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Introduction: Computer vision and deep learning (DL) techniques have
succeeded in a wide range of diverse fields. Recently, these techniques have
been successfully deployed in plant science applications to address food
security, productivity, and environmental sustainability problems for a growing
global population. However, training these DL models often necessitates the
large-scale manual annotation of data which frequently becomes a tedious and
time-and-resource- intensive process. Recent advances in self-supervised
learning (SSL) methods have proven instrumental in overcoming these
obstacles, using purely unlabeled datasets to pre-train DL models.

Methods: Here, we implement the popular self-supervised contrastive learning
methods of NNCLR Nearest neighbor Contrastive Learning of visual
Representations) and SimCLR (Simple framework for Contrastive Learning of
visual Representations) for the classification of spatial orientation and
segmentation of embryos of maize kernels. Maize kernels are imaged using a
commercial high-throughput imaging system. This image data is often used in
multiple downstream applications across both production and breeding
applications, for instance, sorting for oil content based on segmenting and
quantifying the scutellum’s size and for classifying haploid and diploid kernels.

Results and discussion: We show that in both classification and segmentation
problems, SSL techniques outperform their purely supervised transfer learning-
based counterparts and are significantly more annotation efficient. Additionally,
we show that a single SSL pre-trained model can be efficiently finetuned for both
classification and segmentation, indicating good transferability across multiple
downstream applications. Segmentation models with SSL-pretrained backbones
produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of
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those with ImageNet-pretrained and randomly initialized backbones, respectively.
We observe that finetuning classification and segmentation models on as little as
1% annotation produces competitive results. These results show SSL provides a
meaningful step forward in data efficiency with agricultural deep learning and

computer vision.
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self-supervised, classification, embryo identification, segmentation, high-

throughput sorting

1 Introduction

Deep learning (DL) for computer vision applications has
recently become a boon to innovations in agricultural efficiency.
These methods have transformed how we extract various
agronomically relevant plant traits under laboratory and field
conditions (Fahlgren et al, 2015; Ubbens and Stavness, 2017;
Singh et al,, 2018; Guo et al, 2021). Automatically and rapidly
extracting plant traits can be a game-changer in terms of reducing
food costs and improving production efficiencies, improving
sustainability by reducing waste, and providing a better
understanding of adapting crops for climate change. Deep
learning methods have been used in various agricultural
applications to identify, classify, quantify, and predict traits
(Mohanty et al., 2016; Naik et al., 2017; Pound et al.,, 2017;
Dobrescu et al., 2019; Jubery et al., 2021). With the availability of
high-throughput data acquisition tools that produce large amounts
of good-quality data, the major bottleneck in deploying DL-based
computer vision tools is the need for large amounts of labeled data
to train these DL models. Data annotation or labeling is the main
development barrier to building high-quality DL models, especially
since labeling the raw data often requires domain experts to
annotate images. Data annotation by an expert with domain-
specific knowledge is a tedious and expensive task. The DL
community is exploring various strategies to break this
dependency on a large quantity of annotated data to train DL
models in a label-efficient manner, including approaches like active
learning (Nagasubramanian et al.,, 2021), transfer learning (Jiang
and Li, 2020), weakly supervised learning (Ghosal et al., 2019;
Korschens et al,, 2021) and the more recent advances in self-
supervised learning (Jing and Tian, 2020; Marin Zapata et al,
2021; Nagasubramanian et al., 2022). Transfer learning has been
widely utilized in plant phenomics applications for classification
and segmentation tasks (Wang et al., 2019; Kattenborn et al., 2021).
Recently, self-supervised learning has been applied to improve
classification and segmentation models (Giildenring and
Nalpantidis, 2021; Nagasubramanian et al., 2022; Lin et al., 2023).
In this work, we focus on deploying self-supervised learning
approaches to the problem of characterizing maize kernels that
are imaged in a commercial high-throughput seed imaging system
[Qsorter technologies (QualySense)]. We consider two vision tasks
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- first, identify if the maize kernels are correctly oriented for
downstream analysis (a classification task), and second, segment
out the kernel scutellum from the correctly oriented seeds (a
segmentation task).

