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ABSTRACT Using fingerphoto images acquired from mobile cameras, low-quality sensors, or crime
scenes, it has become a challenge for automated identification systems to verify the identity due to various
acquisition distortions. A significant type of photometric distortion that notably reduces the quality of a
fingerphoto is the blurring of the image. This paper proposes a deep fingerphoto deblurring model to restore
the ridge information degraded by the image blurring. As the core of our model, we utilize a conditional
Generative Adversarial Network (cGAN) to learn the distribution of natural ridge patterns. We perform
several modifications to enhance the quality of the reconstructed (deblurred) fingerphotos by our proposed
model. First, we develop a multi-stage GAN to learn the ridge distribution in a coarse-to-fine framework.
This framework enables the model to maintain the consistency of the ridge deblurring process at different
resolutions. Second, we propose a guided attention module that helps the generator to focus mainly on
blurred regions. Third, we incorporate a deep fingerphoto verifier as an auxiliary adaptive loss function to
force the generator to preserve the ID information during the deblurring process. Finally, we evaluate the
effectiveness of the proposed model through extensive experiments on multiple public fingerphoto datasets
as well as real-world blurred fingerphotos. In particular, our method achieves 5.2 dB, 8.7%, and 7.6%
improvement in PSNR, AUC, and EER, respectively, compared to a state-of-the-art deblurring method.

INDEX TERMS Biometrics, contactless fingerprints, fingerphoto deblurring, generative adversarial
networks, guided attention, multi-stage generative architecture.

. INTRODUCTION

DENTIFYING humans with unique biometric features
Iis a tremendous advantage to security and identification
tasks. It offers immense benefits in cases such as crime-
solving, evidence collection, and human verification and
authorization. Recent advances in deep learning have demon-
strated promising performance in biometric identification [1].
Zhao and Kumar [2] proposed a deep model to learn descrip-
tive iris features for iris recognition. Taigman et.al. [3] used
a deep learning approach to learn face representation and
alignment such that a simple classifier could recognize the
face ID. Even though real-world applications adopt traits like
the iris and face in several biometric systems, they still have
limitations. For instance, current iris acquisition systems
require significant cooperation from the subject, whereas
face images are prone to manipulation or pose variations.
Compared to other biometric traits, fingerprints have several
advantages. First of all, the fingerprints contain such unique

features that a partial sample is sufficient for identification,
and even different fingers of the same person have different
unique patterns which, in combination, can provide abun-
dant evidence for identification [4]. This phenomenon makes
fingerprints one of the most robust biometric modalities for
identification purposes.

In crime scene investigations, unlike other traits, finger-
prints leave traces after the interaction of individuals with
their surrounding objects that can be used to verify their
presence in the area. It is a major advantage that allows law
enforcement officials to identify potential suspects. The ease
of collecting fingerprints using a wide range of capturing
devices, such as mobile cameras, ink, sensors, efc., is an
exceptional feature of the fingerprint. Based on the collection
techniques, the fingerprint samples are divided into contact-
based, i.e., collected using a sensor that requires physical
interaction and contact with a surface, or contactless, refer-
ring to the process of capturing fingerprints with a digital
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(a) Blurred fingerphoto (b) Ground truth

(d) Ous

(c) DeblurGAN-v2

FIGURE 1. Comparison of deblurred images by DeblurGAN-v2 [5] and our
method. Image (a) is a blurred sample. (b) Corresponding ground truth
fingerphoto. (c) Deblurred fingerphoto from DeblurGAN-v2, and (d) is the
deblurred fingerphoto by our proposed model. The highlighted regions in the
red blocks show the superiority of our method in ridge reconstruction during
deblurring.

camera or a smartphone. Hence, under many circumstances
where a quick, hygienic, and reliable verification is required,
fingerphotos are certainly ideal. These include on-the-go
quick person recognition and all other cases where the legacy
contact-based fingerprints were being used [6], [7].

Although they have several benefits compared to contact-
based samples, the recognition systems for fingerphotos cap-
tured in the wild need to be more accurate due to the dis-
tortions which need to be addressed sufficiently [8]. Photos
of latent impressions acquired from crime scenes or samples
captured by law enforcement agents using a smartphone’s
camera may not exhibit the same quality as contact-based
fingerprints. The photometric distortion often deteriorates the
quality of fingerphotos. It is mainly caused by the non-ideal
conditions of the capturing device, i.e., out-of-focus lens, mo-
tion blur, perspective distortion, etc [9]. Blurring is a common
type of photometric distortion that can be caused by several
factors, such as human errors, trembling fingers, a slow frame
rate of the capturing sensor [10], inappropriate focusing of
the camera, or intentional blurring by malicious users to
evade being identified. Recognition of such blurred samples
is a cumbersome task that even state-of-the-art systems may
fail to accomplish. Therefore, deblurring is an ineluctable
step in the recognition of blurred fingerphotos.

Since the emergence of generative adversarial networks
(GAN) [11], generative tasks like image restoration and
translation have become far more efficient and reliable. With
the advent of different approaches and recent developments,
GAN training has become stable enough to produce realistic
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images under specific conditional settings. Hence, condi-
tional GAN (cGAN) models [12] have become the principal
approach for image restoration tasks, such as image deblur-
ring [5], [13], [14], [15], [16], partial image reconstruction
[17], [18], or natural image denoising and inpainting [19],
[20], [21], [22]. Previous works on natural image deblur-
ring have extensively adopted convolutional neural networks
(CNN) for deblurring. However, the shortcoming of algo-
rithms trained with natural images is that they may not
be well-suited for fingerprint ridge patterns. The algorithms
[15], [23], [24], [25] that address a particular type of blurring
effect may not be helpful in real-world scenarios, where the
blurring magnitude and kernels are entirely arbitrary.

The techniques based on the generative models and the
fusion of the image characteristics perform well in deblur-
ring. Zheng et.al. [14] used edge heuristics and a GAN model
to remove the non-uniform blurring from dynamic scenes.
This model deblurs the images precisely, but its performance
may plunge if the underlying identity (ID) information needs
to be preserved. Another approach uses the statistical and
physical features of the blurring kernel to remove the blurring
effect. The authors in [26] proposed a mathematical model-
based technique to deblur Gaussian or motion blur. This
method does not require vast amounts of blurred images to
train and can still produce state-of-the-art deblurred images.
Nevertheless, this method may not be as effective due to
the abnormal randomness in blurring kernels of real-world
blurred images.

Here, we seek to address the blurring problem in finger-
photos using a deep deblurring model. We treat this problem
as a domain translation task in which the source and target
domains are blurred and clean fingerphotos, respectively. We
develop a deep model to learn the inverse mapping between
the two domains given a large dataset of synthetically blurred
fingerphoto samples with multiple types of blurring kernels
such as Gaussian, motion, and defocusing. The proposed
deep convolutional neural network model accepts a blurred
fingerphoto and returns the deblurred version. Here, we use
c¢GAN architecture consisting of a generator and discrimina-
tor subnetworks as the base model for the deblurring task and
enhance its functionality by considering four modifications to
the cGAN architecture. In the first modification, we extract
the intermediate features from different layers of the gen-
erator and feed them to their corresponding discriminators,
which allows the generator to capture ridge information at
different scales, from coarse ridge patterns to fine ridge
details. In the second modification, we use a deep fingerphoto
verifier to force the generator to preserve the ID of the
deblurred fingerphotos during the deblurring process.

Contrary to other image deblurring tasks, in fingerphoto
deblurring, the ridges encompass unique structures and prop-
erties that represent the fingerphoto ID information. The
deblurring process may alter this information by adding spu-
rious ridge/valley patterns and removing the critical minutiae
information. Hence, we use a pre-trained deep fingerphoto
verifier as an additional loss term to ensure that the gen-
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erator is preserving the fingerphoto’s ID information while
deblurring fingerphotos. In the third modification, we use a
guided attention block to force the network to pay attention
to the partially blurred regions in the fingerphotos. This way,
the trained network is agnostic to blurred and sharp region
imbalance in defocused images. Lastly, we introduce a multi-
task learning approach to effectively augment the training su-
pervision and help the model specialize in different types of
blurring. To this aim, we design an additional task of blurring
type classification. All the auxiliary modules, discriminators,
and verifiers work simultaneously to enhance the deblurring
process. A sample result of deblurring using the proposed
model and a state-of-the-art method DeblurGAN-v2 [5] is
shown in Figure 1. In summary, our contributions are as
follows:

e We propose a deep multi-task, multi-stage generative
model to solve the challenging task of ridge deblurring
process in fingerphotos that has not been previously
addressed by biometrics researchers.

o A deep fingerphoto verifier is incorporated to force the
generator to preserve the ID and ridge information of
fingerphotos during the deblurring process.

o The performance of deblurring is further enhanced by
designing a multi-stage generative process based on
coarse-to-fine supervision.

