV-curable thermosets integrated with robotic
manipulators, the following paragraphs present the
design of a specialized extruder head compatible with
a UR5e manipulator. The end-effector was designed
to allow for cost-effective and controllable extrusion
rate of the photopolymer.

As seen in Figures 1 and 2, the extrusion system
was installed on a UR5e robotic manipulator. It
included a syringe capable of holding up to 200 mL
of uncured thermoset resin. The syringe had an inter-
changeable nozzle through which material was
extruded and deposited on a printing platform. The
inner plunger in the barrel slid on a lead screw driven
by a NEMA23 stepper motor at a predefined revolu-
tions- per-minute (RPM), creating enough internal
pressure to achieve extrusion rates up to approxi-
mately 5.3 mm?/s. The stepper motor provided
a torque of 1.9 Nm, sufficient to overcome internal
friction and to extrude viscous resins. Several compo-
nents of the extrusion system were 3D printed with
PLA, including the L-shape connector that serves as
attachment for the end-effector to the robotic arm,
the housing of the syringe, the plunger, and the press-
fit ring to mount the UV spotlights. For the purpose of
this project, the choice of PLA instead of higher-
strength materials (e.g. aluminum, acrylonitrile buta-
diene styrene (ABS)) offered cost-efficiency, as well as
rapid and convenient modifications to the design
during the prototyping phase.

The stepper motor ensured a controllable deposi-
tion rate. To achieve the desired extrusion rates, an
Arduino UNO and a DM556T stepper driver were used
to set the motor RPM and the rotation direction.
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150
80 —
190 —
ISOMETRIC FRONT
VIEW VIEW

Figure 2. SolidWorks models of the assembled extruder and its main components. All dimensions are in mm.
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Figure 3. Electronic components of the extrusion system and its electrical connection to the robotic arm.
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Figure 4. Additive manufacturing process flowchart using a UR5e robotic manipulator.

Figure 3 shows how the components of the robotic
3D printer communicate with each other and their
integration with the robotic manipulator. The stepper
motor was connected to the driver, further connected
to the Arduino UNO. Two Digital Output (DO) signals
from the robotic controller turned the Arduino board
and stepper motor on and off.

The extruded material was exposed to four
SkyBeam UV spotlights (10 W, 365 nm wavelength,
UVitron International) to achieve partial curing of
the printed specimens. The UV light system had four
channels, each connected to a 6 mm lens spotlight,
attached to the syringe through a press-fit ring.
Irradiance on the extruded material reached 5.6 W/
cm? at a distance of 13 mm, however, only 1% of the
total power was used to 3D print the specimens,
based on previous work Velazquez, Palardy, and
Barbalata (2021). The spotlights angle was 24 degrees
from all four directions to cover the area where mate-
rial was extruded. A DO signal from the robotic arm
control box directed the lights to turn on and off as
needed during the extrusion process. In addition,
voltage dividers ensured that proper voltage was
delivered to each electronic component in the system
since the control box output was 24 V.

The flowchart in Figure 4 is a summary of the steps
to 3D print the designed specimens. The process
started with a computer aided design (CAD) model
of the specimen. It was then sliced using Slic3r Slic3r
(2022), a program with a high degree of customiza-
tion for printing parameters, such as velocity, layer
height, and nozzle diameter. Slic3r output the G-code
with the coordinates and parameter values of the
end-effector per individual layer.Figure 5(a) shows
a rendering of the Slic3r environment where the sam-
ples were sliced and Figure 5(b) is an example of the
RoboDK simulation environment used to generate
the robot path while avoiding collision with the envir-
onment. Furthermore, RoboDK was also used to vali-
date the printing behavior for the robot. The
manufactured samples and their characterization are
detailed in the following paragraphs.

3.3. Additively manufactured specimens

To first evaluate the performance of the robotic addi-
tive manufacturing technology, specimens were
printed with the proposed system using the UV-
curable acrylic-based thermoset described in
Section 3.1. A summary of initial parameters and

URS5e ROBOTIC P
MANIPULATOR -

EXTRUDER

CYLINDER
SAMPLE

Figure 5. (a) Slic3r software environment for designed specimen, and (b) RoboDK simulation environment to validate robotic printing
paths.
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Table 1. Experimental parameters for initial 3D printed speci-
mens with the robotic system. FS: fumed silica.

Parameter Level 1 Level 2 Level 3
FS weight fraction [wt%] 2.8 6.0 8.0
End-effector velocity [mm/s] 4 7 10
RPM delay [ms] 2000 2500 3000
Layer height [mm] 0.5 1.1 1.2

their levels is provided in Table 1, including FS weight
fraction, robot end-effector velocity, motor RPM
delay, and layer height. The nozzle diameter and UV
light power were fixed for all experiments as 2 mm
and 1% of total power, respectively. After printing, all
specimens were post-cured in an Intelliray 600 cham-
ber (UVitron International) for 60 seconds at 85%
intensity to achieve full cure.

