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Abstract—Transform and entropy models are the two core
components in deep image compression neural networks. Most
existing learning-based image compression methods utilize
convolutional-based transform, which lacks the ability to model
long-range dependencies, primarily due to the limited receptive
field of the convolution operation. To address this limitation, we
propose a Transformer-based nonlinear transform. This trans-
form has the remarkable ability to efficiently capture both local
and global information from the input image, leading to a more
decorrelated latent representation. In addition, we introduce a
novel entropy model that incorporates two different hyperpriors
to model cross-channel and spatial dependencies of the latent
representation. To further improve the entropy model, we add
a global context that leverages distant relationships to predict
the current latent more accurately. This global context employs
a causal attention mechanism to extract long-range information
in a content-dependent manner. Our experiments show that our
proposed framework performs better than the state-of-the-art
methods in terms of rate-distortion performance.

Index Terms—Neural image compression, Transformer, Hyper-
prior, Global context, Entropy model, Attention

I. INTRODUCTION

Neural image compression which is crucial to reduce the

storage or transmission capacity has gained significant pop-

ularity in the computer vision field. Recently, learning-based

image compression methods have achieved notable progress

compared with hand-engineered codecs such as JPEG[1] and

JPEG2000 [2]. Most of the image compression networks are

based on the variational autoencoder (VAE) [3] which is

comprised of the two key sub-networks. The first network is

the main autoencoder, which is employed to map the image

into a compact latent representation and transform the repre-

sentation back into the original image. The second network is

the entropy model which is required to estimate the entropy

of the latent representation. It is apparent that improving

these two sub-networks will lead to boosting compression

performance. Obtaining more decorrelated and compact rep-

resentation depends on the main autoencoder capability for
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Data Transfer Applications using Deep Learning.

extracting dependencies. In addition, building a powerful and

accurate entropy model results in deriving less bit-rate.

A majority of learned image compression models employ a

convolutional encoder to exploit image spatial correlations to

achieve compressible latent representation; however, convolu-

tional neural networks (CNNs) have some drawbacks. First,

the convolution operation is only capable of leveraging local

spatial dependencies within the local receptive field. Second,

for various inputs, the weights of convolution filters are

fixed after training. To address these issues, several solutions

have been considered. Motivated by the success of attention

in computer vision tasks, some works combined non-local

attention modules with convolutional layers to extract long-

range correlation for better compression efficiency [4], [5],

[6]. However, such attention modules still do not affect the

inherent local-aware property of the CNN architecture. With

the rapid development of vision Transformers, Transformer-

based autoencoders have been applied in image compression

tasks [7]. In [7], Swin Transformer [8] is used to build the non-

linear transform which is further improved in terms of rate-

distortion performance by enforcing frequency decomposition

on a feature level [9]. Swin Transformer is designed upon the

window-based attention and shifted-window-based attention

to tackle the high computational complexity issue of ViT

[10]. Despite the progress, the receptive field of the Swin

Transformer is not wide enough to capture global information.

Since generating an optimum compressed bitstream relies

on the entropy model, learning an accurate entropy model is

vital. To this end, various works have been proposed. Ballé

et al. [11] introduce a hyperprior that captures the spatial

dependencies of the latent representation. The entropy model

is approximated as a Gaussian scale mixture (GSM) where

the scale parameters are predicted by the decoded hyperprior.

Inspired by the PixelCNN [12], previous works [13], [14] en-

joy the autoregressive component in the entropy model, which

utilizes adjacent local latent representations that have already

been decoded to predict the distribution of the uncoded latent.

Qian et al.[15] present a global reference model to explore

long-term connections. This algorithm searches throughout the

previously decoded elements to find the most similar latent

for predicting the current latent. While these approaches con-
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tribute to estimating precisely the probability distribution of

the latent representation, they still have limitations in modeling

correlations. First, the hyperprior aims solely to exploit spatial

dependencies of the latent space. Second, the proposed context

models cannot leverage information from all the decoded

elements to approximate the distribution parameters of the

current element.

