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Abstract: Long-range target detection in thermal infrared imagery is a challenging research problem
due to the low resolution and limited detail captured by thermal sensors. The limited size and
variability in thermal image datasets for small target detection is also a major constraint for the
development of accurate and robust detection algorithms. To address both the sensor and data
constraints, we propose a novel convolutional neural network (CNN) feature extraction architecture
designed for small object detection in data-limited settings. More specifically, we focus on long-range
ground-based thermal vehicle detection, but also show the effectiveness of the proposed algorithm on
drone and satellite aerial imagery. The design of the proposed architecture is inspired by an analysis of
popular object detectors as well as custom-designed networks. We find that restricted receptive fields
(rather than more globalized features, as is the trend), along with less downsampling of feature maps
and attenuated processing of fine-grained features, lead to greatly improved detection rates while
mitigating the model’s capacity to overfit on small or poorly varied datasets. Our approach achieves
state-of-the-art results on the Defense Systems Information Analysis Center (DSIAC) automated
target recognition (ATR) and the Tiny Object Detection in Aerial Images (AI-TOD) datasets.

Keywords: deep learning; small object detection; automated target recognition; thermal infrared

1. Introduction

Thermal object detection, or the detection of objects in thermal imagery, is an attractive
research area because of the unique advantages offered by the use of thermal cameras.
Thermal cameras are able to sense heat signatures in total darkness and, with the ap-
propriate long-range sensor, from distances of 5 km away or more. Thermal sensors are
useful for stealth reconnaissance as they measure thermal infrared radiation in a com-
pletely passive fashion. Furthermore, they can also be employed to complement scene
information obtained by other devices, such as visible spectrum or Lidar sensors. Given
the utility of thermal sensors, thermal object detection can be deployed in a wide range
of civilian, industrial, and scientific applications, such as automated driving and wildlife
monitoring, or in military and defense scenarios, such as surveillance and battlefield target
detection. The research presented herein primarily explores the latter scenario of battlefield
target detection. However, the overall aim is to develop an approach generally suitable for
single-frame small object detection in data-limited settings.

Long-range thermal object detection is a challenging research problem because it adds
further complications to the nontrivial task of generic object detection. These additional
complications can be summarized into two fundamental challenges:

1. The signal challenge: Thermal sensors are limited by the resolution and level of detail
they can capture. The detection of very small or distant objects exacerbates the
challenges inherent to the thermal domain—namely the object’s very low resolution,
or “pixels on target” (PoT).
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2. The data challenge: The current state of the art in object detection involves highly
data-driven neural network algorithms. However, the reality is that specific applica-
tions involving long-range thermal object detection likely do not have the luxury of
abundant labelled training data matching the distribution of data on which the trained
model is expected to realistically operate. Thermal background and target signatures
also exhibit non-homogenous properties due to variable atmospheric conditions, such
as daylight, nighttime, or cloudy skies.

The way in which these issues manifest in modern neural network object detection
models is two-fold. First, the common backbone convolutional neural network (CNN) archi-
tectures, such as DarkNet [1–3], Inception [4–6], ResNet [7], ResNext [8], and MobileNet [9],
perform early spatial downsampling of feature maps. In the case of very small objects with
low PoT, early downsampling can cause premature loss of information, destroying the
already limited signal that exists. Secondly, state-of-the-art (SOTA) object detection models
have a large number of parameters and very large receptive fields, often easily covering an
area of 1024× 1024 pixels or more. While this allows for the representation of semantically
rich features with large spatial context, it also increases the model’s capacity for overfitting
in data-limited scenarios.

In order to address the issues arising from the signal and data limitations for long-
range thermal object detection, we propose a novel backbone architecture customized for
the detection of distant or small objects in thermal imagery. By carefully managing the
interplay between the network’s receptive field and feature map resolution, the proposed
model achieves better generalizability in unseen target contexts and higher detection
accuracy compared to SOTA algorithms on long-range thermal target detection.

The proposed model is evaluated alongside several baseline object detection algo-
rithms on the largest public thermal image dataset of civilian and military vehicles currently
available—the Defense Systems Information Analysis Center (DSIAC) Automated Target
Recognition (ATR) dataset [10]. To gauge model generalizability and robustness, we define
a challenging training and testing protocol for the DSIAC dataset. We also present the
results of a series of architectural ablation studies that validate our design methodology.

To summarize, the contributions of this paper are

1. Proposal and validation of a novel architecture designed for very long-range/small
thermal target detection, especially in data-limited settings.

2. Design of a challenging train/test protocol for the DSIAC dataset.
3. Performance analysis of our proposed model alongside SOTA object detection models

on the DSIAC and Tiny Object Detection in Aerial Images (AI-TOD) datasets.

The remainder of the paper is organized as follows. Section 2 discusses prior works in
ATR and CNN-based object detection. In Section 3, we describe the DSIAC dataset and
our proposed training and evaluation protocol. Next, Section 4 evaluates common SOTA
object detector baseline models on the DSIAC dataset and explores the issue of background
overfitting. Section 5 presents our proposed architecture with several ablation studies
validating the design methodology. An overall comparison of our model with existing
SOTA methods is provided in Section 6. Finally, Section 7 summarizes our findings and
briefly discusses future work.

2. Related Work
2.1. ATR Pre-Deep Learning

Due to the limited amount of training data for automatic target recognition research,
especially in the thermal infrared domain, as well as a lack of advancement in neural
network algorithms (the two being interrelated), most prior automated target recognition
(ATR) work relies on hand-crafted feature extraction and/or statistical image preprocessing
methods in order to discern and classify target signals from background regions.

Gregoris et al. [11] and Der et al. [12] use double-gated windows to compare the
structural information of an inner window to an outer window in order to detect possible
targets. In [11], the ratio of the mean difference of the inner and outer windows’ pixel value
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to the standard deviation of the outer window is compared to a threshold value (threshold
values and window sizes are preassigned hyperparameters). A combination of features,
such as contrast difference, magnitude of gradients, and edge information, are used in [12]
to compare inner and outer windows. Yoon et al. [13] preprocess input images using
localized pixel thresholding followed by a Sobel edge detector and then train a Bayesian
classifier on the normalized moment of inertia calculated from image patches. Mahalanobis
et al. [14] propose a quadratic correlation filter—a set of basic functions estimated from the
second-order statistics—to localize and classify targets.

Zhou and Crawshaw [15] extract low- and high-resolution Gabor features to first filter
out background clutter and then refine the binary target prediction. Targets are identified
by comparing the extracted features to the Gabor features of a set of five basic geometric
patterns (rectangle, square, oval, rounded-rectangle, and circle). Histogram of oriented
gradients (HOG) features and a support vector machine classifier are proposed in [16].
Gray et al. [17] match scale-invariant feature transform (SIFT) features from input images
to a target gallery using a Euclidean distance measure.

In order to address the problem of data and target non-homogeneity, Zhang et al. [18]
propose a feature-agnostic dictionary learning method using a joint sparse representa-
tion constraint.

