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ABSTRACT

A growing number of social science researchers, including educa-

tional researchers, have turned to online crowdsourcing platforms

such as Prolific and MTurk for their experiments. However, there

is a lack of research investigating the quality of data generated

by online subjects and how they compare with traditional subject

pools of college students in studies that involve cognitively demand-

ing tasks. Using an interactive problem-solving task embedded in

an educational simulation, we compare the task engagement and

performance based on the interaction log data of college students

recruited from Prolific to those from an introductory physics course.

Results show that Prolific participants performed on par with par-

ticipants from the physics class in obtaining the correct solutions.

Furthermore, the physics course students who submitted incorrect

answers were more likely than Prolific participants to make rushed

cursory attempts to solve the problem. These results suggest that

with thoughtful study design and advanced learning analytics and

data mining techniques, crowdsourcing platforms can be a viable

tool for conducting research on teaching and learning in higher

education.
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1 INTRODUCTION

Online crowdsourcing platforms have become increasingly popu-

lar for academic research over the past few years, especially since

the Covid-19 pandemic limited researchers’ ability to implement

in-person lab studies. Despite the convenience and increasing pop-

ularity of online platforms like Amazon Mechanical Turk (MTurk)
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and Prolific, there remain questions about the quality of data col-

lected through these platforms. Failure to address these questions

is particularly problematic for education researchers, as inadequate

or biased data would compromise the validity of the inferences

made about students’ characteristics or competencies and increase

the risk of drawing false conclusions about the efficacy of specific

instructional and intervention materials.

This study investigates whether crowdsourcing platforms like

Prolific can serve as a viable data collection platform for educational

research, especially for studies that involve cognitively demanding

tasks designed to capture college students’ higher-order competen-

cies. Central to our inquiry is the use of an interactive problem-

solving task embedded in an educational simulation, which records

detailed log data on user interactions. In our previous research,

we have identified log data-based behavioral features that corre-

spond to specific problem-solving practices. The next phase of our

research is focused on evaluating the feasibility and validity of au-

tomating the assessment of students’ problem-solving practices at

scale. Achieving this goal requires gathering a large dataset of stu-

dents from diverse backgrounds working on the task, which brings

into focus the utility of crowdsourcing platforms for such data col-

lection efforts. Given this context, the goal of the current study is

to conduct a comparative analysis of problem-solving performance

between two diverse groups of participants: college students from

an introductory physics course at a large university and US-based

STEM undergraduates recruited through Prolific. Specifically, we

aim to address the following research questions:

• RQ1: To what extent are the knowledge background and

behavioral engagement levels comparable between Prolific

participants and college students from a physics course?

• RQ2: To what extent are the problem-solving solution quali-

ties comparable between the two samples?

• RQ3: To what extent are the problem-solving processes as

captured by log data comparable between the two samples?

2 BACKGROUND

Prolific (www.prolific.com) is a web platform designed to facilitate

online research by connecting researchers with potential partic-

ipants [37]. Key features of the Prolific platform include 1) inte-

grated recruitment, participation, and compensation processes; 2)

pre-screeners capturing various information of participants (e.g.,

demographics, geographic, education and occupation) that allow

researchers to obtain a sample with specific characteristics; 3)

clear guidelines on compensation and specific criteria for approv-

ing/rejecting participant submissions.

In the field of education research, the platform has been used to

collect data on the mental well-being of university students [12],
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parents’ descriptions of children’s physical activity constraints

during a pandemic [44], undergraduate and Master’s students’ ac-

ceptance of digital learning [51], and how adult learners assess their

knowledge in the context of reading science topics [58]. These stud-

ies illustrate how Prolific can serve as an alternative to traditional

data collection venues such as convenience sampling within a class

or recruitment via community listservs.

2.1 Existing research on the advantages and
limitations of online research platforms

There are several compelling advantages to the adoption of online

crowdsourcing platforms for conducting research, including the

ability to collect large amounts of data in a short period of time and

the potential to obtain a more diverse sample than the traditional

sampling pools of college students enrolled in specific courses [13].

Furthermore, previous research has generally found that the Prolific

platform was at least comparable if not superior to MTurk [18, 57].

For instance, Peer et al. [42] reported that Prolific participants

performed better on measures of attention, comprehension, and

honesty than participants from MTurk and other platforms.

On the other hand, a number of studies have drawn attention

to the potential downsides of collecting research data from online

participants, such as inattentiveness, high attrition, and lack of

sufficient knowledge in a specific domain. Chandler et al. [6] found

that online participants were often engaged in multitasking while

working on a study, such as watching TV, listening to music, and

instant messaging. Zhou and Fishbach [68] reported that participant

attrition was more pervasive yet less visible in online studies than

in lab-based ones. The authors cautioned that failure to account for

attrition rates, especially condition-dependent or selective dropout

rates, would compromise the validity of findings from online studies.

