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“Canopy fingerprints” for
characterizing three-
dimensional point cloud
data of soybean canopies

Therin J. Young", Talukder Z. Jubery®, Clayton N. Carley?,
Matthew Carroll®, Soumik Sarkar™?, Asheesh K. Singh?,
Arti Singh™ and Baskar Ganapathysubramanian™**

‘Department of Mechanical Engineering, lowa State University, Ames, IA, United States, ?Translational
Al Center, lowa State University, Ames, IA, United States, *Department of Agronomy, lowa State
University, Ames, IA, United States

Advances in imaging hardware allow high throughput capture of the detailed
three-dimensional (3D) structure of plant canopies. The point cloud data is
typically post-processed to extract coarse-scale geometric features (like volume,
surface area, height, etc.) for downstream analysis. We extend feature extraction
from 3D point cloud data to various additional features, which we denote as
‘canopy fingerprints’. This is motivated by the successful application of the
fingerprint concept for molecular fingerprints in chemistry applications and
acoustic fingerprints in sound engineering applications. We developed an end-
to-end pipeline to generate canopy fingerprints of a three-dimensional point
cloud of soybean [Glycine max (L.) Merr.] canopies grown in hill plots captured by
a terrestrial laser scanner (TLS). The pipeline includes noise removal, registration,
and plot extraction, followed by the canopy fingerprint generation. The canopy
fingerprints are generated by splitting the data into multiple sub-canopy scale
components and extracting sub-canopy scale geometric features. The
generated canopy fingerprints are interpretable and can assist in identifying
patterns in a database of canopies, querying similar canopies, or identifying
canopies with a certain shape. The framework can be extended to other
modalities (for instance, hyperspectral point clouds) and tuned to find the
most informative fingerprint representation for downstream tasks. These
canopy fingerprints can aid in the utilization of canopy traits at previously
unutilized scales, and therefore have applications in plant breeding and
resilient crop production.
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1 Introduction

Soybean [Glycine max (L.) Merr.] canopy characteristics
indicate crop growth, development, and health among other
characteristics. Canopy traits have traditionally focused on 2-
dimensional (2D) features, which is useful in certain instances,
for example, canopy coverage (Purcell, 2000), which has frequently
been collected with drone high throughput phenotyping (Guo et al.,
2021). With the advent of high-throughput crop and plant
phenotyping (Araus and Cairns, 2014; Yang et al, 2020; Guo
et al,, 2021; Jubery et al,, 2021; Singh A. K. et al, 2021; Singh D.
P.etal, 2021), plant scientists have been able to conduct large scale
and time-series investigations on canopy coverage. Additionally,
researchers have shown automated or semi-automated extraction of
canopy traits; for example, canopy features, including height, shape,
color, and texture, can be used for plant stress and disease
assessment, estimating total biomass, leaf chlorophyll, and leaf
nitrogen (Shiraiwa and Sinclair, 1993; Hunt et al., 2005; Pydipati
et al, 2006; Jubery et al., 2016; Bai et al., 2018; Parmley et al., 2019;
Parmley et al,, 2019). Canopy morphology features, such as shape
and size, impact light interception ability, which directly factors into
the potential yield equation (Metz et al, 1984; Koester et al., 2014).
Canopy characteristics, including height, shape, size, and color, can
vary among developmental stages, genotypes, and environments
(Virdi et al., 2021). Quantifying the canopy plasticity of a genotype
due to changing environmental conditions and variability or
similarity among genotypes is valuable for plant breeding
applications (Sadras and Slafer, 2012). However, a major hurdle
towards effective and full utilization of canopy features is the
relatively slow pace of advancement of three-dimensional (3D)
canopy features, which provide a “real-world” set of information.

Historically, digital cameras, hyperspectral cameras, and LIDAR
have been used to take images and create point clouds of plants
(Walter et al., 2019; Herrero-Huerta et al., 2020; Chiozza et al.,
2021a; Chang et al., 2022) which are then used to characterize plant
traits, leading to a composite plant canopy. Often, methods such as
structure from motion or tomographic reconstruction methods are
needed to render the 3D point clouds for these traits (Vandenberghe
et al, 2018; Storey, 2020). Widely utilized characterization
approaches are based on hand-crafted geometric measures, such
as plant height, length, breadth, height, area, and volume. Although
these geometric features are simple to interpret, they often do not
comprehensively represent the spatial variability, for instance,
between sample heights and the intricacy of the canopies. Several
studies used latent feature representation methods, such as Principal
component analysis (PCA) and Neural Network (NN), to
characterize the canopy (Gage et al., 2019; Ubbens et al,, 2020).
Although these features can be used to capture the inherent
complexity of the canopies, they are challenging to comprehend
since they are difficult to relate to real geometry with low
interpretability. There is interest in developing more detailed yet
interpretable phenotypic traits for characterizing the crop canopy.
Interpretable features are crucial to develop field-testable hypotheses
for plant scientists. Most interpretable approaches concentrate on
composite characteristics and do not account for individual trait
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variations. An example approach that offers a middle ground
between these two extremes is the elliptical Fourier transformation
utilized to describe the complicated geometry of canopy structures
(Jubery et al., 2016). However, the use of 3D point clouds can be
more exhaustive and informative, motivating researchers to develop
holistic phenotyping pipelines (end to end) as well as explore
applications of the usage of information from these data. For
example, 3D canopy generation has been successfully shown in
wheat, Triticum aestivum (Paulus et al., 2013; Paulus et al,, 2014),
rice, Oryza sativa (Burgess et al.,, 2017; Zhu et al., 2018), and other
crops (Vandenberghe et al, 2018). These are exciting developments;
however, there is still information lacunae on the creation of
informative multiscale traits from 3D point cloud data. In this
context, non-agricultural disciplines have reported a concept of
fingerprinting using point cloud data (Koutsoukas et al., 2014;
Spannaus et al., 2021; Wang et al., 2021), but this is lacking in
crop production and broader agriculture.

