
Contrastive Learning and
Cycle Consistency-based
Transductive Transfer
Learning for Target
Annotation

SHOAIB MERAJ SAMI
LCSEE Dept., West Virginia University, Morgantown, WV, USA

NASSER M. NASRABADI, Fellow, IEEE
LCSEE Dept., West Virginia University, Morgantown, WV, USA

RAGHUVEER RAO, Fellow, IEEE
Army Research Laboratory, Adelphi, MD, USA

Abstract—Annotating automatic target recognition images is
challenging; for example, sometimes there is labeled data in the
source domain but no labeled data in the target domain. Therefore,
it is essential to construct an optimal target domain classifier using
the labeled information of the source domain images. For this
purpose, we propose a transductive transfer learning (TTL) network
consisting of an unpaired domain translation network, a pre-
trained source domain classifier, and a gradually constructed target
domain classifier. We delve into the unpaired domain translation
network, which simultaneously optimizes cycle consistency and
modulated noise contrastive losses (MoNCE). Furthermore, the
proposed hybrid CUT module integrated into the TTL network
generates synthetic negative patches by noisy features mixup, and
all the negative patches provide modulated weight into the NCE
loss by considering similarity to the query. Apart from that, this
hybrid CUT network considers query selection by entropy-based
attention to specifying domain variants and invariant regions. The
extensive analysis depicted that the proposed transductive network
can successfully annotate civilian, military vehicles, and ship targets
into the three benchmark ATR datasets. We further demonstrate
the importance of each component of the TTL network through
extensive ablation studies into the DSIAC dataset. The source code
is available at https://github.com/ShoaibMerajSami/TTL ATR.
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I. INTRODUCTION

Automatic target recognition (ATR) is essential for
many civilian and military applications, such as target de-
tection and vehicle classification [1]. It can help to allevi-
ate civilian casualties, aid in rescue operations, and guide
land and maritime vehicles. A large amount of labeled
data [2] is required to properly implement ATR algo-
rithms. However, annotating target vehicles are expensive,
time-consuming, and cumbersome. Many semi-supervised
and self-supervised algorithms have been proposed in
the literature to alleviate the manual annotation process
of data [3], [4]. Generally, ATR imagery is captured
in the visible (VIS), mid-wave infrared (MWIR), long-
wave infrared (LWIR), and synthetic aperture radar (SAR)
domains [5], [6], [7], [8]. There are military scenarios
where we have labeled images in one domain (source)
but no annotated images in the other domain (target).
Therefore, annotating target domain images is challenging
when considering only the information from the source
domain images. Transductive transfer learning (TTL) [9],
[10], a semi-supervised learning algorithm can be used
to annotate targets by considering the information of
unpaired source domain images [11]. Therefore, utilizing
the TTL framework to annotate vehicles and ships in
different domains could be a promising approach.

Typically, a TTL framework consists of an unpaired
image translation network and a classifier. A substantial
part of the proposed TTL algorithm is an unpaired
domain transformation method that transfers the source
image to the target domain. This image-to-image (I2I)
translation network should preserve the target chip’s
class information and its semantic structure. Therefore,
constructing an I2I domain translation network is crucial
to the TTL model. The unpaired I2I domain translation
models can be divided into two major categories:
conventional GAN-based methods and contrastive
learning-based unpaired image translation methods,
which maximize the mutual information between the
different domains [12]. Traditional GAN-based unpaired
I2I translation networks can be further divided into cycle
consistency and one-way translation by bypassing cycle
consistency. The cycle-consistency is used in different
ways in the literature, such as image-to-latent, latent-to-
image, and image-to-image domain. Moreover, recently,
contrastive unpaired translation (CUT) learning [13] and
its variants have outperformed the traditional unpaired I2I
methods [14]. The different variants of CUT networks
consider a query selection attention (QS-attention)
module [15], re-weighting the negative patches [16],
instance-wise negative example generation [17], learned
self-similarity-based PatchNCE [18], and two-sided
mapping by two PatchNCE networks [19].
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In general, the CUT model only considers a one-way
translation [14]. However, in the TTL models, there is
a need for a two-way translation, similar to DCLGAN
[19]. This is because the reconstructed source domain
images are used to feed into the pretrained source
domain classifier, which backpropagates categorical
cross-entropy [20] loss into the TTL network. Therefore,
our proposed network is optimized for both PatchNCE
[14] and cycle-consistency[21] losses.

The proposed TTL model needs to learn the patch
and pixel-based correlation among the visible, infrared,
and SAR domains. Furthermore, the IR domain target
lacks color information compared to the visible domain
target [22]. Therefore, the network ought to discern
both the domain-specific and invariant regions. This
incident is alluded to in the QS-Attn-CUT [15] network
by choosing the appropriate query. In the CUT network,
negative patches play an important role because all
negative patches ought not to have a similar contrasting
force [16]. It should be based on the similarity between
negative patches and query, which can be performed
by modulated contrast NCE loss [16]. Therefore, to
benefit from query selection and modulated contrastive
force, we simultaneously used QS-attention [15] and
MoNCE loss-based CUT network. Furthermore, the
generation of negative patches [23] plays an essential
role in contrastive learning [24], [23], and CUT networks
[17]. Hence, we employed noisy feature mixup-based
synthetic patches [25] for robustness and to create more
variations of negative patches.

In this research, we propose the TTL model that
will annotate unlabeled target domain images using the
information from the source domain images. The main
contributions of this work can be summarized as follows:

1) We propose a CycleGAN-based TTL model to
annotate target domain images by optimizing the
cycle consistency, identity, adversarial, and cate-
gorical cross-entropy losses.

