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ABSTRACT and Prolific, there remain questions about the quality of data col-

A growing number of social science researchers, including educa-
tional researchers, have turned to online crowdsourcing platforms
such as Prolific and MTurk for their experiments. However, there
is a lack of research investigating the quality of data generated
by online subjects and how they compare with traditional subject
pools of college students in studies that involve cognitively demand-
ing tasks. Using an interactive problem-solving task embedded in
an educational simulation, we compare the task engagement and
performance based on the interaction log data of college students
recruited from Prolific to those from an introductory physics course.
Results show that Prolific participants performed on par with par-
ticipants from the physics class in obtaining the correct solutions.
Furthermore, the physics course students who submitted incorrect
answers were more likely than Prolific participants to make rushed
cursory attempts to solve the problem. These results suggest that
with thoughtful study design and advanced learning analytics and
data mining techniques, crowdsourcing platforms can be a viable
tool for conducting research on teaching and learning in higher
education.
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1 INTRODUCTION

Online crowdsourcing platforms have become increasingly popu-
lar for academic research over the past few years, especially since
the Covid-19 pandemic limited researchers’ ability to implement
in-person lab studies. Despite the convenience and increasing pop-
ularity of online platforms like Amazon Mechanical Turk (MTurk)
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lected through these platforms. Failure to address these questions
is particularly problematic for education researchers, as inadequate
or biased data would compromise the validity of the inferences
made about students’ characteristics or competencies and increase
the risk of drawing false conclusions about the efficacy of specific
instructional and intervention materials.

This study investigates whether crowdsourcing platforms like
Prolific can serve as a viable data collection platform for educational
research, especially for studies that involve cognitively demanding
tasks designed to capture college students’ higher-order competen-
cies. Central to our inquiry is the use of an interactive problem-
solving task embedded in an educational simulation, which records
detailed log data on user interactions. In our previous research,
we have identified log data-based behavioral features that corre-
spond to specific problem-solving practices. The next phase of our
research is focused on evaluating the feasibility and validity of au-
tomating the assessment of students’ problem-solving practices at
scale. Achieving this goal requires gathering a large dataset of stu-
dents from diverse backgrounds working on the task, which brings
into focus the utility of crowdsourcing platforms for such data col-
lection efforts. Given this context, the goal of the current study is
to conduct a comparative analysis of problem-solving performance
between two diverse groups of participants: college students from
an introductory physics course at a large university and US-based
STEM undergraduates recruited through Prolific. Specifically, we
aim to address the following research questions:

e RQ1: To what extent are the knowledge background and
behavioral engagement levels comparable between Prolific
participants and college students from a physics course?

e RQ2: To what extent are the problem-solving solution quali-
ties comparable between the two samples?

e RQ3: To what extent are the problem-solving processes as
captured by log data comparable between the two samples?

2 BACKGROUND

Prolific (www.prolific.com) is a web platform designed to facilitate
online research by connecting researchers with potential partic-
ipants [37]. Key features of the Prolific platform include 1) inte-
grated recruitment, participation, and compensation processes; 2)
pre-screeners capturing various information of participants (e.g.,
demographics, geographic, education and occupation) that allow
researchers to obtain a sample with specific characteristics; 3)
clear guidelines on compensation and specific criteria for approv-
ing/rejecting participant submissions.

In the field of education research, the platform has been used to
collect data on the mental well-being of university students [12],
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parents’ descriptions of children’s physical activity constraints
during a pandemic [44], undergraduate and Master’s students’ ac-
ceptance of digital learning [51], and how adult learners assess their
knowledge in the context of reading science topics [58]. These stud-
ies illustrate how Prolific can serve as an alternative to traditional
data collection venues such as convenience sampling within a class
or recruitment via community listservs.

2.1 Existing research on the advantages and
limitations of online research platforms

There are several compelling advantages to the adoption of online
crowdsourcing platforms for conducting research, including the
ability to collect large amounts of data in a short period of time and
the potential to obtain a more diverse sample than the traditional
sampling pools of college students enrolled in specific courses [13].
Furthermore, previous research has generally found that the Prolific
platform was at least comparable if not superior to MTurk [18, 57].
For instance, Peer et al. [42] reported that Prolific participants
performed better on measures of attention, comprehension, and
honesty than participants from MTurk and other platforms.