The ability to accurately and efficiently segment maize kernel
scutellum has significant utility for both production and breeding
application. Maize oil (corn oil) is extracted from corn kernels
through milling (Paulsen and Hill, 1985). Milling processes are
integrated into the production of corn starch, sugar, syrup, alcohol,
and byproducts like gluten feed, along with corn oil. Of the 1.1
billion metric tons of corn produced annually around the world,
over 3.5 million are used for oil production (Ward and Singh, 2002;
Lee et al,, 2021). Almost all oil is found in the embryo of the kernel
(Paulsen and Hill, 1985). The ability to sort seeds for embryo/
scutellum size is a significant value addition. Similarly, the non-
destructive sorting of single seeds based on oil content (OC) has
been shown to be useful for early-generation screening to improve
the efficiency of breeding (Silvela et al., 1989; Xu et al.,, 2019) and for
haploid selection in an oil-inducer-based doubled haploid breeding
program (Chaikam et al., 2019; Aboobucker et al., 2022). Over the
past few years, nuclear magnetic resonance (NMR) (Melchinger
et al,, 2017; Yang et al., 2018), fluorescence imaging (Boote et al.,
2016), near-infrared (NIR) reflectance spectroscopy (Jiang et al.,
2007; Armstrong et al., 2011; Jones et al., 2012; Gustin et al., 2020),
hyperspectral imaging (Weinstock et al., 2006), and line-scan
Raman hyperspectral imaging (Liu et al, 2022) have been
developed to measure or predict oil content. However, these
methods and tools are expensive. On the other hand, sorting
based on NIR reflectance is less costly, has been around for a
long time (McClure, 2003; Halcro et al., 2020), and has worked well
to predict protein and starch content. However, using those tools to
measure OC is not easy because the position of the embryo/
scutellum to the camera/light source (Spielbauer et al, 2009)
strongly affects OC measurements of single seeds, which leads to
significant standard errors. Several currently available NIR spectra-
based high throughput single seed sorting devices capture RGB
images of the seed along with the NIR spectrum (QualySense;
Satake-USA). These images can be used to identify the correctly
orientated seed and quantify the relative size of the embryo to the
seed, which, coupled with the NIR spectrum, could be used to
improve the prediction of OC.
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This work aims to design an end-to-end DL framework that
classifies kernels based on their orientation and segments the
embryos of correctly oriented kernels. Accurately performing
these steps will allow us to, in the future, predict corn OC with
high accuracy. Figure 1 illustrates this pipeline. A challenge in
accomplishing this goal is that DL techniques often rely on having
access to large datasets of annotated images for successful training
results. This problem motivates our approach of using self-
supervised contrastive. The self-supervised pretraining procedure
automatically uses unlabeled data to generate pretrained labels
(Misra and Maaten, 2020). It does so by solving a pretext task
suited for learning representations, which in computer vision
typically consists of learning invariance to image augmentations
like rotation and color transforms, producing feature
representations that ideally can be easily adapted for use in a
downstream task. After obtaining this pre-trained model, we
apply standard DL to finetune the model with a smaller labeled
dataset. The smaller labeled dataset is used to reduce the effect of
possible inaccuracies in the pseudo-labels from the self-supervised
task (Zhai et al.,, 2019). The orientation of corn kernels must
maintain consistency between measurements and be oriented to
fully display the embryo. The goal of the segmentation problem is
then to identify the embryo amidst the background and the rest of
each kernel.

Our contributions in this paper are 1) the creation of an end-to-
end DL pipeline for kernel classification and segmentation,
facilitating downstream applications in OC prediction, 2) to
assess capabilities of self-supervised learning regarding annotation
efficiency, and 3) illustrating the ability of self-supervised
pretraining to create models that can be finetuned for diverse
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downstream applications. Beyond the direct application of the
classification and segmentation capabilities of the learned
representations, using self-supervised techniques, in general, could
accelerate the development of computer vision techniques for ag
applications, skipping several stages of arduous and time-
consuming data collection.

2 Materials and methods
2.1 Dataset

2.1.1 Dataset for classification by imaging
orientation

The classification dataset consists of 44,286 RGB 492-pixel by
240-pixel images of maize kernels of various accessions taken using
the RGB imaging tools of QSorter. Of these, 2697 were manually
labeled into two classes: “oriented” and “non-oriented.” Kernels
that belong to the “oriented” class were deemed appropriate for
calculating internal OC within the embryo/germ center of corn
kernels. This determination was based on the requirement that the
visible embryo is parallel to the camera’s plane.