To address the aforementioned challenges, we propose a

novel learned image compression network. The major contri-

butions of this work can be summarized as follows:

1) The main autoencoder is built upon the Transformer

termed Aggregated-window Transformer (AGWinT),

which benefits from both local and aggregated-window

Transformer blocks. Without increasing the computa-

tional complexity, the global information is extracted

by using an aggregated-window Transformer block to

achieve a more decorrelated latent representation.

2) The global context is incorporated into the entropy

model to leverage long-range correlations in the latent

space. This type of entropy model provides accurate

probability estimation of the latent representation.

3) Two hyperpriors are introduced, one of them attempts to

model inter-channel dependencies and the other one is

utilized to extract inter-spatial dependencies among the

elements of the latent representation via the attention

mechanism.

II. RELATED WORK

A. Learned Image Compression
Nowadays, the cutting-edge approach for lossy image com-

pression primarily involves a combination of variational au-

toencoders (VAEs) and transform coding techniques [16]. This

innovative approach goes beyond traditional linear transfor-

mations and incorporates learned non-linear transformation

blocks. In the learned image compression framework, at the

encoder side, the input image is passed through the analysis

transform ga(x;φ) to generate its compact latent representa-

tion y. Then, to reduce the number of bits required to store

or transmit the image, the continuous latent embeddings y
are quantized to discrete symbols ŷ, which will be subjected

to lossless coding algorithms to obtain bitstream files. To

reconstruct the compressed image x̂, the decoder retrieves the

quantized latent values ŷ from the encoded bitstream. It then

employs the synthesis transform gs(ŷ;θ) , which is designed

to closely approximate the inverse of the analysis transform

[17]. The process can be summarized as follows:

y = ga(x;φ)

ŷ = Q(y),

x̂ = gs(ŷ;θ).

(1)

Ballé et al. [18] proposed the factorized density model, which

is shared between the encoder and decoder, to effectively

exploit the remaining coding redundancy within the latent

space. This model is designed to estimate the latent distribution

by employing local histograms. In a subsequent study, Ballé

et al. [11] introduced hidden latent variables, represented

as ẑ, to serve as side information for capturing spatial de-

pendencies among the elements of the latent representation.

This model employs additional analysis and synthesis trans-

forms, represented as ha(ẑ;φh) and hs(ẑ;θh) respectively,

to conditionally model the distribution with respect to the side

information. The distribution of ẑ is approximated using a

factorized density model and pŷ|ẑ(ŷ|ẑ) is modeled as a zero-

mean Gaussian distribution. The entropy model mechanism of

this proposed network can be summarized as:

z = ha(y;φh)

ẑ = Q(z),

Pŷ|ẑ(ŷ|ẑ)∼N (0, hs(ẑ;θh)).

(2)

B. Autoregressive-based Entropy Model
As the entropy model approaches a closer approximation to

the true distribution of the latent representation, the resulting

compressed file exhibits a lower bit rate. Minnen et al. [13]

leveraged the concepts from PixelCNN [12] to expand the

Gaussian scale mixture-based (GSM) entropy model into a

Gaussian mixture model (GMM). This extension involves

integrating a context block, which adopts an autoregressive

model, along with a hyperprior network. Within this entropy

model, the mean and scale parameters of the latent represen-

tation distribution are dependent on the hyperprior and causal

context associated with each latent ŷi. Therefore, the predicted

Gaussian parameters for the distribution of each latent element

ŷi can be expressed as follows:

(μi, σi) = gep(gcm(ŷ<i;θcm), hs(ẑ;θh),θep), (3)

The context model gcm(.) is designed by employing a

2D masked convolution. gep(.) shows the entropy parameter

function and ŷ<i denotes the causal decoded neighbors of

current latent element ŷi.
In [19], [20], [21], researchers proposed a multi-scale con-

text model that utilized multiple masked convolutions with

varying kernel sizes. This allowed the model to learn diverse

spatial dependencies simultaneously. On the other hand, [22],

[23], [24] used 3D masked convolutions to leverage both

cross-channel correlations and spatial dependencies together.

Qian et al. [15] introduced a global reference context model

that aims to exploit long-range dependencies. This component

examines previously decoded elements to identify the most

similar latent element which is then utilized to estimate the

distribution parameters of the current latent. He developed a

checkerboard context model which utilizes information from

closer neighboring latents to predict the uncoded latent.

