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Abstract—Despite the advances in the field of Face Recognition
(FR), the precision of these methods is not yet sufficient. To
improve the FR performance, this paper proposes a technique
to aggregate the outputs of two state-of-the-art (SOTA) deep
FR models, namely ArcFace and AdaFace. In our approach,
we leverage the transformer attention mechanism to exploit the
relationship between different parts of two feature maps. By
doing so, we aim to enhance the overall discriminative power
of the FR system. One of the challenges in feature aggregation
is the effective modeling of both local and global dependencies.
Conventional transformers are known for their ability to capture
long-range dependencies, but they often struggle with modeling
local dependencies accurately. To address this limitation, we
augment the self-attention mechanism to capture both local
and global dependencies effectively. This allows our model to
take advantage of the overlapping receptive fields present in
corresponding locations of the feature maps. However, fusing
two feature maps from different FR models might introduce re-
dundancies to the face embedding. Since these models often share
identical backbone architectures, the resulting feature maps may
contain overlapping information, which can mislead the training
process. To overcome this problem, we leverage the principle
of Information Bottleneck to obtain a maximally informative
facial representation. This ensures that the aggregated features
retain the most relevant and discriminative information while
minimizing redundant or misleading details. To evaluate the
effectiveness of our proposed method, we conducted experiments
on popular benchmarks and compared our results with state-of-
the-art algorithms. The consistent improvement we observed in
these benchmarks demonstrates the efficacy of our approach in
enhancing FR performance. Moreover, our model aggregation
framework offers a novel perspective on model fusion and
establishes a powerful paradigm for feature aggregation using
transformer-based attention mechanisms.

Index Terms—Face recognition, Feature aggregation, Trans-
former, Cross-attention, Information bottleneck technique

I. INTRODUCTION

The increased attention towards Face Recognition (FR)

algorithms [1], [2], [3], [4], [5] in recent years can be attributed

to several factors. One of the primary catalysts has been

the rising demand for reliable and efficient face recognition

systems in various domains, including security [6], surveil-

lance [7], and identity verification [8]. As a result, researchers

and practitioners alike have been actively exploring ways to

enhance FR algorithms to meet these evolving needs.

Large-scale datasets have played a pivotal role in driving ad-

vancements in FR [1]. These datasets comprise vast collections

of annotated face images, often containing millions of samples

from diverse sources. The availability of such comprehensive

data allows researchers to train FR algorithms on a rich variety

of facial features, appearances, and scenarios. By leveraging

these datasets, FR algorithms can learn to generalize better

and exhibit improved performance when faced with real-world

challenges, such as variations in lighting conditions, poses,

expressions, and occlusions. In addition to large-scale datasets,

novel loss functions have been instrumental in improving FR

performance [9]. Loss functions define the objective that FR

algorithms aim to optimize during training. Traditional loss

functions, such as the softmax loss, have been enhanced or

replaced with more sophisticated alternatives. For instance,

the triplet loss [10] and its variants facilitate the learning of

discriminative feature representations by encouraging closer

proximity for images of the same identity and pushing images

of different identities further apart in the embedding space.

Other loss functions, such as center loss [11], focus on

minimizing the intra-class variations while emphasizing inter-

class separability. Most current FR methods (e.g., SphereFace

[3], CosFace [2], and ArcFace [1]) focus on applying a margin

penalty to the Softmax loss function to allow the network to

extract more discriminative features. Recently, AdaFace [4]

proposed a new loss function that considers image quality

during the training process and emphasizes on recognizable

low quality and high quality images.

Moreover, the development of new network architectures

has significantly contributed to the progress in FR perfor-

mance. Convolutional neural networks (CNNs) have revo-

lutionized FR by effectively capturing facial features and

patterns through hierarchical layers. Researchers have pro-

posed various architectures, such as VGGNet [12], ResNet

[13], InceptionNet [14], and more recently, efficient models

like MobileNet [15] and EfficientNet [16], each designed

to extract increasingly informative representations from face

images. It is worth mentioning that advancements in hardware

have also played a crucial role in facilitating the progress

of FR algorithms. The availability of powerful GPUs, TPUs,

and other specialized hardware accelerators has enabled re-

searchers to train larger and more complex models efficiently.