With regards to participants’ domain knowledge, Tahaei and Vaniea

[55] assessed the knowledge of online participants who self-claimed

to have programming skills using five basic programming questions

and compared their performance to computer science (CS) students.

They found that while Prolific participants and CS students passed

attention check questions at comparable rates, CS students were 26

times more likely to solve all programming questions than Prolific

participants. Taken together, these findings indicate that further

research is needed to better understand how online participants

work on study tasks and how their performance is similar to or

differs from participants recruited through traditional channels.

2.2 Reconceptualizing data quality in
educational contexts

Central to our experiments is the notion of what it means to assess

and compare the quality of data generated by research subjects

from different recruitment channels. Previous descriptive research

studies have typically relied on attention check questions embedded

in online surveys (e.g., select łsomewhat agreež for this question) to

filter out inattentive respondents and low-quality data [31]. How-

ever, experienced online survey takers may be familiar with such

attention check mechanisms and selectively respond to these ques-

tions with heightened attention. Additionally, recent research has

discovered that attention check questions can be automatically an-

swered through the malicious use of machine learning techniques

[43].

To address the limitations of the attention check questions, this

study employs more subtle and robust measurements to evaluate

participants’ engagement and performance through their interac-

tion log data generated in a technology-based learning environment.

We operationalize data quality as the comparability between online

participants and a conventional sample of the target population,

which in our case is college students in introductory STEM courses.

The degree of comparability will be assessed through how partici-

pants engage with a cognitively demanding problem-solving task

based on the interaction log data and whether they can obtain the

correct solution.

In education research, student engagement is a multifaceted

construct that has been the focus of a large body of literature

[23, 27, 30, 53, 59]. Defined as the extent to which students are

actively involved in learning activities [22], the construct is com-

monly conceptualized through three interrelated dimensions: be-

havioral, cognitive, and emotional [16]. For example, Stipek et al.

[54] characterizes one type of active engagement as students taking

on difficult tasks, exerting intense effort using deliberate problem-

solving strategies, and persisting despite difficulty.

Previous research has shown that the behavioral aspect of en-

gagement can be validly and efficiently measured using students’

click-stream log data [30]. In particular, time-on-task derived from

log data has been used as a proxy measure for behavioral engage-

ment [3, 19, 24, 25, 33], and is often positively associated with

learning outcomes [34, 56]. In problem-solving research, abnor-

mally short time-on-task has been frequently linked with disen-

gagement or deviating from the intended problem-solving behavior

[1, 7, 8, 38, 66]. Given its empirical relevance to gauging engage-

ment, we incorporated time-on-task as one measure for evaluating

how well participants engage with the problem-solving tasks in our

study. Furthermore, our previous research has validated the use of

specific features extracted from interaction log data as indicators

of problem-solving practices and strategies, thus offering a proxy

measure for participants’ cognitive engagement [61, 63, 65]. Taken

together, these measures allow us to quantitatively compare the

levels of engagement between the two groups of participants.

2.3 Review of problem-solving research

There is a long research tradition dedicated to the study of problem-

solving in the physics education research (PER) community [5,

9, 15, 21, 29, 49]. Problem-solving situations arise as scientists in-

vestigate and build models and theories about the natural world

and engineers design and build models and systems [32]. Authentic

problems like these cannot be solved by recalling a formula based on

pattern matching followed by fast and error-free calculation. Such

problem-solving practice, also referred to as the łplug-and-chug"

strategy, enables students to excel at end-of-chapter exercises and

standardized exams but falls short in preparing them for complex,

real-world challenges.

Over the past two decades, there has been growing recognition

that STEM education should teach and measure students the prac-

tices and skills useful for solving authentic problems [36]. To this
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end, a series of problem-solving activities have been developed in

PhET Interactive Simulations (https://phet.colorado.edu/). These

problems are designed to mimic the characteristics of authentic

problems in science and engineering domains. Specifically, they

require problem solvers to make decisions on the types of data to

collect, the appropriate methods for obtaining and recording the

data, and the relevant domain knowledge to apply to make sense

of the collected data and arrive at a solution.