C. Transformers
The Transformer [25] was originally introduced in the field

of natural language processing (NLP) and had a profound

impact on the NLP domain. Its remarkable success in NLP

applications inspired researchers to extend the Transformer

architecture to computer vision (CV) tasks, including object

detection[26], image classification [27], semantic segmentation

619



Encoder

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

D
o

w
n

sa
m

p
le

D
o

w
n

sa
m

p
le

D
o

w
n

sa
m

p
le

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

q k v

+E
n
tr

o
p
y
 M

o
d
el

AGWin Patch

Gen.

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

U
p
sa

m
p
le

U
p
sa

m
p
le

U
p
sa

m
p
le

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

L
o
ca

l 
T

ra
n
sf

o
rm

er

B
lo

ck

Decoder

+

Global
token vk

+

+

LN LN

W-MSA W-MSA

LN
LN

MLP MLP

(a)(a) (b) (c)

Q

AE

AD

In
p

u
t

Im
ag

e

R
ec

o
n
st

ru
ct

ed

Im
ag

e

AGWin Patch

Gen.

AGWin Patch

Gen.

AGWin Patch

Gen.

AGWin Patch

Gen.

AGWin Patch

Gen.

AGWin Patch

Gen.

AGWin Patch

Gen.

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

A
G

W
in

 T
ra

n
sf

o
rm

er

B
lo

ck

E
m

b
ed

d
in

g
D

e-
em

b
ed

d
in

g

P
at

ch
if

y
U

n
p
at

ch
if

y

Fig. 1. Overview of our proposed AGWinT-based architecture. (b) Local Transformer block. (c) Aggregated-window Transformer block.

[28], data compression [29], and time-series analysis [30].

ViT [31] is the first pure Transformer architecture that has

demonstrated superior performance compared to convolutional

neural network (CNN) models like ResNet [32], [33] and

attain state-of-the-art performance on multiple image clas-

sification benchmarks [34], [35], [36], [37]. Vit framework

begins by partitioning the input image into non-overlapping

patches. These patches are then passed through a Transformer

architecture, which leverages self-attention mechanisms [38]

to learn the uniform short and long-range relationships within

the image more effectively. However, ViT is effective at

capturing contextual information, its monolithic architecture

and the quadratic computational complexity associated with

self-attention pose significant obstacles in promptly deploying

the model for vision tasks, where processes high-resolution

images. Several works [8], [39], [40], [41], particularly the

Swin Transformer [8], have been proposed to focus on achiev-

ing a balance between short and long-range spatial depen-

dencies through using hierarchical architectures. The Swin

Transformer architecture introduces a solution where self-

attention is computed within local windows, and a shifted-

window self-attention mechanism is employed to model inter-

actions across different windows. Despite significant progress,

the self-attention mechanism struggles to capture long-range

information due to the constrained receptive field of local

windows. Additionally, window-shifted attention only consider

small nearby regions around each window when computing in-

teractions. To overcome this limitation, Focal Transformer [42]

is introduced by implementing more intricate self-attention

modules, but this improvement comes at the cost of increased

computational complexity.

III. PROPOSED METHOD

Fig.1 shows the overall architecture of our proposed model.

Inspired by the GC ViT [43], we construct a main autoencoder

of the compression network based on an Aggregated-Window

Transformer (AGWinT). The suggested entropy model is em-

ployed to efficiently encode the quantized latent representa-

tions into a stream of ones and zeros.

A. Encoder-Decoder

1) Encoder: A hierarchical AGWinT is adopted as the

encoder for obtaining feature representations at multiple res-

olutions by reducing spatial dimensions while increasing em-

bedding dimensions by factors of two at 4 stages. Firstly, The

input image x ∈ RH×W×3 is fed into the patchify layer. which

consists of a 3× 3 convolutional layer with a stride of 2 and

the padding operation, to generate the overlapping patches.

Then, the resulting patches are mapped into an embedding

space with dimension C by using another 3× 3 convolutional

layer. This layer is named embedding. To extract semantic

features, each AGWinT stage is composed of multiple local

and aggregated-window Transformer blocks. After stages 1,2

and 3 a downsampling block is applied to halve the spatial

resolution of the feature map and double the channel number

of the feature map.