On the other hand, a number of studies have drawn attention
to the potential downsides of collecting research data from online
participants, such as inattentiveness, high attrition, and lack of
sufficient knowledge in a specific domain. Chandler et al. [6] found
that online participants were often engaged in multitasking while
working on a study, such as watching TV, listening to music, and
instant messaging. Zhou and Fishbach [68] reported that participant
attrition was more pervasive yet less visible in online studies than
in lab-based ones. The authors cautioned that failure to account for
attrition rates, especially condition-dependent or selective dropout
rates, would compromise the validity of findings from online studies.
With regards to participants’ domain knowledge, Tahaei and Vaniea
[55] assessed the knowledge of online participants who self-claimed
to have programming skills using five basic programming questions
and compared their performance to computer science (CS) students.
They found that while Prolific participants and CS students passed
attention check questions at comparable rates, CS students were 26
times more likely to solve all programming questions than Prolific
participants. Taken together, these findings indicate that further
research is needed to better understand how online participants
work on study tasks and how their performance is similar to or
differs from participants recruited through traditional channels.

2.2 Reconceptualizing data quality in
educational contexts

Central to our experiments is the notion of what it means to assess
and compare the quality of data generated by research subjects
from different recruitment channels. Previous descriptive research
studies have typically relied on attention check questions embedded
in online surveys (e.g., select “somewhat agree” for this question) to
filter out inattentive respondents and low-quality data [31]. How-
ever, experienced online survey takers may be familiar with such
attention check mechanisms and selectively respond to these ques-
tions with heightened attention. Additionally, recent research has
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discovered that attention check questions can be automatically an-
swered through the malicious use of machine learning techniques
[43].

To address the limitations of the attention check questions, this
study employs more subtle and robust measurements to evaluate
participants’ engagement and performance through their interac-
tion log data generated in a technology-based learning environment.
We operationalize data quality as the comparability between online
participants and a conventional sample of the target population,
which in our case is college students in introductory STEM courses.
The degree of comparability will be assessed through how partici-
pants engage with a cognitively demanding problem-solving task
based on the interaction log data and whether they can obtain the
correct solution.

In education research, student engagement is a multifaceted
construct that has been the focus of a large body of literature
[23, 27, 30, 53, 59]. Defined as the extent to which students are
actively involved in learning activities [22], the construct is com-
monly conceptualized through three interrelated dimensions: be-
havioral, cognitive, and emotional [16]. For example, Stipek et al.
[54] characterizes one type of active engagement as students taking
on difficult tasks, exerting intense effort using deliberate problem-
solving strategies, and persisting despite difficulty.

Previous research has shown that the behavioral aspect of en-
gagement can be validly and efficiently measured using students’
click-stream log data [30]. In particular, time-on-task derived from
log data has been used as a proxy measure for behavioral engage-
ment [3, 19, 24, 25, 33], and is often positively associated with
learning outcomes [34, 56]. In problem-solving research, abnor-
mally short time-on-task has been frequently linked with disen-
gagement or deviating from the intended problem-solving behavior
[1, 7, 8, 38, 66]. Given its empirical relevance to gauging engage-
ment, we incorporated time-on-task as one measure for evaluating
how well participants engage with the problem-solving tasks in our
study. Furthermore, our previous research has validated the use of
specific features extracted from interaction log data as indicators
of problem-solving practices and strategies, thus offering a proxy
measure for participants’ cognitive engagement [61, 63, 65]. Taken
together, these measures allow us to quantitatively compare the
levels of engagement between the two groups of participants.

2.3 Review of problem-solving research

There is a long research tradition dedicated to the study of problem-
solving in the physics education research (PER) community [5,
9, 15, 21, 29, 49]. Problem-solving situations arise as scientists in-
vestigate and build models and theories about the natural world
and engineers design and build models and systems [32]. Authentic
problems like these cannot be solved by recalling a formula based on
pattern matching followed by fast and error-free calculation. Such
problem-solving practice, also referred to as the “plug-and-chug"
strategy, enables students to excel at end-of-chapter exercises and
standardized exams but falls short in preparing them for complex,
real-world challenges.

Over the past two decades, there has been growing recognition
that STEM education should teach and measure students the prac-
tices and skills useful for solving authentic problems [36]. To this
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end, a series of problem-solving activities have been developed in
PhET Interactive Simulations (https://phet.colorado.edu/). These
problems are designed to mimic the characteristics of authentic
problems in science and engineering domains. Specifically, they
require problem solvers to make decisions on the types of data to
collect, the appropriate methods for obtaining and recording the
data, and the relevant domain knowledge to apply to make sense
of the collected data and arrive at a solution.