2) We further use different variants of CUT-based
transductive transfer learning networks to annotate
ATR targets. Our robust TTL model takes into
account the QS-Attn-based query selection, syn-
thetic negative patch generation, and MoNCE loss-
based two CUT network, alongside the preserving
cycle consistency. The novelty of our proposed
method lies in synthetic negative patch generation
and utilizing the MoNCE and cycle consistency
losses into the QS-Attn-CUT network.

3) Experiments on two military vehicle datasets and
one ship target dataset demonstrates the effective-
ness of the proposed model.

Preliminary results of our proposed transductive
CycleGAN algorithm is published in [26], introducing
the annotation of unlabeled ATR data in the DSIAC
dataset. The primary contribution of the current work

is to propose a contrastive learning-based transductive
learning approach, critically evaluate our algorithms’
performance on three ATR datasets, and compare our
method with other state-of-the-art methods. Additionally,
we provide a detailed description of the hardness of
negative patches, attention-based query selection, and
synthetic patch generation to improve the annotation
performance of the proposed contrastive TTL algorithm
which was not reported in [26].

The remainder of our work is developed as follows:
Section II presents a literature review related to our
study; Section III explains the proposed TTL network
architecture and describes each of its modules; Section
IV illustrates the effectiveness of the proposed network
and each of its components with organized experiments;
and finally, in Section V, we conclude our paper.

II. Related Work

This section will discuss the relevant work regarding
automatic target recognition, transductive learning, and
unpaired image translation network.

A. Automatic Target Recognition

The automatic target recognition literature can be
divided into: (a) target detection and (b) target vehicle
classification task. Different deep learning methods, such
as Faster R-CNN [27], SSD [28], YOLO [29], etc.,
have been widely employed to detect various civilian
and military vehicles in various ATR datasets [1]. The
ATR target classification algorithms can be expressed
as: i) feature-based and ii) model-based approaches. The
performance of the feature-based algorithm is lower than
the model-based approaches. The convolutional neural
networks (CNNs) [1], generative adversarial networks
(GANs) [30], recurrent neural networks (RNN) [31], and
autoencoders [32] are widely used in the model-based
ATR classification method. Nasrabadi [1] used a deep
neural network to classify FLIR images in the Comanche
(Boeing–Sikorsky, USA) dataset [33]. In [34], authors
proposed Meta-UDA to detect unlabeled MWIR target
images by using the labeled visible domain images in the
DSIAC dataset [35]. Ding et al. [36] used different vari-
ants of augmentation, such as translation, speckle noise
augmentation, and generating pose synthetic images to
classify SAR images. Furthermore, Wang et al. [37] used
a coupled network aggregating a despeckling subnetwork
and a neural network classifier for classifying noisy SAR
target images.

Generally, training CNN classifiers require a large
amount of labeled training data; few-shot learning is
used in ATR vehicle classification to alleviate the need
for a large amount of training data. Bi-LSTM-based
prototypical few-shot learning [38], hybrid inference [39],
and meta-learning [40] based on few-shot learning have
been employed in the MSTAR SAR dataset. Furthermore,
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autoencoder and supervised constraint [32] were exploited
to classify the small samples in the ATR dataset. Also, in
[30] a semi-supervised method was proposed to classify
the ATR SAR images where the original and GAN-
generated synthetic images were used to construct an ATR
classifier [30].

B. Transductive Transfer Learning

Transductive transfer learning (TTL) is an effective
tool for classifying unlabeled data in various applications.
For instance, the authors in [41] suggested a cross-domain
aspect label propagation-based TTL method for opinion
mining and sentiment analysis. TTL methods based on
RNN and LSTM were investigated for optical character
recognition (OCR) [42]. The authors considered that the
OCR and text incorporate specific details in the high-
dimensional space. In [43], a linear discriminant analysis-
based TTL network was used for emotion recognition
in the wild dataset. In [44] a TTL technique utilizing a
VGGFace16-Net was exploited for cross-domain expres-
sion recognition. In this work, authors optimized cross-
entropy loss of the source domain, and regression loss of
the target domain. A transductive transfer learning method
[45] using cluster correspondence in the domain adapta-
tion using manifold alignment was used to detect zero-
day attacks in intrusion detection systems. Furthermore, a
TTL model [46] was employed for gesture classification
using an electromyographic dataset. A TTL model was
developed to detect epilepsy using electroencephalogram
signals by exploiting Takagi-Sugeno-Kang’s fuzzy logic
systems [47], [48]. In [49], [50] a TTL model was
used for document and text classification using genetic
programming, and distributional correspondence indexing
. The crop classification is vital for farming and nutrition
management, while occasionally, there remains a small
amount of ground truth data. To unravel this matter,
the authors utilized a transductive transfer learning-based
approach [51] for crop classification. A TTL network
based on the deep forest classifier was utilized for cross-
domain transfer learning and for measuring accuracy
across different datasets, including MNIST, USPS, Ama-
zon, DSLR, Webcam, and Caltech-256 datasets [52].

C. Unpaired I2I Domain Translation

The unpaired domain translation literature is vast [53].
The CycleGAN [21] paper was the breakthrough in this
field that consists of bijection mapping by preserving
cycle-consistency. In many works, cycle consistency was
used in different aspects [54], [55], [56]. Instead of cycle-
consistency loss, one-way unpaired image translation was
also used in several papers [57], [58], [59]. Nevertheless,
those approaches employed specific distance functions or
full image statistics. However, CUT [14] can improve im-
age quality and faster convergence by replacing the cycle-
consistency information maximization between input and
output patches between the source and target domain.

