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Abstract— The agricultural setting poses additional chal-
lenges for robotic manipulation, as fruit is firmly attached
to plants and the environment is cluttered and occluded.
Therefore, accurate feedback about the grasp state is essential
for effective harvesting. This study examines the different
states involved in fruit picking by a robot, such as successful
grasp, slip, and failed grasp, and develops a learning-based
classifier using low-cost, computationally light sensors (IMU
and IR reflectance). The Random Forest multi-class classifier
accurately determines the current state and along with the
sensors can operate in the occluded environment of a plant.
The classifier was successfully trained and tested in the lab
and showed 100% success at identifying slip and grasp failure
and 80% success identifying successful picks on a real cherry
tomato plant. By using this classifier, corrective actions can
be planned based on the current state, thus leading to more
efficient fruit harvesting.

I. INTRODUCTION

Interest in agricultural robotics is rapidly expanding. This
is driven largely by the desire to increase sustainability
and dealing with labor shortages [1]. Many crops, including
tomatoes, are harvested manually making them hard hit
by labor shortages [2]. These factors make overcoming
the challenges of agricultural robotics an important area of
research. One of the major challenges for the successful use
of robots in agricultural, is the cluttered, occluded nature of
the environment [1]. This makes manipulation particularly
hard. In addition to the problems of perception and path
planning, once the target is grasped it presents a problem
somewhat unique to agriculture - attachment. A robot picking
up a tomato in a kitchen need only worry about the external
force of gravity and avoiding collisions, but when grasping
a tomato on a plant the connection to the plant via a stem
provides a difficult to predict external force [3]. Furthermore,
for a successful picking, a separation event must occur.

Fig. 1 shows the states and transitions that can occur
during agricultural manipulation from the initial closing of
the gripper to the end state of either failed grasp or successful
pick. To reach an ending state one or more of the intermediate
states - slip or no slip - must be transitioned through -
possibly looping several times. In order to achieve efficient
and thorough harvesting of fruit it is necessary to have
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Fig. 1. States transitions during manipulation. Grasp is the starting state
and either failed grasp or successful pick is the ending state. To reach an
ending state one or more of the intermediate states must be transitioned
through. Dashed lines indicate possible, but less common transitions.

feedback about the current state. With this information, it is
possible to correct for a slip prior to losing grasp, reattempt
when the grasp has failed or quickly deposit the picked fruit
if successful.

It is natural to see cameras and computer vision solutions
to some of these issues [4], [5], however the occluded nature
of the agricultural environment will limit their usefulness.
Adding numerous cameras and mounting them on their own
arms may solve this problem, but only by adding additional
complexity. Furthermore, successful, high speed harvesting
of fruit will likely require multi-armed robots working in
tandem [6], [7] which only adds to the number of cameras
needed. In this paper, we propose the use of inexpensive and
computationally light sensors and algorithms to determine
the current state of the grasping process in agricultural
environments.

A. IMU and IR Sensors
The primary sensor we propose to use is an Inertial

Measurement Unit or IMU which contains an accelerom-
eter and gyroscope and thus provide linear and rotational
acceleration data about three axes. These sensors not only
provide information about movement of the sensor, but also
can detect vibrations due to small slip events. Additionally,
we have included an infrared (IR) reflectance sensor which
consists of an LED IR emitter and a photo transistor IR
receiver. This sensor detects the amount of IR light reflected
back by an object in front of the sensor. It can give a sense of
how close an object is to the sensor and changes in position.

B. Classification Problem
We wish to take the sensor data and create a classifier

(C) such that for a given set of sensor data at time t, xt,
Y = C(xt), such that:
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Fig. 2. Pipeline of classifier. IMU and IR data are collected, IMU data is
passed to an FFT and along with IR passed to a Random Forest classifier
which returns the state of the grasp.

C : Rnxm →{slip, no slip, successful pick, failed grasp}.

Where n is the number of features (sensor data) and m is the
window size of the data. Instead of using sensor data from
a single sample, the IMU data was shifted to the frequency
domain using the Fast Fourier Transform (FFT). The input
to the FFT was a 25 sample (approximately 0.17 seconds)
window of sensor data. IR sensor data was not transformed
to the frequency domain as the data is not periodic. Shifting
to the frequency domain has been shown to be helpful
in identifying conditions such as slip as there is a strong
correlation between slip and vibration frequency [8]. A 25
sample window was selected based on a desire to minimize
the delay in analysis and ensure that it can be applied to
an online controller. Larger windows (50 and 75 samples)
were tested and showed only minimal improvement, but with
double and triple the delay.