Fingerprinting is a technique for the multiscale characterization of
an object by computing a set of unique local characteristics or patterns.
Fingerprinting successfully generates unique representations for
complex objects in chemistry, geometry, and acoustics (Cano et al,
2005; Capecchi et al, 2020). It was successfully used for the retrieval,
recognition, and matching tasks within large molecular and 3D shape
databases (Fontaine et al., 2007). Fingerprinting facilitates the
representation of a complicated, memory-intensive 3D point cloud
as a hierarchically computed, low-dimensional vector. This vector
captures both the geometric and topological characteristics of 3D
shapes. Computational approaches to computing fingerprinting for
3D objects are broadly based on spectral and non-spectral methods.
Spectral approaches utilize the eigenvectors and eigenvalues, referred
to as the spectrum, of the Laplace-Beltrami (LB) operator applied to
3D shapes (Reuter et al,, 2005). The spectrum is independent of the
object’s representation, including the parameterization method and
spatial position. Other techniques were developed from LB, for
example, Shape-DNA and Global Point Signature (Wu et al, 2022).
Probabilistic fingerprinting (Mitra et al., 2006) is a non-spectral
fingerprinting technique. It is suitable for determining partial
matching between 3D objects. Here, the objects were separated into
overlapping patches, unique descriptors were generated for each
patch, the descriptors were hashed, and a random subset of the
hashed descriptors with a predetermined vector size was chosen as
the probabilistic fingerprint. Similar min-hashing techniques (random
subset selections) were used to get structural similarity in larger data
based on chemistry (Probst, 2018). Hashing aids in the compression of
the fingerprinting representation, but this cannot be decoded and is
less interpretable. There are application examples of the fingerprinting
concept; for example, a phenotypic fingerprint of a soybean canopy
was proposed to represent the temporal variation of coarse-scale
geometric features, including canopy height and plant length (Zhu
et al, 2020b), and it was employed to capture temporal dynamics,
identify genotypes with comparable growth signatures, etc. Further,
canopy fingerprints enabled large-scale evaluation of the
environmental constraints and disturbances that shape the 3D
structure of forest canopies (Jucker, 2022). However, thus far, there
is no work to define and develop crop canopy fingerprints capturing
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multi-scale geometric features that could be evaluated and applied in
the future in crop modeling, and genomic prediction (Jarquin et al,
2016; Shook et al, 2021a; Shook et al.,, 2021b), or breeding decisions.
Fingerprints are distinctly unique from traditional canopy architecture
as they encompass the entire global canopy, while architecture traits
are a composite of limited individual traits assessed together.

The major contribution of this work is to develop an end-to-end
non-spectral interpretable fingerprint generation pipeline for 3D
point cloud data of field-grown row crops (Figure 1). The pipeline
includes point cloud noise removal, registration, plot extraction,
and fingerprint generation. We illustrate this approach using a
large-scale field experiment through a diversity panel of soybeans.
Specifically, we report the construction of canopy fingerprints in
soybean using geometric and topological features of the 3D point
cloud obtained by a Terrestrial laser scanner (TLS). This is
accomplished with an end-to-end pipeline to generate canopy
fingerprints of a three-dimensional point cloud of soybean, which
is simple to use for feature extraction and utilization in a myriad of
applications, including modeling, genomic prediction, ideotype
breeding, and cultivar development. For example, the
development of unique canopy fingerprints could enable faster
and more efficient screening of genetic material for identifying
canopy relationships with yield traits (Liu et al, 2016), biotic stress
traits such as disease and insects (Pangga et al, 2011), how various
canopy levels impact planting density, light interception, and
photosynthesis (Feng et al, 2016), enable novel meta-GWAS
(Shook et al., 2021a) or improve how crop modeling could
predict the ideal canopy fingerprint (Rotter et al., 2015), or
fingerprint ideotype, which could then be screened across core
collections (Glaszmann et al., 2010) to narrow the pool of
experimental genotypes in silico prior to in vivo evaluation.