2.2. Deep-Learning-Based Object Detection

Current state-of-the-art object detection models are based on neural network architec-
tures that learn to perform the entire detection process in a more integrated fashion. Feature
extraction, target localization, classification, and even aspects of pre-processing, such as
image normalization, are all learned in an end-to-end manner. The model is primarily
composed of a series of parameterized, learnable, nonlinear transformations. As a result,
these models are able to learn rich high-level semantic representations. However, the highly
parameterized nature of these networks creates a need for abundant training samples that
well represent the data distribution on which they are expected to perform. Convolutional
neural networks (CNN) typically form the backbone of modern object detection models.
Recently, large-scale vision transformer models [19–21] have yielded impressive results but
require training on massive datasets.

Object detection algorithms are typically grouped into two binary categories: (1) one-
stage or two-stage, and (2) anchor-based or anchor-free. Two-stage (Faster R-CNN [22])
detectors first propose regions of interest (RoI) via an initial binary classification (object vs.
background) and bounding box regression phase. Cropped and resized sections of feature
maps corresponding to proposed RoIs are input into a secondary set of layers specialized
for multi-class prediction and bounding box refinement. One-stage detectors (YOLO [1],
single-shot detector (SSD) [23], and RetinaNet [24]) forego the secondary set of layers in
favor of directly performing multi-class classification on the extracted features.

Anchor-based models (such as the aforementioned one-stage detectors) regress bound-
ing box coordinates as offset values in relation to sets of rectangular-shape priors known
as anchor boxes. Anchor boxes are hyperparameters that must be carefully chosen based
on the expected range of target sizes. For medium- to long-range ATR, where the size and
shape of targets tend to vary less than in general object detection applications, the choice of
anchor boxes may be less daunting. Anchor-free is a catch-all term for models that use alter-
native methods for bounding box regression, such as keypoint detection. Examples include
CornerNet [25], CenterNet [26], and fully convolutional one-stage detector (FCOS) [27].

2.3. Deep-Learning-Based ATR

There is little existing thermal ATR research using modern neural network architec-
tures. DeepTarget [28] is a two-stage ATR model composed of two separate fully convo-
lutional VGG-like [29] convolutional neural networks (CNN). The first CNN is trained
as a binary classifier on target and background image patches, functioning as an initial
background clutter rejection stage. Designed as a fully convolutional network (lacking
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any fixed fully connected layers), it produces a heatmap of possible target locations when
given a full image. The potential target locations become input patches for the second
CNN, which is trained as a multi-class classifier. In this way, each CNN specializes in either
clutter rejection or fine-grain classification. However, DeepTarget’s two separate stages
are not jointly optimized, as occurs with Faster R-CNN and most other two-stage detec-
tors. Nevertheless, the reported results, benchmarked on the Comanche (BoeingSikorsky,
USA) ATR FLIR dataset, show DeepTarget outperforming contemporary state-of-the-art
object detectors such as Faster R-CNN, YOLOv2, and SSD, as well as other non-neural-net
state-of-the-art ATR algorithms. Unfortunately, the Comanche dataset does not contain
long-range targets, nor was it available for public use at the time of our work.

Mahalanobis and McIntosh [30] compare Faster R-CNN [22] to QCF [14] on the
DSIAC [10] dataset (see Figure 1 for sample images and Section 3 for more details on
DSIAC). An “easy” and “difficult” test set are designed, both composed of 19,800 images
randomly sampled across all ranges. The “difficult” set only contains targets in the lowest
quartile of both target size and contrast regarding the nearby background. A disjoint
training set is constructed by uniformly sampling every 100 frames across all ranges. Faster
R-CNN is reported to significantly outperform QCF, achieving an 80% probability of detec-
tion (PD) at a false alarm rate (FAR) of 0.01 false alarms per square degree on the difficult
set compared to QCF’s 45% PD at FAR = 0.4 false alarms/sq degree.

(a) 1 km (b) 3 km (c) 5 km

Figure 1. Example images from the Defense Systems Information Analysis Center (DSIAC) dataset of
T72 tank during daylight at various ranges and orientations. Ground truth bounding boxes shown in
green. The difference in brightness levels is due to min–max normalization.

Chen et al. [31] benchmark three YOLOv2-based architectures [2] on the DSIAC
dataset: a deeper 74-layer network using a ResNet-50 backbone [7] and two shallower
22- and 25-layer networks with custom CNN backbones. Further, 1620 frames are evenly
sampled for each of four different targets at each range to create a pool of images used for
training and testing. The authors also manually inspected the bounding box annotations in
order to correct errors. Results are reported on several experimental scenarios, including
day vs. night performance, training on a variable number of images, ImageNet pre-training,
and performance on different sets of ranges. The authors report better performance on
nighttime scenarios due to the greater contrast of target and background heat signatures.
The shallower non-pretrained CNNs also achieve slightly better performance than the
deeper pre-trained ResNet backbone. However, due to the high correlation between images
of the same video sequence, all three architectures achieve very high performance (more
than 96% mean average precision) even at the farthest ranges, thus prompting the need for
a more challenging evaluation protocol.

The use of synthetically generated thermal target signatures for training an ATR
system is explored by d’Acremont et al. [32]. They utilize the OKTAL-SE software, which
can simulate novel thermal scenes based on real target signature image sequences and
atmospheric metadata. The real training and evaluation data were taken from the DSIAC
dataset, but the range scenarios that were used are not specified. Their custom-designed
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“cfCNN” model contains seven convolutional layers with 5 × 5 kernels. Max pooling
occurs after the second, fourth, and fifth layers. Similar to DeepTarget [28], cfCNN is
a patch-based classifier trained on 128 × 128 background and target crops, outputting
a heatmap of class probabilities when evaluated on full images. As such, it has similar
disadvantages as DeepTarget in that the coarse patch-based predictions can struggle to
precisely localize small targets or differentiate clustered targets.

In support of the thermal ATR task, Abraham et al. [33] improve the performance
of YOLOv5 models on the DSIAC dataset via a novel homotopy-based hyperparameter
optimization algorithm. Leveraging the visible imagery of the DSIAC dataset, VS et al. [34]
propose a metalearning strategy for unsupervised domain adaptation in thermal ATR.

Range estimation in thermal imagery is an open problem that could assist scale-aware
long-distance thermal ATR. Bao et al. [35] introduce heat-assisted detection and ranging
(HADAR) to perceive texture, depth, and decluttered physical attributes from thermal
infrared images. HADAR is developed and tested primarily for closer-range automated
driving tasks as opposed to long-range scenarios but still represents a promising thread for
thermal detection research.

2.4. Small and Tiny Object Detection

Long-distance thermal ATR is closely related to other work in small and tiny object
detection.

Datasets: Applicable datasets predominantly involve aerial imagery from drones or
satellites. The BIRDSAI [36] dataset contains aerial imagery (62,000 real and 100,000 syn-
thetic frames) from a drone-mounted thermal camera monitoring humans and animals in a
nature reserve. Approximately 10–20% of real and 50% of synthetic images contain target
bounding boxes with areas less than 200 pixels, the vast majority of which belong to the
human class. None of the data are taken at distances on the scale of the DSIAC dataset.
Rather, a large percentage of the data contain bounding box sizes larger than 2000 pixels,
making the dataset better suited to multi-scale approaches.

The VisDrone [37] dataset contains 272,117 visible-wavelength drone photographs of
pedestrians and vehicles in a variety of urban and rural settings. Like the BIRDSAI dataset,
the vast majority of objects are closer than 1 km from the camera and a large number of
bounding boxes are on the order of 1000 pixels in size or larger.