« We additionally use guided-attention and multi-task
learning approaches to increase the robustness of the
model towards non-uniform and partial blurring with
complex blurring kernels.

Further, in Section II, we review previous work. Then,
section III illustrates the proposed method, and later in the
paper, Sections IV & V present the experimentation and
an extensive ablation study, respectively. Finally, Section VI
concludes the paper.

Il. RELATED WORK

In this section, we first review the literature on fingerphoto
data acquisition and preprocessing. Then, we discuss the
recent advancements in image deblurring, especially the
methods based on deep learning. Then, we discuss several
techniques we built upon to improve the performance of the
proposed deblurring model, including multi-task learning,
attention mechanism, and the approach to preserve the iden-
tification information during the image generation process.

A. FINGERPHOTO DATA ACQUISITION AND
PREPROCESSING

Automated fingerphoto identification systems consist of three
major parts, data acquisition, preprocessing, and match-
ing [27], [28], [9]. Multiple techniques have been devel-
oped for fingerphoto acquisition. Compared to expensive
contact-based fingerprint-specific sensors, digital cameras
are cheaper and readily available since they are embedded
in most smartphones. Due to this ubiquity, smartphones have
drawn notable attention in biometrics. The authors in [29],
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[30], and [31] use smartphone cameras to capture finger-
photos whereas, other researchers [32], [33], [34] use digital
cameras to acquire fingerphotos. Stein et al. [35] explored
the data acquisition and quality assurance methods necessary
to realize a reliable fingerphoto recognition system using an
edge density metric based on the sharpness of the captured
image.

Samples collected from contactless sensors or smartphone
cameras often suffer from degradation, such as low ridge-
valley contrast and perspective distortion. Several prepro-
cessing algorithms have been developed to enhance the qual-
ity of fingerphotos. Lee et al. [36] proposed a preprocessing
algorithm for finger images captured using a mobile camera.
The proposed method involves segmentation and orienta-
tion estimation of the image. The common preprocessing
approaches usually involve enhancing the ridge patterns [37],
[38], [39], [40], and correcting the perspective distortion [41],
[42].

The last step in identification systems is feature extraction
and matching fingerphotos. The performance of current al-
gorithms for feature extraction and matching depends highly
on the quality of the input samples. Many studies have been
conducted to improve feature extraction [42], [43], [44]. In
[34], the authors surveyed several touchless recognition tech-
nologies and studied non-idealities such as blur, defocusing,
noise, and perspective distortion that arise during fingerphoto
acquisition. However, the previous methods do not address
the problem of motion blur or defocusing issues that affect
the fingerphoto recognition performance.

B. IMAGE DEBLURRING

While working with low-quality fingerphotos, such as blurred
or distorted images, additional preprocessing steps, such
as deblurring, are inevitable. The deep learning literature
presents numerous algorithms and techniques to undertake
image deblurring. However, these techniques are imple-
mented on natural images [5], [14], [15], [16] or other bio-
metric modalities such as faces [45], [46]. To the best of our
knowledge, the fingerphoto deblurring problem has yet to be
addressed profoundly in the literature.

Based on prior information about the blurring kernel,
deblurring can be classified into two types: blind and non-
blind. In blind deblurring, the kernel of the blurring effect
is unknown. Therefore, some algorithms have been proposed
to estimate the blurring kernel and remove the blur from the
image [23], [47], [24]. Approaches without kernel estimation
use image information and learn to deblur the images [5],
[15], [48]. On the other hand, in non-blind deblurring, the
blurring kernel is known. One of the techniques in non-
blind deblurring uses statistical information about the blur-
ring kernel to deblur the image [49], [50], [51]. Several
attempts have been made in the literature to deblur images
with different blurring causes, such as motion blur, Gaus-
sian blur, defocusing, etc. For instance, [5] used a feature
pyramid network as a generator with a GAN-based learning
model to remove motion blur from natural images. Using a
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double-scale discriminator and lightweight backbones, they
improved deblurring accuracy and efficiency. The work pre-
sented in [52], [53], and [54] used a coarse-to-fine strategy
such that, at every scale, a sharp latent image is produced.

Existing methods for deblurring biometric images are pri-
marily focused on other biometric traits such as iris [55],
[56], face [45], [46], [57] and hand-based biometric traits
such as palm prints [58] or finger wrinkles [13]. Cho et
al. [13] proposed a GAN-based model for deblurring finger
wrinkles for authentication. Despite the potential usefulness
of contactless fingerprint recognition, fingerphoto deblurring
has not received sufficient attention. Even though deep image
deblurring models achieve much higher accuracy, a deblurred
fingerphoto needs ID preservation in order to be accurately
matched with the ground truth fingerphoto.

C. PRESERVING ID INFORMATION

Although generative models like GANs are applicable in
synthesizing samples from a given dataset, it may be nec-
essary to preserve the semantic information of the input
images. Specifically, in the case of biometric data, identity
information is crucial for further identification processes. A
plethora of algorithms has been proposed to preserve ID
information during generative processes. Algorithms based
on natural image generation use some distance measure to
minimize the distance between the synthetic and real image
[51, [15], [52]. To further improve the performance of ID-
specific data, algorithms were proposed to minimize the
distance between the embedding of the real and generated
images. In order to achieve this, [17], [31], [59], [60], [61]
used the Lo norm distance on the features extracted from
some pre-trained network which is trained on the data of
the corresponding domain. The efforts discussed in [62] &
[63] used cross-entropy-based identity loss to preserve the ID
during image generation. Authors in [64], [65], [66] proposed
some manipulations in the GAN architecture along with
a combination of some distance measures to preserve the
identity better.

D. MULTI-TASK LEARNING

Multi-task learning has demonstrated its significance in sev-
eral deep learning applications such as classification [67],
[68], [69], restoration [70], [71], [72] and translation [73],
[74]. Ranjan et al. [75] used a multi-task learning-based
approach for face detection, landmark localization, pose es-
timation, and gender recognition. They show that the feature
fusion and learning inter-related tasks helped the network to
better generalize on each task. Dai er al. [76] used multi-task
learning for a semantic segmentation task and simultaneously
improved object detection accuracy. Although multi-task
learning is not explored enough for the deblurring task, the
algorithm in [74] learns to deblur the image and generate a
motion field simultaneously. The significant improvement in
deblurring performance shows its effectiveness in removing
motion blur from dynamic scenes.
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E. ATTENTION MECHANISM

After outstanding achievements in natural language process-
ing, attention mechanisms have demonstrated their useful-
ness in the computer vision field for a long time. The authors
in [77], [78], and [79] showed the phenomenal benefits of
visual attention in deep neural networks. The work in [77]
used the recurrent neural network and LSTM-based attention
to generate image captions. In [78], the authors proposed a
network to generate images from a given text. They applied
the attention mechanism on multiple scales throughout the
generator of the GAN model to achieve a fine-grained image
reconstruction. Attention has also been used in domain trans-
lation tasks such as image deblurring. Suin et al. [80] used
self-attention on a patch-hierarchical architecture to remove
motion blurring in dynamic scenes. Shen et al. [81] proposed
human-aware attention, which uses a supervised method to
incorporate human awareness into the attention map.

lll. PROPOSED METHOD

In this section, we describe our proposed framework con-
sisting of a cGAN deblurring network with auxiliary sub-
networks arranged to perform accurate deblurring of fin-
gerphotos. Furthermore, in this section, we first go through
the conditional GAN, then discuss the multi-stage deblur-
ring scheme followed by the ID preservation technique,
guided-attention mechanism, and multi-task learning ap-
proach. Lastly, we discuss the overall objective function and
the proposed network architecture. The equations follow the
following notations: bold lower case letters denote vectors,
upper case letters denote functions, whereas calligraphic
upper case letters represent sets.