This computational power has expedited the experimentation

process and allowed for more extensive exploration of network

architectures, hyperparameters, and training techniques. Con-

sequently, FR algorithms have benefited from faster training

times, accelerated inference speeds, and the ability to handle
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large-scale datasets effectively.

Despite the progress of in the field of FR, performance of

the models is still not satisfactory. Deep ensemble models [17]

mix the outputs of several independently trained methods to

improve the generalization capability of the overall combi-

nation. Such ensemble models may significantly increase the

accuracy of a single classifier in predicting unknown samples

with high flexibility. In this paper, we exploit the transformer

attention mechanism to fuse two identical networks trained

with ArcFace [1] and AdaFace [4] loss functions.

Transformers, originally introduced for machine transla-

tion, have demonstrated exceptional performance across a

wide range of natural language processing (NLP) tasks [18].

However, their potential extends beyond NLP, as exemplified

by the Vision Transformer (ViT) [19], which utilizes self-

attention mechanisms for image recognition. ViTs have gained

significant popularity and have been successfully applied to

various computer vision tasks such as image classification

[20], compression [21], object detection [22], and video pro-

cessing [23]. In the field of computer vision [24], feature

fusion plays a pivotal role in enhancing model accuracy by

combining information from multiple sensors and modalities,

resulting in more robust and comprehensive analysis [25].

While transformers have been employed for feature fusion

in tasks like image processing [26], [27], it is important

to recognize that their main weakness lies in their inherent

focus on modeling long-range dependencies between different

components of visual data [28]. However, when it comes to

feature aggregation, preserving local dependencies becomes

vital, as there is often a shared receptive field between corre-

sponding regions in feature maps. To address this limitation

and enable effective feature aggregation, we propose a network

that combines self-attention and cross-attention techniques.

By leveraging these mechanisms, our network can aggregate

feature maps both globally and locally. This approach allows

us to effectively capture and combine both the local and global

interactions between two feature maps, taking into account the

specific characteristics and dependencies of the visual data. By

incorporating self-attention and cross-attention techniques, our

proposed network enhances the feature aggregation process by

explicitly considering local dependencies, which are crucial for

accurate representation learning. This enables our method to

achieve more comprehensive and informative feature represen-

tations, leading to improved performance in various computer

vision tasks, including face recognition.

The Information Bottleneck (IB) principle, introduced by

[29], highlights the trade-off between learning a compact rep-

resentation and achieving satisfactory prediction performance

[30]. When combining two deep models, there is a risk of

introducing redundancy into the ensemble model’s output,

potentially misleading the training process. To address this

concern, we leverage the IB principle to obtain a compressed

yet informative aggregated representation of the two model

features. To achieve this, we incorporate a regularization term

into the loss function that suppresses irrelevant information in

the aggregated representation. This regularization encourages

the network to focus on capturing essential and discriminative

features while disregarding redundant or irrelevant details. By

explicitly incorporating the IB principle into our model, we

aim to strike a balance between compactness and performance,

resulting in a more effective and efficient representation.

The original IB method involves computationally expensive

calculations of mutual information between the input, latent

representation, and output. To mitigate this challenge, we

adopt the concept of Variational Information Bottleneck (VIB)

[31]. The VIB approach approximates the mutual information

by introducing a variational lower bound, enabling more

efficient computation and scalability to large-scale datasets.

We evaluate our proposed model on a range of benchmark

datasets, including AgeDB [32], CFP-FP [33], CPLFW [34],

CALFW [35], LFW [36], IJB-B [37], and IJB-C [38]. Through

these evaluations, we demonstrate significant improvements in

performance compared to state-of-the-art (SOTA) algorithms,

validating the effectiveness of our approach. By leveraging the

IB principle and adopting the VIB framework, we address the

challenge of redundancy in ensemble models while achiev-

ing a compressed and informative aggregated representation.

The experimental results across various datasets underscore

the superiority of our method, highlighting its potential for

advancing the field of face recognition and outperforming

existing state-of-the-art techniques.

To sum up, the contributions of this work are as follows:

1) A novel local-global transformer-based neural network is

proposed to aggregate the output features of the ArcFace

and AdaFace methods.