C. Random Forests

The classifier C, was created with a Random Forest (RF)
classifier [9]. The RF is an ensemble machine learning
method capable of multi-class classification. It uses a large
number of Decision Tree classifiers each set up with slightly
different parameters. Each tree works with subsets of the
feature and data sets to develop a consensus about the
classification of an input. Random Forests have been shown
to be quite successful in slip detection problems and are
well designed for multi-class classification problems. They
are also straightforward to implement and it is easy to tune
their hyperparameters.

This work focuses on applying established effective meth-
ods to the unique problems encountered in agricultural ma-
nipulation. We also extended the work beyond slip detection
to provide feedback on the current state of the grasp through
the whole process. The contributions of this work are: 1) A
classification model capable of determining the current state
of the grasp in agricultural environments. 2) The ability to
detect key events such as the failure to grasp an object, slip,
grasp failure, and separation of the fruit from the plant. 3)
A model that works with low-cost and computationally light
sensors. 4) A model that has been trained in the lab, but
demonstrated to work on a live plant.

II. RELATED WORK

Research into slip detection has a long history and excel-
lent surveys of methods and sensors can be found in [10] and
more recently [8]. A wide variety of techniques have been
explored, but we will focus on those using IMUs, Random
Forest classifiers and slip detection in agriculture.

A number of recent works have shown the benefits of using
IMU for slip detection. IMU were combined with capacitive
tactile sensors by [11] to provide both exteroception and pro-
prioception in assessing grasp stability. [12] showed effective
classification and prediction of grasp failure by applying 16
IMUs to soft and compliant hands and processing it with a
combination of CNN and Long Short-Term Memory (LSTM)
networks. By using two IMU, [13] was able to measure the
relative angular velocity between them and detect vibrations
to predict slip. [14] used an IMU in conjunction with
a Random Forest classifier to develop a proxy apple for
learning to predict picking success. [15] created a custom
gripper for apple harvesting with a multimodal tactile sensor
that included IMU on each finger. This was used to perform
state estimation of the underactuated fingers with the goal
of better understanding and quantifying grasp quality. The
authors suggest this data could be used to detect key events
in the picking process, but do not test this.

Much work has been done to demonstrate the promise of
Random Forest classifiers for slip detection. [16] used RF
combined with feature functions on a multimodal BioTac
tactile sensor to stabilize grasps. Predictions about future
sensor readings were made in [17] by using various Neural
Nets models. These predictions were based both on current
sensor data and manipulator actions and were passed to an
RF classifier to make predictions about future grip stability.

While agricultural manipulation has an established history,
research into slip detection in agricultural environments has
seen a more recent growth. [18] developed a slip sensor
based on a resistive force sensor. This was used to create a
controller to maintain the minimum force needed to prevent
damage to the fruit while overcoming grasp failure. The
problem of slip due to leaf interference in apple harvesting
was investigated in [19]. They applied tactile sensors to
compliant Fin Ray effect fingers and used a LSTM neural
network to detect and respond to slip. [20] also developed a
Fin Ray effect gripper for apple harvesting. By use of tactile
sensors and using feedback to maintain a constant force on
the fruit, they were able increase the harvesting success rate
and minimize damage to the fruit.

While these tactile methods have shown great promise in
slip detection and avoidance, there is an need for a more
holistic view of grasp state. Such a view would look at
grasping from beginning to end and allow effective feedback
of the current state.

III. EXPERIMENTS AND DATA COLLECTION

A. Sensors and Hardware
Testing was done on a 6DOF xArm6 (uFactory) fitted

with a custom pneumatically actuated two-fingered grip-
per. The gripper (Fig. 3f) was 3D printed from PLA and
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Fig. 3. Hardware use in data collection and testing. a) training rig b) quick release mechanism c) fixed mount d) compliant link e) fruit mount f) gripper
detail g) IR sensor h) finger IMU i) body IMU