Various geometries were printed to demonstrate
the capabilities of the proposed robotic system.
Figure 6(a-c) show cylindrical, pyramidal, and conical
samples during the printing process, while Figure 6
(d-e) present different shapes manufactured with the
robotic system. A cylindrical geometry, as seen in
Figure 5(a), was selected for future experiments to
develop the predictive approach. Cylindrical speci-
mens were chosen due to their feasibility to be char-
acterized with only three dimensions (outer diameter,

(d) —

height, and wall width), facilitating dimensional accu-
racy analysis.

Figure 7 shows representative cylindrical speci-
mens for different material and printing parameters
listed in Table 1. In general, it was observed that
viscosity, motor delay, and end-effector velocity
most noticeably influenced the quality of the prints.
In addition, notable interactions between those
parameters were observed, as well as with layer
height and nozzle geometry, the latter influencing
the shear rate and viscosity at the nozzle exit, as
shown in Equations (1) and (3). Overall, during the
printing experiments, given the complex interac-
tions between all parameters and material charac-
teristics, extensive fine-tuning of printing
parameters was required to achieve high-quality
prints.

The nominal dimensions of the cylinder CAD
model, as shown in Figure 5(a), were the following:
outer diameter (OD) of 20 mm, height (H) of 12 mm,
and wall width (WW) of 1.5 mm. For each printed
cylinder, the dimensions were measured with
a digital caliper. For each dimension, four measure-
ments were taken and averaged per printed speci-
men. For example, the average dimensions for

(e) e

Figure 6. Additive manufacturing of various geometries: (a) cylinder, (b) pyramid, and (c) cone. Different 3D printed shapes with the
robotic system: (d) star and (e) cone. The nozzle diameter and UV light power were fixed for all experiments as 2 mm and 1% of total

power, respectively. Scale bars in (a)-(e): 10 mm.
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(d)

c) —

Figure 7. Cylindrical specimens manufactured with different material and printing parameters: (a) 2.8 wt% FS, 10 mm/s velocity, 2500
ms RPM delay, and 0.5 mm layer height, (b) 6 wt% FS, 4 mm/s velocity, 2500 ms RPM delay, and 1.1 mm layer height, (c) 8 wt% FS,
4 mm/s velocity, 2500 ms RPM delay, and 1.1 mm layer height, (d) 8 wt% FS, 4 mm/s velocity, 2000 ms RPM delay, and 1.2 mm layer
height, (e) 8 wt% FS, 5 mm/s velocity, 2000 ms RPM delay, and 1.2 mm layer height, and (f) 8 wt% FS, 7 mm/s velocity, 2000 ms RPM
delay, and 1.2 mm layer height. The nozzle diameter and UV light power were fixed for all experiments as 2 mm and 1% of total power,

respectively. Scale bars in (a)-(f): 10 mm.

specimens in Figure 7(d-f) are the following: (d) OD
=23.22 +£ 0.40 mm, H=12.75 4+ 0.39 mm, and WW
=3.62 £ 0.10 mm, (e) OD=22.77 £ 0.26 mm, H
=12.64 + 0.04 mm, and WW=2.84 + 0.11 mm, and
(HOD=21.46 & 0.23 mm, H=12.42 £ 0.20 mm, and
WW=2.15 4+ 0.05 mm.

4. Predictive dimensional accuracy estimation

The cylindrical specimens were used to better under-
stand the connections between the parameters of the
process. Specifically, these specimens were leveraged to
predict the dimensional accuracy of future prints, when

N1 N2 N3 N4

Print with newT
parameters

Good quality gypected new sample

Figure 8. Overview of the proposed system for quality evaluation.

either robotic parameters or material properties are
modified. The focus of this section is to demonstrate
the applicability of supervised machine learning
approaches, such as feedforward neural network (FNN)
and convolution neural network (CNN), for this problem.