2) By employing the information bottleneck principle, we

declare that the final output feature embedding is refined

and does not have redundancies. In other words, our loss

function guides the fusion network to suppress irrelevant

information in the representation.

3) To demonstrate the efficacy of the proposed method,

we perform extensive experiments on publicly-available

datasets. Results confirm our technique performs well

across various benchmarks.

The remainder of this paper is as follows: In Section III, we

elaborate on our method. In Section IV, we evaluate our model

and compare it to the SOTA methods. Finally, in Section V

we conclude the paper.

II. RELATED WORKS

A. Face Recognition methods

In face recognition, a common margin-based loss functions

aim to improve the discriminative power of the learned features

by explicitly enforcing a margin between different classes in

the feature space. It is commonly used in face recognition tasks

to enhance the inter-class separability. In this subsection we

introduce the recent advances in margin-based loss functions.

SphereFace [3] introduces a novel angle-based softmax loss

that incorporates a margin function to enhance the discrim-

inative power of the learned features. The margin function

is designed to ensure that the features belonging to different
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classes are well separated in the angular space. The angle-

based softmax loss used in SphereFace can be defined as:

Lsphere = − log

(
exp(s(cos(θyi −m)))

exp(s(cos(θyi −m))) +
∑

j �=yi exp(s cos(θj))

)
,

(1)

where Lsphere is the loss function, s is a scaling factor, θyim
is the angle between the input feature and the weight vector

of the ground truth class yi after applying a margin m, and θj
is the angle between the input feature and the weight vector

of class j. The margin m is introduced to increase the angular

separation between different classes. CosFace [2] focuses on

enhancing the margin-based loss by incorporating the cosine

similarity metric. The margin function used in CosFace is

designed to increase the angular separation between different

classes in the feature space. The CosFace loss function can be

defined as:

Lcos = − log

(
exp(s(cos(θyi)−m)))

exp(s(cos(θyi)−m))) +
∑

j �=yi exp(s cos(θj))

)
,

(2)

where Lcos is the loss function, s is a scaling factor, θyi
is the angle between the input feature and the weight vector

of the ground truth class yi, and θj is the angle between the

input feature and the weight vector of class j. The margin m is

added to increase the angular margin between classes. ArcFace

[1] builds upon the concept of using a margin function within

the softmax loss to improve the discriminative capacity of the

learned features. The margin function in ArcFace is designed

to enforce large angular separations between classes in the

feature space. The ArcFace loss function can be defined as:

Larc = − log

(
exp(s(cos(θyi +m)))

exp(s(cos(θyi +m))) +
∑

j �=yi exp(s cos(θj))

)
,

(3)

where Larc is the loss function, s is a scaling factor, θyi
is the angle between the input feature and the weight vector

of the ground truth class yi, and θj is the angle between the

input feature and the weight vector of class j. The margin m
is added to increase the angular separation between classes.

AdaFace [4] introduces an adaptive margin-based approach

that dynamically adjusts the margin for each training sample,

leading to improved discriminability. The margin adaptation

process in AdaFace aims to handle intra-class variations by

assigning larger margins to challenging samples and smaller

margins to easier ones. The AdaFace loss function can be

defined as:

Lada = − log

(
exp(s(cos(θyi +mi)))

exp(s(cos(θyi +mi))) +
∑

j �=yi exp(s cos(θj))

)
,

(4)

Where Lada is the loss function, s is a scaling factor, θyi is

the angle between the input feature and the weight vector of

the ground truth class yi, θj is the angle between the input fea-

ture and the weight vector of class j, and mi is the dynamically

adjusted margin for each training sample. The margin mi is

computed based on the difficulty or intra-class variations of the

sample. By employing margin-based loss functions, including

the specific forms used in SphereFace, CosFace, ArcFace, and

the adaptive margin approach in AdaFace, these techniques

aim to enhance the discriminative power of face recognition

models and improve their performance in challenging scenar-

ios.

One of the key advantages of these methods is their ability

to enhance the discriminative power of the learned features.

By incorporating margin functions within the softmax loss,

these techniques effectively increase the angular separations

between different classes in the feature space. This leads to

better discrimination between individuals, resulting in more

accurate face recognition. Another advantage of these methods

is their robustness to variations commonly encountered in face

recognition, such as pose variations, lighting conditions, and

occlusions. By incorporating margin functions and angular

constraints, these techniques encourage the learned features to

be less affected by variations, resulting in improved robustness

and generalization capabilities.