The AI-TOD [38] is a curated aggregation of drone and satellite images from the
VisDrone2018, DOTAv1.5, xView, Airbus-Ship, and DIOR datasets. Containing twenty
eight thousand thirty six aerial images, eight classes, and over seven hundred thousand
object instances with a mean bounding box size of 12.8 pixels, the AI-TOD dataset focuses
on tiny object detection. Given the composite nature of the dataset, objects and backgrounds
are highly diverse in appearance—a luxury not currently available for long-range thermal
ATR research.

Approaches: Several types of strategies have been proposed to deal with the detection
of small and tiny objects. These can be broadly categorized into label assignment strategies,
metrics and loss functions, and feature enhancement methods.

Imbalanced proportions of foreground and background target instances is an issue
for object detection in general that can worsen when the majority of images contain large
background regions and sparse distributions of small objects. Zhang et al. [39] propose
an adaptive label assignment strategy based on ground truth and anchor box intersection
over union (IoU) statistics to achieve a better foreground/background balance. Another
approach proposed by Kim et al. [40] is to dynamically learn a Gaussian distribution of
positive and negative anchor boxes as they relate to their impact on classification and
localization losses.

The IoU metric underlies the label assignment, localization loss, and non-max suppres-
sion (NMS) components of object detection. Bounding box predictions have an increased
change to have zero overlap with the ground truth when targets are tiny. Generalized IoU
(GIoU) attempts to smooth the learning of bounding box predictions by modifying the IoU
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metric such that two non-overlapping boxes yield a non-zero metric based on the size of
the smallest mutually overlapping box. Furthermore, IoU is more sensitive at small scales.
Therefore, the normalized Wasserstein distance [41], which has the additional benefit of
scale-invariance, has been proposed as a replacement. Lin et al. [24] address the class
imbalance issue via a focal loss term that prioritizes the learning of hard samples.

Super-resolution is a particularly attractive strategy for small object detection. Several
generative adversarial network (GAN) methods have been proposed [42–45]. Recent
works have also investigated super-resolution of thermal images for the purpose of object
detection and segmentation [46,47]. To our knowledge, no studies have attempted to
specifically super-resolve and detect tiny thermal signatures. Regardless, given current
data and technological constraints, the amount of recoverable detail from a 15-pixel thermal
target is likely to be very limited.

Improved utilization and enhancement of fine-grained details can also be facilitated
via multi-scale architectural components that create multiple information pathways to
merge low- and high-resolution features, such as feature pyramid network (FPN) [48], path
aggregation net (PANet) [49], and TridentNet [50]. Taking inspiration from both multi-
scale and super-resolution strategies, Deng et al. [51] propose an FPN with an extended
super-resolved feature layer.

A custom-designed backbone specialized for tiny object detection in aerial images
proposed by Pang et al. is TinyNet [52]. It is similar to our work in that it focuses on the
design of the backbone feature extraction architecture. However, TinyNet differs from our
proposed approach in several key aspects. First, it has significantly fewer kernels per layer
(ranging from 18 to 72), resulting in highly compressed feature representations. Second,
it retains the aggressive downsampling schedule of other popular backbones, reducing a
640 × 640 image to a 40 × 40 feature map at the deepest layer. Conversely, our proposed
architecture has a more traditional progression of channel depth (from 32 to 256 kernels),
less downsampling of feature maps, narrower receptive field, and shorter network stride.

3. DSIAC Dataset

The DSIAC ATR Algorithm Development Image Database [10] is a large collection
of visible and mid-wave infrared (MWIR) imagery collected by the US Army Night Vi-
sion and Electronic Sensors Directorate (NVESD). The images represent signature data
(unobstructed views taken in favorable conditions) of ten ground-based vehicles, including
foreign military vehicles, one towed artillery piece, as well as dismounted civilians. The
image frames are from a set of video sequences recording each target individually traveling
around a preset 100 m diameter circular path at distances ranging from 1000 to 5000 m
in 500 m intervals. The images are captured by two forward-looking ground-based sen-
sors: an L3 Cincinnati Electronics Night Conqueror MWIR camera using a 640× 480 pixel
Indium Antimonide focal plane array with a 28 micron pitch, and an Illunis visible light
camera. Images were collected from both cameras during daytime and from the MWIR
camera at night. For each target/range/time scenario, images were captured at 30 Hz
for one minute, yielding 1680 images per sequence. The cameras were located on slightly
elevated positions overlooking a valley of dry scrubland. Extensive metadata are provided,
including bounding box annotations obtained from a semi-automated process involving
a subset of manually annotated frames informing an automated tracking algorithm. A
sample of the MWIR imagery is provided in Figure 1.

The DSIAC dataset is an invaluable resource for ATR algorithm development. How-
ever, the dataset has two important issues that we have attempted to address:

1. The primary issue is the dataset is well-suited as a training dataset but lacks a separate
test set containing the same targets but in different conditions. When training and
testing on images from the same video sequence, due to the high correlation between
the image frames, the detection task is trivially solved by state-of-the-art algorithms.
This is demonstrated by prior works [30,31] that achieve near perfect performance at
the farthest ranges despite the targets being barely perceptible. Therefore, we propose
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a training and testing protocol that evaluates a model’s capacity to learn the target
signature without the benefit of impractically high correlation between the train and
test images.

2. The automated bounding box annotations are sometimes inaccurate at far ranges.
At times, the automated tracker wanders off target before being reset by a manually
annotated frame. Instead of using the provided annotations, we calculate corrected
bounding boxes using positional metadata available for the MWIR imagery.

3.1. Proposed Training and Testing Protocol

Given the difficulty of collecting a large ATR dataset under a wide range of conditions,
we argue that the ability of an ATR algorithm to handle unseen data is an important
evaluation criterion. We propose a more challenging evaluation protocol for the DSIAC
dataset that evaluates a model’s robustness to unseen range scenarios. The following
process is used to create the proposed protocol:

1. A subset of images is selected by subsampling every tenth frame of each video.
2. The selected frames are randomly partitioned into ‘dev’ and ‘reserve’ sets with an

80/20% split stratified by target class, range, and time of day. The ‘reserve’ set is not
used in this work and is reserved for other purposes or challenges.

3. The dev set is subdivided into ‘train’ and ‘evaluation’ sets via 5-fold cross-validation.
4. Finally, certain ‘testing’ ranges are designated exclusively for final model evaluation,

while a disjoint set of ranges are used for both training and validation.

Training and testing on different range scenarios allow for the evaluation of model
robustness to unseen background contexts. The ranges are categorized as follows:

• Training and Validation Ranges: {1000, 2000, 3000, 4000, 5000}m
• Testing Ranges: {1500, 2500, 3500, 4500}m

Evaluation results are reported as the average performance over five models, each
separately trained and evaluated on its respective fold. Additionally, we only use data from
the following classes: Pickup, SUV, BTR70, BRDM2, BMP2, T72, ZSU23-4, and 2 S3. Table 1
lists the average size of the training and evaluation sets for each range and cross-validation
fold. The filenames specifying our training and evaluation sets, as well as the adjusted
ground truth bounding box values of the targets, are provided in the Supplementary
Materials File S1.