Figure 8 presents the data-driven predictive pipe-
line proposed in this work. Training data was col-
lected from samples printed with the robotic system
described in Section 3. The robotic and material para-
meters were configured before the printing process
began, while the set of dimensional parameters char-
acterizing each sample was extracted after full cure,
detailed in the previous section. The predictive model

Supervised learning

New parameter
selection for printing

Bad quality

dimensions
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was then used to estimate the dimensions of future
prints without the need to experimentally test the
material-robot coordination and parameter selection.
To validate the proposed approach, several material-
robotic parameter combinations were used and the
predicted dimensions were compared to the dimen-
sions of the actual specimens printed with the robotic
system under the same input conditions. In practice, it
would mean that if the predicted quality of the print is
considered acceptable, the actual 3D print can take
place, but if the quality is unacceptable, different
material-robotic parameters are selected and the pro-
cess is repeated. In the following paragraphs, the two
predictive models considered are described and the
results of the predictive approach are analyzed.

4.1. Feedforward neural networks

As presented in Mitchell (1997), FNNs can map highly
non-linear data and create a target function resilient
to errors or noise. As such, FNNs is appropriate for
estimating dimensional accuracy of 3D prints using
UV curable thermosets, as acrylic-based photopoly-
mers tend to deform as they undergo curing, introdu-
cing dimensional noise in the dataset.

Figure 9 shows the architecture of the FNN used to
predict the dimensions of the 3D printed specimens.
The proposed FNN had a total of four layers: one
input, two hidden, and one output. The two hidden
layers had 30 neurons each. The input variables were

the motor RPMs, layer height, end-effector velocity,
and resin viscosity. The latter was controlled by the FS
weight fraction and nozzle geometry, as calculated
from Equations (1)-(3) in Section 3.1. The outputs of
the network were the dimensions measured from the
cured printed specimens: height, wall width, and out-
side diameter.

For this application, back-propagation was used to
update the weights. The loss function was based on
the mean-squared error (MSE), as seen in Equation (4):

1 N
L=x > —y)? 4

i=1

where N represents the total number of data points, x;
is the returned model prediction, and y; is the mea-
sured value of the i-th sample. This loss function
computed the output error of the network, describing
how close the predicted values were to the targets of
the problem.

4.1.1. Training procedure

The strategy to collect the data consisted of varying
one of the input variables within a range while keep-
ing the other three constant. For each parameter
combination, a cylinder was printed, post-cured, and
its dimensions (outputs) measured with a digital cali-
per. A total of 187 specimens were obtained and for
each dimension, measurements at four locations were
taken and averaged. Table 2 summarizes the input
variable ranges that were investigated. As previously

Information Flow

Layer Height mmp @ 4
End-effector
Velocity
Input Hidden
Layer Layer 1

Figure 9. Architecture of the proposed FNN with two hidden layers.

N,

Output
Layer

Hidden
Layer 2
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Table 2. Input variable ranges for a three-layer FNN.

Input Variable Range
Resin viscosity at nozzle [Pa.s] 1.5-70.0
RPM delay [ms] 900 - 3800
Layer height [mm] 0.25-1.20
End-effector velocity [mm/s] 2.0-135

mentioned, the resin viscosity range was estimated
from the procedure described in Section 3.1, using the
nozzle geometry (1.5 mm or 2 mm diameter) and
power fit over the rheological data.

Random testing sets were selected out of the total
number of samples, containing approximately 20% of
the total number of data points, or 37 samples. The
rest of the data set (150 data points) was used for
training. The 80% — 20% ratio between training and
testing samples was shown to be appropriate for
generating the best results, avoiding over-fitting
Gholamy, Kreinovich, and Kosheleva (2018). Out of
all the samples used for training, 30% were used for
validation, following the same principle highlighted
above. Furthermore, to guarantee that over-fitting

was prevented, data augmentation was performed
by adding Gaussian noise to the input data, creating
a new training data set consisting of 300 samples. This
approach ensured that the learned features were
robust and also enhanced the generalization capabil-
ity of the model.

4.1.2. Testing results

To evaluate the performance of the architecture,
the testing set was used to predict the printed
cylinder height, wall width, and outside diameter.
These were then compared with the measured
dimensions of the real printed specimens to eval-
uate the success of the approach. Training and
testing took place on an Intel(R) Core(TM)
i7 —9750H CPU @2.60GHz. As the data set avail-
able had a limited number of samples, training and
testing procedures were repeated multiple times,
by randomly selecting the testing set and using
the remainder of the samples for training, leading
to 10 training-testing scenarios.

Height
18 T T elg| T T T
16 - | O  Targets %  Regression Predictions "
14 -
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Figure 10. Comparison between the FNN cylinder dimensions prediction ("NN predictions”) and the actual cylinder values ("Targets”).
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Table 3. Minimum and maximum errors with standard deviation
for dimensions prediction with the FNN approach.

Height Wall Width Outside Diameter

Minimum absolute error [mm]  0.003 0.015 0.008
Maximum absolute error [mm]  2.03 1.38 2.79
Standard deviation [mm] 0.30 0.33 0.40

Table 4. RMSE for each dimension estimation when FNN is used
with data augmentation.