In a typical downstream application, this visual information
provided by image segmentation would be combined with data
from the hyperspectral imaging sensor provided by QSorter, but
with such a sensor having its field of view limited to only the middle
pane. However, the other two panes still provide useful visual
information for our classification models since the determination
of the orientation of any particular kernel is not limited to only the
frontal view of the kernel. Figure 2A shows oriented kernels, noting

: : weights

maging fm————————— ——

] 3
| . .
| Orientation I
| Classification oriented
|
I ’
|
|
|
|
|
: Kernel
| Segmentation
|
| )
| |
| Transfer backbone I

ssb | ____ weights J
Pretraining

FIGURE 1

End-to-end pipeline for corn kernel classification and segmentation. The curved arrow shows the middle pane being processed for the
segmentation task. We show that the classification and segmentation models perform bets with self-supervised weights.
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FIGURE 2

Images classified as "oriented” with the embryo visible (A) and “non-oriented” with the embryo not visible (B)

the lighter portion visible in each middle pane, which is the corn
embryo’s visible part. Figure 2B shows non-oriented kernels in
which the embryos are not visible or only partially visible.

2.1.2 Dataset for embryo segmentation

The embryo segmentation dataset consists of only 401 RGB
images of corn kernels, taken from the same source of QSorter
images as in the classification dataset above, along with their
respective binary masks. Thus, the 2D image shapes were again
492 x 240. Segmentation (into the binary mask) distinguishes
between the embryo and the rest of the background (including
the non-embryo portion of the kernel). Figure 3 illustrates the
segmentation annotation process for an RGB image and its mask.
The three frames of each original (492, 240) dataset image were split
into three individual images and downsampled to (128, 128). All
completely negative masks and their respective RGB images were
then removed.

2.2 SSL pretraining

2.2.1 Methods overview

The contrastive learning framework is a self-supervised learning
method that maximizes the similarity between representations of an
image and the augmented version of an image while minimizing the

A 240 pixels
D ——

128 pixels
D —

v

sjaxid 8ZT

Frame
split

492 pixels

‘ )
X

FIGURE 3

similarity between an image and other images (Zhao et al., 2021).
The two models used for self-supervised pretraining were SimCLR
(Simple Framework for Contrastive Learning of Visual
Representations) (Chakraborty et al., 2020) and NNCLR
(Nearest-Neighbor Contrastive Learning of Visual
Representations) (Dwibedi et al, 2021). Figure S1 shows these
two models superimposed on the same diagram.

SimCLR trains a backbone used for downstream processes by
considering the contrastive loss of the representations of two
distinct augmentations of images extracted from any given batch.
If the initial images are the same, the pair of representations is
considered a positive pair for the final calculation, and if the views
are augmentations of two distinct images in the batch, then it is
considered a negative pair. The representations are created by
taking each augmented view of the initial image along a path
including two networks: a base encoder where the desired
backbone resides and a final projection head to calculate the
contrastive loss of the representation in a separate space. NNCLR
is also a contrastive model but differs from SimCLR in that upon
taking both views of a given image through an encoder; the nearest
neighbor algorithm is used to sample dataset representations for
one of the views from a subset of the initial dataset. These are
treated as the analog of the positive pairs described in the SimCLR
model. Negative pairs are then the nearest neighbors of distinct
initial images. Both architectures use the same InfoNCE loss to

240 pixels

128 pixels
=

sjaxid 8ZT

Frame
split

492 pixels

=

Preprocessing for segmentation consists of splitting each dataset image into three 128 x 128 images. Completely negative masks were excluded

(A) Preprocessing of RGB image. (B) Preprocessing of the mask.
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maximize agreement, a loss function using categorical cross-
entropy to maximize agreement with positive samples, commonly
used in self-supervised learning (Song and Ermon, 2020). To
evaluate the performance of the pretrained models, a linear probe
— separate from the non-linear projection head included in both
models — was attached directly to the encoder and was weight-
updated at each step. The backbone and probe were then extracted
to calculate validation accuracy for model selection.