A. CONDITIONAL GAN

When it comes to cross-domain transformation, GAN models
[11], [12], [82] are the most popular generative networks.
The original GAN maps the input sample z from a known
random distribution p.(Z) to the target domain such that
y = G(2,04) : z — y, where O represents the trained
parameters of the network. GANs generally consist of two
networks, a generator, and a discriminator. The role of the
generator is to produce accurate images of the target domain,
whereas the discriminator distinguishes between the gener-
ated sample and the corresponding real sample. The feedback
from the discriminator acts as an adaptive loss to guide the
generator to do better in the transformation. In a nutshell,
there is a min-max game going on between generator G and
discriminator D. The objective function for a GAN is as
follows:

Ocan (G, D) =Eyp,,,.(logD(y)]
+ EZNPz(z) [lOg(l - D(G(z)))]a

where, given the ground truth as y, the generator, G, tries
to minimize the objective function, and the discriminator, D,
maximizes it.

In [82], Isola et al. proposed a modification to the GAN
model for training it in a constrained manner. In conventional

ey
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GAN:Ss, the input to the generator is from a predefined random
distribution. Hence, the generator learns a mapping between
the sample distribution and the unknown distribution of the
target domain from which a set of training images are given.
For cross-domain image translation, samples & from the
source domain are added as the input to the network. The
discriminator is also conditioned with the concatenated input
of the target domain and the generated sample. After the
modifications, the adversarial objective function becomes:
Ocgan (G, D) = Egnp,,., [logD(x, y)]
+Eznpy,[log(l — D(z, G(2)))]-

An additional Ly or L; loss term is added to the objective
function to calculate the error between the input and output
such that it penalizes the generator for creating dissimilar
outputs. The final optimization objective of the generative
model is as follows:

2)

Goptimal - mén mgXOcGAN(Gy D) + )‘LLl (y» G)v (3)

where ) is the Lagrangian coefficient to control the relative
strength of the reconstruction loss and y is the ground truth
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fingerphoto. The L; distance is given by:

Lr,(y,G) = |y = G(2)|h- @)

B. MULTI-STAGE DEBLURRING

Inspired by the multi-scale discriminator approach in [83],
we develop an additional modification to the cGAN model.
We introduce a multi-stage scheme to the deblurring network
to leverage the underlying low-level information at different
resolutions and avoid erroneous fingerphoto reconstruction.
Fingerphotos naturally contain features at different scales
(level-1 to level-3 features). Therefore, analyzing the quality
of generated fingerphotos at different stages has the poten-
tial to provide more valuable information for training the
network. To this aim, in addition to the final output of the
generator G that has the spatial size of 256 x 256, we extract
the intermediate feature maps from different layers of the de-
coder of the generator with spatial sizes 64 x 64 and 128 x 128
and force them to reconstruct the deblurred fingerphotos.
Each of the three outputs at different resolutions is then
passed to a dedicated discriminator to produce the adversarial
loss. In this way, we create a multi-adversarial game between
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the generator G and three different discriminators Dy, Ds,
and Dsg, as illustrated in Figure 2.

This multi-stage adversarial scheme provides additional
supervision for the training of the generator by using multi-
scale features and corresponding ground truth images. Note
that the supervision for the intermediate stages can be con-
veniently obtained by downsampling the ground truth tar-
get fingerphotos. The intermediate layers convey features
representing the deblurred fingerphotos at lower resolutions.
The multi-stage approach allows the model to exploit this
information and enhance the deblurring, even at early stages.
Hence, the generator is guided more accurately toward esti-
mating the deblurred fingerphoto. To construct a deblurred
image from the intermediate feature maps, we use a 1 x 1
convolution that shrinks the depth information of feature
maps to generate a deblurred fingerphoto image. Afterward,
we compare each intermediate deblurred image against its
down-sampled version of the ground truth fingerphoto. Given
a blurred input fingerphoto, x, the generator, G, reconstructs
three deblurred fingerphotos @}, 2, and 3 at resolutions of
64 x 64, 128 x 128, and 256 x 256, respectively. Further, we
downsample the original ground truth fingerphoto to 64 x 64,
128 x 128, given by ! and x2, respectively. The original
ground truth &3 has the resolution of 256 x 256 therefore,
we use it without any downsampling and apply the L; recon-
struction loss on all the three of them to directly supervise
the generation process. Our modified objective function for
training the model is:

Occan(G, Dy, Ds, D3) =
Be.pon., o8 (Dr(wh,21)
+log (Da(z}, x2)) + log (D3 (}, z2))]
+ Eay~Puara [ l0g (1 = Di(y, x)))
+log (1 — Da(z7, x2))
+1log (1 — Ds(x}, )],

where, {x},x?, @3} are the blurred input fingerphotos at
resolution of 64 x 64, 128 x 128, and 256 x 256, respectively.
As given in Eq. 2, the conditional GAN uses the input image
as a condition on the discriminator. In our case, these blurred
fingerphotos work as the condition on the corresponding dis-
criminator. Therefore each discriminator observes the blurred
fingerphoto concatenated with the deblurred version and the
blurred fingerphoto concatenated with the ground truth.

For the deblurring task, the training data for the source
and target domains are available or can be generated synthet-
ically. Therefore, we use the above model as the core network
of our deblurring model. It accepts blurred fingerphotos and
maps them to their corresponding deblurred images. Figure
3 shows the deblurred fingerphotos at different resolutions.
However, unlike other natural imagery, biometric images
contain identity-specific information that needs to be pre-
served during the deblurring. To this aim, we incorporate
a deep fingerphoto verifier module to preserve the identity
information [17]. This module also helps improve the de-
blurring performance through the loss function defined on

(&)
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FIGURE 3. Shows the intermediate outputs along with input and ground truth
fingerphotos. (a) The blurred input fingerphoto, (b) the ground truth
fingerphoto, (c) the first intermediate deblurred output of size 64 x 64, (d) the
second intermediate deblurred output of size 128 x 128, and (e) the final
deblurred output of size 256 x 256. The low-resolution images are upscaled to
256 x 256 for better visualization.

the identification similarity of the generated and ground truth
fingerphotos, which acts as a perceptual similarity loss [84].
The decomposition of the deblurring task using a multi-stage
approach along with a verifier network showed promising
results on the test datasets. Due to the multi-stage approach
in the proposed method, unlike a traditional GAN, we have
three L; reconstruction loss terms. They compute the dis-
tance between the intermediate deblurred fingerphotos and
the ground truth fingerphotos such that, during the training,
the error from the intermediate layers is minimized. The
reconstruction loss is given by:

3
Lp,(®,G) = > \llal — @i |1, (6)
i=1

where ¢ indicates the index of the intermediate layer in the
generator used to extract the features and ’ is the ground
truth at the resolution of the 7*" layer. The scaling coefficients
A1, Ao, and A3 are selected using grid search and set to
0.1, 0.4, and 0.6, respectively. Therefore, from Eq. 3, the
objective function becomes:

Goptimal = Hgn mSXOcGAN (Ga Dl» D27 DS)

(N
+ L L1 (IZZ S5 G ) .

C. ID PRESERVING NETWORK

While the multi-stage network deblurs the input fingerphotos
using adversarial and reconstruction loss, the underlying ID
information, which is crucial for further fingerphoto recog-
nition, may not be preserved. The synthesized fingerphotos
from the generator are the transformed representations of the
source images; hence, they may look similar to the sources.
However, there is no guarantee that the set of minutia points
in the source and generated fingerphotos match. To deal with
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Blurring Mask

Guided-Attention Block

FIGURE 4. Guided-Attention (GA) block. 72; and f@a are the generated
attention map and output feature maps after applying the attention,
respectively. Here, dotted lines represent connections that are used only
during the training. BN in the diagram represents 2D Batch Normalization.

this problem, we introduce a Siamese Res-Net18 [85] based
verifier network, V', which takes the final output, ar:f, of
the generator, GG, and the ground truth fingerphoto, a:f It
then returns a feature vector for each image that represents
the ID information from each fingerphotos. We compute
the Euclidean distance between the two to construct the ID
preserving loss as:

Ly(V,G) = |[V(x3) = V(2))]I3. ®)

where, V(x3) and V(x3) are the feature vectors for the
ground truth fingerphoto, &2, and reconstructed fingerphoto,
a3, respectively. This loss is minimized to make the feature
representations as close as possible to one another. With this
approach, we observe in Section V-C and Figure 17 that the
deblurred fingerphotos have an almost identical set of minutia
points as the corresponding sharp fingerphotos.