B. Ensemble Learning methods

In machine learning, an ensemble model is a technique

that combines multiple individual models to make predictions.

The idea behind ensemble models is that the combination

of several weak models can result in a stronger and more

accurate predictor. In this subsection, we review some of the

well-known ensemble learning methods. Random Forest is a

popular ensemble method introduced by [39]. It combines

multiple decision trees, where each tree is trained on a random

subset of the data and features. Random Forest has been

widely used in various domains due to its robustness and

ability to handle high-dimensional data. Gradient Boosting

Machines (GBM) [40] is another powerful ensemble technique

that builds an ensemble of weak prediction models, typically

decision trees, in a sequential manner. Each model is trained

to correct the mistakes made by the previous models. Notable

GBM implementations include XGBoost [41] and LightGBM

[42], which have gained significant popularity due to their

efficiency and performance. Deep ensembles, as discussed

previously, combine multiple deep learning models to form an

ensemble. These models are typically deep neural networks

trained independently and combined using techniques such

as averaging or voting. Deep ensembles have been applied

to various domains, including image classification, natural

language processing, and reinforcement learning. Bayesian

Model Averaging (BMA) [43] is a probabilistic ensemble

approach that assigns weights to individual models based on

their performance on a validation set. Bayesian techniques

are used to estimate the weights, and the final prediction is

obtained by averaging the predictions of all models weighted

by their probabilities. Stochastic Weight Averaging (SWA) is

a recent ensemble technique proposed by [44]. It involves

averaging the weights of multiple models during training rather
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Fig. 1: (a) The overall architecture of the proposed method. The input image is fed to two pre-trained FR backbones to obtain

two feature maps X,Y ∈ RH×W×C . Next, the feature maps are aggregated with the introduced global and local transformer-

based modules and then, we exploit the IB technique to obtain a compressed representation of the image. (b) The local feature

aggregation module. (c) The global aggregation module.

than their predictions. This method has been shown to improve

generalization and robustness of deep learning models.

III. METHOD

Figure 1(a) illustrates the comprehensive architecture of our

proposed method. To begin, we extract feature maps from the

final convolutional layer of each pre-trained face recognition

(FR) backbone. These feature maps serve as input to two

parallel modules within our approach, enabling simultaneous

local and global information aggregation. To facilitate this

aggregation process, we employ a transformer encoder archi-

tecture as depicted in Figure 2. The transformer encoder acts

as the fundamental building block of our feature aggregation

modules, allowing for efficient capturing and integration of

local and global facial information. Following the feature ag-

gregation step, we concatenate the outputs from the local and

global modules and leverage the Information Bottleneck (IB)

technique. This technique enables us to achieve a compressed

representation that retains the essential discriminative infor-

mation while removing redundancies, optimizing the overall

performance of the face recognition model. Finally, we decode

the compressed representation to obtain the corresponding

labels, allowing for accurate classification. During the in-

ference phase, the compressed representation is utilized for

1:1 face verification, enabling efficient and reliable matching

between pairs of face images. By adopting this comprehensive

architecture, our method effectively combines local and global

information, leverages the power of transformers for fea-

ture aggregation, incorporates the benefits of the Information

Bottleneck principle for compression, and ultimately enables

accurate face recognition and verification tasks.

A. Information Bottleneck method
In our loss function, we have used the IB principle [29]

to achieve a compressed and informative fused representation

of the images. In a classification task, we need to learn a

representation that is maximally compressed with regard to

the input and maximally informative about the output. The IB

principle is defined below:

LIB(θ) = βI(X̂,X; θ)− I(X̂, Y ; θ), (5)

where I(., .) denotes the mutual information, and X , X̂ ,

and Y represent the input, bottleneck representation, and

corresponding labels, respectively.