2) Decoder: An AGWinT decoder is the mirror of the

encoder. We design the AGWinT decoder by replacing the

patchify block with a unpatchify block, the embedding layer

with a de-embedding layer, and the downsampling block with

an upsampling block.

3) Downsampling block: The role of this block is to

generate hierarchical representation. The input feature map is

passed through the Fused-MBConv [44] to inject inductive

bias into the network and model inter-channel correlations.

Then, the convolution layer with a kernel size of 3 and stride

of 2 is utilized to downsample the spatial feature resolution

by 2, whereas the number of channels is doubled. The Fused-

MBConv process can be written as:

x̂ = DephWiseConv3∗3(x),
x̂ = GELU(x̂),

x̂ = SE(x̂),

x = Conv1∗1(x̂) + x.

(4)

Where SE [45] refers to the Squeeze and Excitation block and

GELU represents the Gaussian Error Linear Unit function.

4) Local Transformer Block: Like the Swin Transformer

block [8], the local Transformer block splits the input into

local windows, then a window-based multi-head self-attention

(W-MSA) computes the self-attention individually for each
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features. The number of layers N is chosen such that the extracted global
feature dimension matches the size of the local window h×w. Subsequently,
the global window is flattened and duplicated M times, where M = (H

h
×

W
w
) corresponds to the number of local windows, to create the global query

patches.

window. Computing local self-attention leads to extracting

short-range information.

5) Aggregated-window Transformer Block: As shown in

Fig. 2, in contrast to the local Transformer block, where each

local window has its specific query patches, the aggregated-

window Transformer block employs global query patches to

share across all windows to interact with local keys and values.

Global query patches include information from the whole input

feature map which is produced by an aggregated window patch

generator once at every stage.

6) Aggregated-window Patch Generator: This module

consists of a stack of N identical layers where each layer is

composed of Fused-MBConv followed by a max pooling layer

to extract global features, as displayed in Fig. 3. The number of

layers is set to N so that the output feature dimension matches

the size of the local window. Then, the output is flattened and

repeated to the number of windows to form the global query

patches.

B. Proposed Entropy model

As depicted in Fig. 4, the proposed entropy model is com-

prised of hyperprior-networks, local context, global context,

and parameter network. The outputs of hyper-networks, local

context, and global context are combined together and fed into

the parameter network, comprising of 1×1 convolution layers,

to obtain the distribution parameters, i.e., μ,σ. The process of

deriving distribution parameters can be written as:

(μ, σ) = pm(φsp, φch, ψl, ψg),

φsp = sh(y), φch = ch(y), ψl = lc(ŷ<i), ψg = gc(ŷ<i),
(5)

where pm(.), sh(.), ch(.) , lc(.), and gc(.) correspond to

parameter network function, spatial-aware hyperprior model,

channel-aware hyperprior model, local context, and global

context, respectively. The local context is implemented using

masked convolution with a kernel size of 5 × 5, as inspired

by previous work [13]. Detailed information about the other

blocks will be presented in the following sections.

1) Global Context Block: This block is introduced to

effectively exploit the global context information for obtaining

a more accurate entropy model. It is based on an autoregressive

model that uses all the previously decoded latents to predict

the current decoding latent. As shown in Fig. 5(a), masked

attention is used to model the global causal correlation.

Due to the fact that the latent representations are serially de-

coded, the latents are unfolded into patches and then masked,

represented as p ∈ [H×W,k×k×C] (where H , W , k, and C
correspond to height, width, unfold kernel size, and channels

dimension, respectively) to calculate the masked attention. The

normalized masked patches are considered as query tokens

and key tokens (neglecting the magnitude effect of patches in

calculating attention score), while regular masked patches are

taken into account as value tokens. The formulation for the

masked-multi-head attention can be expressed as follows:

Attention(q,k,v) = Concat(head1, ..., headm)W ,

headi(qi,ki,vi) = softmax(qiki
T �M)vi,

(6)
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where qi, ki, vi ∈ RHW×K2C
h are the queries, keys, and

values for the i-th head, respectively. M ∈ RHW×HW

represents a causal mask whose lower-triangular elements are

one and the remaining elements are minus infinity.