One of these problems is the Mystery Gift problem in the PhET

Balancing Act simulation. The problem asks students to figure out

the weight of a mystery gift using bricks with known weights and a

balance scale that pivots around the center (Figure 1). Students can

place the gift and bricks at various marked locations on the scale in

the Setup mode and observe how it would rotate or stay balanced

in the Test mode. To solve this problem, students need to balance

the scale using the gift and bricks and apply the torque formula

to calculate the weight of the gift. The simulation does not allow

multiple bricks to be stacked at the same location. Furthermore, the

weight of the gift was deliberately chosen to be unsolvable using

a single brick. These features made the problem less intuitive and

more difficult.

Figure 1: Screencast of the Mystery Gift problem.

(Image by PhET Interactive Simulations, licensed under CC-

BY 4.0)

Successfully solving the Mystery Gift problem hinges on the

effective execution of the following problem-solving practices: data

collection, data recording, and data interpretation. First, data collec-

tion involves gathering the data needed for calculating the weight

of the mystery gift, including the weight of the brick(s) used and

their respective distances from the central pivot point. This prac-

tice entails setting up experimental trials by placing the gift and

bricks (5kg, 10kg, or 20kg) at various locations on the scale in the

Setup mode and observing how the scale would rotate in the Test

mode. Second, data recording involves maintaining a record of the

collected data through note-taking. This practice can minimize the

risk of losing track of the data from each test trial and facilitate

subsequent problem-solving. Finally, data interpretation entails

applying relevant domain knowledge, the torque formula in this

case, to analyze and interpret the collected data and calculate the

gift’s weight. Notably, these practices have also been identified and

discussed in previous research on scientific inquiry and problem-

solving [40, 47, 50, 67].

Though there is no single correct solution path for solving the

Mystery Gift problem, an expert-like approach entails systemati-

cally setting up simple trials for data collection and taking deliberate

pauses from interacting with the simulation after each trial for data

recording and interpretation. An effective problem solver would

initially place a single brick and the mystery gift at equal distances

on opposite sides of the pivot point to estimate the range of the

gift’s weight. In subsequent trials, a second brick would be delib-

erately added so that their combined torque gradually approaches

the torque exerted by the gift, ultimately balancing the scale hor-

izontally and making it possible to precisely calculate the gift’s

weight.

In terms of behavioral patterns extracted from the log data, effec-

tive data collection is evidenced by a problem solver consistently

setting up simple test trials using no more than three objects. In con-

trast, setting up a large percentage of complex trials using four or

more objects would signal a more random, trial-and-error approach

to data collection. At the same time, pause after a trial, defined

as the period when no interaction was logged in the simulation,

serve as a critical indicator for evaluating the effectiveness of data

recording and data interpretation.

We identified three types of pauses in our previous research an-

alyzing the log data of students solving the Mystery Gift problem:

mechanical, deliberate, and distracted [64]. Mechanical pauses are

less than 10 seconds and generally account for the time it takes

to view the animation of how the scale would rotate and move

the mouse cursor with minimal cognitive processing involved. In

contrast, deliberate pauses are between 10 seconds and three min-

utes and represent participants’ deliberate efforts of stepping back

from interacting with the simulation to work with the data col-

lected and/or reflect on their progress. Lastly, distracted pauses

are outliers in terms of duration (longer than three minutes) and

signal off-task behaviors. This framework for categorizing pauses is

aligned with and integrates findings from previous research exam-

ining student behavior in technology-based learning environments.

For example, Paquette et al. [39] linked exceptionally short pauses

between submission attempts to guessing behaviors in an intelli-

gent tutoring system. Perez et al. [45] found that taking sufficiently

long pauses when interacting with a circuit simulation was asso-

ciated with better learning outcomes in an inquiry task. Gobert

et al. [17] identified that rapidly running an educational simulation

without pausing to think signaled disengagement from the task

goals.

In summary, features extracted from the log data, such as the

test trials set up and pauses after a trial, can serve as useful metrics

for assessing specific problem-solving practices. These features

allow for a more in-depth comparison of data quality across diverse

groups of participants, encompassing both whether they can solve

the problem (the product) and how they work through the problem

(the process).
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3 METHODS

3.1 Materials and procedures

Two instances of the mystery gift problem were used for this study.

These two problems exhibit comparable levels of difficulty as con-

firmed by empirical pilot testing. Participants were first given a

real-world context of the problem, that they needed to weigh a

gift in order to print out a shipping label to mail the gift at home.

Subsequently, participants viewed a brief tutorial on how to use

the PhET Balancing Act simulation. They were then instructed to

solve the weight of the first gift within 15 trials as a practice round.

Afterward, participants were provided with a worked-out solution

to the practice problem. Finally, participants engaged in the test

round, in which they were asked to solve the weight of a different

gift within 15 trials. The study has been reviewed and approved by

the Institutional Review Boards (IRBs) at the authors’ institutions

(Protocol ID: 29325).