2.2.2 Contrastive data augmentation

In many supervised image processing and computer vision
tasks, data augmentation is used for the dual purposes of
increasing the size of a labeled dataset through synthetic means
and improving the diversity of a dataset. For purely supervised
purposes, data augmentation can synthetically multiply the
dataset’s size by altering existing data and increasing the diversity
of data to generalize the training set better (Wang and Perez, 2017).
Contrastive learning uses heavier image augmentations than would
normally be supplied to purely supervised training (Xie et al., 2020).
This is due to the reliance of contrastive learning on using
augmentations as a model for learning invariance to “style”
changes, while the “content” component of a representation
remains invariant (Doersch et al, 2015). Thus, heavy stylistic
changes should generally benefit the learned representations.

The data augmentations used for our pretraining process were
derived from the recommended augmentations particular to
SimCLR, consisting of random zoom, random flip, color jitter,
and Gaussian noise. NNCLR is less dependent in its performance
than SimCLR on the precise type and magnitude of data
augmentations used in training; indeed, upon applying
augmentations to NNCLR pretraining similar to the full set
recommended for SimCLR produced only a 1.6% performance
improvement when compared to using only random crop
(Dwibedi et al., 2021).

2.2.3 Pretraining setup

Hyperparameter sweeping during pretraining consisted of the
variation of the contrastive learning rate, the type of weight
initialization applied to the ResNet50 backbone, and data
augmentation strength. The learning rate was chosen between le-
3 and le-4, coupling the contrastive learning rate with the
classification learning rate of the linear probe. Weight
initialization was chosen between ImageNet and random
initialization. The data augmentation strength of each
augmentation was varied together and explained below. Thus,
eight runs were processed for each sweep, and each sweep was
repeated three times to ensure precision.

2.3 Classification
2.3.1 Data split

Of the 2697 images manually classified from the unlabeled
dataset, there were 1300 oriented images and 1367 non-oriented

Frontiers in Plant Science

10.3389/fpls.2023.1108355

images. Of the labeled images, 1697 were used for training, with an
800:897 class split in favor of non-oriented images. The rest were
divided between validation and testing and were split evenly
between the classes. So, 500 images were allocated to each set,
with 250 images in each class. During pretraining, the images
allocated to the validation and testing were separated from the
unlabeled dataset used for contrastive learning, while the labeled
training dataset was included, such that 43,286 out of the 44286
total images were used for unlabeled contrastive learning.

2.3.2 Training setup

The training process was set up to facilitate comparison
between different models after undergoing end-to-end finetuning.
Only ResNet50 was used for the backbones, as is standard in self-
supervised model evaluation and as was used in both the NNCLR
and SimCLR original papers (Chakraborty et al., 2020; Dwibedi
et al., 2021; Shafig and Gu, 2022). Two backbones for the end-to-
end process were chosen from a pretraining sweep with the
mentioned self-supervised contrastive architectures, and one
backbone was initialized with ImageNet weights.

Data augmentation strength was defined separately for each
particular augmentation depending on its configuration specifics:
Random zoom acted by cropping to a single rectangle with its shape
uniformly chosen between a maximum area of the initial 128x128
2D image shape and a minimum area of either 25% or 75% of the
maximum area. Brightness and color transform was accomplished
first by taking an identity matrix multiplied by the chosen
brightness factor, then adding a matrix with uniformly chosen
values selected between the jitter factor and its negative, and
secondly by multiplying the original dataset image by this matrix.
Brightness jitter increased the brightness of the image by either 50%
or 75%, and the jitter factor was either 0.3 or 0.45. Gaussian noise
was applied with a standard deviation of either 0.1 or 1.5. The only
augmentation kept constant was random flip, constantly at 50%
activation chance. Upon evaluation, the two chosen models from
this pretraining sweep process—corresponding to the top-left-most
two light-green boxes in Figure S2—were backbones pretrained by
NNCLR with random initialization at LR = 1e and SimCLR with
ImageNet initialization at LR = 1e”.