Even though the verifier loss L, helps produce better
results, we use the perceptual loss as another measure to
leverage the verifier network fully. The authors in [84] have
shown the merits of using perceptual loss for style transfer
and image reconstruction tasks. To achieve a perceptual
similarity between the generated and ground truth images, we
compare them with the embeddings of a pre-trained model.
A lower distance in the embedding of the pre-trained model
implies that the two input fingerphotos are more similar
to each other. Perceptual loss extracted from intermediate
layers of VGG-19 [86] like CNN is widely adapted in image
generation models [87], [88], [89]. This approach works
well on natural images [5], [15], [90]. However, the major
difference between natural images and fingerphotos is that
the latter is more like a textured pattern than an object or a
scene. Therefore, inspired by [17], we use a perceptual loss
based on the ID of the fingerphoto, which is obtained from
the same verifier network. Adding the Lo loss computed on
all the intermediate representations of the verifier balances
the similarity of higher-level features, such as the coarse
ridge formation, and lower-level features, such as pores and
minutiae, between the generated fingerphoto and the ground
truth fingerphoto. This perceptual loss is computed on three
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(a) (b) (c) (d)

FIGURE 5. A blurred sample generated using a Gaussian blurring kernel and
the corresponding attention maps. Figure (a) shows the blurred fingerphoto, (b)
is the corresponding partial blurring mask, (c) shows the generated attention
map at resolution 64 x 64, and (d) shows the generated attention map at
resolution 128 x 128. In the blurring mask and attention maps, the white area
represents the blurred region where attention is being paid. For the samples
where the whole fingerphoto is blurred, the blurring mask is one everywhere.

intermediate layers and is defined as:

3
Lypere(V,G) = Y _ |V (22)i — V(22)ill2, ©)
i=1

where 7 is the index of the residual block in the verifier
network.

D. GUIDED-ATTENTION MECHANISM

The spatial attention mechanism is known to weigh the
elements in the input feature maps such that the important el-
ements are highlighted. In real-world scenarios, the blurring
effect is often non-uniform, causing some parts of the finger
to be blurred more intensively than other regions, referred
to as local blurring. In such cases, some part of the image
is still visible, which the network can easily exploit and
generate random ridge patterns based on the visible ones. To
mitigate this problem, we resort to the attention mechanism.
The spatial attention block takes feature maps and produces
the attention map, which is then applied to the same features.
In this way, the deblurring model attends to the blurred region
of the fingerphoto and refrains from emphasizing the visible
(easy-to-reconstruct) regions. We use the last two layers of
size 64 x 64 and 128 x 128 of the generator to add the guided
attention (GA) block. The attention block is demonstrated in
Figure 4.

Given the input features, fé, where 7 is the index of the
corresponding layer, the GA block calculates an attention
map, 7', using a 1 x 1 convolutional layer followed by
the Sigmoid function. Each attention map is a single-channel
tensor with values in the range [0, 1]. Figure 5 shows the gen-
erated attention maps at different resolutions along with the
blurring masks. At each resolution, it multiplies the predicted
attention map with the corresponding input feature maps and
applies batch normalization (BN). Finally, we add the input
feature maps, j"g, to the attended feature maps to generate
the final output features, ffla. In the case of fingerphotos that
are locally blurred, the sharp regions in the fingerphoto may
affect the attention map on the blurred regions. Therefore,
during the training, we provide additional guidance to the
attention map using a blurring mask, m?, generated while
applying the blurring kernel. We force the predicted attention
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map, ™', to be similar to the ground truth blurring mask,
which ensures that the attention is focused on the blurred
region. The guided attention generation loss is given by:

Lattn = || — m'||;. (10)

E. MULTI-TASK LEARNING MODEL

During the initial phase of training the network, we observed
that the model was not robust to estimate the correct blurring
type. It causes problems since if two blurring types are sim-
ilar, the network may confuse them and generate degraded
quality output. Hence, we added another task to explicitly
force the model to identify the blurring type during the
deblurring process. The multi-task learning (MTL) approach
has shown that learning interrelated tasks can help each
other and the primary task [91], [75], [74]. Therefore, we
incorporate MTL into our network and show that learning
relatively simple and small sub-tasks together with a primary
task works well. In the entire network, we have a primary task
of deblurring, a sub-task of predicting the blurring type, and
a virtual task of generating the blurring mask. To implement
this, we first branch out the features from the second-to-last
layer of the decoder and pass it to a fully connected layer.
It then produces two predictions of the blurring type (either
Gaussian or motion blurring). Here, we minimize the cross-
entropy loss to get an accurate prediction of the blurring type.
It is given as follows:

(1—y)log(l—p)), (A1)

where, y indicates ground truth blurring type and p indicates
predicted blurring type.

As mentioned above, we learned the virtual task of gen-
erating a blurring mask. In the attention module described
in Section III-D, we use the intermediate features and force
them to be like the blurring mask. This reconstructed mask
works as the attention which highlights the blurred area of
a partially blurred fingerphoto. These two sub-tasks support
the deblurring task of generating sharp fingerphotos. Later in
Section V-E, we empirically validate that adding the MTL
module improves deblurring performance.

Lee = _(y 10g(p) +

F. OBJECTIVE FUNCTION

The total objective function of the generator is the addition
of all the cost terms described before. Therefore, the updated
cost function from Eq. 7 is given by:

Goptimal = mén mgXOcGAN(Ga D+, Dy, Ds)
+ LL1 (wsv G)
+ >\1)L1)(‘/7 G) + /\percherc(Va G)
+ )\attnLattn + AceLce-

12)

The scaling coefficients A, Aperc, Aattns Ace, and the As used
for the reconstruction loss in Eq. 6, were chosen empirically
and are set to the best performance values. We evaluate
the effectiveness of each loss term in the overall objective
function further in Section V.
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G. NETWORK ARCHITECTURE

As stated in Section I, the base of the proposed deblurring
network is a cGAN model, which deblurs the input image.
The generator G is a U-Net [82], [92] based network. The
U-Net architecture has skip connections from the encoder
to the decoder to preserve the residual information during
the training. In the encoder section, we have eight blocks of
4 x 4 convolutional layers along with batch normalization
and ReLU activation. Here, to reduce the spatial size of the
image, we use a stride of two instead of a pooling operation
in the convolutional layers. The decoder section also has
eight blocks having transposed convolutional layers with
batch normalization, ReLU activation, and a stride of two to
upsample the image. The discriminator network is a three-
layer PatchGAN discriminator [82]. It classifies the image
as real or fake on every 70 x 70 patch of the output of the
generator and the ground truth fingerphotos from the target
domain. It has five 4 x 4 convolutional layers, each followed
by batch normalization and LeakyReLU activation. Out of
five, the first three convolutions have a stride of two, and
the rest have a stride of 1. Figure 2 shows the details of our
proposed architecture.

The ID preserving network i.e., the verifier is a Siamese
network [93] trained with contrastive loss [93] using a
ResNet-18 [85] architecture. While training the proposed
model, we froze the weights of the verifier and used it for
feature extraction. This network gets the same input as the
last discriminator, D3, in Figure 2 and compares the two fin-
gerphoto samples. During this, we extract the features from
convl, conv2_x, and conv4_x of the ResNet-18 architecture
in the verifier and compute the Ly loss on each. Further, the
guided attention block has a 1 x 1 convolutional layer fol-
lowed by batch normalization and Sigmoid activation. Lastly,
for predicting the blurring type, we use a fully connected
layer that accepts 128 features and maps them to two outputs.
These 128 features are obtained by applying global average
pooling on the penultimate feature maps in the generator
model.