One of these problems is the Mystery Gift problem in the PhET
Balancing Act simulation. The problem asks students to figure out
the weight of a mystery gift using bricks with known weights and a
balance scale that pivots around the center (Figure 1). Students can
place the gift and bricks at various marked locations on the scale in
the Setup mode and observe how it would rotate or stay balanced
in the Test mode. To solve this problem, students need to balance
the scale using the gift and bricks and apply the torque formula
to calculate the weight of the gift. The simulation does not allow
multiple bricks to be stacked at the same location. Furthermore, the
weight of the gift was deliberately chosen to be unsolvable using
a single brick. These features made the problem less intuitive and
more difficult.
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Figure 1: Screencast of the Mystery Gift problem.
(Image by PhET Interactive Simulations, licensed under CC-
BY 4.0)

Successfully solving the Mystery Gift problem hinges on the
effective execution of the following problem-solving practices: data
collection, data recording, and data interpretation. First, data collec-
tion involves gathering the data needed for calculating the weight
of the mystery gift, including the weight of the brick(s) used and
their respective distances from the central pivot point. This prac-
tice entails setting up experimental trials by placing the gift and
bricks (5kg, 10kg, or 20kg) at various locations on the scale in the
Setup mode and observing how the scale would rotate in the Test
mode. Second, data recording involves maintaining a record of the
collected data through note-taking. This practice can minimize the
risk of losing track of the data from each test trial and facilitate
subsequent problem-solving. Finally, data interpretation entails
applying relevant domain knowledge, the torque formula in this
case, to analyze and interpret the collected data and calculate the
gift’s weight. Notably, these practices have also been identified and

418

LAK 24, March 18-22, 2024, Kyoto, Japan

discussed in previous research on scientific inquiry and problem-
solving [40, 47, 50, 67].

Though there is no single correct solution path for solving the
Mystery Gift problem, an expert-like approach entails systemati-
cally setting up simple trials for data collection and taking deliberate
pauses from interacting with the simulation after each trial for data
recording and interpretation. An effective problem solver would
initially place a single brick and the mystery gift at equal distances
on opposite sides of the pivot point to estimate the range of the
gift’s weight. In subsequent trials, a second brick would be delib-
erately added so that their combined torque gradually approaches
the torque exerted by the gift, ultimately balancing the scale hor-
izontally and making it possible to precisely calculate the gift’s
weight.

In terms of behavioral patterns extracted from the log data, effec-
tive data collection is evidenced by a problem solver consistently
setting up simple test trials using no more than three objects. In con-
trast, setting up a large percentage of complex trials using four or
more objects would signal a more random, trial-and-error approach
to data collection. At the same time, pause after a trial, defined
as the period when no interaction was logged in the simulation,
serve as a critical indicator for evaluating the effectiveness of data
recording and data interpretation.

We identified three types of pauses in our previous research an-
alyzing the log data of students solving the Mystery Gift problem:
mechanical, deliberate, and distracted [64]. Mechanical pauses are
less than 10 seconds and generally account for the time it takes
to view the animation of how the scale would rotate and move
the mouse cursor with minimal cognitive processing involved. In
contrast, deliberate pauses are between 10 seconds and three min-
utes and represent participants’ deliberate efforts of stepping back
from interacting with the simulation to work with the data col-
lected and/or reflect on their progress. Lastly, distracted pauses
are outliers in terms of duration (longer than three minutes) and
signal off-task behaviors. This framework for categorizing pauses is
aligned with and integrates findings from previous research exam-
ining student behavior in technology-based learning environments.
For example, Paquette et al. [39] linked exceptionally short pauses
between submission attempts to guessing behaviors in an intelli-
gent tutoring system. Perez et al. [45] found that taking sufficiently
long pauses when interacting with a circuit simulation was asso-
ciated with better learning outcomes in an inquiry task. Gobert
et al. [17] identified that rapidly running an educational simulation
without pausing to think signaled disengagement from the task
goals.

In summary, features extracted from the log data, such as the
test trials set up and pauses after a trial, can serve as useful metrics
for assessing specific problem-solving practices. These features
allow for a more in-depth comparison of data quality across diverse
groups of participants, encompassing both whether they can solve
the problem (the product) and how they work through the problem
(the process).
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3 METHODS
3.1 Materials and procedures

Two instances of the mystery gift problem were used for this study.
These two problems exhibit comparable levels of difficulty as con-
firmed by empirical pilot testing. Participants were first given a
real-world context of the problem, that they needed to weigh a
gift in order to print out a shipping label to mail the gift at home.
Subsequently, participants viewed a brief tutorial on how to use
the PhET Balancing Act simulation. They were then instructed to
solve the weight of the first gift within 15 trials as a practice round.
Afterward, participants were provided with a worked-out solution
to the practice problem. Finally, participants engaged in the test
round, in which they were asked to solve the weight of a different
gift within 15 trials. The study has been reviewed and approved by
the Institutional Review Boards (IRBs) at the authors’ institutions
(Protocol ID: 29325).