3.2 Participants

3.2.1 University. In the first experiment, we recruited students

from three parallel sections of a calculus-based college introduc-

tory level physics course in a large public university in the US. Of

the students enrolled in the course, 24% were female, 35% were from

racial or ethnic groups traditionally underrepresented in STEM dis-

ciplines, 13% were first-generation students, and the average age

was 20. The majority of students enrolled in this class were from

engineering or computer science majors. The mystery gift problem

was presented as an extra credit activity to students, using the Obo-

jobo Learning Objects Platform [14] and connected via Learning

Tools Interoperability (LTI) to the Canvas Learning Management

System (LMS). Students completed the study at a time and location

of their choice and received a small amount of extra credit for their

participation. Students would receive the full extra credit if they

correctly solved the test problem and 90% of the extra credit if their

answer was incorrect. Students enrolled in the course have studied

the concept of torque and torque balance a few weeks prior to ac-

cessing the task. The final University sample includes 325 students

(29% female).

3.2.2 Prolific. In the second experiment, we recruited 40 partici-

pants from Prolific and used the platform’s built-in pre-screener

to reach the target population. Our inclusion criteria were current

undergraduate students located in the US, majoring in a STEM

subject, and having not taken part in previous Prolific studies run

by our research team. We also requested the sample to be gender

balanced. The majority of the participants (70%) fell within the 18-

21 age range, followed by those aged 22-25 (15%), 26-29 (10%), and

30 and above (5%). 92.5% of the participants came from a four-year

university/college, and 7.5% came from a community college.

The two mystery gift problems, along with the other questions,

were embedded in an online Qualtrics survey. Participants com-

pleted the study at a time and location of their choice and were

compensated $4 for their participation in the 30-min study. They

also had the opportunity to get a $2 bonus for correctly solving the

mystery gift in the test round. Prior to introducing participants to

the problem-solving tasks, we posed two questions to gauge their

background knowledge in physics. The first question asks partic-

ipants to self-rate how familiar they are with torque, or a force

that causes rotations, choosing from three levels: not familiar at

all/having a conceptual understanding/knowing the exact formula.

The second question asks participants to identify the correct torque

formula from four options. Based on an analysis of the log data,

four participants completed the survey but did not use the mystery

gift when interacting with the simulation and were subsequently

excluded from data analyses. The final Prolific sample includes 36

participants (47% female).

3.3 Data processing and analyses

To evaluate participants’ engagement levels, we calculated their

time spent on solving the problems based on the first and last times-

tamps in the log data and the time spent on viewing the solution

to the practice problem as recorded by the Qualtrics survey or

LMS platform. To measure participants’ outcomes on the problem-

solving task, we scored their answers to the gift’s weight into two

levels: correct and incorrect. Participants in the correct group sub-

mitted answers that came within one kilograms of the gift’s actual

weight (e.g., an answer between 54.01kg and 55.99kg would be cor-

rect when the gift weighs 55kg), while participants in the incorrect

group submitted answers that were outside of the acceptable range.

Differences in solution quality between the Prolific and University

samples were tested using the chi-square test of independence.

To quantitatively characterize participants’ work processes and

problem-solving practices/strategies, we wrote a Python script to

process the Javascript Object Notation (JSON) files recording par-

ticipants’ interactions. Three behavioral features were extracted

from individual participants’ log data: 1) total number of trials set

up when solving the problem: 2) frequency of different types of

trials (simple vs. complex), and 3) frequency of different types of

pauses (mechanical, deliberate, or distracted) after setting up each

trial.

While time-on-task provides a general account of participants’

levels of engagement, the trial- and pause-based features can help

us develop a more nuanced understanding of how individual par-

ticipants approached the task. Distributions of continuous vari-

ables were assessed using the Shapiro-Wilk test for normality. Two-

sample t-tests or Mann-Whitney U tests were then used to compare

each feature between the Prolific and University participants. A

Bonferroni adjusted alpha level was adopted to correct for multiple

comparisons.

4 RESULTS

We progress through the results in the following order to eluci-

date the comparisons between the two groups of participants: 1)

dropout rates (i.e., participants who signed up but did not finish

the study); 2) physics knowledge background; 3) engagement levels

as measured by their time spent on the tasks; 4) solution qualities;

5) problem-solving processes as captured by various behavioral

features extracted from the log data.
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4.1 Dropout rates

The dropout rate was calculated as the percentage of participants

who accessed yet did not complete the study. Among the 54 Pro-

lific participants who accessed the study, 14 (26%) terminated their

participation without completion. For the University study, a total

of 500 students opened the online module containing the study.