1) Variational Information Bottleneck: The main draw-

back of the IB principle is that the computation of mutual

information is cumbersome, especially for continuous and

high-dimensional variables. Recently, remarkable improve-

ments have allowed the computation of MI in an efficient

manner [31], [45]. In [31] a variational bound is presented

to approximate the IB objective. This bound is defined below:

(6)

LIB(θ) = βI(X̂,X; θ)− I(X̂, Y ; θ)

≤ β

∫
p(x)pθ(x̂|x)log pθ(x̂|x)

r(x̂)
dxdx̂

−
∫

p(x)p(y|x)pθ(x|x̂)logqφ(y|x̂)dxdydx̂ ,

where pθ(x̂|x) is the estimation for the posterior probability,

r(x̂) is a normal distribution and qθ(y|x̂) is the estimation of

distribution Y . The loss function is then defined below:

(7)LV IB(θ, φ) = βEx[KL(pθ(x̂|x), r(x̂))]
+ Ex̂∼pθ(x̂|x)[−log(qφ(y|x̂))] ,

where DKL(., .) denotes the Kullback-Leibler divergence.
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B. Attention-Based Fusion Architecture

1) Local Feature Aggregation: While a transformer atten-

tion mechanism excels at capturing long-range dependencies

across input tokens, it does not inherently emphasize the

interaction between tokens within a local region. In our feature

fusion approach, where we compute feature maps using two

identical backbones, the pixels within a local region of the fea-

ture maps share common receptive fields in the original image.

Therefore, it is crucial to design a model that can effectively

capture the relationships between elements in corresponding

local positions of the two feature maps.

To address this requirement, we propose a variation of the

transformer architecture that specifically focuses on modeling

the local context between different parts of the input features.

Figure 1(b) illustrates the architecture of our local feature

aggregation module. Inspired by the work of [28], we modify

the conventional transformer to enhance its capability to

capture local context. To enable the transformer to effectively

capture local context, we begin by concatenating the two

feature maps, denoted as X and Y , resulting in a composite

feature map F of shape H × W × 2C. We then apply a

sequence of operations, including a Conv(1×1), a depth-wise

convolution, and another Conv(1× 1), followed by adding F
to the output. This series of operations is designed to establish

local context fusion within the transformer, a capability that

the conventional transformer lacks. Subsequently, the resulting

feature map is flattened to F ′ of shape HW ×C and fed into

the transformer module. In this configuration, the number of

tokens is HW , each having a size of C. By incorporating

the depth-wise convolution, we aim to effectively capture and

integrate local context within the transformer, enabling it to

model the relationships between elements in local regions. It

is important to note that the introduction of the depth-wise

convolution does not significantly increase the computational

complexity compared to the original transformer. This is due

to the low computational overhead associated with depth-wise

convolutions. Therefore, our modified architecture remains

computationally efficient while effectively capturing local con-

text and enhancing feature fusion. By leveraging the local

feature aggregation module, we enable our model to capture

both global and local interactions within the feature maps.

This comprehensive understanding of relationships between

elements contributes to more accurate and robust feature

fusion, ultimately enhancing the performance of our approach

in face recognition.

2) Global Feature Aggregation: While Transformers are

known for their ability to model global interactions among to-

kens, they typically consider the relationship of a single token

with other tokens at a time, neglecting the potential for fully

utilizing the interaction among all elements within a feature.

To enhance performance and enable a more comprehensive

understanding of the global relations between elements in two

features, we modify the Transformer network accordingly.

The global feature fusion module, depicted in Figure 1(c),

plays a crucial role in this enhancement. The input to this
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Fig. 2: The transformer encoder architecture, the base block

of our proposed local and global feature aggregation modules.

module consists of two feature maps, denoted as X and Y ,

both of shape H ×W × C. To facilitate interaction between

the feature maps, we apply Global Average Pooling (GAP) to

each feature map, resulting in two feature vectors, GX and

GY , both of shape 1 × C. To enable the feature maps to

interact with each other, we utilize the feature vector GY as

the query of one Transformer, and GX as the query of another

Transformer. The keys and values for the Transformers are

derived from Y and X , respectively. The result of applying a

Conv(1 × 1) operation to GAP (Y ), X , and Y produces K
and V , both of shape HW × C. The multi-head attention

mechanism is then applied, resulting in Z1, an output of

shape 1 × C. Following the attention step, the output passes

through the ”Add and Norm,” ”FeedForward,” and ”Add and

Norm” layers. These operations further refine the features and

contribute to the final representations, resulting in two feature

vectors, F1 and F2, both of shape 1 × C. The two attended

feature vectors, F1 and F2, are concatenated to form a resulting

feature vector, denoted as F , of shape 2×C. This fusion allows

for the integration of the attended information from both

feature maps, capturing a richer representation of the global

relations between the elements. Importantly, in this fusion

process, the query of each transformer module is the average

of all the pixels in a channel, enabling a global perspective for

attention. Consequently, the values are weighted based on the

interaction between the ”globally designed” query and the key.