3.2 Participants

3.2.1 University. In the first experiment, we recruited students
from three parallel sections of a calculus-based college introduc-
tory level physics course in a large public university in the US. Of
the students enrolled in the course, 24% were female, 35% were from
racial or ethnic groups traditionally underrepresented in STEM dis-
ciplines, 13% were first-generation students, and the average age
was 20. The majority of students enrolled in this class were from
engineering or computer science majors. The mystery gift problem
was presented as an extra credit activity to students, using the Obo-
jobo Learning Objects Platform [14] and connected via Learning
Tools Interoperability (LTI) to the Canvas Learning Management
System (LMS). Students completed the study at a time and location
of their choice and received a small amount of extra credit for their
participation. Students would receive the full extra credit if they
correctly solved the test problem and 90% of the extra credit if their
answer was incorrect. Students enrolled in the course have studied
the concept of torque and torque balance a few weeks prior to ac-
cessing the task. The final University sample includes 325 students
(29% female).

3.2.2  Prolific. In the second experiment, we recruited 40 partici-
pants from Prolific and used the platform’s built-in pre-screener
to reach the target population. Our inclusion criteria were current
undergraduate students located in the US, majoring in a STEM
subject, and having not taken part in previous Prolific studies run
by our research team. We also requested the sample to be gender
balanced. The majority of the participants (70%) fell within the 18-
21 age range, followed by those aged 22-25 (15%), 26-29 (10%), and
30 and above (5%). 92.5% of the participants came from a four-year
university/college, and 7.5% came from a community college.

The two mystery gift problems, along with the other questions,
were embedded in an online Qualtrics survey. Participants com-
pleted the study at a time and location of their choice and were
compensated $4 for their participation in the 30-min study. They
also had the opportunity to get a $2 bonus for correctly solving the
mystery gift in the test round. Prior to introducing participants to
the problem-solving tasks, we posed two questions to gauge their
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background knowledge in physics. The first question asks partic-
ipants to self-rate how familiar they are with torque, or a force
that causes rotations, choosing from three levels: not familiar at
all/having a conceptual understanding/knowing the exact formula.
The second question asks participants to identify the correct torque
formula from four options. Based on an analysis of the log data,
four participants completed the survey but did not use the mystery
gift when interacting with the simulation and were subsequently
excluded from data analyses. The final Prolific sample includes 36
participants (47% female).

3.3 Data processing and analyses

To evaluate participants’ engagement levels, we calculated their
time spent on solving the problems based on the first and last times-
tamps in the log data and the time spent on viewing the solution
to the practice problem as recorded by the Qualtrics survey or
LMS platform. To measure participants’ outcomes on the problem-
solving task, we scored their answers to the gift’s weight into two
levels: correct and incorrect. Participants in the correct group sub-
mitted answers that came within one kilograms of the gift’s actual
weight (e.g., an answer between 54.01kg and 55.99kg would be cor-
rect when the gift weighs 55kg), while participants in the incorrect
group submitted answers that were outside of the acceptable range.
Differences in solution quality between the Prolific and University
samples were tested using the chi-square test of independence.

To quantitatively characterize participants’ work processes and
problem-solving practices/strategies, we wrote a Python script to
process the Javascript Object Notation (JSON) files recording par-
ticipants’ interactions. Three behavioral features were extracted
from individual participants’ log data: 1) total number of trials set
up when solving the problem: 2) frequency of different types of
trials (simple vs. complex), and 3) frequency of different types of
pauses (mechanical, deliberate, or distracted) after setting up each
trial.

While time-on-task provides a general account of participants’
levels of engagement, the trial- and pause-based features can help
us develop a more nuanced understanding of how individual par-
ticipants approached the task. Distributions of continuous vari-
ables were assessed using the Shapiro-Wilk test for normality. Two-
sample t-tests or Mann-Whitney U tests were then used to compare
each feature between the Prolific and University participants. A
Bonferroni adjusted alpha level was adopted to correct for multiple
comparisons.

4 RESULTS

We progress through the results in the following order to eluci-
date the comparisons between the two groups of participants: 1)
dropout rates (i.e., participants who signed up but did not finish
the study); 2) physics knowledge background; 3) engagement levels
as measured by their time spent on the tasks; 4) solution qualities;
5) problem-solving processes as captured by various behavioral
features extracted from the log data.
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4.1 Dropout rates

The dropout rate was calculated as the percentage of participants
who accessed yet did not complete the study. Among the 54 Pro-
lific participants who accessed the study, 14 (26%) terminated their
participation without completion. For the University study, a total
of 500 students opened the online module containing the study.
Among those students, 325 worked on both the practice and test
problems as recorded by the log data with matching IDs and submit-
ted their answers, resulting in a dropout rate of 35%. The difference
in dropout rates between the two samples was not statistically
significant (chi-squared (1) = 0.23, p = 0.63).