Table 1. The average number of images per cross-validation fold according to our proposed protocol
for the DSIAC dataset. The evaluation set for the training and validation ranges is also referred to as
the validation set. Similarly, the evaluation set for the testing ranges is referred to as the test set.

Range Train Evaluation

1000 1843 461
1500 - 458
2000 1834 458
2500 - 425
3000 1728 432
3500 - 425
4000 1709 427
4500 - 413
5000 1601 400

3.2. Preprocessing

The DSIAC MWIR imagery is in 16-bit format; however, the pixel intensity values
occupy a much smaller band within the full 16-bit range. The images are converted into
8-bit format via min–max normalization, stretching the range of each image’s pixel values
to 0–255 and rounding to the nearest integer. Finally, the single image channel is replicated
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to produce a 3-channel image. No additional preprocessing is conducted to correct for any
outlying values.

4. Analysis of One- and Two-Stage Baseline Models

In this section, we present an initial evaluation of several popular generic CNN-
based object detection models: YOLOv3, YOLOv5, Faster R-CNN, and RetinaNet. These
models serve as good baselines for comparison as they are simple, reliable frameworks
that are competitive with the SOTA while also being excellent starting points for more
customized, domain-specific solutions. The basic topology of the YOLOv3 backbone is
a series of five convolutional bottleneck modules, each proceeded by a downsampling
layer. The bottleneck modules encourage sparse representations by contracting and then
expanding the number of filters in a set of layers. The YOLOv5 family of models follows a
similar structure to YOLOv3 but replaces the standard convolutional bottleneck modules
with cross-stage partial (CSP) modules [53] (discussed further in Section 5.4). The small,
medium, and large variants of YOLOv5 simply vary the number of layers and filters in
the CSP blocks. Both YOLOv3 and YOLOv3 employ an FPN to concatenate the upscaled
lower-resolution features with the higher-resolution output heads. The two Faster R-
CNN (FRCNN) and RetinaNet variants are built on ResNet backbones of either 50 or
101 layers of repeating residual convolutional blocks. All of the baseline models have
three output heads corresponding to three different feature resolution scales. Analysis of
these algorithms’ performance indicates two common points of failure: (1) the inability to
detect very small targets (discussed in Section 4.3) and (2) an over-reliance on irrelevant
background cues (discussed in Section 4.4). We argue that these failures, albeit specific to
our particular long-range thermal ATR scenario, stem from a fundamental drawback of
their architectural design.

4.1. Performance Metric

We use the mean average precision (mAP) as our performance metric, opting for the
commonly used, albeit more lenient, intersection over union (IoU) threshold of 0.5 (mAPIoU=0.5)
in order to de-emphasize the importance of precise bounding box predictions on very small
targets. Given a set of target classes K, the mean average precision at a given IoU threshold is

mAP =
1
|K| ∑

k∈K
APk (1)

where APk is the average precision for the kth class. We follow the 101-point interpolated
AP definition used by COCO [54].

4.2. Implementation Details

The models have all been trained using four Nvidia Tesla V100 GPUs. For YOLOv3
and YOLOv5, we utilize the Ultralytics YOLOv5 framework [55]. For RetinaNet and
Faster RCNN models, we employ Detectron2 [56]. The pyCOCOtools framework [57] is
used to calculate mAP. Unless otherwise noted, the default hyperparameter settings of the
respective repositories are used. The batch size is 64 for YOLO models and 32 for Faster
R-CNN and RetinaNet. The models are trained on the images from the training sets of
all training ranges (1, 2, 3, 4, and 5 km). Faster R-CNN, RetinaNet, all YOLO models are
trained for 300 epochs except YOLOv5 l and YOLOv5 x, which are trained for 500 epochs.
The (h,w) anchor box sizes for the respective prediction heads are

1. (10,13), (16,30), (33,23)
2. (30,61), (62,45), (60,120)
3. (116,90), (156,198), (373,326).
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4.3. Performance Analysis

The mAP (defined by Equation (1)) of the baseline models on the set of designated
testing ranges is provided in Table 2. Table 2 also includes results on the validation data,
where training and evaluation are conducted on the same set of ranges (in other words, on
the same video sequences). As certain range scenarios are particularly challenging, model
performance is subdivided by range rather than averaged together. The results on the
validation ranges reflect the near-perfect detection rates reported in [30,31]. Performance
on the test ranges, however, provides a truer measure of model accuracy and robustness.

Table 2. mAPIoU=0.5 (%) on each test and validation range, averaged over 5 cross-validation folds.
Models were trained on training images from the combined set of training ranges (1, 2, 3, 4, and
5 km). Results on the test ranges represent evaluation on image frames from video sequences not
used in training. Results on the validation ranges involve training and evaluating on the same set of
video sequences (albeit different frames). The results on the validation ranges corroborate the high
detection rates reported in prior studies involving DSIAC. However, performance on the unseen test
ranges exposes the true difficulty of the task. The highest mAP for each test range is shown in bold.

Model
Test Range Validation Range

1.5 km 2.5 km 3.5 km 4.5 km 1 km 2 km 3 km 4 km 5 km

YOLOv3 97.0 47.6 65.3 15.2 100.0 100.0 99.9 94.5 86.3
YOLOv5 s 96.6 44.8 77.2 19.4 100.0 100.0 99.9 93.3 75.7
YOLOv5 m 96.1 40.6 65.9 13.9 100.0 100.0 99.3 92.1 78.1
YOLOv5 l 98.1 41.8 50.7 9.1 100.0 100.0 99.9 94.6 86.4
YOLOv5 x 83.8 26.1 27.3 6.8 92.7 88.8 80.1 71.4 57.9
FRCNN-50 88.8 54.2 76.8 18.7 100.0 100.0 99.2 92.6 71.9
FRCNN-101 93.1 53.0 66.1 100.5 100.0 100.0 98.9 92.8 77.0
RetinaNet-50 91.0 28.2 60.1 20.8 99.7 98.6 93.8 78.2 54.4
RetinaNet-101 80.0 19.1 57.6 10.2 100.0 99.4 94.8 89.8 73.1

Detection rates decrease dramatically on all unseen ranges except for the closest
scenario. The difference between the detection rates on the validation ranges versus on
the test ranges is evidence of overfitting. At 1.5 km, mAP is near 100% for several models.
At 4.5 km, on the other hand, the best performing models only achieve around 20% mAP.
YOLOv5 s and Faster R-CNN-50 perform best overall, while YOLOv5 x performs the worst.

Curiously, the detection rates for the 2.5 km scenario are significantly lower than 3.5 km;
smaller, more distant targets should be more difficult to detect than larger, closer ones, all else
equal. The performance decrease on the closer 2.5 km range warrants examination.

4.4. Background Overfitting

As evidenced in Table 2, performance decreases dramatically on unseen range sce-
narios. Given the limitations of the dataset and the difficulty presented by our proposed
protocol, some degree of performance loss due to overfitting is to be expected. However, it
is curious that detection rates for the 2.5 km scenario are significantly lower than at 3.5 km.