Among those students, 325 worked on both the practice and test

problems as recorded by the log data with matching IDs and submit-

ted their answers, resulting in a dropout rate of 35%. The difference

in dropout rates between the two samples was not statistically

significant (chi-squared (1) = 0.23, p = 0.63).

4.2 Knowledge Background

There was a large variation in Prolific participants’ background

knowledge in physics. 31% (11 out of 36) of the participants self-

reported that they were not at all familiar with the concept of

torque at the beginning of the online survey. 58% reported having

a conceptual understanding and 11% reported that they knew the

exact torque formula. In a separate multiple-choice question, 39%

of the Prolific participants correctly identified the torque formula

from a list of four options.

In contrast, all the University students were recruited from a

calculus-based introductory physics course. Torque and rotational

kinematics were covered in the course over a period of two weeks

before the study was made available to students. Therefore, it is

reasonable to expect that all University participants have at least

been exposed to the concept of torque and the torque equation. To

further evaluate University students’ knowledge in torque, we ana-

lyzed their performance on two questions that explicitly addressed

torque in the midterm exam in one section of the course. 78% of

the students managed to correctly solve at least one of the torque

questions.

4.3 Time-on-task

To understand how participants engaged with the problem-solving

tasks in the study, we compared their time spent on solving the

problems and viewing the solution to the practice problem. The

Mann-Whitney U tests were used due to non-normal distribution of

time-on-task. We found no significant difference in the time spent

on solving the practice problem, but Prolific participants overall

worked longer on the test problem than University participants.

The median time spent on the practice problem was 3.15 mins (IQR:

1.60 ś 6.37 mins) for the University sample and 3.69 mins (IQR:

2.61 ś 6.76 mins) for the Prolific sample. This difference was not

statistically significant (p = 0.25). On the other hand, University

students spent a median time of 1.33 mins (IQR: 0.65 ś 3.37 mins)

while Prolific participants spent a median time of 3.31 mins (IQR:

1.10 ś 5.00 mins) on the test problem (p = 0.003).

To better understand how participants spent their time solving

the test problem, we divided participants in each sample into two

levels based on their solution quality. Figure 2 presents the boxplots

of individual participants’ time spent on solving the test problem

grouped by sample and solution quality. We did not find a group

effect (Prolific vs. University) in the time spent on solving the test

problem among the participants who obtained the correct solu-

tion. The significant difference in time-on-task was largely driven

by participants who did not solve the test problem. While Prolific

participants who did not reach a correct solution spent a median

of 4.27 mins (IQR: 1.15 ś 5.32 mins) on the test problem, the me-

dian time-on-task was only 1.07 mins (IQR: 0.59 ś 2.15 mins) for

University students at the same solution level (Mann-Whitney U

test, p < 0.001). This result suggests that there was a divergent pat-

tern of engagement among participants who did not solve the test

problem, with Prolific participants demonstrating a higher level of

engagement with the task than University participants.

Figure 2: Time spent on solving the test problem grouped by

sample and solution quality

4.4 Time spent on viewing the solution to the
practice problem

All participants were given a worked example describing how to

solve the practice problem step-by-step after attempting to solve the

problem on their own. There was no significant difference between

the two groups of participants in terms of the time spent on viewing

the solution. The median viewing time was 1.75 mins (IQR: 1.17

ś 2.75 mins) for the University sample and 1.54 mins (IQR: 0.96 ś

2.21 mins) for Prolific (Mann-Whitney U test, p = 0.12). We also did

not find any difference in the viewing time between University and

Prolific participants who solved the test problem or between those

who did not solve the test problem.

4.5 Solution quality

To determine the comparability of problem-solving outcomes be-

tween University and Prolific participants, we compared the per-

centage of correct solutions across the two groups. Table 1 presents

the percentage and count of participants who correctly solved the

gift’s weight in the practice and test problems. 38% of the University

participants and 28% of the Prolific participants solved the practice

problem. A chi-square test of independence showed that there was

no significant association between group membership (University

vs. Prolific) and obtaining the correct solution (chi-square (1) =

1.01, p = 0.31). For the test problem, the same percentage (42%) of

participants in the University and Prolific samples obtained the

correct solution. This result indicates that despite differences in
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their physics background knowledge, University and Prolific partic-

ipants performed about the same in terms of obtaining the correct

answers for the mystery gift problems.

Table 1: Percentage and count of correct solutions

University Prolific

Mystery Gift I (Practice) 38% (123) 28% (10)

Mystery Gift II (Test) 42% (136) 42% (15)

4.6 Number of trials

Overall, we did not find any significant difference in the number of

trials set up in the practice or test problem across the University and

Prolific samples. The median number of trials was 14 for both the

University and Prolific participants in the practice task. This is not

surprising as the instruction asked students to solve the problem

in 15 trials or less.