4.2 Knowledge Background

There was a large variation in Prolific participants’ background
knowledge in physics. 31% (11 out of 36) of the participants self-
reported that they were not at all familiar with the concept of
torque at the beginning of the online survey. 58% reported having
a conceptual understanding and 11% reported that they knew the
exact torque formula. In a separate multiple-choice question, 39%
of the Prolific participants correctly identified the torque formula
from a list of four options.

In contrast, all the University students were recruited from a
calculus-based introductory physics course. Torque and rotational
kinematics were covered in the course over a period of two weeks
before the study was made available to students. Therefore, it is
reasonable to expect that all University participants have at least
been exposed to the concept of torque and the torque equation. To
further evaluate University students’ knowledge in torque, we ana-
lyzed their performance on two questions that explicitly addressed
torque in the midterm exam in one section of the course. 78% of
the students managed to correctly solve at least one of the torque
questions.

4.3 Time-on-task

To understand how participants engaged with the problem-solving
tasks in the study, we compared their time spent on solving the
problems and viewing the solution to the practice problem. The
Mann-Whitney U tests were used due to non-normal distribution of
time-on-task. We found no significant difference in the time spent
on solving the practice problem, but Prolific participants overall
worked longer on the test problem than University participants.
The median time spent on the practice problem was 3.15 mins (IQR:
1.60 — 6.37 mins) for the University sample and 3.69 mins (IQR:
2.61 - 6.76 mins) for the Prolific sample. This difference was not
statistically significant (p = 0.25). On the other hand, University
students spent a median time of 1.33 mins (IQR: 0.65 — 3.37 mins)
while Prolific participants spent a median time of 3.31 mins (IQR:
1.10 - 5.00 mins) on the test problem (p = 0.003).

To better understand how participants spent their time solving
the test problem, we divided participants in each sample into two
levels based on their solution quality. Figure 2 presents the boxplots
of individual participants’ time spent on solving the test problem
grouped by sample and solution quality. We did not find a group
effect (Prolific vs. University) in the time spent on solving the test
problem among the participants who obtained the correct solu-
tion. The significant difference in time-on-task was largely driven
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by participants who did not solve the test problem. While Prolific
participants who did not reach a correct solution spent a median
of 4.27 mins (IQR: 1.15 — 5.32 mins) on the test problem, the me-
dian time-on-task was only 1.07 mins (IQR: 0.59 — 2.15 mins) for
University students at the same solution level (Mann-Whitney U
test, p < 0.001). This result suggests that there was a divergent pat-
tern of engagement among participants who did not solve the test
problem, with Prolific participants demonstrating a higher level of
engagement with the task than University participants.

group

Time on Task (mins)
.

correct incorrect
Solution to the Test Problem

Figure 2: Time spent on solving the test problem grouped by
sample and solution quality

4.4 Time spent on viewing the solution to the
practice problem

All participants were given a worked example describing how to
solve the practice problem step-by-step after attempting to solve the
problem on their own. There was no significant difference between
the two groups of participants in terms of the time spent on viewing
the solution. The median viewing time was 1.75 mins (IQR: 1.17
— 2.75 mins) for the University sample and 1.54 mins (IQR: 0.96 —
2.21 mins) for Prolific (Mann-Whitney U test, p = 0.12). We also did
not find any difference in the viewing time between University and
Prolific participants who solved the test problem or between those
who did not solve the test problem.

4.5 Solution quality

To determine the comparability of problem-solving outcomes be-
tween University and Prolific participants, we compared the per-
centage of correct solutions across the two groups. Table 1 presents
the percentage and count of participants who correctly solved the
gift’s weight in the practice and test problems. 38% of the University
participants and 28% of the Prolific participants solved the practice
problem. A chi-square test of independence showed that there was
no significant association between group membership (University
vs. Prolific) and obtaining the correct solution (chi-square (1) =
1.01, p = 0.31). For the test problem, the same percentage (42%) of
participants in the University and Prolific samples obtained the
correct solution. This result indicates that despite differences in
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their physics background knowledge, University and Prolific partic-
ipants performed about the same in terms of obtaining the correct
answers for the mystery gift problems.

Table 1: Percentage and count of correct solutions

University  Prolific

28% (10)
429 (15)

Mystery Gift I (Practice) 38% (123)
Mystery Gift II (Test) 42% (136)

4.6 Number of trials

Overall, we did not find any significant difference in the number of
trials set up in the practice or test problem across the University and
Prolific samples. The median number of trials was 14 for both the
University and Prolific participants in the practice task. This is not
surprising as the instruction asked students to solve the problem
in 15 trials or less.