The different variants of CUT are a de facto method
for unpaired I2I translation. The CUT network uniformly
contrasts all the negative patches that are not effective.
Optimal transport and self-similarity-based MoNCE loss-
based CUT was proposed to alleviate this issue [16].
Hard negative generation [17], learned self-similarity [18]
based CUT was also exploited in this field. Entropy-
based query selection attention for specifying the domain-
specific and domain-invariant information has also been
utilized [15]. DCLGAN used two-way translation by
considering a CUT network [19].
Furthermore, the denoising diffusion model was success-
fully exploited in the image-to-image translation method
[60], [61]. It was also used for unpaired domain transla-
tion in several fields [62], [63].

III. Methodology

In this section, we will describe our proposed trans-
ductive CycleGAN and hybrid contrastive learning based
unpaired image-to-image translation (H-CUT) network.
The first generator of our proposed TTL model transforms
the source domain images into target domain images.
Then, a second generator transforms the synthetic images
back into the source domain images. Moreover, there are
dedicated source and target domain CNN-based ATR clas-
sifiers that backpropagate their categorical cross-entropy
losses to help to train the whole TTL model. Our proposed
method is depicted in Figure 1.

A. Generative Adversarial Network (GAN)

GAN [64] is a powerful tool for different types of
image generation, image translation, and super-resolution.
A generator and a discriminator are the building blocks of
a GAN architecture. The GAN generates images from a
random variable z; the generator function can be depicted
as G : z → y. The generator G(z; θg) is optimized for
its parameters θg. On the other hand, the discriminator
function D is designed to distinguish between the real
image distribution and the generated image distribution.
In practice, the discriminator is a simple binary classifier
that classifies whether the image is real (y) or fake (G(z)).
In GAN, the generator and the discriminator compete with
each other as a two-player mini-max game [64]. The GAN
objective function can be expressed by L(G,D):

L(G,D) = min
G

max
D

Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[1− logD(G(z))],
(1)

where pdata(x) is the probability distribution of the data
and pz(z) is a Gaussian distribution for the random
variable z.

B. Unpaired Image Translation Networks Architecture

1. CycleGAN
In the unpaired image-to-image translation literature,

CycleGAN [21] has been successfully exploited as a
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Fig. 1: Block diagram of the deep transductive transfer learning framework for automatic target classification.

powerful domain-to-domain transformation tool. This al-
gorithm consists of two generators and two discrimina-
tors. The first generator (G) translates the domain X
images into the domain Y images. The second generator
(F ) translates the domain Y images into the domain
X images. The combined adversarial loss, denoted by
LGAN (G,F,Dx, Dy), for the CycleGAN’s generators G
and F can be expressed by:

LGAN (G,F,Dx, Dy) = min
G

max
Dy

Ey∼pdata(y)[logDy(y)]

+Ex∼pdata(x)[1− logDy(G(x))]

+min
F

max
Dx

Ex∼pdata(x)[logDx(x)]

+Ey∼pdata(y)[1− logDx(F (y))].
(2)

The authors of the CycleGAN proposed that the trans-
formation should be a bijection mapping. If there is no
bijection mapping, then the generator (G) can map an im-
age in an infinite way that follows a similar distribution of
domain Y . In the CycleGAN paper, the authors introduced
the cycle-consistency loss, which translates the domain
X image to the domain Y image then the translated
domain Y image is converted back to the domain X
image by the second generator F . Mathematically; it can
be described as a generator G : X → Y and another
generator F : Y → X . Also, the generators G and
F should translate in the inverse domain, and mapping
should be bijection [21]. The cycle consistency loss can
be denoted as LCycle where η1 and η2 are the hyper-
parameters:

LCycle(G,F ) =η1 ∗ Ex∼pdata(x) (∥F (G(x))− x∥1)
+η2 ∗ Ey∼pdata(y) (∥G(F (y))− y∥1) .

(3)

Moreover, the CycleGAN generator has two vehicle
identity mapping regularizers [21] that are employed as
real images on the target domain and fed as input for
the source generator. This loss is called identity loss
(Lidentity) where η3 and η4 are the hyper-parameters:

LIdentity(G,F ) = η3 ∗ Ey∼pdata(y) (∥G(y)− y∥1)
+η4 ∗ Ex∼pdata(x) (∥F (x)− x∥1) .

(4)

The total CycleGAN loss (LCycleGAN ) is the sum-
mation of the adversarial loss, cycle consistency loss,
and identity loss where λa, λb, and λc are the hyper-
parameters:

LCycleGAN (G,F,Dx, Dy) = λa ∗ LGAN (G,F,Dx, Dy)

+λb ∗ LCycle(G,F ) + λc ∗ LIdentity(G,F ).
(5)

2. Contrastive Unpaired Image Translation (CUT)
The CUT network consists of the adversarial loss

and PatchNCE loss where the PatchNCE loss maximizes
the mutual information I(X,Y ) = H(X) − H(X|Y ).
Therefore, the CUT network minimizes the H(X|Y )
which is similar to the cycle consistency goal [14]. The
total CUT objective can be depicted as:

LCUT (G,D,X, Y ) = λg ∗ LGAN (G,D,X, Y )

+λX ∗ LPatchNCE(G,H,X) + λY ∗ LPatchNCE(G,H, Y ),
(6)

where λg, λX , and λY are the hyper-parameters.
The PachNCE objective can be denoted as:

LPatch
NCE

(X,Y ) = −
N∑
i=1

log[
e(xi.yi/τ)

e(xi.yi/τ) +
∑

N
j=1
j ̸=i

e(xi.yj/τ)
],

(7)
where τ is a temperature parameter and X , Y are the
generated target domain and ground truth images, respec-
tively, X = [x1, x2, ...., xN ] and Y = [y1, y2, ...., yN ] are
encoded feature vectors from 1st, 4th, 8th, 12th and 16th
layers of the encoder, and that is passed through a two-
layer MLP network [14], [16]. In the Eq. 6, the first
component is the adversarial loss, the second component
is the PatchNCE loss for domain translation and the
third component is the identity loss. The CUT network
considers N class classification where anchor provides the
same contrastive force to the N −1 negative samples that
is too strict. To overcome this issue modulated contrastive
NCE loss has been proposed [16].
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Fig. 2: Block diagram of the CycleGAN & CUT’s generator and discriminator [65].