IV. EXPERIMENTS

In this section, we elaborate on the training setup, experi-
ments, and ablation studies performed to evaluate the pro-
posed model. First, training details and datasets are dis-
cussed in Section IV-A and IV-B, respectively. Then, section
IV-C illustrates the evaluation criteria and methods followed
by Section IV-D, which goes through a comparison with
the state-of-the-art deblurring method (i.e., DeblurGAN-v2).
Lastly, in Section IV-E, we present the evaluation of our
approach on real-world blurred fingerphotos.

A. TRAINING

We trained the proposed model for 200 epochs with two
Nvidia Titan X GPUs. The Adam optimizer [94] is used as
the optimizer with an initial learning rate of 2 x 10~%. The
momentum parameters used are: §; = 0.5 and By = 0.999,
and the batch size of 16 was used during the training. The
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Gaussian

Motion

(a) Ground
Truth

(b) Low (c) Mid (d) High

FIGURE 6. Sample blurred input fingerphotos with low to high parameter
values for the blurring kernels. Column (a) shows the ground truth fingerphoto.
The first row contains a sample blurred using the Gaussian blurring kernel with
o values mentioned at the top right corner of the image. The second row
shows the sample blurred using motion blurring kernel using the parameter
values shown at the top right corner of each image.

TABLE 1. Mean and standard deviation of the score distributions for the
matching experiments on blurred fingerphotos using our deep verifier, the
commercial VeriFinger SDK v10.0, and IDKit SDK v8.0 matchers. The
distributions belong to genuine, impostor, and combined pairs. The scores
from each matcher are normalized between 0 and 1.

. Combined Genuine Impostor
Verifier
Mean Std Mean Std Mean Std
Deep Verifier 0.5477  0.2323 | 0.4584 0.2421 | 0.6186 0.1931
VeriFinger SDK V10.0 | 0.024 0.092 | 0.0601 0.1519 | 0.0814 0.1856
IDKit SDK v8.0 0.0291  0.0494 | 0.053  0.0794 | 0.275  0.1446

PyTorch framework [95] was used for the development and
related experimentation of the project.

B. DATASETS

For training and testing, we used the newly collected Mul-
timodal Biometric Dataset! > [96], which consists of 3,851
fingerphoto images belonging to around 600 subjects. This
dataset was split into two parts, 3, 542 images were used for
training, and the rest 309 was used for testing. The dataset
was split so that the subjects in the training and testing
set were mutually exclusive. During the initial study, we
found that there is no publicly available blurred fingerphoto
dataset. Therefore, we created a synthetic dataset using a
Gaussian, partial, and motion blur function with arbitrary
kernel parameters. The kernel size for the Gaussian blur
function is given by: k¥ = 60 — 1, where o values are
randomly chosen from a range between 1.5 to 4. We used
a non-uniform Gaussian blurred mask to generate partially
blurred images and applied it to the fingerphoto to get the
desired effect. Further, for generating the motion blur effect,
we used the method proposed in [15] with the parameter
values between 0.003 to 0.01, where lower values generate
complex trajectories. Figure 6 shows examples of the blurred
samples.

IThis data was collected at WVU under IRB # H-24519 and 1310112238
with appropriate human subjects’ approval.
2Dataset available upon request to the authors.
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(a) 55.1489

(c) 179.6166 (d) 235.5668

FIGURE 7. Fingerphoto samples from the Blurry set. Images (a) and (b) are
blurry fingerphotos, whereas (c) and (d) are the corresponding deblurred
fingerphotos. The red boxes in (a), (b), (c), and (d) are enlarged for visual
comparison. The numbers at the bottom of each image are the measure of
blurriness computed using the variance of Laplacian magnitude [97], where a
smaller value means higher blur distortion.

We augmented the data using random blurring kernels,
blurring types, and random flipping while training. As a
result, the number of training samples totaled approximately
700, 000. For consistency and reproducibility of the test set
across different models and training paradigms, we use o of
3.0 for Gaussian blurring and 0.009 for motion blurring on
all the fingerphotos. In addition to this, we create another
test set with parameters not in the range of the training
dataset. For this, o of 1.5, 5.0, 7.0 for Gaussian blurring
and 0.05, 0.005, 0.0005 for motion blurring was used. While
generating blurring kernels, we observed that if a motion
blurring kernel has a short trajectory or the magnitude of
the o in a Gaussian kernel is low, the fingerphotos can be
matched without deblurring. On the other hand, with a higher
magnitude of o or motion-blurring kernels with complex
trajectories, the fingerphotos lose the necessary information
and become intractable. Therefore, we empirically selected a
valid range for the parameters that resulted in good blurred
samples. Figure 8 shows an example of a blurred and sharp
ground truth sample from the WV U multimodal dataset [96].

Preparing the dataset for the deblurring network included
minimal pre-processing on the original clean ground truth
fingerphotos. Initially, the collected data contained noise and
misaligned finger positions. Therefore, we first applied skin
detection on the images to eliminate such problems from the
training data, replaced the background with black color, and
grayscaled them. Next, to get the correct finger region of
interest (ROI), we performed finger ridge segmentation using
Gabor responses [98]. Then, we extracted the finger core
using the directional histogram of the fingerphoto [99]. After
extracting the core point, we crop a 256x256 image around
the core and use that as the input to the proposed model.
Later in this section, we discuss the processing steps done on
the evaluation datasets. For cross-database evaluation, we use
two publicly available datasets, ‘Touch and Touchless Finger-
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(a) Blurred (b) DeblurGAN-v2

(c) Ours (d) Ground Truth

FIGURE 8. A sample from the WVU dataset deblurred using the DeblurGAN-v2 and our method. The number on the bottom right corner represents the matching
score between the ground truth and the corresponding fingerphoto using VeriFinger v10.0.

(a) Blurred (b) DeblurGAN-v2

(c) Ours (d) Ground Truth

FIGURE 9. A sample from the IIT-B dataset deblurred using the DeblurGAN-v2 and our method. The number on the bottom right corner represents the matching

score between the ground truth and the corresponding fingerphoto VeriFinger v10.0.

(a) Blurred

(b) DeblurGAN-v2

(c) Ours

(d) Ground Truth

FIGURE 10. A sample from the PolyU dataset deblurred using the DeblurGAN-v2 and our method. The number on the bottom right corner represents the matching

score between the ground truth and the corresponding fingerphoto VeriFinger v10.0.

print Dataset’ by IIT-Bombay [100] and the ‘Contactless Fin-
gerprint Dataset’ by the Hong Kong Polytechnical University
[9] referred in the paper as IIT-B, PolyU dataset, respectively.
The IIT-B dataset has 800 samples from 200 subjects, where
all the samples are collected using a smartphone camera. The
images in the dataset are segmented, so we skip the skin de-
tection and apply the same preprocessing used for the WVU
dataset. After the preprocessing, we obtain 687 samples for
evaluation. The remaining samples are discarded since the
preprocessing algorithm fails to extract enough information
from them. Then we apply the blurring kernels to use for
the evaluation task. The PolyU dataset contains 2,976 images
from 336 subjects. The images in this dataset are sharper than
the other two datasets. Therefore, we only crop and grayscale
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these images. Lastly, we apply the blurring kernels such that
each blur effect among the Gaussian, motion, and partial is
equally likely to be applied to the dataset. Then, we randomly
select one image from each subject in the gallery for the
matching experiment and add the rest of the images to the
probe set. Samples from the IIT-B and PolyU datasets are
depicted in Figures 9 and 10, respectively.

In a recognition scenario, the system needs to know
whether the fingerphoto requires deblurring. This can be
achieved by measuring the blurriness in an image. Our em-
phasis in this study is to analyze fingerphoto deblurring.
Therefore, we assume the model receives blurry fingerpho-
tos. Additionally, we evaluated our model on non-blurry
fingerphotos to analyze the performance difference. A perfect
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TABLE 2. Comparison of performance of the matching experiments on ground truth, blurred, and deblurred fingerphotos using the DeblurGAN-v2 and our method.

Evaluations are conducted on all three datasets using three different verifiers.