At the same time, we found that a substantial number of par-
ticipants continued working on the problem despite reaching the
trial limit, as the simulation does not have a built-in mechanism
to stop the task once a certain trial count has been reached. 41%
of University students and 39% of Prolific participants set up more
than 15 trials when solving the practice problem. One exceptional
University student set up 298 trials and finally reached a correct
solution.

For the test problem, the median number of trials was 8 for
University participants and 10 for Prolific participants, though this
difference was not statistically significant (Mann-Whitney U test,
p = 0.06). The significant difference in time-on-task for the test
problem, as presented in an earlier section of the results, yet lack of
corresponding difference in the number of trials set up indicates that
the University and Prolific participants worked on the test problem
at a different pace, a key result to be discussed in a subsequent
section.

4.7 Percentage of complex trials

The percentage of complex trials is an indicator of how effective
a problem solver is at collecting data, with higher percentages of
complex trials (i.e., using four or more objects in a trial) indicat-
ing less effective data collection practice. We found no significant
difference in the percentage of complex trials set up when solv-
ing the practice (Mann-Whitney U test, p = 0.90) or test problem
(Mann-Whitney U test, p = 0.66) across the University and Prolific
samples. For participants in both groups, the median percentage
of complex trials was around 25% in the practice problem and 40%
in the test problem. The high percentage of complex trials set up
indicates that the trial-and-error approach of adding an increasing
number of objects in the hope of balancing the scale was a popular
problem-solving strategy for participants in both groups.

4.8 Percentage of deliberate pauses

The percentage of deliberate pauses (10 secs < duration < 3 mins)
during individual participant’s problem-solving process indicates
the pace at which participants worked, with a higher percentage
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corresponding to a more deliberate approach for data recording and
data interpretation. Results of the Mann-Whitney U tests showed
that Prolific participants had a higher percentage of deliberate
pauses than University students when solving the test problem
(p < 0.001). Furthermore, we found a similar pattern as the result
of the time-on-task analysis, that the difference between the two
groups was primarily driven by low-performing students who did
not reach a correct solution for the test problem.

While there was no significant difference in the percentage of
deliberate pauses between the high-performing students across
the two samples in either the practice or test problem, University
participants who did not obtain the correct solution for the test
problem had a significantly lower percentage of deliberate pauses
than Prolific participants at the same solution level (Figure 3). The
median percentage of deliberate pauses was 0% for low-performing
University participants, indicating that a substantial proportion of
those participants did not make any deliberate pause after setting
up a test trial. In contrast, the median percentage of deliberate
pauses when solving the test problem was 27% for low-performing
Prolific participants. The significant difference in the percentage of
deliberate pauses suggests that low-performing University students
made only cursory attempts to solve the test problem compared to
Prolific participants.

1.00 . .

2 0.75

group

).25

Percentage of Deliberate Pauses

0.00

correct incorrect

Solution to the Test Problem

Figure 3: Percentage of deliberate pauses grouped by sample
and solution quality

We also examined a different type of pause as captured by the log
data: distracted pauses or pauses that are longer than three minutes.
We found that the occurrence of such pauses was overall low in
both the University and Prolific samples, with a total of 39 instances
of distracted pauses belonging to 30 students (9%) in the Univer-
sity sample and three instances belonging to three participants in
the Prolific sample (8%). This result implies that neither group of
participants frequently engaged in off-task behaviors during the
study.

To summarize, our study finds that Prolific participants who
passed the pre-screener as undergraduate STEM major students
performed at a similar level in terms of solution quality on an
interactive physics problem as students in an introductory physics
course. Table 2 summarizes the results of key comparisons. We

050 B prolific
El university
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found significant differences between the University and Prolific
participants in only two log data-based behavioral features: the
time on task and the percentage of deliberate pauses when solving
the test problem.

A revealing outcome of this study is the behavioral difference
between the low-performing participants who submitted incorrect
solutions for the test problem. While the University students who
did not obtain the correct solution spent a short time on the test
problem with minimal deliberate pauses, Prolific participants were
more deliberate and worked longer on the problem. In contrast,
there was no significant differences in the engagement level or
problem-solving process between the high-performing participants
who reached the correct solutions in University and Prolific sam-
ples.