At the same time, we found that a substantial number of par-

ticipants continued working on the problem despite reaching the

trial limit, as the simulation does not have a built-in mechanism

to stop the task once a certain trial count has been reached. 41%

of University students and 39% of Prolific participants set up more

than 15 trials when solving the practice problem. One exceptional

University student set up 298 trials and finally reached a correct

solution.

For the test problem, the median number of trials was 8 for

University participants and 10 for Prolific participants, though this

difference was not statistically significant (Mann-Whitney U test,

p = 0.06). The significant difference in time-on-task for the test

problem, as presented in an earlier section of the results, yet lack of

corresponding difference in the number of trials set up indicates that

the University and Prolific participants worked on the test problem

at a different pace, a key result to be discussed in a subsequent

section.

4.7 Percentage of complex trials

The percentage of complex trials is an indicator of how effective

a problem solver is at collecting data, with higher percentages of

complex trials (i.e., using four or more objects in a trial) indicat-

ing less effective data collection practice. We found no significant

difference in the percentage of complex trials set up when solv-

ing the practice (Mann-Whitney U test, p = 0.90) or test problem

(Mann-Whitney U test, p = 0.66) across the University and Prolific

samples. For participants in both groups, the median percentage

of complex trials was around 25% in the practice problem and 40%

in the test problem. The high percentage of complex trials set up

indicates that the trial-and-error approach of adding an increasing

number of objects in the hope of balancing the scale was a popular

problem-solving strategy for participants in both groups.

4.8 Percentage of deliberate pauses

The percentage of deliberate pauses (10 𝑠𝑒𝑐𝑠 ≤ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 3𝑚𝑖𝑛𝑠)

during individual participant’s problem-solving process indicates

the pace at which participants worked, with a higher percentage

corresponding to a more deliberate approach for data recording and

data interpretation. Results of the Mann-Whitney U tests showed

that Prolific participants had a higher percentage of deliberate

pauses than University students when solving the test problem

(p < 0.001). Furthermore, we found a similar pattern as the result

of the time-on-task analysis, that the difference between the two

groups was primarily driven by low-performing students who did

not reach a correct solution for the test problem.

While there was no significant difference in the percentage of

deliberate pauses between the high-performing students across

the two samples in either the practice or test problem, University

participants who did not obtain the correct solution for the test

problem had a significantly lower percentage of deliberate pauses

than Prolific participants at the same solution level (Figure 3). The

median percentage of deliberate pauses was 0% for low-performing

University participants, indicating that a substantial proportion of

those participants did not make any deliberate pause after setting

up a test trial. In contrast, the median percentage of deliberate

pauses when solving the test problem was 27% for low-performing

Prolific participants. The significant difference in the percentage of

deliberate pauses suggests that low-performing University students

made only cursory attempts to solve the test problem compared to

Prolific participants.

Figure 3: Percentage of deliberate pauses grouped by sample

and solution quality

We also examined a different type of pause as captured by the log

data: distracted pauses or pauses that are longer than three minutes.

We found that the occurrence of such pauses was overall low in

both the University and Prolific samples, with a total of 39 instances

of distracted pauses belonging to 30 students (9%) in the Univer-

sity sample and three instances belonging to three participants in

the Prolific sample (8%). This result implies that neither group of

participants frequently engaged in off-task behaviors during the

study.

To summarize, our study finds that Prolific participants who

passed the pre-screener as undergraduate STEM major students

performed at a similar level in terms of solution quality on an

interactive physics problem as students in an introductory physics

course. Table 2 summarizes the results of key comparisons. We
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found significant differences between the University and Prolific

participants in only two log data-based behavioral features: the

time on task and the percentage of deliberate pauses when solving

the test problem.

A revealing outcome of this study is the behavioral difference

between the low-performing participants who submitted incorrect

solutions for the test problem. While the University students who

did not obtain the correct solution spent a short time on the test

problem with minimal deliberate pauses, Prolific participants were

more deliberate and worked longer on the problem. In contrast,

there was no significant differences in the engagement level or

problem-solving process between the high-performing participants

who reached the correct solutions in University and Prolific sam-

ples.