2) Hperprior: The newly proposed hyperprior is split into

two distinct groups: the Channel-aware hyperprior ẑch and

the spatial-aware hyperprior ẑsp. Each of these hyperpriors

plays a crucial role in modeling different aspects of the

dependencies within the latent representation y. The Channel-

aware hyperprior ẑch is specifically designed to capture the

inter-channel relationships at each spatial location of the latent

representation, while the spatial-aware hyperprior ẑsp aims

to model spatial dependencies within each channel of the

latent representation. Both types of hyperprior are computed

in parallel and complement each other, working together to

jointly extract dependencies within the latent representation

y.

Channel-aware Hyperprior: We have developed the

Channel-aware hyperprior model, which effectively captures

inter-channel dependencies within the latent representation.

As illustrated in Fig. 6(a), this model is constructed based

on an autoencoder architecture and utilizes channel-attention

modules [46] and stacks of 1×1 convolution layers to achieve

its objective. The Encoder part generates the channel-aware

hyperprior zch ∈ RH×W× C
16 from the input y ∈ RH×W×C ,

reducing the number of channels in the latent space while

preserving spatial resolution. On the Decoder side, it takes

the channel-aware hyperprior zch as input and generates the

desired output φch ∈ RH×W×2C .

Spatial-aware Hyperprior: Spatial-aware hyperprior
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model is designed to extract spatial interactions among

the latent representation elements. The hyperprior

zsp ∈ R
H
4 ×W

4 ×C , generated by utilizing this model, doesn’t

change the channel number of the latent representation; rather,

it decreases the spatial resolution. The network adopted to

output the spatial-aware hyperprior takes the form of an

autoencoder architecture and consists of 5 × 5 convolution

layers and spatial-attention [46] blocks. As depicted in Fig.

6(b), the latent representation y is fed into an encoder block

to obtain the spatial-aware hyperprior zsp, and the decoder

component produces the output φsp ∈ RH×W×2C .

C. Quantization
To facilitate end-to-end training feasibility, the quantiza-

tion process requires a replacement with a soft differentiable

function. In this study, we utilize uniform noise, which is

added to the latent representations, as an approximation for

the hard quantization operation [18]. Consequently, the condi-

tional probability of each latent, ŷi is modeled as a univariate

Gaussian with its location and scale convolved with a unit

uniform distribution:

Pŷ|ẑ(ŷ|ẑ,θ) =
∏

i=1

(N (μi, σi
2) ∗ U(−1

2
,
1

2
))(ŷi), (7)

where location μi and scale σi are determined by the entropy

model, θ denotes the parameters of the entropy model, ẑ =

622



Fig. 7. Rate-distortion performance comparison of different methods on the
Kodak dataset, comprising 24 images. Distortion is measured by PSNR.

{ẑsp, ẑch} is the quantized hyperpriors.

D. Loss Function

Any learned image compression network attempts to jointly

minimize the trade-off of rate and distortion, controlled by a

Lagrangian multiplier which can be formulated as:

R+ λD, (8)

where R denotes the estimated rate of the quantized latent

representation and D is the distortion between the input image

and reconstructed image. Since the probability distribution of

the latent representation is conditionally estimated by hyper-

priors, the rate term R consists of the estimated entropy of the

latent representation and two hyperpriors. Therefore, the rate

term can be described as below:

Ex∼pX
[− log2 Pŷ|ẑ(ŷ|ẑ)−log2 Pẑsp(ẑsp))−log2 Pẑch

(ẑch))],

(9)

where ẑ = {ẑsp, ẑch} includes both hyperpriors and the non-

parametric fully factorized entropy model [47] is employed to

approximate the probability distribution of hyperpriors.

IV. EXPERIMENTS

A. Implementation Details

For our experiments, we utilize a combined set of 5, 285
high-resolution images from datasets DIV2K, Flickr2K, and

CLIC2021 [48] as our training dataset. The evaluation set

consists of images from the Kodak dataset [49]. During the

training phase, we use a batch size of 16, which includes

randomly cropped 256× 256 patches. To cover a wide range

of bitrates, we set the hyper-parameter λ to take values from

the set {0.00125, 0.005, 0.01, 0.02, 0.04, 0.08}. All the models

are trained for 100 epochs using the Adam optimizer [50] for

a total of 2.4 million steps. The initial learning rate is set to

10−4 and gradually decreased to 1.2×10−6 during the training

process.