5 DISCUSSION

5.1 Summary of results

This study examined the general comparability of data obtained
through the Prolific and University subject pools using an inter-
active problem-solving task embedded in a physics simulation. In
contrast to questionnaires and surveys aimed at capturing peo-
ple’s beliefs and perceptions, the tasks used in the current study
are cognitively demanding and require the application of physics
knowledge as well as effective problem-solving practices. Further-
more, rather than relying on attention check questions at arbitrary
time points during a study, we extracted a detailed picture of in-
dividual participants’ problem-solving process based on the log
files of their interactions in the task environment. The log data
provides key indicators of the problem-solving practices adopted
by participants and makes it possible to detect and remove invalid
responses (e.g., the four participants who did not use the mystery
gift when working in the simulation yet submitted answers for the
gift’s weight in the survey).

For RQ1, we found that Prolific participants self-reported more
varied and generally less robust levels of physics background knowl-
edge compared to the University students enrolled in a physics
course. At the same time, we did not find any significant difference
in the level of behavioral engagement as measured by time-on-task
between high-performing Prolific and University participants who
reached the correct answer. On the other hand, University partic-
ipants who did not solve the problem exhibited a lower level of
behavioral engagement compared to their Prolific counterparts.

For RQ2, we found no evidence of significant differences in the
problem-solving outcomes as measured by solution quality between
the two groups of participants, despite the Prolific participants
self-reporting more varied and generally less physics background
knowledge. For RQ3, behavioral features extracted from log data
indicated that both groups of participants adopted comparable
problem-solving practices for data collection, as evidenced by the
number and types of test trials set up. However, a notable diver-
gence was observed for low-performing University students who
did not reach the correct solution. This subgroup was more likely
to rush through the task without any deliberate efforts to record
or interpret the data collected, as they made significantly fewer
deliberate pauses during the problem-solving process than Prolific
participants at the same solution quality level.
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5.2 Connections with prior research

Findings from the current study are in line with the results of pre-
vious studies that the data obtained from online research platforms
were comparable to those obtained from traditional subject pools
[20, 28, 41, 60]. Moreover, we did not find evidence for the claim
that the responses of online participants were low-quality due to
their inattentiveness or being prone to distraction [10, 11].

At the same time, this study demonstrates the utility of log data
generated in interactive learning environments for unobtrusively
capturing the problem-solving processes across diverse groups of
individuals [62]. The finding that an absence of sufficiently long
pauses during problem-solving is associated with poor performance
is in line with previous research on student behavior in technology-
based learning environments [2, 39, 45]. In addition, the study
also opens up new research directions for how we teach problem-
solving: behavioral features extracted from the log data can guide
educators in diagnosing failure modes and designing personalized
instructional interventions to enhance students’ problem-solving
competency.

Furthermore, our findings build on and extend previous research
on how time-on-task can serve as a metric for assessing student
engagement [3, 8, 34]. Specifically, we observed that the subgroup
of University students who failed to solve the Mystery Gift prob-
lem also had the shortest time-on-task. However, our findings also
caution that high levels of behavioral engagement alone do not guar-
antee success in problem-solving tasks, as the subgroup of Prolific
participants who were engaged based on time-on-task still strug-
gled to solve the problem. These results underscore the complex
interactions among engagement, domain knowledge, and problem-
solving strategies and practices that affect students’ success in
solving authentic problems.

5.3 Interpretation of results

How did the Prolific sample achieve problem-solving outcomes
comparable to those of the University sample despite reporting less
formalized knowledge of torque? One explanation lies in the real-
world and interactive characteristics of the Mystery Gift problem.
The problem differs from textbook-style questions that students
regularly practice in physics courses. Instead, it is more similar
to real-world problems and requires students to adopt a series of
effective problem-solving and decision-making practices to solve
the problem, including collecting data through interacting with the
simulation and applying relevant knowledge at the right time to
interpret the data collected [46, 50]. Furthermore, the interactive na-
ture of the simulation allows participants to build on their intuitive
understanding of factors affecting rotational force gained through
everyday experiences like playing on a seesaw and bootstrap a
formal understanding of torque, which in turn provides the domain
knowledge needed for solving the problem at hand.

The difference in time-on-task also imply that low-performing
Prolific participants devoted more effort to the problem-solving
task than their University peers. Why did low-performing Prolific
and University participants exhibit divergent engagement patterns
when working on the same problem-solving task? We postulate that
the underlying motivations and contexts substantially influenced
their respective approaches to the problem.
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Table 2: Key characteristics and comparisons of the university and Prolific samples

University Prolific

Dropout Rate

35% 26%

Mystery Gift I (Practice)
Time-on-task

Number of Trials

Percentage of Complex Trials
Percentage of Deliberate Pauses
Time on viewing the solution

3.15 mins [1.60 — 6.37]
14 [9 - 23]

25% [0 - 50%]

13% [6% - 29%)