2.3.3 Feature extraction and finetuning

During training, separate trials were performed for each
proportion of annotated data used in classification (1%, 10%,
25%, 100%). As in pretraining, each trial was repeated three
times. With 1% and 10% data, a batch size of 4 was used; for 25%
data, a batch size of 32 was used; and for 100% data, a batch size of
128 was used. During feature extraction, first, the ResNet-50
backbone from each initialization method was frozen to weight
updates, upon which a trainable one-node classifier was constructed
with sigmoid activation. Each classifier in every trial was trained for
300 epochs. In finetuning, the backbone was unfrozen, and the
entire model was trained for 400 epochs. The same learning rate
schedule was used in both phases at the fixed schedule of a 0.5
multiplier every 50 epochs. This process is illustrated in Figure 4.
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Training process. With each sweep over hyperparameters, the best model is chosen for the next round.

2.4 Segmentation

Semantic segmentation is a pixel-level classification problem
where the goal is to assign a class label to each pixel of the image.
Semantic segmentation of the classified images with the model
created above is its natural downstream application. In doing so, full
utilization of the QSorter pipeline can be achieved, where along
with the immediate results of seed embryo pixel identification, these
results can be combined with hyperspectral imaging data in a

[N, 128, 128, 3]

N = Batch size

(P = Concatenation

(128, 128, 3) input images
(128, 128, 1) output images

simple regression problem to pair results in segmentation with
results in direct imaging.

2.4.1 Evaluation metrics

The Sorensen-Dice coefficient, also known as the Dice
Similarity Coefficient (DSC), is a metric often used in
segmentation tasks to evaluate the spatial overlap between two
image masks (Taha and Hanbury, 2015). It is given by the equation
below:

Final Conv
Blocks

¥
IN, 128, 128, 64]

ResNet IN, 64, 64, 64] [N, 64, 64, 192]
Block 0 S5 Decoder
| N, 64, 64, 128] Elloit 2
[N, 64, 64, 64] |
ResNet [N, 32, 32, 256] ~IN, 32,32,512]  Decoder
Block 1 Block 1

IN, 32, Lz, 256]

ResNet
Block 2

FIGURE 5

[N, 32, 32, 256]
|
Decoder

[N, 16, 16, 512]
Block O

U-Net with ResNet50 backbone using filters of channel dimensions [64, 128, 256, 512].
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Here, y; and y, are the mask tensors flattened to one
dimension. In statistical validation for computer vision tasks,
DSC is often preferred over the pixel accuracy metric because
DSC ignores true negatives, and pixel classes are often heavily
biased toward the (negative) background, especially in binary

semantic segmentation.

2.4.2 Model details

U-Net is a convolutional neural network commonly used for
semantic segmentation tasks (Zunair and Hamza, 2021). It consists of
a symmetric encoder-decoder pair, where the encoder down-samples
while increasing the number of channels until a bottleneck tensor,
from which the decoder up-samples while reducing the number of
channels. For the segmentation task, we used U-Net with ResNet50
used as the encoder to both utilize and compare the self-supervised
weights learned during the classification phase, as has been
implemented in the literature to considerable advantage (Siddique
et al., 2021). In this architecture, the encoder and decoder are not
symmetric, as opposed to standard U-Net without a backbone, but
skip connections are still fully implemented by limiting the depth of
the encoder. Figure 5 shows a U-Net with a ResNet50 as its encoder
and four sets of multi-channel feature maps.

2.4.3 Data augmentation

Data augmentation was applied to each training batch to
increase the set of distinct training images and to reduce
overfitting. Augmentations were coupled between any RGB image
and its mask. All augmentations were executed with a 50%
application chance. These consisted of combinations of the
following: 1) horizontal flip across the vertical middle axis, 2)
paired brightness and contrast transform with an application
factor uniformly selected from [-0.2, 0.2], and 3) paired scaling
and shearing affine transform, the scaling factor uniformly selected
from [0.75, 1] and the shear angle uniformly selected from [-7t/6, 7t/
6]. Figure S3 shows an example of an augmented image-mask pair.

10.3389/fpls.2023.1108355

2.4.4 Training process

Due to the smaller size of the segmentation dataset compared to
the classification dataset, ten-fold cross-validation was performed.
Using ten folds, ten models were created separately for each
backbone and each set of hyperparameters, repeated for each of
the three weight initialization types, each trained on a train/
validation split of 288/32. With every ten folds, the highest
average Dice score across all ten was collected. A model with this
set of best-performing hyperparameters was trained on all training
data without a validation set for 300 epochs. This model was then
evaluated on the full test set. Figure S4 illustrates the cross-
validation process. Training and experiments were completed
using Google Colab with NVIDIA Tesla T4 and K80 GPUs on 32
GB RAM.