. WVU IIT-B PolyU
Verifier Model

EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%)
Ground Truth 1.6181 99.9131 8.9431 97.2123 | 14.4118 93.6531
Dee Verifier W/o Deblurring 27.8317  78.8733 | 20.7317 86.3315 | 28.5294  77.8380
P DeblurGAN-v2 [5] | 15.8576  90.3908 | 21.1765 84.9239 | 26.6176  79.8478
Ours 5.8252 98.7704 | 12.0935 94.1447 | 18.3824  88.0564
Ground Truth 0.6472 99.3580 4.2683 95.8693 5.5882 94.6063
VeriFinger SDK v10.0 W/o Deblurring 50.5405  51.1065 | 49.7810 54.8966 | 49.7194  55.9611
DeblurGAN-v2 [5] | 17.7994  84.3356 | 10.9756  89.7495 | 12.0425  89.4693
Ours 1.9417 98.0622 5.8130 94.6539 6.6176 93.8511
Ground Truth 0.0000 100.00 0.8130 99.9596 0.2941 99.8518
IDKit SDK v8.0 W/o Deblurring 31.6641  75.3145 | 26.5032 81.8691 | 24.0397 83.8753
DeblurGAN-v2 [5] 6.7422 98.3931 4.2683 99.0298 7.5597 97.1537
Ours 1.2945 99.9576 2.3882 99.5255 3.2958 99.2087

AUC from the commercial verifiers in Table 5 suggests that
the model does not affect the fingerphotos if they are non-
blurry. For evaluating the model on real-world blurry data,
we experimented on the WVU and IIT-B test sets since
there is no readily available dataset. Despite high-quality
fingerphotos in these datasets, we observed that they also
contain blurry samples. Hence, through manual inspection,
we gathered the blurry samples and deblurred them using our
model. The resulting dataset contains 450 blurry samples and
is referred to as the Blurry Set in this paper’. Figure 7 shows
some blurry samples and the deblurred counterparts.

C. EVALUATION
To evaluate the performance, matching experiments were
conducted between the ground truth, blurred, and deblurred
fingerphotos using three different verifiers. One is the deep
verifier mentioned in Sec. III-G, and the other two are the
commercial VeriFinger SDK v10.0 [101], Innovatrics IDKit
SDK v8.0 [102]. We fixed the genuine and impostor pairs
for fair comparisons for all three datasets. For generating
the pairs, we used sharp ground truth fingerphotos as the
gallery and, depending on the experiment switched the probe
set between sharp, blurry, and deblurred fingerphotos. Figure
11 presents the results for these evaluations. We can see that
the matching performance on deblurred fingerphotos using
the proposed model closely follows the curve of the clean
ground truth fingerphotos. Note that the VeriFinger is a com-
mercial matching software and is highly sensitive to incorrect
minutiae to limit the false acceptance rate. As a result, a few
wrong minutiae cause the score to drop significantly, which
causes the sharp peak in low scores making the ROC less
smooth compared to the curves from the other two verifiers.
The mean and standard deviation of the score distribution for
all three matchers are provided in Table 1.

Considering the matching experiment on blurred finger-
photos as a baseline, our model achieves a significant perfor-
mance boost on all three test datasets in the deblurring task,

3The list of indexes will be provided upon request to the authors.
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TABLE 3. Comparison of performance of matching experiment at different
scales of the deblurred fingerphotos.

Scale EER(%) AUC(%)
64 x 64 33.3333  72.8066
128 x 128 9.3851  96.6575
256 x 256  5.8252  98.7704

suggesting that the reconstruction quality of the deblurred
fingerphoto is improved. Table 2 shows the results of the
verification experiment performed on the blurred data and the
same experiment performed on the deblurred data. The lower
EER demonstrates the ability of the proposed model to deblur
the fingerphotos and preserve the necessary identity infor-
mation. Furthermore, we performed the matching experiment
on deblurred samples at different resolutions to highlight the
progressive improvement of the result in our model. Table 3
presents the results for these evaluations. It can be observed
that the matching performance is lower at low resolutions and
boosts as the resolution increases. Deblurred visual samples
from the WVU, IIT-B, and PolyU datasets are shown in
Figures 8, 9, and 10, respectively. In addition, we compared
the two methods in terms of another image similarity/quality
metric, and the results are provided in Table 4.

We evaluated our model on fingerphotos that are blurred
with unseen kernel parameters. The results of the matching
experiments using three different matchers are provided in
Table 5. As expected, matching performance on blurred
and deblurred fingerphotos of unseen blur levels is slightly
degraded. It is due to the more severe nature of the parameters
used to create the blurring kernels than the kernels used for
the training set. As a result, deblurring these fingerphotos
is challenging for the model. Nonetheless, a high AUC by
the three matchers demonstrates the generalizability of the
network on unseen blurring kernels.

Furthermore, we calculate the quality scores of the images
using the NIST NFIQ2 tool provided by NBIS software
[103]. The NFIQ2 tool provides quality scores from O to 100
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FIGURE 11. Evaluating the matching performance on different datasets and models. The curves in the first, second, and third rows are generated using the deep
verifier, the VeriFinger SDK v10.0, and the IDKit SDK v8.0, respectively. Column (a) represents curves for the WVU dataset, column (b) represents curves for the
|IT-B dataset, and column (c) represents curves for the PolyU dataset. Our method, represented by the magenta color, outperforms the DeblurGAN-v2 (blue curve).
Detailed Area Under the Curve (AUC) and Equal Error Rate (EER) values are given in Table 2. The curves in the last row are log-scaled for better visualization.

TABLE 4. Comparison of performance based on the Structural Similarity
Index (SSIM) and Peak-Signal-to-Noise-Ratio (PSNR) image quality metrics
between ground truth and deblurred fingerphotos using the DeblurGAN-v2 and
our method.

WvuU IT-B PolyU
Model
SSIM PSNR SSIM PSNR SSIM PSNR
DeblurGAN-v2 [5] | 0.8646  26.2646 | 0.7993  25.4103 | 0.8462  26.5482
Ours 0.9474  30.4601 | 0.9205 30.3644 | 0.9653  33.9360

for the quality of the fingerprints, where 0 means no utility
value, and 100 is considered the highest utility value. Our
model preserves and, in some cases, improves the quality of
the ground truth fingerphotos during the deblurring process.
The quality score plots for the three test sets are shown in
Figure 12.

D. COMPARISON WITH STATE OF THE ARTS

Since there is no dedicated deblurring algorithm for fin-
gerphotos in the literature, we reviewed several natural
image deblurring methods. We tested and compared our
method against a state-of-the-art deblurring algorithm i.e.,
DeblurGAN-v2 [5]. We used the trained weights provided

VOLUME 4, 2016

by the authors and fine-tuned the DeblurGAN-v2 network
on the same training set we used to train our algorithm.
Table 2 and Figure 11 presents the comparison results on the
WVU multimodal, IIT-B, and PolyU datasets. As expected,
our model performs better in terms of ID preservation due
to the verifier network that penalizes ID disparities between
the generated and the ground truth fingerphoto. However, at
the same time, from Table 7 (performance of MCGAN-A
(see Section V)) and Table 2 (performance of DeblurGAN-
v2 on WVU dataset), it can be observed, that our method, re-
gardless of the verifier, performs better than the DeblurGAN-
v2. It shows that even though state-of-the-art deblurring
techniques work effectively on blurred natural images, they
lack the ID preservation essential in biometric data.

E. EVALUATION ON REAL-WORLD DATA

In order to make a fair evaluation, it is imperative to verify
the model performance on real-world blurred fingerphotos.
Therefore, as mentioned in Section IV-B, we used the Blurry
set for the evaluation. However, since no sharp ground truth
is available for all the blurry fingerphotos, we used the cor-
responding contact-based fingerprint samples as the ground
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TABLE 5. Performance evaluation on fingerphotos blurred using multiple Gaussian and motion kernels.