Fig. 8. Comparison of our full model with traditional image codecs in terms
of rate-distorsion performance. The RD values are averaged over 24 images
from the Kodak test set.

B. Ablation Study

In this section, we conduct several ablation studies to in-

vestigate the effectiveness of our proposed Transformer-based

autoencoder and the entropy model. In the first study, to assess

the performance of AGWinT, we choose the Minnen et al.
model [13], whose entropy model is comprised of hyperprior

and local context, and replace the main convolutional au-

toencoder with the Swin Transformer-based autoencoder and

AGWinT Transformer-based autoencoder. The results demon-

strate that the AGWinT-based network outperforms both the

convolutional and Swin-based architectures in terms of rate-

distortion performance. This improvement can be attributed to

the fact that AGWinT is capable of effectively capturing long-

distance and local correlations, leading to enhanced compres-

sion performance.

In the second study, to validate the impact of decomposing

hyperprior and adding spatial and channel attention, we build

three different hyperprior models: existing hyperprior, the

whole compression model is referred to as the ”AGWinT”

framework, ”spatial-aware hyperprior”, and ”spatial-aware hy-

perprior + channel-aware hyperprior”. Each of the mentioned

hyperprior frameworks is combined with local context to form

the entropy model. These entropy models are then integrated

into compression models based on the AGWinT autoencoder.

As depicted in Fig. 7, the ”spatial-aware hyperprior + channel-

aware hyperprior” model exhibits better performance com-

pared to the other models. This enhancement is related to

the improved modeling capabilities of the combined spatial

and channel attention in exploiting the complex dependencies

within the latent representations.

In the third study, we examine the effect of incorporating

global context in the entropy model. Fig. 7 demonstrates that

global context contributes to achieving a better result. This

evaluation emphasizes that combining global context with

local context leads to precise modeling correlations of the

latent representation.
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Fig. 9. Visual comparison of our proposed framework with other conventional image codecs, using the bit-rate/distortion [bpp↓/PSNR↑] as the metric. The
results demonstrate that our method achieves lower distortion in terms of PSNR compared to the other codecs, highlighting its superior capability in preserving
image quality.

C. Comparison with Traditional Codecs
We compare the rate-distortion (RD) performance of our

full model, denoted as ”AGWinT+Spatial+Channel+Global”,

with traditional video compression standards, such as JPEG

[1], JPEG2000 [2], HEVC-Intra (BPG) [51], and VVC-Intra

(VTM) [52]. The distortion is measured by the Peak Signal-

to-Noise Ratio (PSNR). Fig. 8 illustrates that our proposed

model outperforms the JPEG, JPEG2000, and BPG codecs in

terms of RD performance. Additionally, it showed comparable

performance to VTM.

D. Visual Quality
In Fig. 9, we present an example of a reconstructed image

(kodim19.png) obtained using our proposed framework, as

well as the compression standards JEPG [53], JEPG2000,

BPG, and VTM. The visual comparison reveals that our

reconstructed image retains significantly more details while

achieving a similar bpp value. This observation highlights the

superior performance of our approach in preserving image

quality.

V. CONCLUSION

This paper presents a novel image compression algorithm

using a Transformer-based autoencoder and a new entropy

model. The main autoencoder consists of a local Transformer

and aggregated-window Transformer blocks which are respon-

sible to capture both long-term and short-term relationships for

achieving a more compressible and decorrelated representation

of the input image. Our proposed entropy model is comprised

of two different hyperpriors: channel-aware hyperprior and

spatial-aware hyperprior. These two hyperpriors aim to model

the remaining spatial and cross-channel redundancies in the

latent representation. The global context is integrated with

local context and hyperpriors to exploit global information

which assists in accurately estimating the distribution of the

latent representation. Our experimental results demonstrate

that our proposed network boosts compression efficiency.
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