On close inspection, there is an important difference between the 2.5 and 3.5 km ranges
that is visible upon inspection of the images. Figure 2 provides a side-by-side comparison
of the range scenarios from 2 to 4.5 km meters. The views of the valley in the 3 to 4.5 km
scenarios are identical (although the targets appear in different locations), whereas, in the
2 and 2.5 km scenarios, they are unique. The results suggest that the algorithms leverage
familiarity with a scene to isolate the target signals (training on 3 and 4 km scenarios helps
accuracy on 3.5 km). In so doing, the models become biased to particular backgrounds
(training on 2 and 3 km scenarios does not generalize to 2.5 km). This could also explain
why Faster R-CNN performed best in the 2.5 km scenario. The two-stage Faster R-CNN
model makes final predictions based on cropped regions of interest, which may be more
robust to background overfitting.
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(a) 2 km (train) (b) 2.5 km (test) (c) 3 km (train)

(d) 3.5 km (test) (e) 4 km (train) (f) 4.5 km (test)

Figure 2. The 3 to 4.5 km scenarios share the same view of the valley, whereas the 2 km, 2.5 km, and
3 km scenarios all have different backgrounds. We hypothesize the drop in performance at the 2.5 km
range is likely due to the novel background view, and, consequently, the large receptive fields of the
baseline networks invite the memorization of unrelated features.

To further examine the issue of background overfitting, we copy-paste a successfully
detected target along with a varying amount of its surrounding background into other
areas of the image: a close crop around the vehicle’s chassis, a 50 × 50 window, and a
100 × 100 window centered around the target. Inference is run on the modified image in
order to determine the “redetection rate” (i.e., can the model detect the copies?). Figure 3
illustrates the results of this experiment. The YOLOv5 model fails to redetect the majority
of the cloned targets until a very large 100× 100 region around the original target is also
copied. One could reasonably expect the model to be able to redetect the target when it is
translated into other sensible areas of the terrain. The high rate of failed redetections of
YOLOv5 s is evidence of over-sensitivity to specific background contexts. In contrast, the
custom model with a much smaller 49× 49 receptive field successfully redetects nearly all
copied targets.

The following section discusses our methodology in designing a model better attuned
to small low-resolution targets and more resilient to novel background contexts.
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(a) Close crop (no background context) (b) 50 × 50 context window (c) 100 × 100 context window

Figure 3. A successfully detected target (green circle) is copy-pasted into other regions of the same
image with an increasing amount of background context, from a close crop traced around the target
signature (column a) to a 100 × 100 crop around the target (column c). Inference is re-run on the
modified images. If a copied target is “redetected”, it is annotated in red; failed redetections are circled
in orange. YOLOv5 s (top) has difficulty redetecting the target copies until it appears in a 100 × 100
region of its original background. The 49× 49 receptive field model (bottom) successfully redetects
nearly all copies, indicating a better ability to learn background-agnostic target representations.

5. Design of Restricted Receptive Field Architecture

Our approach is designed to address two fundamental challenges in long-range
thermal object detection: (1) the signal challenge of low resolution, low-PoT target signatures,
and (2) the data challenge of datasets with limited size and diversity.

Generic state-of-the-art object detection algorithms such as YOLO and Faster R-CNN
are not designed with these conditions in mind. The large-scale datasets on which gen-
eral object detection models are trained and benchmarked, such as ImageNet [58] and
COCO [54], are primarily composed of relatively large high-resolution objects compared to
the long-range targets in ATR datasets like DSIAC. For general purpose object detection
architectures, extracting rich long-distance semantic relationships over the span of an image
is of higher priority than avoiding information loss due to early spatial downsampling.
However, we conjecture that early downsampling can result in the loss of vital signal
information when dealing with very small targets, especially in the infrared. Furthermore,
large receptive fields (obtained from early and often spatial downsampling) can exacerbate
the problem of overfitting to irrelevant statistical patterns in the data-poor ATR domain.

To address the aforementioned problems, we propose an alternative approach to
long-range thermal target detection with two primary design goals:

1. Mitigate information loss due to premature spatial downsampling of the feature maps
by reducing the overall degree and frequency of downsampling, thereby extending
the processing of fine-grained details.

2. Restrict the network’s receptive field by focusing predictions on a localized area more
appropriate to the small size of long-range targets in order to minimize the potential
for overfitting.
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5.1. Spatial Resolution and Receptive Fields

The receptive field of a network layer is the size of the region in the input image, which
can inform the activation of a “pixel" in the layer’s output feature map. The receptive field
of a convolutional layer’s output feature map is a function of that layer’s kernel size and
stride, as well as the receptive field of the previous layer. Using the derivation provided
by [59], the receptive field size, r0, regarding the input image space for a single-path CNN
with L layers is

r0 =
L

∑
l=1

(
(kl − 1)

l−1

∏
i=1

si

)
+ 1 (2)

where k and s are a layer’s kernel size and stride, respectively. Downsampling occurs when
s > 1. The cumulative effect of repeated downsampling results in deep networks with
receptive fields that easily cover the entire image.

Skip connections provide a secondary means to increase receptive field size. Fea-
ture maps from disparate layers with different spatial resolutions and receptive fields
can be combined via upsampling or downsampling. This technique is often used to in-
fuse lower-level localized features with more globalized information from deeper in the
network [48,60]. We avoid this strategy in order to enforce a localized context.

Important to note is that Equation (2) establishes a theoretical upper bound for the
size of the region, which can influence an output activation. However, as the receptive
field grows, pixels further from the center of a region in the input image have less capacity
to influence the output due to having fewer connections with that output, similar to our
own foveal vision. The “effective receptive field" of a network is much harder to precisely
calculate and depends on activation function, dropout, skip connections, dilation, and
input data, among other factors. In general, we can assume the effective receptive field is a
Gaussian region occupying only a fraction of the theoretical receptive field [61].

Another important aspect of the architecture’s design is the network stride. Network
stride refers to the number of pixels traveled in the original image space for each movement
of a convolutional kernel in the final layer. For anchor-based detection methods, the
network stride determines the spacing between the anchor boxes. A network with a large
stride would have large gaps between the small anchor boxes that have been calibrated
for tiny objects. In turn, these gaps place a demand upon the network to produce a larger
range of bounding box offset values. This also holds true for some anchor-free methods,
which regress offset values in reference to keypoints tiled across the image. Minimizing the
number of downsampling layers also minimizes the network’s stride. In this way, the scale
of feature extraction and prediction can be aligned with the expected scale of targets.

5.2. Receptive Fields for Small Targets

Generic object detection algorithms are commonly benchmarked against the popular
COCO dataset [54]. It is also standard practice for models to be pretrained on ImageNet [58]
prior to training on COCO. Understandably, general purpose architectures are designed
with a bias toward the data distributions of these large-size datasets. In datasets like
ImageNet and COCO with medium- and large-size objects, expansive receptive fields help
to identify object boundaries. A more holistic view of an image enables better overall scene
understanding and, ideally, better predictions.