Verifier Model No Blur Gaussian(1.5) G 5) Gaussian(7) Motion(0.05) Motion(0.005) Motion(0.0005)
EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%) | EER(%) AUC(%)
W/o Deblurring - - 9.7087 96.8795 | 46.9256  53.8887 | 45.6311  55.0466 8.0906 97.0224 18.123 89.0476 | 28.1553 79.056
Deep Verifier DeblurGAN-v2 [5] 3.8835 98.9972 4.8544 98.9092 | 44.3366  57.8125 | 49.3528  52.0899 5.9871 98.3986 | 10.5178  95.8531 | 16.5049  90.0425
Ours 3.5599 99.269 2.1036  99.7502 | 26.8608 80.9753 | 36.8932 68.7718 | 3.5599  99.4538 | 6.1489  98.7039 | 9.3851  96.4522
‘W/o Deblurring - - 1.4887 99.9102 | 49.7018  50.5498 | 50.0412  49.9162 1.6181 99.7568 | 11.4563  94.8008 28.073 81.361
VeriFinger SDK v10.0 DeblurGAN-v2 [5] 0.0 100.0 0.0 100.0 47.4434  53.8432 | 49.1027 52.147 0.0 100.0 0.6472 99.983 9.2899 97.6487
Ours 0.0 100.0 0.0 100.0 21.6154  86.3575 | 36.6482 67.3283 0.0 100.0 0.3236 99.9955 1.8608 99.6471
‘W/o Deblurring - - 4.8544 99.093 49.2294 51.76 49.5146  51.2929 3.5599 99.4062 | 17.8242  89.9967 | 32.0129  76.8729
IDKit SDK v8.0 DeblurGAN-v2 [5] 0.0 100.0 0.3236 99.9976 | 43.7198  58.9761 | 47.1133  54.4087 0.2157 99.9992 1.6181 99.74 11.4347  94.9995
Ours 0.0 100.0 0.0 100.0 28.3647 97.022 39.5581  64.8818 0.1079  99.9997 1.8031 99.8576 6.5085 97.5267
700
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FIGURE 12. NFIQ2 quality score assessment of the ground truth, blurred, and deblurred fingerphotos from the DeblurGAN-v2 [5] and ours. Plots (a), (b), and (c)
show the quality scores of samples from the WVU Multimodal dataset, |IT-B dataset, and PolyU dataset, respectively. Blue, orange, and green bars represent the
ground truth fingerphotos, blurred fingerphotos, and deblurred fingerphotos using our method, respectively. The red bar represents the deblurred fingerphotos from

the DeblurGAN-v2.

TABLE 6. Comparison of performance of the matching experiments on
contact-based fingerprints against the blurry and deblurred fingerphotos from
the Blurry set. Evaluations are conducted using three different verifiers.

Verifier Model EER(%)  AUC(%)
Blurry 46.1538  54.3305
Deep Verifier DeblurGAN-v2 [5] 31.375 74.2958
Ours 21.0983  85.9346
Blurry 36.6917  69.3978
VeriFinger SDK v10.0 | DeblurGAN-v2 [5] | 17.2674  89.8046
Ours 13.5319  95.0257
Blurry 42.6805  62.4648
IDKit SDK v8.0 DeblurGAN-v2 [5] 30.441 77.6312
Ours 21.4262  86.5103

truth for the matching experiment. Using the samples from
the Blurry set, we created 900 genuine and impostor pairs
where the gallery set consists of fingerprints. Depending on
the experiment, the probe set is blurry or deblurred finger-
photos. Figure 13 and Table 6 provide the performance of the
matching experiment using three verifiers. From the curves
in the figure and values in Table 6, it is evident that the
model is able to deblur the real-world fingerphotos. Some
blurry and deblurred samples are provided in Figure 7. We
also calculated the amount of blurriness using the variance
of Laplacian magnitude [97] before and after deblurring the
fingerphoto. The values state that the amount of blur in the
blurry image significantly reduces after deblurring.

14

To visualize the effects of deblurring on minutiae, we
collected 12 samples from three subjects. This smaller dataset
is referred to as the Lab collected dataset in the paper. During
the collection, we fixed the finger position on a surface
and adjusted the camera to get sharp and multiple blurry
fingerphotos. As the purpose of the collection is only visual-
ization, we do not consider factors such as scaling, shifting,
rotation, efc. After acquiring the fingerphotos, we manually
cropped the ROI and grayscaled the images to feed them
to the network. For illustration, we extracted the minutiae
of the fingerphotos using the commercial VeriFinger SDK
v10.0 [101] and conducted a matching experiment among the
ground truth, blurred, and deblurred fingerphotos. Figure 14
shows the samples and the matched minutiae.

A graph is plotted on images where the vertices are the
matched minutiae between the gallery and probe. Noticeably,
the minutiae points in the blurred images hardly match those
in the ground truths due to the distortion. The verifier fails to
obtain any minutia points from the blurry fingerphoto in the
left-most sample in Figure 14. However, the deblurring pro-
cess recovers approximately 60% of the minutiae suggesting
that the deblurring method is recovering information in such
detail that it improves the matching performance. The low
matching scores between the ground truth and the blurred
fingerphoto confirm the degraded quality of the blurred fin-
gerphoto. On the other hand, the matcher produces high score
values when the ground truth is compared with the deblurred
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FIGURE 13. Evaluating the matching performance on real blurry, deblurred, and corresponding contact-based fingerprint samples from the Blurry set. Here, curves
in the (a), (b), and (c) plots are generated using the deep verifier, the VeriFinger SDK v10.0, and the IDKit SDK v8.0, respectively. Our method, represented by
magenta color, outperforms DeblurGAN-v2 [5] and helps improve the sample quality for verification. Detailed Area Under the Curve (AUC) and Equal Error Rate
(EER) values are given in Table 6. The plots are log-scaled for better visualization.

Ground truth

(d) Deblurred
s=145

. oy . | O R
(a) Blurred (b) Deblurred (c) Blurred
s=0 s=126 s=53

(e) Blurred
§=212

(f) Deblurred
=449

FIGURE 14. Blurred fingerphotos from the Lab collected set. Columns (a, ¢, €) represent the matching minutiae between the ground truth fingerphotos and blurry
fingerphotos, whereas columns (b, d, f) represent the matching minutiae between the ground truth and deblurred fingerphotos. The matching score associated with
each pair is represented by s. The matched minutiae on the ground truth and corresponding probe (blurred/ deblurred) are represented as a graph where the
matched minutiae are the vertices of the graph. Additional details are provided in Section IV-E.

fingerphoto. These experiments validate the robustness of the
model towards complex and random blurring kernels in a
real-world scenario. It also shows the potential that, given a
real-world blurred dataset, we can fine-tune the model on a
subset and achieve state-of-the-art deblurring performance.

V. ABLATION STUDY

In this section, we explore the contribution of each modifi-
cation in generator G towards the deblurring and matching
performance. Here, the baseline model is a plain cGAN [82],
and we make one modification at a time and evaluate the
resulting model. First, we replace the cGAN architecture with
a multi-stage cGAN framework (McGAN). Then, we add
the attention mechanism to the McCGAN model (McGAN-A).
Next, we add the verifier network to the McGAN-A model
(i.e., McGAN-AV), and finally, we add the classifier to the
previous network to get the proposed model. In the following
sections, we extensively discuss the contribution of each part
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of the model to the final performance.

A. DEBLURRING WITH PLAIN MODEL

First, to determine the performance of the cGAN, we trained
the model without any additional constraints. With the ad-
vent of image-to-image translation [82], the deblurring task
is primitive for the network, but preserving the necessary
information is challenging. Table 7 shows the results of the
plain cGAN model. We use this performance as a baseline
for further experiments. Figure 15 (c) shows a deblurred
sample from the cGAN model. As illustrated, the plain cGAN
model can produce deblurred fingerphotos with good visual
quality. However, the generated fingerphotos have erroneous
ridge patterns and minutia points due to the lack of a proper
constraint to preserve the ID. Such a shortcoming often alters
the identity of the fingerphoto, deteriorating the recognition
performance. Based on this observation, we add the multi-
stage deblurring scheme to the plain cGAN network to force
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(a) Blurred (b) Ground truth (c) Plain cGAN (d) McGAN (e) McGAN-A (f) McGAN-AV

(g) Ours

FIGURE 15. Visualizing the impact of each module in the proposed model on the quality of the deblurred samples. (a) Input blurred fingerphoto. (b) Corresponding
ground truth fingerphoto. The rest of the images show the deblurred output of (c) plain cGAN model, (d) multi-stage plain cGAN (McGAN), (e) McGAN with guided
attention (McGAN-A), (f) McGAN-A with verifier (McGAN-AV), (g) McGAN-AV with multi-tasking (Ours). A more detailed discussion of the models is provided in

Section V.
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FIGURE 16. The log-scaled ROC curves of different models evaluated during
the ablation study. Here, TAR and FAR are the True Acceptance Rate and
False Acceptance Rate, respectively. The AUC and EER details are provided
in Table 7.