2 Materials and methods
2.1 Laser scanner
The TLS used in this study was Trimble TX5 (Trimble Inc.,

Sunnyvale, CA, USA) (Figure 1A). It is a small and light device
(240 mm x 200 mm x 100 mm in size and 5 kg in weight) that can

FIGURE 1
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perform measurements at speeds of 1 million points per second.
The scanner collects data at a high angular resolution of 0.011
degrees, corresponding to a point spacing of 2 mm at a 10 m
scanning range. The scanner emits a 3mm diameter and 905 nm
wavelength laser beam and measures the distance between the
scanner and the target using the phase-shift principle (Amann
et al., 2001). The emitted laser beam is modulated at several
frequencies, and the phase shift of all the returned modulations is
assessed to increase the accuracy of the distance measurements
while storing the intensity of the returned beam. The scanner covers
a 360-degree x 300-degree field of view: 360 degrees on the vertical
axis is achieved by rotating the scanner head, and a rotating mirror
achieves 300 degrees on the horizontal axis. The scanner allows the
acquisition of point clouds of 7.1 up to 710.7 million points (MP).
The number of points corresponds to the resolution of the
measurement. Additionally, the scanner has a built-in camera to
capture RGB color values (up to 70 megapixels) and maps them to
the corresponding point clouds.

2.2 Location, plant materials, and
data collection

The experiment was done in a field frequently used for
evaluating soybean iron deficiency chlorosis at Iowa State
University’s Agricultural Engineering/Agronomy Research Farm,
IA, USA, at a latitude of 42.010 and a longitude of -93.735. Four
hundred sixty-four soybean cultivars were included in this study.
These accessions come from 35 countries and have crop maturities
ranging from MG 0 to IV (Mourtzinis and Conley, 2017), along
with variable seed weights and stem termination types. In May
2018, the cultivars were hand-planted in hill plots, three seeds per
hill with 0.76 m spacing between each hill. Each plot consisted of a
single hill replicated three times in the field, with each replication
blocked together. No plants were thinned. Preparing a noise-free
field is crucial for achieving accurate plant data. To minimize any
interference from weeds, we conducted regular weeding at intervals
throughout our study. Laser scanning was performed on all plots on
the 9th and 10th of August. These scans were conducted 71 and 72
days after planting, and all plants had reached at least the
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(A) Scanning platform: the scanner was mounted on a tripod in an inverted position with an extended bar and counterweight. (B) Placement of
colored reference markers along the blocks. (C) Schematic of the scanning positions, block size, and canopy count per block.
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reproductive R3 stage (Fehr et al.,, 1971) and were entirely opaque
from the side, with no leaves visible from the opposite side.

The approximate size of the scanned field was 0.144 hectares
(0.355 acres). During scanning, the field was divided into twenty-
five 7.6 m x 7.6 m blocks, each containing 100 plots. The scanner
was mounted on an 8 kg heavy-duty elevated tripod (Johnson Level,
USA) at 2.1 m. For this height, the scanner can see the ground
around the base of the farthest canopy within a block. This resulted
in the typical scanner to ground distances between 2.1 to 11 m
within the block. The device’s scanning resolution was set at 0.5
(angular resolution 0.016 degree), and the expected point distance
was 0.6 mm at 2.1 m and 3.1 mm at 11 m from the scanner.

To compensate for the scanner’s field of view restriction of 150
degrees relative to the nadir, or lowest point under the observation
lens, the scanner was mounted upside down using a 1.2 m-long bar,
asillustrated in Figure 1 A. This configuration allowed us to scan plots
close to the tripod and position the scanner at the edge of each block.
Scanning data was captured from four corners for each of the blocks:
southwest (SW), southeast (SE), northeast (NE), and northwest
(NW). The horizontal rotation limit of the laser scanner was set to
180 degrees, allowing two blocks to be scanned at once.

Before performing scans, Styrofoam spherical targets with a
diameter of 0.127 m were placed within each block as reference
markers to aid point cloud registration (Figure 1B), alignment, and
plot identification. The spheres were painted yellow or red and
mounted on 1.52 m-tall wooden dowels, which are 0.5 m taller than
the expected maximum plant height. The dowels were manually
pushed into the soil about 0.15 m deep. Each plot contained six
reference markers. A white reference marker was placed at each
corner of the block. The position of the reference markers was
consistent across all scanned blocks.

Field experiments showed wind speeds to be lowest during the
morning hours up until the early afternoon hours. When wind
speeds exceeded 14.5 km h™', canopy movement exceeded the
uncertainty acceptable for trait measurement. As a result,
scanning took place between 9 a.m. and 2 p.m., or when wind
speeds were 14.5 km h™' or lower, to ensure the point cloud’s quality
was not compromised. While the optimal lighting condition for
scanning is at noon, when sunlight is evenly distributed across the
scanning area, field experiments demonstrated that overcast
lighting also resulted in high-quality point cloud data. We

10.3389/fpls.2023.1141153

avoided operating the scanner in the early mornings or late
afternoons when direct or bright sunlight reflected from plant
materials would cause laser signal saturation, resulting in
erroneous points synonymous with glare in 2D photography.