As objects become smaller, spatial context can provide vital clues for detection. Hu
and Ramanan [62] show the importance of contextual information when attempting to
detect extremely small faces. Having enough context to recognize the body to which a
face belongs is a useful cue, as is noticing the surrounding crowd. In the case of ATR,
important contextual information might be a road, tire tracks, or a plume of engine exhaust.
How much spatial context is useful depends on the scenario. COCO is composed of
approximately 41% small objects (<322 pixels), 34% medium (322 to 962 pixels), and 24%
large (>962 pixels). The challenging long-range targets in DSIAC are well below the 322

upper limit for small objects. From Figure 4, we see that, beyond 3000 m, PoTs are less
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than 162. Therefore, we seek a spatial context sufficient to help in the detection of very
small targets, yet limited enough to encourage the network to learn the actual target
signature instead of extraneous background features. The bounding box statistics of the
data, presented in Table 3, help guide the choice of the receptive field. The smallest square
window that can contain the largest target at the closest range (1000 m) is 88× 88, while
18× 18 encompasses the largest target at the farthest range (5000 m).

Figure 4. Distribution of pixels on target (PoT) by range for DSIAC’s thermal MWIR imagery.

Table 3. Bounding box pixel size statistics of thermal MWIR DSIAC targets.

Range
Width Height

Max Min Mean Max Min Mean

1000 88 18 60.8 30 18 23.7
1500 58 12 39.6 20 12 15.7
2000 44 8 30.3 16 8 11.7
2500 34 6 22.9 12 8 9.5
3000 28 6 19.2 10 6 7.6
3500 24 4 17.0 8 4 6.4
4000 22 2 14.2 8 2 5.5
4500 18 2 12.6 6 2 4.9
5000 18 4 12.2 6 4 4.4

For comparison, a list of the receptive fields of other common object detection backbone
architectures is provided in Table 4. Either through downsampling or skip connections,
most of the baseline models’ theoretical receptive fields cover nearly the entire image.
We instead design several custom architectures with much smaller receptive fields more
appropriate for small long-range targets.
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Table 4. Theoretical receptive fields of common object detection backbone architectures. Reti-
naNet [24] and Faster R-CNN [22] both use ResNet backbones.

CNN Receptive Field

MobileNet 315
ResNet50 483
ResNet101 1027
YOLOv3 965
YOLOv5 725

5.3. Receptive Field Ablation

In order to ascertain which receptive field sizes are best for different target ranges
and sizes, we create a series of custom one-stage backbone architectures. These custom
backbones are similar to the YOLOv3/Darknet family of architectures but differ in the
actual number and arrangement of convolutional layers as well as when and how much
downsampling is performed. The basic repeated architectural module is a sequence of
residual “squeeze and expansion" bottlenecks composed of 3 × 3 and 1 × 1 convolutions,
followed by a 3 × 3 convolution with a stride of 2 for downsampling. To isolate the effect of
receptive field size on performance, our custom-designed backbones eschew any use of
feature pyramid network (FPN) [48] or path aggregation network (PANet) [49] modules,
which recombine features from different layers. We investigate receptive fields ranging
from 41 × 41 to 965 × 965.

An important model characteristic that varies along with the receptive field size is
the model size (the total number of model parameters) and model depth (the number of
non-linear transformations). Controlling for model depth is impossible as it is intrinsically
linked with the receptive field size. Controlling for model size is possible with careful
manipulation of the number of convolutional filters in each layer; however, attempting
to do so would still not create a perfectly fair comparison as the number of parameters in
each layer would still differ from backbone to backbone. For these reasons, we opt for a
traditional progression of layer sizes rather than attempting to control for model size.

For each architecture, we train one model for each of the 5 cross-validation folds and
report the average mAP (see Section 4.1, Equation (1)) and standard deviation. The models
are trained on the full set of training data (without any pre-training) for 300 epochs with
batch sizes of 32 using the Ultralytics YOLOv5 framework.

Table 5 presents the receptive field ablation results for each testing range. The results
clearly indicate our small receptive field architectures (41 and 49 pixels2) are better at
detecting very small long-range targets (3.5 and 4.5 km) than the larger receptive field
models. For the closer yet challenging 2.5 km scenario, the 105× 105 receptive field achieves
the best performance. The average width × height of 2.5 km targets is 22.9 × 9.5 pixels,
respectively, which is approximately 20% of the 1052 receptive field. For 3.5 and 4.5 km,
the average sizes are 17× 6.4 and 12.6× 4.9, respectively, or about 35% of the 412 receptive
field (at the farthest ranges, the actual targets tend to be a few pixels smaller than their
ground truth bounding boxes). Given that the effective receptive field is smaller than the
theoretical receptive field [61], we observe good results with receptive fields that are very
similar in scope to a close-to-medium-size crop around the target. For visual reference,
Figure 5 overlays 49× 49 and 153× 153 windows over a target at varying ranges.
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Table 5. mAPIoU=0.5 (%) of custom YOLOv3-like architectures with varying receptive fields (RF). The
best performing architectures for each range are shown in bold.

RF
Test Range

1.5 km 2.5 km 3.5 km 4.5 km

41 97.3 ± 0.6 52.8 ± 3.0 86.7 ± 1.4 24.5 ± 2.2
49 98.4 ± 0.6 59.0 ± 2.1 86.3 ± 0.9 22.1 ± 2.9
51 98.6 ± 0.5 55.6 ± 2.7 85.0 ± 2.2 20.3 ± 1.3
53 98.4 ± 0.5 52.1 ± 2.2 85.6 ± 1.0 19.7 ± 1.7
73 99.5 ± 0.4 63.6 ± 2.6 82.0 ± 1.1 16.5 ± 3.5
105 99.3 ± 0.4 67.4 ± 2.4 77.3 ± 3.2 14.5 ± 2.7
153 99.0 ± 0.4 66.4 ± 2.4 69.3 ± 2.2 17.6 ± 1.7
213 98.0 ± 0.7 54.2 ± 2.2 53.6 ± 3.9 13.7 ± 3.8
581 91.7 ± 2.5 50.0 ± 2.8 71.5 ± 2.6 18.9 ± 2.8
965 82.9 ± 4.1 39.6 ± 5.3 79.2 ± 2.3 13.2 ± 2.2

(a) 1000 m (b) 3000 m (c) 5000 m

Figure 5. Visualization of 49 × 49 (top) and 153 × 153 (bottom) theoretical receptive field (red)
overlayed on targets (green) at various distances. DSIAC MWIR imagery is 640× 480.

5.4. Multi-Head Architecture Ablation

The results of the receptive field ablation presented in Table 5 suggest no single
receptive field is sufficient to detect both medium- and long-range targets. Instead, an
architecture that performs predictions at multiple scales is better suited to cover the range
of target sizes. A multi-headed network architecture allows for predictions at multiple
scales of feature resolution. In this section, we present ablation results on a variety of
custom multi-headed designs.

We additionally test the incorporation of more sophisticated modules. The cross-stage
partial (CSP) module [53] is a dense block [63] that replaces the standard residual block.
Densely connected blocks serve a similar function as residual connections, except the input
feature map is concatenated to the input of all subsequent layers within the same block of
layers, whereas a residual connection is an element-wise addition of the input and output
feature maps of the immediate layer. The CSP module is a modification to the dense block
that provides more efficient computation of gradients. We also evaluate fusing the deeper,
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lower resolution feature maps of the 105 receptive field prediction head with the features
of the earlier higher-resolution prediction head using an FPN.