3 Results and discussion
3.1 Classification results

3.1.1 Feature extraction evaluation

We first illustrate the impact of SSL pretraining on annotation
efficiency, especially when compared with standard supervised
approaches. Figure 6 compares the results of the classifier at
various % of training data using a standard supervised loss vs
both SimCLR and NNCLR. After feature extraction, (before end-to-
end finetuning), both SimCLR and NNCLR were more annotation-
efficient and performed better than purely transfer learning-based
methods. Listing test results from greatest to least utilization of total
available annotated data, the NNCLR-pretrained model had
accuracies of 83.6%, 83.2%, 82.0%, and 76.2%; the SimCLR-
pretrained model had accuracies of 83.0%, 82.6%, 81.4%, and
78.6%; and the ImageNet-initialized model had accuracies of
82.6%, 81.2%, 77.2%, and 74.6%. At every annotation percentage,
the self-supervised models outperformed the ImageNet-based
model, with the largest difference at 10% annotation, where the
NNCLR-pretrained model outperformed the ImageNet-based
model by 4.8%.

86

> 84

1)

B

> 82

[}

1)

© 80

s

=78

£ 6 f— ImageNet

wn 7 T

wn

8, g™ —}— SimCLR
—f— NNCLR

1% 10% 25% 100%

Percentage of training samples

FIGURE 6

Feature extraction classification accuracy versus percentage of training samples for three types of weight initializations
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Classification accuracy versus percentage of training samples for three types of weight initializations.

3.1.2 Finetuning evaluation

After end-to-end finetuning, both SimCLR and NNCLR were
more annotation-efficient and performed better than purely transfer
learning-based methods, as shown in Figure 7. Listing test results
from greatest to least utilization of total available annotated data,
the NNCLR-pretrained model had accuracies of 85.6%, 83.8%,
81.6%, and 80.2%; the SimCLR-pretrained model had accuracies
of 85.2%, 84.0%, 81.4%, and 81.8%; and the ImageNet-initialized
model had accuracies of 84.0%, 81.4%, 77.2%, and 76.8%. At every
annotation percentage, the self-supervised models outperformed all
other models, with the largest difference at 1% annotation, where
the SimCLR-pretrained model outperformed the ImageNet-based
model by 5.0%. Furthermore, at just 1% annotation, SimCLR out-
performs the ImageNet-initialized model at 25% annotation. At just
10% annotation, NNCLR also out-performs the ImageNet-
initialized model at 25% annotation. We remind the reader that
the total available annotated data is only around 5% of the total data
(2697 annotated images out of 44,286 total images). SSL pretraining
provides a significant boost in model performance, especially at very
low total annotated data availability; for instance, a 10% usage of
annotated data represents just 270 annotated images!

3.2 Comparisons

Models pretrained with contrastive SSL outperformed transfer
learning models in every trial and between all data splits. Table 1
shows the performances of each model compared to the ImageNet-
pretrained model. The results of the SimCLR and NNCLR

pretrained models outperforming the transfer learning model and
being more annotation efficient are clear. The performances of
NNCLR and SimCLR were similar to each other among the four
annotation percentages, but in training on the full dataset, NNCLR
performed slightly better, while SimnCLR was more efficient at the
lowest data split.

3.3 Segmentation results

Figure 8 shows the test dataset evaluation results after the best
models were selected and then finetuned, according to data from the
previous three tables. It also shows the validation statistics and
hyperparameter set for the chosen model. In Supplementary
Information, Table SI shows the averaged results from 10-fold
cross-validation on U-Net with a ResNet50 backbone from weights
pretrained with SimCLR, pretrained with NNCLR, and pretrained
from ImageNet. Table 52 shows the selected models’
hyperparameter set. The U-Net with a SimCLR-pretrained
backbone trained at le-04 LR and four encoder-decoder filters
performed best, with a test DICE score of 0.81 compared to an
ImageNet-pretrained backbone at 0.78 DICE score.