designed specifically to work in the cluttered environment
of a cherry tomato plant. The fingers are coated with a
textured, knobby surface made from Dragon Skin 20 silicone
(Smooth-On Inc.) The gripper is fitted with three MPU6050
IMU sensors (Adafruit) and one ITR20001/T IR reflectance
sensor (Adafruit). One IMU was mounted on each finger
(Fig. 3h). Since the fingers were fixed on one end to a soft
pneumatically actuated bladder, they were not rigid and can
experience small movements and vibrations during grasping.
The third IMU was rigidly mounted on the gripper body
(Fig. 3i). The IR sensor was mounted in the throat of the
gripper (Fig. 3g). Data collection was completed at 150Hz
using an Arduino Mega 2560 connected to an Intel NUC7i7
running Ubuntu 18.04 and ROS Melodic. A TCA9548A I2C
multiplexer (Adafruit) was used to handle address collisions
with the three IMU. Additionally, a Futek LRF400 load
cell was placed between the arm mount and the gripper to
measure the axial pulling force. This force was used only
for labeling of the training and testing data sets and was not
part of the classification pipeline.

B. Data Collection Method
1) Experimental Set Up: To collect training and testing

data, a cherry tomato was fixed in a mount (Fig. 3e) that
allowed it to be connected via a string to a rigid support
(Fig. 3a). The mount was designed to minimize interference
with data collection allowing full contact between the gripper
fingers and the sides of the fruit and a clear path between
the IR sensor and the fruit. The other end of the string was
attached either to the rigid support frame (Fig. 3c) or to
a quick release mechanism consisting of an electromagnet
actuated by a relay (Fig. 3b). With the string fixed to the
frame, it was possible to simulate grasp failure and with
the quick release mechanism, it was possible to simulate the
separation of the fruit from the plant. A small compliant
link made of Dragon Skin 20 silicone was inserted between
the string and connector to simulate the compliant nature of
stems and pedicels of the plant (Fig. 3d).

2) Data Collection: To collect data, the open gripper
was positioned with the target well placed between the

fingers. At this point the gripper closed on the target and the
automated process of data collection began. The target would
be pulled (negative X direction) and lifted to keep the axis of
pulling along the length of the fingers. The trajectory would
vary in both speed (15-25mm/s) and final position with the
values being determined randomly. It was horizontally pulled
180mm in the negative X direction while the final Y position
would vary by ±40mm and the final Z by ±15mm. For a
failed grasp trial, the string would be hooked on the rigid
support and the target would naturally slip from the grasp.
For a successful pick trial, the string would be hooked on the
quick release mechanism and be released by the operator
during the high tension pulling phase. A human operator
introduced some variation in when and under what conditions
the separation occurred. Data collection stopped when the
arm reached its final pose regardless of outcome. The rig
could then be rapidly reset for the next data collection trial.
The target tomato was periodically replaced to ensure that
variations in size and texture were accounted for as well as
any deterioration of the tomato due to handling. Collected
data was labeled by an expert using custom labeling software
that allowed the viewing of collected sensor data including
force sensor readings. Based on the data, especially force
sensor readings, it was possible to locate the key points
such as the beginning and end of slip and the moment of
separation or grasp failure.

C. Training and Validation
Three data sets were collected: a training set (250 trials), a

validation set (50 trials) and a test set (56 trials) each having
approximately one half failed grasps and one half successful
picks. A Random Forest classifier was created using Scikit
Learn [21] and the hyperparameters and required training
set size were tuned using the validation data set. Key values
selected: Estimators: 100, splitting criteria: Gini index, and
maximum number of features per tree: square root of the
number of features. The results of training can be seen in
Table I which show a strong ability to correctly classify the
state of the grasp. The major confusions, as seen in Fig. 4,
occurred between slip and successful pick and classifying slip
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as no slip. It is unsurprising to see these forms of confusion.
In the boundary regions as slip transitions to no slip and vice-
versa labeling will be imprecise and the data itself will not
always be clear cut. No slip and successful pick naturally
share many characteristics. The big differences being the
dampening effect of the string or stem while under tension
as well as the change in IR sensor value.

TABLE I
VALIDATION RESULTS

State Precision Recall F1-Score
No Slip 98% 99% 99%

Slip 91% 88% 89%
Failed Grasp 100% 99% 100%

Successful Pick 88% 87% 87%

Fig. 4. Validation Data Confusion Matrix

D. Ablation Study

To better understand how the sensor data contributes to
classification, an ablation study of the sensors was per-
formed. The RF was trained with subsets of the full (IR
+ 3 IMU) sensor set. A summary of the F1-Scores can be
seen in Table II.

• IR Sensor Only - By itself this sensor performed very
well and demonstrates its important role in classifica-
tion. However, it results in more spurious responses.