5 DISCUSSION

5.1 Summary of results

This study examined the general comparability of data obtained

through the Prolific and University subject pools using an inter-

active problem-solving task embedded in a physics simulation. In

contrast to questionnaires and surveys aimed at capturing peo-

ple’s beliefs and perceptions, the tasks used in the current study

are cognitively demanding and require the application of physics

knowledge as well as effective problem-solving practices. Further-

more, rather than relying on attention check questions at arbitrary

time points during a study, we extracted a detailed picture of in-

dividual participants’ problem-solving process based on the log

files of their interactions in the task environment. The log data

provides key indicators of the problem-solving practices adopted

by participants and makes it possible to detect and remove invalid

responses (e.g., the four participants who did not use the mystery

gift when working in the simulation yet submitted answers for the

gift’s weight in the survey).

For RQ1, we found that Prolific participants self-reported more

varied and generally less robust levels of physics background knowl-

edge compared to the University students enrolled in a physics

course. At the same time, we did not find any significant difference

in the level of behavioral engagement as measured by time-on-task

between high-performing Prolific and University participants who

reached the correct answer. On the other hand, University partic-

ipants who did not solve the problem exhibited a lower level of

behavioral engagement compared to their Prolific counterparts.

For RQ2, we found no evidence of significant differences in the

problem-solving outcomes as measured by solution quality between

the two groups of participants, despite the Prolific participants

self-reporting more varied and generally less physics background

knowledge. For RQ3, behavioral features extracted from log data

indicated that both groups of participants adopted comparable

problem-solving practices for data collection, as evidenced by the

number and types of test trials set up. However, a notable diver-

gence was observed for low-performing University students who

did not reach the correct solution. This subgroup was more likely

to rush through the task without any deliberate efforts to record

or interpret the data collected, as they made significantly fewer

deliberate pauses during the problem-solving process than Prolific

participants at the same solution quality level.

5.2 Connections with prior research

Findings from the current study are in line with the results of pre-

vious studies that the data obtained from online research platforms

were comparable to those obtained from traditional subject pools

[20, 28, 41, 60]. Moreover, we did not find evidence for the claim

that the responses of online participants were low-quality due to

their inattentiveness or being prone to distraction [10, 11].

At the same time, this study demonstrates the utility of log data

generated in interactive learning environments for unobtrusively

capturing the problem-solving processes across diverse groups of

individuals [62]. The finding that an absence of sufficiently long

pauses during problem-solving is associated with poor performance

is in line with previous research on student behavior in technology-

based learning environments [2, 39, 45]. In addition, the study

also opens up new research directions for how we teach problem-

solving: behavioral features extracted from the log data can guide

educators in diagnosing failure modes and designing personalized

instructional interventions to enhance students’ problem-solving

competency.

Furthermore, our findings build on and extend previous research

on how time-on-task can serve as a metric for assessing student

engagement [3, 8, 34]. Specifically, we observed that the subgroup

of University students who failed to solve the Mystery Gift prob-

lem also had the shortest time-on-task. However, our findings also

caution that high levels of behavioral engagement alone do not guar-

antee success in problem-solving tasks, as the subgroup of Prolific

participants who were engaged based on time-on-task still strug-

gled to solve the problem. These results underscore the complex

interactions among engagement, domain knowledge, and problem-

solving strategies and practices that affect students’ success in

solving authentic problems.

5.3 Interpretation of results

How did the Prolific sample achieve problem-solving outcomes

comparable to those of the University sample despite reporting less

formalized knowledge of torque? One explanation lies in the real-

world and interactive characteristics of the Mystery Gift problem.

The problem differs from textbook-style questions that students

regularly practice in physics courses. Instead, it is more similar

to real-world problems and requires students to adopt a series of

effective problem-solving and decision-making practices to solve

the problem, including collecting data through interacting with the

simulation and applying relevant knowledge at the right time to

interpret the data collected [46, 50]. Furthermore, the interactive na-

ture of the simulation allows participants to build on their intuitive

understanding of factors affecting rotational force gained through

everyday experiences like playing on a seesaw and bootstrap a

formal understanding of torque, which in turn provides the domain

knowledge needed for solving the problem at hand.

The difference in time-on-task also imply that low-performing

Prolific participants devoted more effort to the problem-solving

task than their University peers. Why did low-performing Prolific

and University participants exhibit divergent engagement patterns

when working on the same problem-solving task?We postulate that

the underlying motivations and contexts substantially influenced

their respective approaches to the problem.
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Table 2: Key characteristics and comparisons of the university and Prolific samples

University Prolific

Dropout Rate 35% 26%

Mystery Gift I (Practice)

Time-on-task 3.15 mins [1.60 ś 6.37] 3.69 mins [2.61 ś 6.76]

Number of Trials 14 [9 - 23] 14 [9 - 21]

Percentage of Complex Trials 25% [0 ś 50%] 28% [0 ś 43%]

Percentage of Deliberate Pauses 13% [6% - 29%] 29% [11% - 53%]