Table 6 provides the results of the multi-head ablation study. The best overall perfor-
mance is achieved by a dual-head architecture with a 105 receptive field prediction head
and a 41 receptive field head augmented with upscaled features via an FPN. Unfortunately,
no architecture was able to achieve the highest accuracy at every range. Nevertheless, the
best overall multi-head model was able to improve performance on the very challenging
4.5 km range by an additional 3% while maintaining detection rates comparable to the
best-performing single-head models for each scenario.

Table 6. mAPIoU=0.5 (%) of multiheaded versus single-receptive-field architectures. The head re-
ceptive field (RF) specifies the receptive fields of the output prediction heads of the networks. A ?

indicates the native receptive field of the prediction head has been augmented by upscaled features
with larger receptive fields via the feature pyramid network (FPN). CSP denotes the use of cross-stage
partial dense blocks in place of residual bottleneck blocks. The overall average is computed as the
mAP for each individual test range divided by the number of test ranges.

Head RF FPN CSP Test Range Overall

41 49 73 105 1.5 km 2.5 km 3.5 km 4.5 km Avg.

• - - 97.3 ± 0.6 52.8 ± 3.0 86.7 ± 1.4 24.5 ± 2.2 65.3
• - - 98.4 ± 0.6 59.0 ± 2.1 86.3 ± 0.9 22.1 ± 2.9 66.5

• - - 99.5 ± 0.4 63.6 ± 2.6 82.0 ± 1.1 16.5 ± 3.5 65.4
• - - 99.3 ± 0.4 67.4 ± 2.4 77.3 ± 3.2 14.5 ± 2.7 64.6

• • 98.8 ± 0.6 60.6 ± 2.3 86.1 ± 1.2 26.5 ± 1.2 68.0
? • X 99.5 ± 0.3 67.2 ± 2.2 84.4 ± 1.2 27.3 ± 2.9 69.6
• • X 98.8 ± 0.4 62.4 ± 3.2 84.9 ± 0.6 26.6 ± 2.1 68.2
? • X X 99.3 ± 0.5 65.3 ± 5.2 82.5 ± 0.8 27.1 ± 1.7 68.6

• • 99.0 ± 0.5 64.0 ± 1.2 86.3 ± 1.2 24.0 ± 1.4 68.3
? • X 99.6 ± 0.2 64.6 ± 3.6 85.3 ± 1.1 27.4 ± 2.0 69.2
• • X 98.6 ± 0.5 61.6 ± 2.9 84.7 ± 2.1 23.6 ± 2.5 67.1
? • X X 99.4 ± 0.2 64.3 ± 2.9 85.6 ± 1.4 24.4 ± 2.5 68.4

• • • 99.5 ± 0.3 68.2 ± 3.3 85.6 ± 1.5 21.3 ± 3.0 68.7
? ? • X 99.0 ± 0.2 71.3 ±2.7 80.9 ± 2.1 16.8 ± 1.7 67.0
• • • X 98.9 ± 0.6 66.7 ± 2.1 82.3 ± 1.4 18.5 ± 1.8 66.6
? ? • X X 98.8 ± 0.2 68.0 ± 2.4 79.7 ± 2.4 17.9 ± 2.4 66.1

5.5. Proposed Architecture

Based on the results of our architectural design ablation experiments, we propose a
dual-head architecture. The final prediction layer has a receptive field of 105 pixels, the
features from which are upscaled and merged with a 41 receptive field layer. A high-level
diagram of the model is illustrated in Figure 6 and the layerwise specifications are detailed
in Table 7. Omitted from the table are batch normalization and ReLU activations, which
occur at every layer. The number of filters in the output heads (indices 11 and 15 in the
table) equates to the size of the output prediction vector: |K| target and 1 background class
logit plus 4 bounding box offset coordinates for each of the 3 anchors. The upsampling
operation is completed by nearest neighbor.

Figure 6. High-level architectural diagram of the proposed RF41+105 FPN network.
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Table 7. Layerwise specifications for RF 41 + 105 FPN architecture. K is the set of target classes. Layer
indices 4, 6, 8, 10, and 14 indicate repeated blocks of (Conv, Conv, Residual) layers. Output heads are
shown in bold.

Idx Type Filters Size RF

1 Conv 32 3 × 3 1
2 2× Conv 64 3 × 3 5
3 Conv 128 3 × 3/2 7

Conv 64 1 × 1
Conv 128 3 × 3

4 2× Residual 17
5 Conv 256 3 × 3 21

Conv 128 1 × 1
Conv 256 3 × 3

6 2× Residual 29
7 Conv 256 3 × 3/2 33

Conv 128 1 × 1
Conv 256 3 × 3

8 2× Residual 49
9 Conv 256 3 × 3/2 57

Conv 128 1 × 1
Conv 256 3 × 3

10 3× Residual 105
11 Conv Head 3 × (|K| + 5) 1 × 1 105
12 Upsample(11)
13 2× Concat(6,12)

Conv 128 1 × 1
Conv 256 3 × 3

14 3× Residual 41 *
15 Conv Head 3 × (|K| + 5) 1 × 1 41 *

* denotes receptive field is augmented by upscaled features.

6. Comparative Evaluation Results

In this section, we compare the performance of the proposed method against several
object detection models on the DSIAC and AI-TOD datasets.

6.1. Implementation Details

The Ultralytics YOLOv5 framework is used to train and evaluate our custom-designed
dual-head architecture as well as the Conny25 [31], cfCNN [32], and TinyNet [52] models.
Due to resource and time constraints, these models have not been pre-trained on the
ImageNet or MS-COCO datasets. We implement the cfCNN network as a one-stage anchor-
based object detector instead of using its original patch-based classifier design in order to
isolate and fairly compare the performance feature extraction backbone. The architecture
is kept the same except that the final global average pooling layer is replaced with a
convolutional prediction head outputting class probabilities and bounding box coordinates
in the same fashion as the other YOLO models. For the implementation details of the
YOLO, RetinaNet, and Faster R-CNN models, see Section 4.2. The mAP performance
metric is defined in Section 4.1, Equation (1). Refer to the following results sections for the
dataset-specific anchor box size parameters.

6.2. DSIAC Results

The results on the DSIAC dataset represent performance on the long-range ground-
based MWIR thermal ATR setting. The training and testing protocol, as described in
Section 3.1, is designed to test a model’s robustness target locations and ranges not seen in
the training set. The models were trained on all images in the training sets of the 1, 2, 3, 4,
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and 5 km scenarios. The models were evaluated on the validation sets for each range, with
the 1.5, 2.5, 3.5, and 4.5 km scenarios constituting the challenging unseen range scenarios.

The (h,w) anchor box sizes for Conny25, cfCNN, and TinyNet are (10,13), (16,30),
(33,23), (30,61), (62,45), and (60,120). For our proposed model, the anchor boxes are (10,13),
(16,30), (33,23) and (30,61), (62,45), (60,120) for the first and second prediction layers,
respectively. For all other models, the arrangement of anchor boxes is identical to the
proposed model, except for an additional set of anchors for the third prediction layer: (116,
90), (156, 198), and (373, 326). Given this setup, the calculated best possible recall for each
model is at least 99.5%.