Validation data consisting of plant height and canopy area were
collected on August 8th. Plant height was recorded as the distance
between the soil line at the base of the stem and the topmost leaf.
The canopy area was defined as the visible area of the canopy from
the nadir described in detail below.

On each plot, plant height was measured manually with a meter
stick. The canopy area was measured on a subset of the plots as
follows: First, a digital camera (Zenmuse X5 camera with a lens focal
length of 45 mm)) mounted on a drone (Matrice 600 Pro) captured
RGB images of the plots flown at 30m with 80% overlap and stitched
together using Pix 4-D stitching software. We used an in-house
Python script to extract individual plots from the stitched
orthomosaic image, using the geolocation data obtained from the
ground control points (GCP) and the RTK GPS mounted on the
UAV. Next, we converted the images from RGB to the HSV color
space, and the canopy was separated from the ground by applying a
threshold to the Hue (H) color channel. We experimented with
different threshold values for the Hue channel and found that the
hue value worked best for our case. The canopy area was then
calculated by determining the total number of non-zero (canopy)
pixels and converting this value to m”. To obtain the conversion
factor from pixels to m? we measured a predefined marker in
the images.

2.3 Point cloud processing pipeline

The pipeline was built using Python 3.7.3 and various other
programs and packages, including Autodesk Recap 4.2.2.15, Cloud
Compare 2.12.4 (Girardeau-Montaut n.d.), Open3D 0.11.2 (Zhou et
al., 2018), and MATLAB 2019a. MATLAB and Cloud Compare
were used via the command line interface and incorporated into the
Python script via the Python subprocess library. The specific tasks
carried out by these packages are depicted in Figure 2. The point
cloud data was converted from FLS (Faro) to PCD (Point Cloud
Library) format using Autodesk Recap Pro and Cloud Compare.
Then, point cloud processing and trait extraction were performed

Data Capture Data Storage

fls format

dmm
—) D. —) R AUTODESK® RECAP" PRO

Data Post-Processing via Python

+ ‘57 to ped’ * Read XYZ'and RGB data Surface mesh
+ Connected @ + Voxelization & MATLAB reconstruction
components + Noise Removal « Volume and
+  Visualization OPEN3D - Cropping surface are

* Visualization

Data Pre-Processing

fls to .e57 format

extraction

FIGURE 2

Data Processing Pipeline: Several applications were utilized in the pipeline. Autodesk recap pro was used to convert a scanner-vendor-specific file
format to a generic one. CloudCompare and Open3D were employed for noise removal, voxelization, registration, and segmentation.
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using Open3D, Cloud Compare, and MATLAB. This included
cropping, voxelization, registration, noise removal, segmentation,

and surface mesh reconstruction.

2.3.1 Point cloud file format conversion

The Trimble TX5 saves point cloud data in the FLS format,
which is incompatible with the subsequent point cloud processing
software. To ensure compatibility, the point cloud data format was
converted from FLS to E57 using the Autodesk Recap Pro software.
The E57 file format is a compact, vendor-independent format for
storing point clouds, images, and metadata generated by 3D
imaging systems such as laser scanners. Additionally, the E57
format retains the RGB component of the point cloud data.
Finally, using Cloud Compare, the E57 files were converted to the
PCD file format, which includes the Euclidean x, y, and z
coordinates of each point and the RGB color value associated
with each point.

2.3.2 Region of interest cropping

From the converted point cloud data, the region of interest, a
block of the field, from each scan was automatically cropped out
using the white-colored reference markers placed at the block’s four
corners. The markers were identified by separating points whose
normalized R, G, and B color values are close to 1 and have a z
coordinate (vertical direction, opposite of the gravity) value greater
than 1 m. The z-value constraint was used to eliminate other white
objects, such as orange and white plot stake identifiers. Then, the
four white markers were identified as distinct objects using the
connected components algorithm. Finally, the block was cropped
out using the four markers’ mean x and y coordinates (Figure 3A).

2.3.3 Homogenization

Due to the variable distances between the scanner and the plots,
the point cloud density for a single plot captured from four different
corners/perspectives varied (Figure 3B). This disparity can cause
problems in mesh generation and skeletonization (Labussiere et al.,
2020; Xia et al., 2020). To reduce the disparity in point density, we
voxelized the point clouds. The density of a point cloud is
homogenized via uniform subsampling or voxel downsampling.
We chose the latter method because it is more rigorous in ensuring
uniform point distances and is invariant to the distribution of
points within the sampling distance. It downsamples a point cloud
uniformly using a regular voxel grid of 5 mm resolution. Briefly,
voxels are used to group points, and each voxel generates an exact
one point by averaging all points within an occupied voxel. Each
point contains Euclidean x, y, and z coordinates and R, G, and
B values.