• IMU Sensors Only - The full set of IMU sensors
also performs well, but sees many spurious responses
and has difficulty differentiating between no slip and
successful pick.

• Body IMU Only - This sensor by itself performs notably
worse than the full IMU set, but its performance does
show that the presence of any IMU is enough to
give useful information about the grasping state. This
sensor’s response was always the weakest of the IMU.

• Finger IMUs Only - These perform nearly identically
to the IMU only, suggesting these two sensors are the
more important of the IMU sensors.

• Accelerometers and Gyroscope Only - Each performs
slightly worse than the full IMU set suggesting that it
is an interplay of the two that give improved results.

It is clear that the IR sensor plays a key role - especially
in slip and successful pick identification and differentiation.
When combined with the IMU data, it provides a “smooth-
ing” effect in that it minimizes spurious classifications. The
precise role of the different IMU is less clear. The body
IMU does not play as important a role as the finger IMUs,
but the authors suspect it could play a role in disturbance
rejection in a more complex set up. Both the accelerometers
and the gyroscope work together to give better results, but
they do perform strongly on their own. This testing was
performed both using the validation data set and the plant
data set. While the individual sensors performed reasonably
well on the validation data, that did not translate into good
performance on the plant data set. This suggests that the
combination of sensors also makes the detection more robust
when exposed to the more complex data of the plant set.

TABLE II
ABLATION STUDY F1-SCORES

F1-Score

Sensor Set Full IR IMU Body
IMU

Finger
IMU

Accel-
erometer

Gyro-
scope

No Slip 99% 97% 97% 94% 97% 96% 97%
Slip 89% 87% 67% 41% 78% 64% 71%

Failed Grasp 100% 100% 98% 85% 98% 97% 96%
Successful Pick 87% 84% 65% 57% 76% 70% 75%

IV. RESULTS

A. Testing Data

A total of 56 test data trials were taken - 28 that resulted in
separation and successful pick and 28 that resulted in failed
grasp. The classifier showed a strong ability to identify these
end conditions correctly. Fig. 5a shows a well performing
trial of a failed grasp. Slip (red line), closely matches the slip
truth value (shaded pink area), the failure event is identified
shortly after the labeled point (green dashed line), and failed
grasp (blue line) closely matches the failed grasp truth value
(shaded light blue area). Fig. 5b shows a well performing
trial of a successful pick. Slip (red line), closely matches
the slip truth value (shaded pink area), the separation event
is identified shortly after the labeled point (green dashed
line), and successful pick (black line) closely matches the
successful pick truth value (shaded gray area). Table III
contains detailed metrics of the test results. Delta values are
given in seconds to better understand the potential behavior
in a real time set up. Slip was identified on average 0.18
seconds after the labeled event, separation was identified
0.19 seconds after the event and failed grasp was identified
0.18 seconds after the labeled event. These values include
the worst case 0.17 second delay due to the FFT window.
Missed events indicate a data type that was labeled, but
never classified by the classifier. There were 4 missed slip
events (discussed below) and no missed successful pick or
failed grasp events. False events occur when a classification
is made, but that label does not exist in the trial e.g. a
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successful pick classification on a failed grasp trial. There
were 3 false successful pick events and no false slip or
failed grasp events. Min/Max Delta indicates the minimum
and maximum time in seconds between the first label and
first matching classification. The worst case values are 0.6
seconds. Analysis of the data showed three common issues:

• Missing slip events (Fig. 5c): This occurs when slip is
labeled, but never detected. All missed slip events were
short in duration (only one labeled window long) and
occurred prior to a separation event. It is likely that this
short duration is the cause and would not be an issue
for corrective action, which is the goal of slip detection.

• Unsustained successful pick detection (Fig. 5c): This
occurs when successful pick is detected in a timely
manner, but all subsequent classification fails. This
appears to be the result of a high IR sensor reading
after separation. The short duration of slip resulted in a
higher post separation IR value than was seen in other
tests. This made it look more like a no slip condition.

• Spurious early or false successful pick events (Fig.
5d): These occurred when a single classification event
occurred much earlier than the true event or a clas-
sification of an event that should not have occurred.
An examination of the sensor data and timing showed
that this occurs as the target was beginning to rotate
and experiencing rotational slip can cause a significant
response on the IMU. This response could result in a
misclassification.