As shown in Table 8, our proposed model significantly outperforms all other archi-
tectures at every test range. For the long-range 3.5 and 4.5 km scenarios, it scores 84.4%
and 27.3% mAP, respectively. On those ranges, the performance of the next best model,
TinyNet (originally designed for remote sensing applications), is 82.2% at 3.5 km and 23.7%
at 4.5 km. However, TinyNet is less competitive at the 1.5 and 2.5 km scenarios. Critically,
our model also demonstrates improved generalizability to the completely novel view of
the valley presented in the 2.5 km scenario, reaching 67.2% mAP (a 13% improvement over
FRCNN-50’s second highest score). We attribute this success to our architecture’s restricted
receptive fields, which focus the network’s attention on the target’s signature.

Table 8. mAPIoU=0.5 (%) on each test and validation range, averaged over 5 cross-validation folds.
The highest mAP for each test range is shown in bold.

Model
Test Range Validation Range

1.5 km 2.5 km 3.5 km 4.5 km 1 km 2 km 3 km 4 km 5 km

YOLOv3 97.0 47.6 65.3 15.2 100.0 100.0 99.9 94.5 86.3
YOLOv5 s 96.6 44.8 77.2 19.4 100.0 100.0 99.9 93.3 75.7
YOLOv5 m 96.1 40.6 65.9 13.9 100.0 100.0 99.3 92.1 78.1
YOLOv5 l 98.1 41.8 50.7 9.1 100.0 100.0 99.9 94.6 86.4
YOLOv5 x 83.8 26.1 27.3 6.8 92.7 88.8 80.1 71.4 57.9
FRCNN-50 88.8 54.2 76.8 18.0 100.0 100.0 99.2 92.6 71.9
FRCNN-101 93.1 53.0 66.1 10.5 100.0 100.0 98.9 92.8 77.0
RetinaNet-50 91.0 28.2 60.1 20.0 99.7 98.6 93.8 78.2 54.4
RetinaNet-101 80.0 19.1 57.6 10.2 100.0 99.4 94.8 89.8 73.1
Conny25 [31] 96.3 38.9 54.6 10.0 100.0 99.9 98.9 88.6 62.7
cfCNN [32] 96.1 44.8 66.4 14.1 99.9 99.9 99.4 90.0 62.3
TinyNet [52] 89.1 48.0 82.2 23.7 100.0 100.0 99.7 91.3 68.4
RF41+105 FPN (Ours) 99.5 67.2 84.4 27.3 100.0 100.0 99.7 95.2 87.4

Our proposed model’s accuracy comes at the cost of speed. This is a consequence of
performing predictions on high-resolution feature maps. Our model has a 46 milisecond
inference time (using the Nvidia V100). As comparison, TinyNet operates at 1.6 ms, Yolov5
s at 2.5 ms, and FRCNN-101 at 40 ms. As such, our proposed method is not suitable for
real-time applications but can operate at speeds similar to the Faster R-CNN two-stage
detector.

6.3. AI-TOD Results

To evaluate the generalizability of our approach to different scenarios, we utilize the
AI-TOD dataset. As discussed in Section 2.4, images in the AI-TOD dataset (all of which are
visible-wavelength) have been sourced from several different drone and satellite datasets
but selected to only include images with very small targets. In this way, it is an ideal choice
for evaluating generalizability to a wide variety of scenarios.

The ‘train’ and ‘val’ sets (comprised of 11,214 and 2167 images, respectively) are used
to determine appropriate stopping times for each model. The reported results reflect perfor-
mance on the ‘test’ set (14,018 images) after training on the ‘trainval’ set (also 14,018 images).
The images are all resized to 640 × 640. TinyNet, cfCNN, and Conny25 are trained for
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600 epochs. The proposed RF41 + 105 and YOLOv3 models are trained for 650 epochs.
The YOLOv5 models are trained for 700 epochs. We report the mAP at both 0.5 IoU and
averaged over 0.5 to 0.95 IoU at an interval of 0.5, as well as the precision and recall. Table 9
contains the results.

Table 9. mAP, precision (P), and recall (R) on the test set of the AI-TOD dataset. Bolded values
indicate the best performance in their respective categories.

Model mAP0.5 mAP0.5:0.95 P R

YOLOv3 61.82 30.6 77.22 59.9
YOLOv5 s 54.87 23.22 69.72 54.87
YOLOv5 m 60.64 27.9 73.59 59.47
YOLOv5 l 62.49 31.22 77.25 61.25
YOLOv5 x 64.04 32.55 76.83 62.86
Conny25 [31] 23.74 8.12 51.37 25.05
cfCNN [32] 20.5 7.05 73.73 20.32
TinyNet [52] 28.07 10.21 40.7 30.99
RF41 + 105
FPN 66.39 32.94 69.12 67.95

The proposed model achieves the best performance at 66.39% mAPIoU=0.5, followed
by YOLOv5 x at 64.04% (which performed worst on the DSIAC dataset). The extremely
lightweight TinyNet architecture, attaining only 28.07%, is unable to effectively capture the
diversity of target appearances and backgrounds in the AI-TOD dataset. Conversely, the
much deeper YOLOv5 x is well-suited to large diversified datasets. This was especially
evident when examining its increase in performance from the ‘train/val’ set (47.17%).
Comparatively, YOLOv5 s only increased from 45.23% to 54.87%, strongly indicating the
advantage of a larger-capacity network on larger datasets. Furthermore, the benefits gained
by reducing the frequency and immediacy of downsampling on DSIAC’s thermal imagery
are less apparent on the visible-wavelength drone and satellite data.

These results validate the effectiveness of the proposed approach on different tiny
object detection scenarios, although the trade-off in inference time becomes less justifiable
when dealing with more detailed (i.e., visible-wavelength), higher-resolution, and well-
varied data. In such situations, a middle ground between our proposed design and a more
traditional backbone may be warranted.

7. Conclusions

Thermal long-range ATR is a challenging research area due to the nature of the problem
as well as the limited data with which to train and evaluate models. The DSIAC dataset is
a valuable asset for ATR research, but high correlation between the frames within a video
sequence has led to high detection rates in prior works, even at extreme distances when
distinguishing the class or even location of the target appears near impossible. We have
proposed a challenging protocol for the DSIAC dataset that evaluates model generalizability
to video sequences (and thereby target ranges) not available during training, affording a
better measure of model performance and robustness. We also observe a phenomenon
of background overfitting exacerbated by the very large receptive fields of existing CNN
feature extraction backbones. Our proposed architecture, which achieves state-of-the-art
performance on the DSIAC dataset, improves detection accuracy and mitigates overfitting
by processing the fine details of narrowly focused image regions.

Furthermore, the proposed method is shown to generalize to a variety of different
tiny object detection scenarios. It achieves state-of-the-art performance on the tiny object
detection AI-TOD dataset composed of drone and satellite visible imagery from a variety
of sources. However, our model also sees less improvement over existing methods on the
AI-TOD dataset, likely due to the dataset’s numerous, highly varied, and highly detailed
visible imagery.
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The primary drawback of our method, and an excellent candidate for future work,
is inference time. Other avenues of potential future work include the exploration of
anchor-free and two-stage models, alternative loss functions and IoU metrics, and multi-
scale feature representations. It is a one-stage design that operates at the speed of a two-
stage model. Nevertheless, for non-real-time small-thermal-target detection, the proposed
RF41+105 FPN model is shown to be highly effective.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/article/10.3390/s23187806/s1, File S1: DSIAC Dataset Training and Testing Protocol.
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