Time on viewing the solution 1.75 mins [1.17 ś 2.75] 1.54 mins [0.96 ś 2.21]

Mystery Gift II (Test)

Time-on-task* 1.33 mins [0.65 ś 3.37] 3.31 mins [1.10 ś 5.00]

Number of Trials 8 [6 - 12] 10 [8 - 12]

Percentage of Complex Trials 44% [11% ś 64%] 41% [0 ś 67%]

Percentage of Deliberate Pauses* 0% [0 ś 33%] 24% [10% ś 47%]

* indicates significant differences after Bonferroni adjustment

First, the reward structure differed for the two groups, potentially

altering their performance dynamics. University students received

course credits, which is a common method employed in academic

settings to recruit students for research studies. This may unin-

tentionally contributed to a satisficing behavior where minimal

effort was sufficient to gain most of the rewards [26, 52]. In the

context of solving the Mystery Gift problem, students may not have

sufficient motivation to work hard to obtain the correct solution

when simply attempting to solve the problem and submitting a

wrong answer would give them 90% of the allotted course credits.

Prolific participants, on the other hand, received a small amount

of monetary rewards tied to performance, which has been shown

to improve effort and outcomes in tasks like Bayesian reasoning

compared to flat-fee incentives and course credits [4].

Second, Prolific’s approval rating system created an additional

layer of motivation for its participants. Participants might risk hav-

ing their submissions rejected if they complete them too hastily,

according to Prolific’s criteria [48]. Each Prolific participant has

an approval rating calculated as the number of approved submis-

sions divided by the total number of submissions. As some studies

would only recruit participants with an approval rating of 95% or

higher, participants are motivated to put in the effort and avoid

their submissions being rejected. This is unlike the University con-

text, where students face no such approval rating or reputational

risk, possibly affecting their level of engagement in the study.

Finally, the timing of the study offers another contextual layer for

understanding these differing behaviors. While the Prolific study

did not coincide with any particular period, the University study

was conducted during the final exam study period, a time when stu-

dents typically have a heavy workload with final assignments and

exams. Previous research indicates a notable drop in intrinsic moti-

vation and performance in such academic conditions compared to

early in the semester, specifically for those receiving course credits

[35]. It is possible that a subset of University students experienced

low levels of intrinsic motivation or limited availability due to the

timing of the study, preventing them from fully engaging in the

problem-solving tasks.

5.4 Limitations and Future Research

One limitation of the current study is the differing proportions of

female students between the two samples, which may influence the

results. On the other hand, the ability to recruit a higher percentage

of female participants through crowdsourcing platforms may be a

notable advantage, as this can help educational researcher better

understand female students’ experiences in STEM education. An-

other limitation not fully addressed by this study is the sampling

bias due to online participants łself-selectingž into the study or

dropping out of the study without completion [31, 68]. We did not

collect data on the reasons for choosing to enroll in this specific

study from Prolific participants. We also have no insights into why

a total of 14 (26%) participants dropped out of the study as the

platform precludes researchers from accessing the information of

participants who exited the study without completion. It is possi-

ble that only students who are interested in physics and/or have

a high self-efficacy in physics chose to participate and finish the

study in the first place. We should note that this potential sampling

bias also applies to traditional studies, as we observed a dropout

rate of 35% from the University participants. Future studies should

investigate what motivates students to participate in studies that

employ cognitively demanding tasks and what the considerations

are for choosing to drop out without completion.

6 CONCLUSION

This study lends support to the view that online crowdsourcing

research platforms łprovide education researchers with a workable

complement to traditional sampling methods and may be particu-

larly applicable for research whose aim is to study characteristics

of college-aged and adult learnersž [13]. There are several advan-

tages to conducting education research on crowdsourcing platforms,

including a streamlined and simplified data collection cycle, the

ability to efficiently obtain a sample from the target population

using prescreeners, and the capacity to support various experi-

mental designs such as randomization and longitudinal studies by

integrating with online survey platforms. Our findings also indi-

cate that there are several important practices that should be taken
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into account to ensure data quality when conducting educational

research on Prolific. These practices include 1) incorporating ques-

tions to gauge participants’ background knowledge, thus allowing

for a more precise contextualization of the study’s findings; and 2)

deploying technology-based learning environments and learning

analytics techniques to capture nuanced behavioral indicators for

participants’ work processes, such as time-on-task and other log

data-based features. With careful study design and data-rich digi-

tal task environments, crowdsourcing platforms can be useful for

empirical research in education, allowing for piloting innovative

instructional and assessment tasks as well as examining the efficacy

of specific educational interventions efficiently and at scale.
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