3. Modulated Contrast-based CUT
In the contrastive learning literature hardness of nega-

tive samples has been adequately investigated [24], [17],
[23]. Hard negatives can facilitate to learn the data repre-
sentation faster [24] in the contrastive learning. Moreover,
in the unpaired image translation literature, the hardness
of the negative patches is defined by considering their
similarity to the query, as proposed in [16]. The similarity
between a negative sample yj and an anchor xi is defined
by the hard negative weighting as shown in Eq. (8):

wij =
e(xi.yi/β)∑
N
j=1e

(xi.yj/β)
, (8)

where β is the weighting temperature parameter. The
modulate contrast NCE loss objective employs re-
weighing strategies by enforcing the constraint defined
by Eq. (9):

N∑
i=1

wij = 1,

N∑
j=1

wij = 1; i, j ∈ [1, N ]. (9)

Equation (10) is the optimal transport [66] for this algo-
rithm which also considers the Equation (9) as constraint:

min
wij ,i,j∈[1,N ]

[

N∑
i=1

N∑
j=1
j ̸=i

wij .e
(xi.yi/τ)], (10)

min
T

⟨C, T ⟩ s.t ⟨T−→1 ⟩ = 1, ⟨TT−→1 ⟩ = 1, (11)

where ⟨C, T ⟩ is the inner product of the cost matrix (C)
and transport plan (T ). In the hard mining strategy, the
cost matrix is e((1−xi.yi)/β) when i ̸= j; if i = j then
Cij = ∞. The Sinkhorn [67], [68] algorithm is applied
to Eq. (11) for calculating the optimal transport plan.
Furthermore, similar to the PatchNCE and MoNCE meth-
ods, the modulated contrast-based loss also uses multiple
layers (1st, 4th, 8th, 12th, and 16th) of the encoder

features for contrastive learning. The phenomena of mod-
ulated and vanilla contrast are depicted in Figure 3 and
Figure 4.

Output Image Input ImageUnpaired Image Translation by MoNCE

Negative Pair Similarity

Low
Similarity

High
Similarity

Query

Positive

Neg

NegNeg

Neg

Neg

High Similarity
Neg

Low Similarity
Neg

Positive

Vanilla NCE objective Weighted NCE objective

Query

Neg

Neg

Neg

Neg

Fig. 3: Vanilla and weighted contrastive objective [16].

4. Query Selected Attention-based CUT
The CUT network selects queries from random lo-

cations of generated images, but this approach may not
always serve the intended purpose of domain translation.
Because, all the locations of the image patches do not
contain similar importance of domain-related information.
The AttnGAN [69] guided the generator of GAN to
translate the relevant area of the images by using a
learnable foregrounded mask. The F-LSeSim [18] method
a variant of CUT uses self-similarity into the local re-
gion of the images and employ the NCE loss. All the
afore mentioned algorithms can not properly depict the
domain-relevant patches. The QS-Attn [15] overcomes
this issue by using the entropy-based attention for query
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selection and incorporates it into the CUT network. For
this purpose, the QS-Attn reshape the source domain
images Fx ∈ RH×W×C into a two dimensional matrix
Q ∈ RHW×C and its transpose K ∈ RC×HW . The Q
and K are multiplied and imposed softmax into its row
then it produced attention matrix Ag ∈ RHW×HW . The
relevant region is selected by the entropy Eq. (12):

Hg(i) = −
HW∑
j=1

(Ag(i, j) logAg(i, j), (12)

where i, j denote the indices of query (Q) and key (K)
metrics. For selecting relevant query the entropy matrix
Hg is sorted by ascending order and the smallest M row
are chosen. This calculation is performed only into the
features of source domain images. The final size of the
global QS-Attn matrix is AQS ∈ RN×HW . The QS-Attn-
based CUT network is illustrated in the Figure 5.

Source Image Target ImageIS

Generator

G(IS)

Query Selected
Attention

EncoderEncoder

Neg-1 Neg-2 Neg-3Positive Query-0 Query-2 Query-3Query-1

Modulated Noise
Contrastive Loss

Discriminator

Real/Fake

Fig. 5: The query selected attention-based CUT architec-
ture [15].

C. Generation of Synthetic Patches in CUT Networks

The harder negative samples in the contrastive loss
function is crucial for quicker and better learning [24].
Additionally, mixing these harder negative examples to
generate synthetic hard negatives has been shown to
improve performance and lead to faster convergence in
contrastive learning [23]. Moreover, mixing can be per-
formed at feature or pixel levels [70], [71]. To improve
the generalization and robustness of deep neural networks,
various techniques have been proposed, including man-
ifold mixup [70], cutmix [72], noisy mixup [25], and
puzzle mixup [73]. More recently, a new method called
noisy feature mixup (NFM) [25] has been introduced,
which has been found to outperform the other methods
in terms of both robustness and the smoothness of the
decision boundary of the neural network model [25].