2.3.4 Registration

Each block’s four voxelized point clouds were co-registered and
merged to form a single point cloud (Figure 3). The registration was
carried out using the Cloudcompare ‘Align’ tool. We interactively
identified a pair of color spheres in the point clouds, and then based
on the center of the selected color spheres, the point clouds were
aligned by rigid body transformation, ensuring the average root
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mean squared values of the distances between the paired points
after registration is less than 0.01 m. When the preceding procedure
failed to produce satisfactory results, we used the iterative closest
point (ICP) algorithm to achieve fine registration. The tool can
register up to two-point clouds in a single registration. As a result,
three registrations were necessary to merge the four perspectives
into a single cloud. The final registered point cloud contained
duplicate points, and their density was inconsistent. Therefore, it
was voxel-downsampled to restore the uniform point density in the
registered point cloud.

2.3.5 Noise removal

Due to the so-called edge effect, in which a laser beam is
partially intercepted at an object’s edge, and the remaining beam
travels further to collide with other objects or passes through the
canopy, phase-shift lidar instruments, such as the Trimble TX5, are
more prone to generate noisy spurious points via range averaging.
Additionally, poor co-registration of point clouds and wind-driven
movement of the plants can introduce noisy points.

A statistical-outlier-removal algorithm was used to remove
noise in the registered point cloud (Figure 3C). The algorithm
begins by calculating the average distance between each point and
its (k) closest neighbors. Then it discards points whose average
distance exceeds a predefined threshold, p+0c. p and 6 denote the
mean and standard deviation of the average distances, respectively,
and o is a parameter that can be tuned. The smaller the value of o,
the more aggressive the point removal. By monitoring the deviation
of a trait value (canopy height) for various combinations, the
number of nearest neighbors, k and o, were selected.

2.3.6 Plot segmentation and ground .removal

The visible ground points between the plots were used to segment
each plot and remove the ground. A plane (z = f (x, y)) was fitted to the
registered point cloud, and the points above the fitted plane were
retained (Figures 3). The plane passes through the middle of each plot,
and the points above the plane comprise the top portion of the
canopies. Each canopy top was labeled using the connected
component algorithm, and each component’s mean x and y
coordinate was considered the plot’s approximate center. The
surrounding points within a square band of width 0.1 m and inner
length 0.1 m are the faithful ground points for each plot. Finally, a
plane was fitted through the ground points, and the points above the
plane were considered the canopy.

2.4 Trait extraction

Height, volume, and surface area were extracted from the
segmented canopy point clouds (Figure 3). The canopy height
was determined by subtracting the minimum z-value in the
canopy points from the mean z-value of the top 3% of canopy
points. The choice of using the top 3% was based on a heuristic
approach, as it yielded the closest agreement with the ground truth
values (See Supplemental Material (S1)). To calculate volume and
surface area, canopy points were bound into a tight ‘watertight’
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Single Perspective Point Clouds Voxel Down-Sampling

Voxel Registration + Height-Based Segmentation & Connected
Down-Sampling + Components
¢ Noise Removal D

Surface Mesh Reconstruction &
F Trait Extraction

FIGURE 3

Point cloud processing pipeline: (A) The scanner captured the point cloud of a block at four corners of the block. The density of the point cloud is
greater in proximity to the scanner. (B) Each point cloud was downsampled to reduce disparities in point cloud density. (C) The point clouds were
registered, and the noise was removed. (D) Individual canopy detection was identified using height-based segmentation and connected components
algorithm, (E) Ground point cloud was removed by identifying visible ground points around the canopy, (F) For the canopy point cloud, a triangular
surface mesh was generated and the traits, including area, volume were computed.

triangular mesh using MATLAB’s trisurf algorithm, and the volume « aspect ratio = major axis of the best-fit ellipse on the outline:
and surface area were calculated using Python’s trimesh library. minor axis of the best-fit ellipse on the outline; the ratio of the
Traits of the projected 2D outline of the point clouds were also major to the minor axis of the best-fitted ellipse on the outline;

extracted. First, the 3d point cloud of the canopy was projected onto

_ . . P N .
the plane of interest. The projected points’ boundary/contour was + roundness = 4 & Area/(pi * MajorAxis’); it indicates the

. . . closeness of the shape of the outline to a circle;
considered the 2D canopy outline. Area, aspect ratio, roundness, P
circularity, and solidity of the outline are defined as ( Jubery o circularity = 4 % pi * Area/(Perimeter)” it indicates the

et al.,, 2016): closeness of the form of the outline to a circle;
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o solidity = Area/Convex Area; it is a measure of the
compactness of the object.

2.5 Canopy fingerprints

Fingerprints are a way of representing complex physical objects
mathematically. It can be used to illustrate various features on a local
scale in a hierarchical and/or multi-scale way. Mathematical
representation enables statistical or machine learning techniques to
determine the similarity, signatures, and relationships between groups
of objects. Here, we fingerprint a canopy by encoding it as a collection
of sub-canopy-level features. For example, to fingerprint the shape of a
canopy, we divide it into 2n+1 equally divided sections (sub-canopy).
Here, we divide the canopy in the height direction into the 2n+1
sections. We then generate the signature of each sub-canopy using
several geometric traits and normalize the traits concerning the traits
of the center (n™) sub-canopy. Finally, we represent normalized traits
in a vector format to generate the fingerprint. Here ‘n’ is a tunable
parameter that depends on the complexity of the canopies and
intended downstream tasks involving the fingerprints (Figure 4).