The results from this section have a twofold implication: 1) they
show U-Net with a backbone loaded with self-supervised pretrained
weights can perform well, producing ~0.81 Dice score, and 2) they
show semantic segmentation with these backbones outperform
those pre-trained with ImageNet. Figure 9 displays three
representative results from the segmentation model, including the
predicted mask, the true mask, and the input RGB image.

TABLE 1 Relative performance by the accuracy of SImCLR-pretrained and NNCLR-pretrained models as compared to ImageNet preloaded model.

Percentage annotated data used

Pretraining
SimCLR +3.4%
NNCLR +5.0%

Each entry represents a performance gap in Figure 9. Available annotated dataset size is 2697.
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10% 25%
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FIGURE 8

Dice

Loss and Dice scores for best hyperparameter sets for each weight initialization type. (A) Test set results, (B) Validation set results.

3.4 Advantages and limitations

In Section 3.1.1, we showed that a SimCLR-pretrained classifier
that has gone through end-to-end finetuning out-performs an
ImageNet-initialized classifier which uses 96% more annotated
training data - the 1% annotation used by a SimCLR-pretrained
model resulting in higher accuracy than the 25% annotation used
by an ImageNet-initialized model. This is a clear example of
the advantage of self-supervised contrastive methods in terms
of both human-annotated data efficiency and accuracy. Not
only does this curtail the time, labor, and resource-intensive
process of annotation as described in the Introduction, but
several other by-products of human annotation. For instance,
label noise, data bias, the need for domain experts, and imperfect
datasets in general are often inevitable with the use of large amounts
of annotated data.

Frontiers in Plant Science

Other self-supervised methods have also been developed for
computer vision tasks. Our experiments with non-contrastive
methods such as SimSiam (Chen and He, 2021) turned out to be
examples of the well-known faults of model collapse in non-
contrastive self-supervised methods, with models consistently
predicting uniform classes, reaching binary classification
accuracies of no greater than 55%. We suggest that non-
contrastive methods are particularly susceptible to collapse when
applied to datasets with relatively homogenous feature spaces such
as the applied corn kernel dataset. Furthermore, methods like
inpainting (Pathak et al,, 2016) have been shown to have poor
performance in many applications compared to image
augmentation-based methods. Thus, contrastive self-supervised
methods which use pretext tasks similar to those of the strong
augmentations we applied are particularly suited for processing
plant datasets of little species or orientation variation.
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FIGURE 9

Three representative rows of segmentation inputs and outputs. The first column shows the predicted mask, the second shows the true mask, and

the third shows the RGB input image.

Although we have found improved performance in applying
self-supervised pretraining with all tasks, we expect monotone
improvement in fine-tuned performance for classification and
segmentation by increasing the size of unlabeled dataset. The
clear advantage in relying on pretrained models is that procuring
such data is far easier than with similar amounts of labeled data, as
would be needed to improve purely supervised classification
accuracy. Finally, we expect that such methods to be easily
applied to, and very useful to a broad range of plant phenotyping
applications. Recent examples of successful applications of such SSL
training strategies include disease classification (

) and insect detection ( ).

From training contrastive learning models and comparing them
with purely supervised and transfer learning methods, we found
that self-supervised learning produces successful representations of
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an agricultural dataset applicable for downstream applications. We
showed that NNCLR and SimCLR methods performed significantly
better than their supervised counterparts, especially for the
classification problem. These results also support the usage of
strong augmentations in contrastive learning—far stronger than
in end-to-end finetuning. In segmentation, self-supervised methods
significantly improved over ImageNet pretraining, resulting in
accurate masking capabilities and relative embryo size calculation.
The combined results further show the transferable nature of self-
supervised training. In particular, we illustrated that a single SSL-
pretrained model (ResNet50 backbone) could be finetuned and
used for two distinct downstream tasks - classification and
segmentation. Furthermore, SSL pretraining allowed us to train
models with very competitive performance even with very low
amounts of total annotated data, for instance, with less than 1%
(~400 out of 44000 total images) of annotation. Thus, we have
demonstrated that self-supervised learning provides a meaningful
path forward in advancing agricultural efficiency with computer
vision and machine learning.
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