Test # Height RMSE [mm] Width RMSE [mm] Diameter RMSE [mm]
1 0.43 0.16 0.12
2 0.27 0.20 0.12
3 0.33 0.40 0.52
4 0.35 0.20 0.25
5 0.33 0.47 0.24
6 0.27 0.53 0.29
7 0.42 0.30 0.25
8 0.43 0.30 0.13
9 0.35 0.32 0.36
10 0.26 0.22 0.25

Table 5. Minimum and maximum errors with standard deviation
for dimensions prediction using data augmentation with the
FNN implementation.

Height Wall Width Outside Diameter

Minimum absolute error [mm]  0.07 0.11 0.01
Maximum absolute error [mm]  4.33 4.58 5.04
Standard deviation [mm] 0.42 0.54 0.55

In the case with no data augmentation, the average
Root-Mean-Square Error (RMSE) for the FNN configura-
tion was 0.24 mm over 10 training-testing scenarios,
with an average time of 10 seconds during training.
This average includes the RMSE values of the height,
wall width, and outside diameter for the FNN predic-
tions, when compared to the actual targets from the
testing set. An example of the results is shown in
Figure 10, where it is observed that the predicted
dimensions for almost all samples are in close proxi-
mity to those measured on the real samples. During
these 10 training-testing runs, the minimum and max-
imum absolute errors were computed together with
the standard deviation, as presented in Table 3. These
results show the variability in the predicted dimensions
with some samples closely estimated, while others dis-
played errors over 2 mm for one dimension.

4.1.2.1. Data augmentation. With data augmenta-
tion, the RMSE for the predicted height, width, and
outside diameter values are shown in Table 4 for 10
different training-testing runs. For each test, the

training set consisted of 300 samples while the testing
set had 37 randomly selected samples. Similar results
were observed over all tests with comparable RMSE
for all dimensions considered. Based on the minimum
and maximum absolute errors and the standard
deviation summarized in Table 5, the highest and
smallest variability were both obtained for the outside
diameter.

4.2. Cascade neural networks

To further demonstrate the capabilities of predictive
parameter selection, a CNN that moves the informa-
tion forward, while each layer is connected to every
subsequent layer of the network, was also considered.
These additional connections in the CNN could
improve the data distribution over the network and
reveal more information about the nature of the rela-
tionship between the inputs and outputs of the
model Alkhasawneh and Tien Tay (2018);
Mohammadi et al. (2021). The proposed CNN had an
identical architecture to the proposed FNN, with the
exception of the added links between the layers. The
chosen architecture is illustrated in Figure 11, where
the inputs and outputs of the network are similar to
the ones used in the FNN approach.

4.2.1. Training procedure

An identical procedure to the FNN was followed to
evaluate the performance of the CNN in terms of pre-
dictions made on randomly selected test sets of the
same data, consisting of 187 specimens, out of which
37 were used for testing. Two hidden layers, each with
30 neurons, were used. The loss function was defined
in Equation (4), using a tan-sigmoid as the transfer
function for the hidden layers. Weights and bias were
updated according to a Levenberg-Marquardt optimi-
zation. Similarly to the FNN approach, data augmenta-
tion was also investigated using Gaussian noise,
increasing the number of training samples to 300.

4.2.2. Testing results

The proposed CNN configuration proved to be as
accurate as the FNN to predict the geometrical
dimensions of the samples. The average RMSE
obtained after 10 training-testing scenarios (no data
augmentation) was 0.108 with an average training
time of 8 seconds. An example of one of those tests
is presented in Figure 12. In Table 6, the minimum and
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Figure 11. Architecture of the proposed CNN with two hidden layers and 30 neurons in each layer.
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Table 6. Minimum and maximum errors with standard deviation
for dimensions prediction with the CNN approach.
Height Wall Width Outside Diameter

shown in Table 7 over the 10 training-testing scenar-
ios, where the testing data set was randomly selected
for each run. The estimated deviations for the wall

Minimum absolute error [nm]  0.01 0.03 0.007 . . . .
Maximum absolute error [mm]  1.00 2.49 1.73 width and outside diameter were consistent among
Standard deviation [mm] 0.24 0.35 0.34

Table 7. Minimum and maximum errors with standard deviation
for dimensions prediction using data augmentation with the
CNN implementation.

Height Wall Width Outside Diameter

each other, while a larger deviation was obtained for
the samples’ height. These results are generally con-
sistent with the case when no data augmentation was
used.