3 Results and discussion

3.1 Parameters/conditions for TLS scanning
and point cloud processing

Results showed that the point count (an indirect estimate of point
density) of a canopy varies by its distance from the scanner, with as
much as a 50% reduction when a canopy is close to the scanner versus
when it is at the farthest possible distance from the scanner. However,
this study circumvents the point density effect by registering multiple
perspectives of the same scanned area. Thus, if the point density of a
canopy near the scanner decreases as the scanner is moved farther
away, the points lost can be recovered by scanning from a distinct
perspective closer to the canopy (See Supplemental Material (S2)).

We used statistical outlier removal to reduce noise from the point
cloud. Outlier selection is dependent on the values of two parameters:
k, the number of neighbors, and alpha, the standard deviation ratio.
We investigated the effect of 40 different combinations of these
parameters on the extracted canopy height, including five values of
the number of neighbors (k = 8, 16, 24, 32, 40) and eight levels of the
standard deviation ratio.

10.3389/fpls.2023.1141153

The change in nearest neighbor parameter, k, from 8 to 16, average
canopy height difference changed significantly after increasing
(Figure 5). However, there were no significant changes in the average
height difference for the remaining experiments (k = 32, k = 40).
Additionally, following each experiment, visual analysis of the canopy
point cloud revealed that most outliers were removed at k = 24. When k
> 24 and the standard deviation ratio was 0.075, no visually discernible
changes in canopy structure occurred. Thus, the number of nearest
neighbors, k, and the standard deviation ratio noise removal parameters
were set at 24 and 0.075 for all noise removal tasks, respectively.

To evaluate the performance of co-registration, we determined
the canopy top-view 2D projected area of a subsample of plants and
compared it to the ground truth 2D projected area extracted from
RGB images. By flattening the z values, the 3D point cloud of the
canopy was projected onto the XY plane. A closed polyline
represented the boundary/contour of the projected points, and its
area was taken as the canopy area. An excellent agreement between
the top-view canopy area and the ground truth area with R* =
0.826 (Figure 6).

3.2 Validation of the extracted
canopy height

The results indicate that the extracted canopy height from the
point cloud correlates with manual ground truth measurements
taken on the same scanning day (Figure 7). Around 95% of the
variation observed in extracted height values could be explained by
a fitted linear least-squares regression model. Ground truth outliers
in canopy height were defined as individuals with a Z-score greater
than 2.5 compared to all samples’ mean and standard deviation.
Fewer than 2% of ground truth height measurements were
considered outliers and were likely human errors in the
collection. The deviation of heights from the manual
measurements within the outliers ranged from 0.11 m to 0.43 m,
with TLS measurements more frequently smaller than ground truth.
After visualizing the outlier canopies’ point cloud data, one
explanation for the lower TLS height measurements is that
occlusions between the measured canopy and neighboring
canopies were not detected during data processing. However,
manual height measurements of the canopies confirmed that the
canopy segmentation and TLS height measurements were accurate
(See Supplemental Material (S3)). Due to the low outlier rate (less

r % ®
p & 4 09 1 049
“ ‘ 098 1 0.65
input canopy R e S *
sub-canopy 4] signature 4] fixed length 7[ fingerpr.int 4‘[
generation generation descriptor generation

FIGURE 4

Overview of soybean canopy fingerprinting. Each canopy was subdivided into a predetermined number of sub-canopies, and the signature of each
sub-canopy was extracted using several features, which were then arranged in a vector format and normalized with respect to the center sub-

canopy features to represent the fingerprint of the canopy
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FIGURE 5

Effect of the number of neighbors (K) in the noise removal algorithm
on the plant’s height after noise removal. A large neighborhood size
may eliminate both the actual canopy point cloud and noise, but a
small neighborhood size may result in the preservation of noisy
points. Optimal K was determined when increasing K had a
negligible effect on plant height.

than 2%) and high correlation (95%) between TLS and ground truth
height data, TLS-based height extraction is a more robust method
for canopy height measurement. This is useful because the TLS
based method is automated.

3.3 Fingerprinting and implications

Typical drone and LiDAR 3D point clouds are often limited to a
top-down view of the plant canopy due to collection limitations.
Figure 8 depicts the canopy’s conventional representation, as often
shown from the whole plant perspective, and then shows a
fingerprint perspective. The fingerprint representation was created
by dividing the canopy into three and nine sub-canopies (2n+1,
where n = 1 and 4). With these canopy fingerprints, we can find
similar-looking canopies for a given canopy or a desired/given
shape. Splitting these canopies into sub-canopies enables new
opportunities for phenomics and further genomic assessment of
cultivars. Traditionally, only the labor and time-extensive method
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0.16 1

UAV area m?
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TLS area m?