This attention mechanism ensures that the interaction among

the elements is effectively captured and utilized to enhance

the overall representation.

C. Objective Function
The VIB objective function serves as the loss function for

training our network. In the literature of variational autoen-

coders, the encoder and decoder are denoted as pθ(x̂|x) and

qφ(y|x̂) respectively. To align with this convention, we rewrite

Equation 7 as follows:

LV IB(θ, φ) = βLencoder(θ) + Ldecoder(φ). (8)

In our network architecture, the backbones and the global-

local feature aggregation components collectively function as

our encoder. On the other hand, the decoder consists of a
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fully connected layer that connects the bottleneck represen-

tation x̂ with the corresponding labels. Within Equation 8,

the Ldecoder term represents the cross-entropy loss, which

measures the dissimilarity between the predicted labels and

the true labels. On the other hand, the Lencoder term acts

as a regularization term, imposing constraints on the network

to encourage the removal of redundant information from

the learned representation x̂. This regularization facilitates

a more compact and informative representation. During the

training process, the backbones remain fixed, so the trainable

weights θ correspond to the fusion network. Additionally,

the weights φ represent those of the fully connected layer.

The hyperparameter β determines the extent of compression

applied to the learned representation. To approximate the

parameters of pθ(z|x), we make use of the approximations

μ(x) and Σ(x). During training, the compressed representation

x̂ is sampled from pθ(z|x), while during inference, we utilize

μ(x) as the representation for the input image. By formulating

our loss function in this manner and incorporating the VIB

objective, we enable the network to simultaneously optimize

the decoder for accurate classification and the encoder for effi-

cient representation compression. This framework allows us to

achieve a balance between preserving predictive information

and eliminating redundancies, ultimately enhancing the face

recognition performance of our model.

IV. EXPERIMENTAL SETTING AND RESULTS

A. Datasets
We have incorporated a segment of WebFace12M [50],

comprising over 5 million facial images, into our training

dataset. During the testing phase, we evaluated our model

using diverse datasets with varying image qualities to assess

its robustness and generalization capabilities. For the high-

quality image datasets, we utilized AgeDB [32], CFP-FP [33],

CPLFW [34], CALFW [35], LFW [36], IJB-B [37], and IJB-

C [38] datasets, which are widely recognized benchmarks

within the face recognition (FR) community. These datasets

are known for their well-captured and well-aligned images,

providing an ideal evaluation environment for assessing the

performance of FR methods. To ensure consistent and stan-

dardized evaluation, we pre-processed each dataset using the

techniques outlined in [51], which includes face detection and

alignment procedures. Furthermore, we followed the settings

defined in [1] to perform rescaling and alignment, ensuring

fair and comparable evaluation conditions across different

methods. To align with the evaluation practices of state-of-the-

art methods, we reported the 1:1 verification accuracy for the

aforementioned datasets. Additionally, we presented the True

Accept Rate (TAR) at a False Accept Rate (FAR) of 1e − 4,

which provides a comprehensive measure of the model’s

performance in distinguishing genuine matches from impostor

matches. By adhering to established evaluation standards and

employing a diverse range of datasets, including those with

both high-quality and low-quality images such as IJB-B and

IJB-C, we aim to demonstrate the effectiveness and versatility

of our proposed method across various real-world scenarios.

B. Implementation details
For the backbones, we exploit the ResNet100, pre-trained

with ArcFace [1] and AdaFace [4] losses with the same

training dataset as ours. Using stochastic gradient descent

(SGD), the entire network is trained for 24 epochs with the

LV IB loss function. The learning rate begins at 0.1 and is

decreased by a factor of 10 at 10th, 16th, and 22th epochs. For

the training phase, each image and its corresponding label (as

a one-hot vector) are fed to the network. During the inference

phase, the pair is given to the network, and the cosine distance

is then computed between the representations as a metric. For

experiment, first, we evaluate only the global branch then we

use the local branch, and at the end, we take advantage of both

the local and global branches. In the last experiment, LV IB is

used, and the compressed representation length is K = 512.