1. Noisy Feature Mixup
NFM combines the features of DNN and injects ad-

ditive and multiplicative noise to improve generalization.
If noise injection is not used, NFM can be described as
a form of the manifold mixup method. In this paper, we
only consider the feature-level NMF and not the label
mixup. The equation for NFM is presented by 13:

˜̃gk = (1+ σmultξ
mult
k )⊙Mλ(gk(x), gk(x

′) + σaddξ
add
k

(13)

where Mλ(a, b) = λ∗a+(1−λ)∗b and λ ∼ Beta(α, β),
where ξaddk and ξmult

k are Rdk valued independent random
variables that model the additive and multiplicative noise
respectively, and σadd, σmult ≥ 0 are the specific noise
levels.

D. Source and Target Domain Classifiers

The transductive network shown in Figure 2 has a
source and a target domain ATR classifier. In our exper-
iment, the architecture of both classifiers is ResNet-18
[74]. The skip connection in the ResNet-18 architecture
makes it possible to build a deeper network and helps
to backpropagate loss more efficiently. In the proposed
method, we optimize the cross-entropy loss (LCE) of the
classifiers:

LCE = −
10∑
c=1

yo,c log(po,c), (14)

where yo,c is the true probability and po,c is the predicted
probability of the target chip in the training data, the class
number is denoted by c.

E. Transductive CycleGAN

Our proposed transductive CycleGAN is depicted in
Figure 1, consists of a CycleGAN and two residual
network-based CNN classifiers. The architecture of the
transductive CycleGAN generators and discriminators is
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illustrated in Figure 2. The transductive CycleGAN gener-
ator consists of fractionally-strided convolutions, regular
convolutions, and residual blocks.

In this experiment, we consider the MWIR and VIS
domains ATR vehicles in the DSIAC datasets [35] as the
source and target domain data, respectively. Moreover,
in the VAIS dataset [75], the source domain is regarded
as the VIS domain, whereas the target domain is con-
sidered to be the IR domain. Conversely, in the FLIR
ATR dataset [76], [77], the source and target domains
are represented by mid-wave and long-wave IR images,
respectively. Furthermore, the source domain classifier is
assumed to be well-trained (called the optimal MWIR
classifier) and its weights are fixed. During the training,
the source domain classifier’s weights are initialized to
the target domain classifier’s weights which are gradually
trained using the transductive transfer learning process.
The proposed network’s weights are obtained by minimiz-
ing the adversarial loss, cycle consistency loss, identity
loss of the CycleGAN, and the categorical cross-entropy
loss of the source and target domain ATR classifiers. It
should be pointed out that the source domain classifier
loss is also backpropagated to the transductive network,
but its weights are not updated during the training of the
transductive network. The total loss of the transductive
CycleGAN model is LTotal, given by:

LTotal = LCycleGAN + λCE ∗ LCE−Source

+λCE ∗ LCE−Target,
(15)

where LCE−Source and LCE−Target are the cross-entropy
losses for the source and target domain classifiers, respec-
tively.

F. Hybrid CUT (H-CUT) Network

Our proposed H-CUT network consists of a con-
trastive unpaired image-to-image (I2I) translation network
[14] that optimizes the modulated NCE loss [16]. Further-
more, the H-CUT network has a query selection attention
module [15] which gives more attention to the relevant
anchors and Noisy Feature Mixup (NFM) module [25] for
generating synthetic negative patches. The components
of the H-CUT network are depicted in Figure 6. In this
network, both the original and synthetic patches undergo
an optimal transport plan, which modulates the hardness
of negative patches. Finally, the H-CUT network has three
components which are i) query selection attention, ii)
noisy patch generation, and iii) MoNCE module. The
proposed H-CUT network is the building block for the
contrastive learning-based TTL network.

G. Transductive CUT Network

The proposed transductive CUT network consists of
two H-CUT networks for bidirectional image translation
between source and target domains. The reconstructed
source images are used to compute the categorical-cross-
entropy loss by the source domain classifier, that is

Query-Selection

N Negative Patch
Chosen  

N Synthetic Negative
Patch by NFM  

OT

OT

Noise Contrastive
Loss

   QS-Attention       MoNCE Loss      Negative Patches   

Optimal
Transport

Fig. 6: Block diagram of the QS-Attn + NFM + MoNCE
module in the H-CUT architecture.

backpropagated to guide the network to produce class-
preserving image generation. Additionally, this TTL net-
work constructs a target domain classifier that will anno-
tate unlabeled target domain target chips. All components
of this network are depicted in Figure 7. In the H-
CUT TTL network, we will investigate the importance
of bijection mapping by cycle consistency; therefore, in
Figure 7, cycle consistency is included.

LTTL−CUT = LCUT1 + LCUT2

+λc ∗ Lcycle−consistency1 + λc ∗ Lcycle−consistency2

+λCE ∗ LCE−Source + λCE ∗ LCE−Target,
(16)

H-CUT-1 H-CUT-2  Classifier
Source

XSource XSourceXTarget

Classifier
Target

Cycle Consistencey-1

H-CUT-2 H-CUT-1

XTarget

Cycle Consistencey-2

H-CUT-1 H-CUT-2  Classifier
Source

XSource XSourceXTarget

Classifier
Target

Cycle Consistencey-1

H-CUT-2 H-CUT-1

XTarget XTargetXSource

Cycle Consistencey-2

Fig. 7: Block diagram of the H-CUT based TTL network.

IV. Experiments

A. Dataset

In this section, the details of two ATR vehicle and one
ship dataset’s general information and data prepossessing
will be discussed.