FIGURE 6

Comparison of the canopy area calculated from images captured by
the UAV mount camera with the point clouds captured by the TLS.
The TLS point cloud was projected onto a 2D XY plane (Top view),
and the area of the closed contour around the projected point
cloud was considered a canopy area.
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FIGURE 7

Comparison between manually measured canopy height (ground truth)
and automatically measured canopy height from TLS-captured point
cloud. The horizontal bar represents the measurement uncertainty
associated with ground-truth data. The TLS-based plant height
corresponds well with the actual plant height. Extreme outliers are
believed to be the result of human mistakes

of plant component partitioning would come close to this
capability, but still lacked the ability for fingerprinting (Hintz and
Albrecht, 1994; Raza et al., 2021). Sub-canopies paired with their
fingerprints have the potential to further explore the unique
relationships between certain fingerprint types or clusters with
known canopy traits such as branching, leaf size, or leaf angle
and their relationships with yield and yield component traits (Feng
et al., 2018; Bianchi et al., 2020; Moro Rosso et al, 2021).

With digital canopy fingerprints, we can now query a given
canopy (Figure 9). The canopy point clouds database was converted
to a searchable fingerprint database. To query a given canopy, a
fingerprint of the canopy was generated and then compared with
the existing database of fingerprints to identify the possible match.
This capability could enable further in-depth development and
exploration of the germplasm resources for ideotypes (Kokubun,
1988; Evangelista et al., 2021; Lukas et al., 2022; Roth et al., 2022).
While this work evaluated a single time point, a more in-depth and
temporal fingerprint could be developed to evaluate the canopy
growth and development across time. These temporal fingerprints
could open new insights into agronomic traits (Pfeiffer and Pilcher,
1987; Shiraiwa and Sinclair, 1993), diseases, and pesticide
applications (Hanna et al.,, 2008; Sikora et al., 2014;
Nagasubramanian et al., 2019; Viggers et al, 2022), or even
develop fingerprint responses to abiotic stress and amendments
(Frederick et al., 1991; Anda et al., 2021; Shivani Chiranjeevi et al,
2021; Bonds et al,, 2022). An example of searching for potential
ideotypes is shown in Figure 10, where some canopies with
monotonically increasing mass at the top or the bottom are
identified using the fingerprint representation. To find a canopy
of the desired shape, we constructed a fingerprint of the desired
shape and then determined which canopy fingerprints have the least
Euclidean distance to the desired fingerprint. This further enables
the exploration of canopy fingerprints in silico not only in relation
to proposed ideotypes but also as a complement to crop modeling.
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FIGURE 8

Traditional representation vs. canopy fingerprinting: Top panel: (A) Full canopy representation using height (H), volume (V), and surface area (A, B)
Sub-canopy features including height (H1), volume(V1), Area(Al), (C) Sub-canopy 2D features including Area (A2), Aspect ratio (AR2), Circularity (CR2),
Roundness (R2), Convex Area (CA2) and Solidity (S2), bottom panel: Fingerprint of the canopy shape Volume and Projected 2D Area (A2)

One of the core components of crop modeling is modeling the effect
of light interception and radiation use efficiency of the canopy
(Edwards et al, 2005; Singer et al., 2011; Zhu et al., 2020a). With
canopy fingerprints integrated into a crop model, the theoretical
evaluation of more genotypes in the models would be enabled, and
stronger models could be developed and could also be expanded to
explore environmental impacts and impacts on canopy fingerprints
(Chiozza et al., 2021b; Krause et al., 2022).

An aspect of the fingerprinting to be further developed would be
including the RGB data in the fingerprints. As apparent canopy color
is related to soybean photosynthetic activity yield and plant health
(Harrison et al, 1981; Rogovska et al, 2007; Naik et al., 2017; Yuan
et al., 2019; Kaler et al., 2020; Rairdin et al., 2022). While the RGB
data is already included within the voxels, additional work to evaluate
the impact on fingerprint clustering due to color changes within each
sublayer will be useful. Evaluating the color differences within each
layer could provide an added trait assessment for radiation use
efficiency relative to the amount of chlorophyll active in each
canopy layer. Figure 11 shows PCA performed on the fingerprints
and clustering. Each cluster’s representative sample looks quite

database

fingerprint
to fixed size m

fingerprint
to fixed size m

query

FIGURE 9

element wise
comparison

different and shows that the fingerprint can be used to pick diverse
samples with the shape analysis alone. However, the inclusion of
color data and additional layers, such as horizontal sub-layering,
could further enable more detailed fingerprints for assessment and
query while still reducing the computation load required for
searching canopy fingerprint databases. These methods can parse
out canopy features (through their fingerprinting) for a more
informative representation of the canopy and the role of various
organs throughout the canopy on desired traits, e.g., seed yield. This
enables the discovery of new relationships between canopy and organ
level features and their impact on yield and yield component traits.