1.75 mins [1.17 - 2.75]

3.69 mins [2.61 - 6.76]
149 - 21]

28% [0 - 43%]

29% [11% - 53%]

1.54 mins [0.96 — 2.21]

Mystery Gift II (Test)
Time-on-task”

Number of Trials

Percentage of Complex Trials
Percentage of Deliberate Pauses™

1.33 mins [0.65 — 3.37]
8[6-12]

44% [11% - 64%]

0% [0 - 33%]

3.31 mins [1.10 — 5.00]
10 [8 - 12]

41% [0 - 67%]

24% [10% — 47%]

* indicates significant differences after Bonferroni adjustment

First, the reward structure differed for the two groups, potentially
altering their performance dynamics. University students received
course credits, which is a common method employed in academic
settings to recruit students for research studies. This may unin-
tentionally contributed to a satisficing behavior where minimal
effort was sufficient to gain most of the rewards [26, 52]. In the
context of solving the Mystery Gift problem, students may not have
sufficient motivation to work hard to obtain the correct solution
when simply attempting to solve the problem and submitting a
wrong answer would give them 90% of the allotted course credits.
Prolific participants, on the other hand, received a small amount
of monetary rewards tied to performance, which has been shown
to improve effort and outcomes in tasks like Bayesian reasoning
compared to flat-fee incentives and course credits [4].

Second, Prolific’s approval rating system created an additional
layer of motivation for its participants. Participants might risk hav-
ing their submissions rejected if they complete them too hastily,
according to Prolific’s criteria [48]. Each Prolific participant has
an approval rating calculated as the number of approved submis-
sions divided by the total number of submissions. As some studies
would only recruit participants with an approval rating of 95% or
higher, participants are motivated to put in the effort and avoid
their submissions being rejected. This is unlike the University con-
text, where students face no such approval rating or reputational
risk, possibly affecting their level of engagement in the study.

Finally, the timing of the study offers another contextual layer for
understanding these differing behaviors. While the Prolific study
did not coincide with any particular period, the University study
was conducted during the final exam study period, a time when stu-
dents typically have a heavy workload with final assignments and
exams. Previous research indicates a notable drop in intrinsic moti-
vation and performance in such academic conditions compared to
early in the semester, specifically for those receiving course credits
[35]. It is possible that a subset of University students experienced
low levels of intrinsic motivation or limited availability due to the
timing of the study, preventing them from fully engaging in the
problem-solving tasks.
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5.4 Limitations and Future Research

One limitation of the current study is the differing proportions of
female students between the two samples, which may influence the
results. On the other hand, the ability to recruit a higher percentage
of female participants through crowdsourcing platforms may be a
notable advantage, as this can help educational researcher better
understand female students’ experiences in STEM education. An-
other limitation not fully addressed by this study is the sampling
bias due to online participants “self-selecting” into the study or
dropping out of the study without completion [31, 68]. We did not
collect data on the reasons for choosing to enroll in this specific
study from Prolific participants. We also have no insights into why
a total of 14 (26%) participants dropped out of the study as the
platform precludes researchers from accessing the information of
participants who exited the study without completion. It is possi-
ble that only students who are interested in physics and/or have
a high self-efficacy in physics chose to participate and finish the
study in the first place. We should note that this potential sampling
bias also applies to traditional studies, as we observed a dropout
rate of 35% from the University participants. Future studies should
investigate what motivates students to participate in studies that
employ cognitively demanding tasks and what the considerations
are for choosing to drop out without completion.

6 CONCLUSION

This study lends support to the view that online crowdsourcing
research platforms “provide education researchers with a workable
complement to traditional sampling methods and may be particu-
larly applicable for research whose aim is to study characteristics
of college-aged and adult learners” [13]. There are several advan-
tages to conducting education research on crowdsourcing platforms,
including a streamlined and simplified data collection cycle, the
ability to efficiently obtain a sample from the target population
using prescreeners, and the capacity to support various experi-
mental designs such as randomization and longitudinal studies by
integrating with online survey platforms. Our findings also indi-
cate that there are several important practices that should be taken
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into account to ensure data quality when conducting educational
research on Prolific. These practices include 1) incorporating ques-
tions to gauge participants’ background knowledge, thus allowing
for a more precise contextualization of the study’s findings; and 2)
deploying technology-based learning environments and learning
analytics techniques to capture nuanced behavioral indicators for
participants’ work processes, such as time-on-task and other log
data-based features. With careful study design and data-rich digi-
tal task environments, crowdsourcing platforms can be useful for
empirical research in education, allowing for piloting innovative
instructional and assessment tasks as well as examining the efficacy
of specific educational interventions efficiently and at scale.
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