1. DSIAC dataset
We implement our transductive transfer learning ap-

proach using the publicly available DSIAC dataset [35].
This dataset is collected by the US Army Night Vision
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and Electronic Sensors Directorate (NVESD). The DSIAC
dataset contains ten vehicles in the visible and MWIR
domain. Among these classes, two of them are civilian
vehicles (‘Pickup’, ‘Sport vehicle’), one is an artillery
piece (‘D20’), and the rest of the seven are military
vehicles (‘2S3’, ‘BTR70’, ‘BRDM2’, ‘BMP2’, ‘MT-LB’,
‘T72’, ‘ZSU23’). The distance between target vehicles
and camera varies from 1 to 5 kilometers. The dataset
contains 189 video sequences in the MWIR domain and
97 video sequences in the visible domain. Each video
sequence contains 1800 video frames. Generally, the
image size in the DSIAC dataset is 640x480 pixels. In this
work, we detect and crop the ATR vehicles (target chips)
from the DSIAC dataset using the information from the
Meta-UDA [34]. All the target vehicles at different ranges
are projected into a canonical distance (e.g., 2 kilometers)
using bi-cubic interpolation. The final target chip size is
68x68x3.

2. Visible and Infrared Spectrums (VAIS) Dataset
The VAIS [75] dataset is the world’s first publicly

available maritime dataset. This dataset consists of 1,623
visible and 1,242 infrared domain images of maritime
vehicles. This dataset has a total 1,088 corresponding
pair images. Moreover, this dataset has six classes which
are ‘merchant ships’, ‘medium passenger ships’,‘sailing
ships’, ‘small boats’, ‘tugboats’, and ‘medium other
ships’. The distribution of the dataset is depicted in
Table I. In this experiment, we resize all the targets of
the VAIS dataset similar to the DSIAC dataset.

TABLE I: Distribution of classes in the VAIS dataset.

Class Name Sub-class No of No of
IR target VIS target

Merchant Barges 33 35
Cargo 147 149

Medium Ferries 40 42
passenger Ship Tour boats 89 98
Sailing Ship Sail up 159 278

Sail down 140 134
Small Boat Speed Boat 132 243

Jet-skis 23 58
Small pleasure Boat 75 82
Large pleasure Boats 49 65

Tug Boat 99 57
Medium other Fishing 28 33
ship Medium other 124 152
Total 1138 1416

3. FLIR ATR Dataset
For evaluation of the proposed TTL method, we use

12-bit gray-scale MW and LW FLIR input images that are
captured by an experimental laboratory infrared sensor
[76], [77], [78]. Furthermore, a quantum well infrared
photodetector focal plane array is used for the LW sensor.
In contrast, an indium antimonide (InSb) focal plane array
is employed for the MW sensor. Each input image size is
304x504 pixels. The target chips are cropped into 40x75

pixels and then reshape into 68x68x3 pixels. This dataset
consists of 461 paired MW and LW images with 572
target chips. Those target chips are captured between
1 to 4 kilometers distance range with different poses.
The dataset has seven classes of ATR vehicles which are
‘M60A3’, ‘PICKUP’, ‘HMMWV’, ‘M2’, ‘M35’, ‘M113’,
and ‘UNKNOWN’.

B. Training Details

Our first transductive network consists of a CycleGAN
and two CNN-based classifiers. The learning rate of
the CycleGAN network is set to 0.0002 for the first
50 epochs; after that, the learning rate is reduced to
0.0001 for the rest of the 50 epochs. For fast convergence
of the network, we have initialized the weights of the
CycleGAN generator weight from the weights of summer
to winter translation on the Yosemite dataset [79]. The
hyper-parameters of Equations 3, 4, and 5 are set to
η1 = η2 = 10, η3 = η4 = 5, and λa = λb = λc = 1,
respectively. For the initial 20 epochs of training, we
set λCE = 0.5, after that it becomes 2.5 in Eq. (15). To
optimize the weights of the generators and discriminators,
we used the Adam optimizer [80] with β1 = 0.5 and
β2 = 0.999. To stabilize the GAN training, we update
the discriminator loss five times less than the generator
loss. For training the classifiers, we also used the Adam
optimizer with a learning rate of 0.0005 and β1 = 0.9,
β2 = 0.999 for 40 epochs. We finetune the target domain
classifier for 10 epochs to get the result from 1% and
10% labeled data as shown in Table II. The other variants
of TTL hyper-parameter are the same as the transductive
CycleGAN. In Eq. (6), we set λX = λY = 1 for the
PatchNCE and MoNCE loss calculation. This experiment
was conducted on an NVIDIA RTX-8000 GPU using the
PyTorch framework [81] with a batch size of 160.

C. Ablation Study

In this section, we will investigate the effect of each
module in the TTL network. Therefore, we compare the
performance of different variants of the TTL network. The
performance comparison is extensively conducted using
the DSIAC dataset.

The effect of Cycle Consistency. In the CUT-TTL
method, there are two CUT networks for two-way transla-
tion. We eliminate the cycle consistency loss and analyze
the annotation performance in the DSIAC dataset. After
that, we added cycle consistency along with PatchNCE
and MoNCE, then trained the whole TTL network. The
confusion matrices of contrastive TTL without cycle con-
sistency are illustrated in Figure 9a, Figure 9b, with cycle
consistency illustrated in Figure 9c and Figure 9d. The
performance of the TTL network is increased substantially
after adding cycle consistency loss. In the MoNCE-based
TTL, cycle consistency increases the average accuracy by
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TABLE II: Performance of different variants of the TTL network on the DSIAC dataset.