While this work is focused on fingerprints assessed from TLS
laser point clouds, the concept of canopy fingerprints could also be
implemented with any technology capable of building a full canopy
3D point cloud, such as structured light, space-carving, or full canopy
structure from motion (Nguyen et al., 2015; Zhou et al., 2019; Das
Choudhury et al., 2020). While we focus on canopy fingerprints,
further work should be done to evaluate whole plant fingerprints,
especially root system architecture (RSA) fingerprints. While 2D
imaging is routine for RSA traits (Falk et al, 2020b; Jubery et al,

possible
candidates

Query of a given canopy: the canopy point clouds database was converted to a fingerprint database. To query a given canopy, a fingerprint of the
canopy was generated and then compared with the existing database of fingerprints to identify the possible match.
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Possible Canopies with the similar shape fingerprint

Canopies of given shapes (conical and inverted conical) were queried from the fingerprint database. The candidates look representative of the

given shapes

2021), there is tremendous interest in 3D imaging of root traits. RSA
Fingerprints would further enable a whole plant analysis and efficient
query system, and technology such as Xray-CT already enables dense
3D point clouds to be built of RSA (Gerth et al., 2021; Teramoto et al,
2021). Whole plant fingerprints could help meet the need for efficient
RSA and canopy modeling, clustering, and assessment (Falk et al,
2020a; Carley et al,, 2022a) while further exploring the root and shoot
relationships to critical traits such as nodulation (Carley et al., 2022b).
Irrespective of shoot or root fingerprints, there is tremendous
potential for using this information to ID specific accessions and
characterize germplasm collection (Azevedo Peixoto et al, 2017),
cluster them based on their canopy features, develop relationships
between agronomic, disease, or stress-induced traits, and modularize
canopy features for their integration in trait development.

4 Conclusions

This study proposed an end-to-end fingerprint generation pipeline
from a 3D point cloud of diverse soybean canopies grown on hill plots.

The pipeline includes point cloud noise removal, registration, plot
extraction, and fingerprint generation. Canopy fingerprinting is a
generic and powerful approach to constructing interpretable, multi-
scale, and/or hierarchical geometric traits from 3D point cloud data.
This approach is a useful middle ground between conventional
approaches of extracting coarse scale (i.e., full canopy scale)
geometric features that may not comprehensively capture the spatial
distribution of the canopy and the more recent approaches of directly
compressing the point cloud data that produce difficult to interpret
features. The generated fingerprints were used to query canopies of
specific shapes to the group and identify similar canopies, which could
be useful for future work in further identifying the relationships
between canopy, agronomic traits, and yield relative to proposed
ideotypes in varying climate scenarios. Canopy or whole plant
fingerprinting could be used as a pre-classifier for a complete shape-
based retrieval system. It could be used as a pseudo-leveler for self-
supervised model training (REF) or useful in situations of limited
annotation to train ML models (Kar et al.,, 2021; Nagasubramanian
etal, 2021). Fingerprints could be added as a semantic tag (metadata)
to the point cloud and can be queried instead of opening the data, and

PC1(83%)

FIGURE 11

Identifying diversity in the canopy database: The fingerprints of the canopies were clustered and then visualized after dimensionality reduction using
principal component analysis (PCA). The cluster-representative samples demonstrate the diversity of the canopies of each cluster.
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can also be used for privacy-preserving deep models if data sharing is
challenging (Cho et al,, 2022). Fingerprinting also serves as a promising
tool to store and quantify the inter-genotype or inter-environment
variability. In combination with crop models and further development
of voxel RGB data, these fingerprints could enable vast and rapid
assessment of in silico genotypes for future experimentation in addition
to the already improved searchability that fingerprint databases
provide. As the fingerprint is based on simple sub-canopy level
features, it has some limitations, and the proposed framework is
sensitive to rigid transformations. If an upright plant becomes tilted,
we get different fingerprint representations. However, this could be
useful for estimating agronomic traits like lodging. Additionally, the
vector of features as a function of plant height could be used for
functional GWAS to explore putative loci with multi-scale canopy
features. While our pipeline is built on TLS, future applications need to
explore drone- and ground-based phenotyping (Gao et al., 2018; Guo
etal, 2021; Riera et al,, 2021). Plant phenotypic fingerprints serve as a
novel opportunity to offer a diverse advantage to the future of high
throughput phenotyping serving as a useful tool for data curation,
cultivar selection, evaluation, and additional experimentation.
Integration of canopy fingerprints with machine learning models can
further advance the field of phenomics and cyber-agricultural systems
(Singh et al,, 2016; Singh et al., 2018; Singh A. K. et al,, 2021).
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SUPPLEMENTARY FIGURE 1

R-squared (R?) values of the predicted TLS height against the ground truth
values, with respect to varying % of top canopy points. The results showed
that the R? value was highest when canopy height was calculated using the
top 3% of the canopy points.

SUPPLEMENTARY FIGURE 2
Variation of point count of a canopy relative to its distance from the scanner.

SUPPLEMENTARY FIGURE 3

Examples of height measurement differences between TLS and Manual. The
images depict interactive TLS (3D point cloud)-based height measurement
within the CloudCompare software.

SUPPLEMENTARY FIGURE 4

This histogram displays the distribution of canopies based on the number of
points they contain. The data pertains to 464 soybean cultivars including 450
plant introduction (PI) lines that were studied, representing a diverse range
of maturities, seed weights, and stem terminations, and originating from
35 different countries. Data was obtained from one or two replicates
per cultivar.
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