TABLE 7. Results of each modified cGAN model tested for the ablation study.
Additional details about each model are given in Section V.

Model EER(%) AUC(%)
Blurred 27.8317  78.8733
Plain cGAN 12.2977  95.3122
McGAN 10.3560  96.2673
McGAN-A 10.3560  96.3165
McGAN-AV W/o Perceptual ~ 7.4434 97.7744
McGAN-AV 6.1489  98.5683
Ours 5.8252  98.7704

the generator to consider the ID of the fingerphotos during
the generation process.

B. EFFECT OF MULTI-STAGE APPROACH

As discussed in Section III-B, we developed a coarse-to-fine
multi-stage scheme to enhance deblurring performance. Our
results in Table 7 and Figure 3 demonstrate that guiding the
generator by forcing the intermediate features to mimic the
coarse structure of the ground truth images indeed improves
deblurring performance. Particularly, based on Table 7, em-
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ploying multiple discriminators improves EER and AUC
by 2% and 1%, respectively. As the results in Table 3
indicate, having more than three stages would degrade the
performance. Fingerphotos at 32 x 32 resolution may not have
enough useful low-level information to help a multi-stage
scheme. On the other hand, the matching performance at
64 x 64 resolution has a moderate AUC of 72.81, so excluding
this stage might worsen the final deblurring performance.
Therefore, we incorporate the multi-stage scheme with three
stages for the best deblurring performance.

C. EVALUATION WITHOUT VERIFIER

Further, we tested the proposed model without the verifier
network and removed the L,, and L. loss terms from the
overall network objective function in Eq. 12. In the case of
fingerphoto deblurring, the best way to evaluate the model
performance is by monitoring the identification performance.
Figure 16 and Table 7 show the degraded performance with-
out the verifier. The verifier network is one of the constraints
on the generator, which restricts it from deblurring the images
while keeping the minutiae points and the ridge patterns
similar. The verifier plays a vital role in the training. It
enforces the generator to preserve the ID information from
the blurred fingerphoto. To support this claim, we extracted
the minutiae points from the deblurred fingerphoto generated
without including a verifier using the commercial VeriFinger
SDK v10.0 [101] and compared them against the minutiae
of the ground truth and deblurred fingerphoto from our pro-
posed model. Figure 17 shows the comparison. The matching
minutiae between the ground truth and deblurred fingerphoto
increases after adding the verifier. As the verification cost
term is added to the final objective function in Eq. 12, it re-
sulted in a 2.5% increase in the accuracy of the identification
task.

Moreover, we tested the network by excluding the loss of
the intermediate features of the verifier, which we treat as
a perceptual loss. As shown in Table 7, due to the general-
ized characteristics in the intermediate features, the network
performs better in verifying the fingerphotos. According to
Figure 16, the accuracy in the lower FAR region is low
without the intermediate feature loss. However, adding the
loss term improves the accuracy, specifically in the lower
FAR region, which is the critical performance region in real-
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FIGURE 17. Visual comparison of matched minutiae between the ground truth and the deblurred fingerphoto by including and excluding the verifier. Matched
minutiae between each pair are displayed using a graph of red edges. The vertices of the graph are matched minutiae in the probe.

world applications.

D. TRADITIONAL PERCEPTUAL LOSS VS. ID-BASED
PERCEPTUAL LOSS

In this section, we explore the effectiveness of conventional
perceptual loss against ID-based perceptual loss. The goal
here is to generate fingerphotos that are perceptually similar
to the ground truth sharp fingerphotos. To this aim, a percep-
tual loss is introduced to the overall loss function. Conven-
tionally, a pre-trained network VGG-19 [86] network trained
on the ImageNet dataset is used to extract general features
from the intermediate convolutional layers. To compare the
extracted features, MSE is calculated and added to the total
loss in Eq. 12 to improve the perceptual similarity. However,
the VGG-19 network is trained on natural images, while
the patterns in fingerphotos are constructed by the ridges
and valleys, mainly forming random textures with specific
characteristics. Hence, there is a discrepancy between the dis-
tribution of features in the two domains. Thus, we observed
that, in this situation, using the conventional perceptual loss is
not helpful, and a pre-trained network trained on fingerphotos
is a prudent choice. Hence, we extract features from our deep
verifier, discussed in Section III-C, and use them to compute
the alternative perceptual loss. In Table 8, we show the effect
of using conventional perceptual loss vs. the ID preserving
perceptual loss. These results confirm that in fingerphoto
reconstruction tasks, using a model trained on similar domain
results in a better performance than the classical method for
computing the perceptual loss.

E. BALANCING CONSTRAINTS ON DEBLURRING

In the multi-constrained setting of the proposed network
architecture, each constraint has a unique role, and therefore,
they need to be balanced optimally to get better deblurring
performance. Here, we emphasize the usefulness of other
constraints, such as guided attention and multi-task learning.
Adding the attention block to the network does not make
much difference in terms of the AUC; however, it enhances
the reconstruction capability of the network. In the case of
a partially blurred fingerphoto, the network may copy the
sharp region and neglect the blurred part during deblurring.
However, due to the attention block, it focuses on the blurred
region and neglects the sharp region in a fingerphoto. Subtle
visual improvements can be observed in Figures 15 (d) and
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TABLE 8. Matching experiment performance on deblurred fingerphotos using
Perceptual and ID preserving Perceptual loss term.

Model EER(%) AUC(%)
W/o Perceptual Loss 7.4434  97.7744
W Conventional Perceptual Loss 6.7961 98.1190
W ID Preserving Perceptual Loss ~ 5.8252  98.7704

(e).

Additionally, we removed the blurring type classification
module from the network to evaluate the usefulness of multi-
task learning in the proposed network and checked the perfor-
mance. Figures 15 (f) and (g) show the deblurred fingerphoto
without and with the classifier module. During deblurring,
the generator tries to estimate the blurring kernel and deblurs
the input fingerphoto. Without the classification module, the
network confuses between the Gaussian and motion blurring
kernel affecting the matching performance. On the other
hand, when the classifier is included, it estimates the blurring
type and helps the generator to produce a better fingerphoto
regardless of the blurring kernel.

VI. CONCLUSION
In this paper, we propose a novel method for deblurring
fingerphotos by introducing several modifications to the con-
ditional generative adversarial networks inspired by prior
knowledge of the fingerprint recognition task. First, we de-
velop a coarse-to-fine scheme using a multi-stage framework
that deblurs the fingerphoto at a different resolution, enhanc-
ing the overall deblurring performance of the model. Second,
we develop an ID preserving network to ensure that the
reconstructed image has not lost the unique ID information,
i.e., the formation of minutiae in the fingerphoto. Third, we
developed a novel attention block that helps the generator
to focus more on the blurred region of the fingerphoto en-
abling the network to deblur partially blurred fingerphotos
effectively. Additionally, the multi-task learning approach we
used in the generator of the cGAN is a non-traditional method
that estimates the blurring type to improve the accuracy of
the fingerphoto deblurring task. We demonstrate the effec-
tiveness of each modification through evaluation experiments
and extensive ablation studies. Further, our comparison with
state-of-the-art indicates the superiority of our deblurring
method, developed specifically for fingerphotos.

Our work considers global, local, uniform, and non-

17



IEEE Access

Joshi et al.: Fingerphoto Deblurring Using Attention-guided Multi-stage GAN

uniform blurring effects along with motion and Gaussian
blurring types. Evaluation of the proposed deblurring model
on naturally blurred fingerphotos shows a significant recov-
ery of minutiae points. Moreover, consistently better per-
formance using multiple matchers for matching experiments
exhibits the deblurring ability of the model on not only syn-
thetic but also real-world blurry fingerphotos. The NFIQ2.0
quality assessment also shows improvement in the quality of
the fingerphotos. The proposed model is a novel approach
with numerous real-world applications in crime scene inves-
tigation, border control, and forensic sciences.
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