Method Name Accuracy (%) Accuracy Accuracy
(No label data) (1% label data) (10% label data)

CycleGAN TTL 71.56 80.24 94.86
QS-Attn+PatchNCE TTL 64.87 72.18 87.00
PatchNCE+cycle-consistency TTL 65.23 81.78 92.87
QS-Attn+MoNCE+cycle-consistency TTL 76.22 88.40 94.40
QS-Attn+MoNCE+NMF TTL 70.09 84.74 93.98
QS-Attn+MoNCE+cycle-consistency+NMF TTL 76.61 88.49 97.13
SimCLR [3] — 75.69 95.15
BYOL [82] — 78.62 94.43
SwAV [83] — 75.42 96.02
B-Twins [84] — 75.50 94.17

100% labeled data
ResNet-18 (supervised) 99.28

Fig. 8: Confusion matrices of (a) source domain classifier and (b) target domain classifier (no labeled data) using
the transductive CycleGAN network.

TABLE III: Performance of the TTL network on the VAIS
dataset.

Method Name Average
Accuracy (%)

No labeled data
CycleGAN TTL 53.60
QS-Attn+MoNCE+cycle-consistency TTL 55.41
QS-Attn+MoNCE+cycle-consistency+NMF TTL 54.50

100% labeled data
ResNet-18 (supervised) 86.04

TABLE IV: Performance of the TTL network on the FLIR
ATR dataset.

Method Name Average
Accuracy (%)

No labeled data
CycleGAN TTL 78.95
QS-Attn+MoNCE+cycle-consistency TTL 80.00
QS-Attn+MoNCE+cycle-consistency+NMF TTL 78.95

100% labeled data
ResNet-18 (supervised) 93.68
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TABLE V: FID score of different variants of the TTL
network on the DSIAC dataset.

TTL Method Name FID score
CycleGAN 216.109,
QS-Attn+PatchNCE 209.372
PatchNCE+cycle-consistency 190.316
QS-Attn+MoNCE+NMF 182.686
QS-Attn+PatchNCE+cycle-consistency 171.485
QS-Attn+MoNCE+cycle-consistency 94.989
QS-Attn+MoNCE+cycle-consistency+NMF 87.957

6.52% for the DSIAC dataset. Therefore, in the CUT-TTL
network, the cycle consistency is an essential component.

The effect of MoNCE. In contrastive TTL, we also in-
vestigate the benefits of the MoNCE loss over PatchNCE
loss. Using the DSIAC dataset, when we implemented
MoNCE loss by replacing PatchNCE loss, that imporved
the annotation performance. These results are depicted in
Table II. It is because MoNCE is able to transfer domain
more accurately compared to the PatchNCE-based CUT.

The effect of QS-Attention. The QS-Attention is
intentionally used in the CUT network for query selection
to perform a more accurate domain translation. In the
transductive CUT network, we investigated necessity of
QS-Attention in the DSIAC dataset and investigate the
FID score improvement compared to no query selection.
The QS-Attn block improves the FID score to 18.831
with the PatchNCE and cycle consistency based TTL as
shown in Table V. This indicates that the query selection
improves the image translation capabilities when used in
the TTL network.

The effect of Synthetic Patches. We insert synthetic
patches in TTL network and observe the performance
improvement. The performance of NFM based synthetic
patches, and no synthetic patch are depicted in the Ta-
ble II, Table III, and Table IV. From there, we observe that
negative patches improve the TTL network performance
by a small amount (0.39%) for the DSIAC dataset;
however, it decreases the performance slightly for the
VAIS and FLIR ATR datasets. Inserting the NMF module
in the TTL network, the classification performance of the
TTL network improves in four classes and degrades in
the other six classes for the DSIAC dataset, that scenario
is illustrated in the confusion matrices of Figure 9c
and Figure 9d. Moreover, Table V shows that the NMF
module of the TTL network improves the FID[85] score
(94.989 → 87.957) for the DSIAC dataset.

D. Numerical Evaluation

We evaluate the performance of the source and target
domain classifiers using the DSIAC dataset. The training,
testing, and validation datasets are constructed by ran-
domly dividing the DSIAC dataset into 70:15:15 ratio,
respectively. The confusion matrix of the source domain
classifier is illustrated in Figure 8(a). The confusion ma-

trix provides the normalized performance of the classifier.
The average accuracy of the source domain classifier is
99.16%. The performance of the source domain clas-
sifier with targets at different distances is investigated
in Table VI. From this table, we can conclude that the
classification performance of the source domain classifier
is almost consistent when capturing images at distances
between one kilometer to four kilometers. However, the
source classifier performance is degraded when the target
capturing distance is beyond four kilometers. Because the
long-distance target chips are low in quality as compared
to short-distance ones.

TABLE VI: Performance of the source domain classifier
at different target distances.