4.3. Discussion

Minimum absolute error [nm]  0.002 0.01 0.04 i
Maximum absolute error [nm]  5.15 3.09 2.31 Bef'ore ‘employln‘g the_FNN and CNN app.roaches for
Standard deviation [mm] 1.04 0.56 0.55 estimating the dimensions of future 3D prints, regres-

maximum absolute errors were computed with the
standard deviation for the 10 training-testing scenar-
ios. In this case, there are smaller deviations among
tests, compared to the FNN approach.

4.2.2.1. Data augmentation. With data augmenta-
tion, the minimum and maximum absolute errors are

sion analysis was considered. Nevertheless, due to the
multi-dimensional formulation of the problem and no
linear correlations between the features and target
outputs, this approach did not produce good accu-
racy, even on the training data. An example of the
outputs of the linear regression is shown in Figure 13,
where the predictions result in an average of the
actual target measures, for all three dimensions
considered.
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Figure 14. Comparison between RMSE for different network
configurations of the proposed predictive estimation.

Although the data set was relatively small,
machine learning approaches such as FNN and
CNN architectures, were beneficial to approximate
the dimensions of future prints, as shown in
Figures 10 and 12. Two different networks were
tested to demonstrate the feasibility of predictive
dimension analyses, given limited experimental
data sets. To address concerns regarding the
small data sets and overfitting, data augmentation
was performed. The results with and without data
augmentation showed similar trends and success-
ful estimation of the dimensions of 3D printed
specimens when the input parameters were
altered. The maximum error of 5.15 mm
(Table 7) was obtained for the height of
a sample for which the target was 18 mm. The
average RMSE for each training-testing scenario
and all network configurations is presented in
Figure 14. All experiments returned an RMSE well
under T mm, confirming that both FNN and CNN
configurations are feasible.

The training sample size is important for any neural
network predictive approach, as increasing the num-
ber of samples and their ranges can improve the
performance of the model. Training was performed
with 150 and 93 samples, for both the FNN and CNN
approaches. When using the CNN to predict samples’
dimensions, maximum prediction errors of 5.05 mm
and 9.08 mm were obtained for the height when 150
and 93 samples were used, respectively. For the FNN
approach, the maximum errors were 2.03 mm and

3.05 mm for the height when 150 and 93 samples
were used, respectively. Nevertheless, if a large train-
ing set with similar characteristics is employed, the
performance of the system can decrease due to over-
fitting, as was observed from Tables 7 and 4, where
the maximum errors for the height of the samples
increases compared to the case when no data aug-
mentation was used. The proposed approach, work-
ing with a limited number of samples for training
indicates that predictive models for 3D printed speci-
men dimensions can successfully help reduce the
time spent manually tuning process parameters and
the cost due to material waste. As novel materials are
discovered, especially in the field of AM, such models
are valuable to identify suitable process parameters
and material characteristics leading to high-quality
prints, reducing costs incurred by extensive experi-
mental campaigns.

5. Conclusions

This paper introduced the design of a robotic additive
manufacturing system capable of utilizing UV-curable
thermosets. The system was used to additively man-
ufacture various specimens and data-driven
approaches were leveraged to predict printed sam-
ples’ dimensions. The following conclusions and
recommendations can be formulated:

e A custom-designed extruder head was inte-
grated with a UR5e collaborative manipulator.
Cylindrical, pyramidal, and conical samples with
heights in the range of 10 — 20 mm, and outside
diameters or widths of 20 — 35 mm were pro-
duced. As complex interactions were observed
between printing parameters, material character-
istics (i.e. viscosity), and printed specimens’ qual-
ity, there was a need to create a data-driven
predictive architecture to estimate dimensions
of future AM specimens.

¢ Machine learning approaches were leveraged,
such as feedforward neural network (FNN) and
convolution neural network (CNN), to demon-
strate their capabilities for predictive modeling.
The proposed methods used the material and
processing parameters as inputs, and the future
3D print dimensions as outputs, showing how
the inputs affected dimensional accuracy. The
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data set consisted of 150 cylindrical samples for
training and 37 samples for testing. All predic-
tions had an RMSE under 1 mm. Data augmen-
tation was also considered resulting in 300
samples for the training dataset, and the results
from both networks showed similar perfor-
mance to the case without data augmentation.
Overall, the proposed neural networks can be
used to identify suitable robotic AM process
parameters without extensive trial-and-error
tuning campaigns.

In the future, larger experimental data sets will be
created, with more complex geometries to further
validate the proposed data-driven architecture, giving
special attention to overhanging structures. In addi-
tion, more advanced predictive methods will be
designed to increase the accuracy of the predictions.
Finally, the extruder end-effector will be modified to
allow continuous fiber-reinforced materials in the
printing process.
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