TABLE III
TEST DATA AND PLANT DATA KEY METRICS RESULTS

Data Set Testing Data Plant Data
Total Trials 56 12
Failed Grasp/Successful Pick Trials 28/28 7/5
Missed Slips 4 0
False Slips 0 1
Min/Max Slip Delta (s) 0.06/0.60 0.26/0.66
Slip Delta Average (s) 0.18 0.49
Missed Successful Pick 0 1
False Successful Pick 3 2
Min/Max Successful Pick Delta (s) 0.24/0.40 0.03/0.14
Successful Pick Delta Average (s) 0.19 0.07
Missed Failed Grasp 0 0
False Failed Grasp 0 0
Min/Max Failed Grasp Delta (s) 0.1/0.27 0.25/0.14
Failed Grasp Delta Average (s) 0.18 0.18

B. Plant Data

For a final verification, the classifier was tested on data
collected on a real cherry tomato plant (Cherry Roma variety,
Burpee Seeds). Data was collected in an identical manner
to the training and testing sets with the exception of the
need to mount the target on a string. A total of 12 data
trials were collected - 7 failed grasp trials and 5 successful
pick trials. Table III contains detailed metrics of the test
results. Slip was identified on average 0.49 seconds after the
labeled event, separation was identified 0.07 seconds after the
event and failed grasp was identified 0.18 seconds after the
labeled event. These values again include the worst case 0.17

second delay due to the FFT window. There was 1 missed
successful pick event (discussed below) and no missed slip
or failed grasp events. There was 1 false slip event and
2 false successful pick events (discussed below) and no
false failed grasp events. Min/Max Delta are less than 0.66
seconds. The types of results were similar to the test data
results, however the unsustained successful pick detection
was present in 4 of the successful pick trials (one successful
pick trial failed to detect successful pick at all). failed grasp
and slip detection were robust with no missed slips (Fig. 5e)
and only one spurious successful pick detection. The results
showed promise in the ability to apply this work to real
environments.

• Missed successful pick - This trial shows an IR sensor
pattern that is quite different than other trials - the value
actually rises significantly rather than dropping. Fruit
shape may play a role here as the longer, more ovoid
shape of the Cherry Roma variety causes the end of
the fruit to rotate in towards the IR sensor as pulling
occurs. This behavior is very distinct from the rounder
shape of the Honey Sweet variety used in training.

• Unsustained successful pick detection (Fig. 5f) - This
appeared again to be due to higher IR sensor readings,
but was even more pronounced. The real plants expe-
rienced much less slip than was present in the training
data which could result in easy confusion between the
successful pick and no slip classifications. Additionally,
the initial IR values began much higher and suggest that
there is a difference in IR reflectance for the different
varieties for which corrections may need to be made.

• Spurious early or false successful pick events (Fig. 5g)
- This appears to have the same cause as in test data

It is clear that more work needs to be done to effectively
classify successful pick on real plants. It appears that there is
a natural difference in IR reflectivity between the fruit used
in training compared to the real plant variety. Fruit shape
may also play a role as well.

C. Empty Grasping

A simple heuristic was added to the classification pipeline
to further expand it usefulness by detecting if, after the
grippers have been closed, an object was actually grasped.
This consisted of checking for a failed grasp state shortly
after the griper was closed (within 200 samples). In addition
to the test and plant data sets, this was tested on 25 trials
created by performing a picking action without a fruit to
grasp. All 25 of these empty data runs were correctly
classified as empty grasps and none of the test or plant trials
were misclassified.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a Random Forest based method
to classify the state of grasping in an agricultural environ-
ment. It makes use of low-cost, computationally light IMU
and IR sensors which have been mounted on a generic,
two-finger gripper. The system was trained using a rig to
simulate both failed grasps and successful picking and was

4254

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 11,2024 at 18:23:58 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Example results of the classifier on the test data set (a,b,c,d) and plant data set (e,f,g). Legend for all graphs is in the lower right corner. A high
reading indicates the classifier returning the give class or the label assigned. a) & e) show a failed grasp result, b) shows a successful pick, c) & f) show
successful picks that are not identified after the initial event, d) shows a spurious successful pick event in what is really a failed grasp.

then tested on a living cherry tomato plant. The results show
promising performance for the sensor choice, classification
model and training methodology. In our future work, we hope
to improve its robustness by working on rotational slip and
variations in the IR response. We also hope to implement
this work as part of a full grasping pipeline to take corrective
action based on the output and recover from unstable grasps.
Additionally, we hope to extend the performance to other
fruit and gripper designs.
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