Target Distance (m) Accuracy(%) Number of Samples
1000 99.47 4,885
1500 99.72 4,713
2000 99.78 4,895
2500 99.54 4,830
3000 99.45 4,558
3500 99.76 4,193
4000 99.11 4,506
4500 97.83 4,196
5000 93.55 4,106

We construct a target domain classifier in this ex-
periment using the transductive CycleGAN network. The
confusion matrix of the target domain classifier is depicted
in Figure 8(b). The average accuracy of the target domain
classifier is 71.6% for the visible domain images in the
DSIAC dataset. The confusion matrix of the target domain
classifier illustrates that the classification performances of
the ‘MTLB’, ‘Sport Vehicle’, and ‘ZSU23-4’ are lower
than other classes. Moreover, we investigate the target
domain classifier’s performance with a fraction of the
labeled data. The accuracy of the target domain classifier
is 80.24%, 90.79%, and 94.86%, with 1%, 5%, and 10%
of the labeled target domain dataset, respectively. The
performance of the visible domain classifier with 1% and
10% labeled data are depicted in Table II. The synthetic
images generated by the transductive CycleGAN are also
illustrated in Figure 11. The classification performance
of different variants of the CUT-based TTL with no
labeled and partially labeled is depicted in Table II. This
table provides the need for the modulating contrast and
query selection in the CUT network along with the cycle-
consistency in the TTL network. Furthermore, the table
depicts that the classification performance of the best
TTL method is 76.61% that is around 22% less than the
supervised CNN classifier in the DSIAC dataset. The pro-
posed TTL network and state of the arts semi-supervised
networks performance comparison is conducted using
the DSIAC dataset. In the semi-supervised setting, the
Table II depicted that proposed TTL network able to
annotate more accurately than SimCLR [3], BYOL [82],
SwAV [83], and B-Twins [84] networks.
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Fig. 9: Confusion matrices of the target domain classifiers by the TTL netwrok using the DSIAC dataset (no label
data)).
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(a) VIS domain classifier using VAIS dataset (100% labeled data).
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(b) IR domain classifier using VAIS dataset (100% labeled data).
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(c) LW domain classifier using FLIR ATR dataset (100% labeled data).

HM
MW
V M2 M3

5
M6
0A
3

M1
13

Pic
kup

Un
kn
ow
n

Predicted

HM
MW
V

M2

M3
5

M6
0A
3

M1
13

Pic
kup

Un
kn
ow
n

Ac
tu
al

0.867 0.000 0.133 0.000 0.000 0.000 0.000

0.000 0.885 0.038 0.000 0.038 0.000 0.038

0.000 0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000

MW Images Classification (Normalized Confusion Matrix)

0.0

0.2

0.4

0.6

0.8

1.0

(d) MW domain classifier using FLIR ATR dataset (100% labeled data).

Fig. 10: Confusion matrices of the source and target domain classifiers using the VAIS and FLIR ATR datasets.

Moreover, we investigate the classification perfor-
mance of visible (source) and infrared (target) images
for the VAIS ship target dataset [75]. This dataset is
divided into train, test, and validation using 70:20:10 ratio,
respectively. The confusion matrices of the supervised
VIS and IR classifiers for the VAIS dataset are depicted
in Figure 10a and Figure 10b, respectively. The average
accuracy of visible and IR domain classifiers is 96.73%
and 86.04%, respectively in supervised settings. Table III
provides that the different variants of the TTL network

can successfully annotate target domain images in this
dataset. The table elicits that the QS-Attn-MoNCE-cycle-
consistency-based TTL is the best performer to annotate
IR images in the VAIS dataset. Moreover, the noisy fea-
ture mixup module degrades the annotation performance
by a small amount in this dataset.

Also, we analyze mid-wave (source domain) and long-
wave (target domain) ATR target classification perfor-
mance for FLIR ATR dataset[76]. The train, test and val-
idation ratio is the same as the VAIS dataset. The source
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and target domain confusion matrices are illustrated in
Figure 10c and Figure 10d. The classification perfor-
mance of source and target domain classifier is 95.95%,
and 93.68%, respectively, in the supervised setting. The
proposed semi-supervised TTL method can annotate LW
targets at 80.00% accuracy. Integrating the NMF mod-
ule into CUT-TTL network degrades the classification
performance by 1.05% in this dataset. The performance
of different variants of the TTL network and supervised
classifier in the target domain is depicted in Table IV. This
table illustrates that the combination of QS-Attn, MoNCE,
and cycle consistency-based TTL network performs the
best for the FLIR ATR dataset.

E. Visual Evaluation

The original and synthetic ATR vehicle images of
the DSIAC dataset are presented in Figure 11. From
there, we can deduce that QS-Attn-MoNCE-cycle and
QS-Attn-MoNCE-NMF-cycle TTL produced high-quality
synthetic images compared to without i) query selection
ii) cycle consistency, and iii) modulated contrast NCE-
based TTL. Furthermore, the Fréchet Inception Distance
(FID) [85] score of different variants of the TTL network
by changing unpaired I2I network are shown in Table V.
This table depicts that the combination of MoNCE, QS-
Attn, noisy feature mixup, and cycle consistency-based
TTL provides the best FID score (87.96) and highest
quality synthetic images among the other variants of TTL
using the DSIAC dataset.

F. Discussion

The classification performances of different variants of
the TTL network using DSIAC, FLIR ATR datasets are
better than the VAIS dataset. It is maybe that the VAIS
dataset is noisy, and an information gap stays between
visible and infrared domain.

V. Conclusion

This paper proposes a CycleGAN-based and a con-
trastive learning-based transductive transfer learning net-
work to annotate unlabeled ATR images. The modulated
contrastive learning with cycle consistency-based TTL
outperforms the CycleGAN-based TTL. We have also in-
vestigated the usefulness of integrating the MoNCE loss,
QS-attention, cycle consistency, and noisy feature mixup
modules in the proposed TTL network. Aggregating these
modules is essential for better performance of the TTL
network. Proposed TTL networks can successfully an-
notate the unlabeled images in the DSIAC, VAIS, and
FLIR ATR datasets. Our proposed method outperforms
the state-of-the-art semi-supervised learning algorithms
for the annotation performance in partial label data.
Finally, using our proposed TTL network it overcomes
the laborious and cumbersome manual annotation task.
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