C. Comparison with the SOTA methods
In Table I, we exhibit the performance of our algorithm

compared to the state-of-the-art techniques, and as we can

see in the table, our method outperforms these algorithms.

We evaluate our model with global, local, and both local and

global modules, and we achieved the best results when we used

both modules simultaneously. To demonstrate the effectiveness

of the loss function LV IB , we conduct experiments with and

without VIB, and the results indicate that by using this loss

function, we can achieve better performance. Furthermore, in

the next part, we explain how tuning the hyper-parameter β
allows us to achieve the optimum performance on both high

and mixed-quality datasets. The hyper-parameter β controls

the trade-off between the reconstruction fidelity and the dis-

entanglement of the latent representations. Through careful

tuning of β, we are able to strike a balance that ensures high

performance across various datasets.

D. Effect of hyper-parameter β on accuracy
We examine how the hyper-parameter β in LV IB affects

the face recognition performance by controlling the trade-off

between preserving predictive information and compression

in the latent representation. A low β value indicates a greater

emphasis on preserving predictive information, while a higher

β value prioritizes compression and eliminates redundancies.

To investigate the impact of β on performance, we trained our

model with various values of this parameter. Fig. 3 illustrates

the verification accuracy on the validation datasets, providing

insights into the relationship between β and performance.

Our experiments reveal that different datasets exhibit varying

sensitivity to β due to differences in image quality. For

high-quality datasets such as AgeDB and CFP-FP, a higher

β value is required. These datasets contain rich contextual

information, necessitating a greater degree of compression

in their representations. By increasing β, we can effectively

eliminate redundancies and achieve improved performance

on these high-quality images. Conversely, for lower-quality

images, a lower β value proves more effective. These images

contain less contextual information and may benefit from a

more informative representation that preserves a higher degree
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TABLE I: The results of our proposed method are compared to the SOTA methods for the 1:1 face verification task.

Method
High Quality Mixed Quality

LFW CFP-FP CPLFW AgeDB CALFW IJB-B IJB-C
ArcFace [1] 99.83 98.27 92.08 98.28 95.45 94.25 96.03
AdaFace [4] 99.82 98.49 93.53 98.05 96.08 95.67 96.89

CurricularFace [46] 99.80 98.37 93.13 98.32 96.20 94.80 96.10
MagFace [47] 99.83 98.46 92.87 98.17 96.15 94.51 95.97

BroadFace [48] 99.85 98.63 93.17 98.38 96.20 94.97 96.37
SCF-ArcFace [49] 99.82 98.40 93.16 98.30 96.12 94.74 96.09
Fusion + Global 99.83 98.54 93.46 98.37 96.15 95.54 96.75
Fusion + Local 99.83 98.46 93.50 98.25 96.20 95.63 96.84

Fusion + Global + Local 99.83 98.50 93.53 98.30 96.18 95.65 96.89
Fusion + Global + Local + VIB 99.85 98.87 93.78 98.60 96.25 95.83 97.11
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Fig. 3: The verification performance versus the hyper-

parameter β. To achieve optimal performance for high quality

images we need higher β (more compression) due to the higher

amount of contextual information.

of target-related details. By reducing β, we strike a balance

that allows for more preservation of relevant information

in the face recognition process for lower-quality datasets.

In summary, our investigation demonstrates the importance

of tuning β in LV IB to achieve optimal face recognition

performance. The appropriate choice of β depends on the

dataset characteristics, with higher values suitable for high-

quality images and lower values preferred for lower-quality

images. This flexibility enables our model to adapt to different

datasets and maximize performance across a range of image

qualities.

V. CONCLUSION

In this paper, we propose a transformer-based architecture

to enhance face recognition performance by aggregating the

output features of two pre-trained networks. Transformers have

limitations in capturing local interactions, so we divided the

fusion module into local and global feature aggregation com-

ponents. To address potential redundancies in the aggregated

features, we leverage the Information Bottleneck (IB) principle

to achieve a maximally informative and compressed repre-

sentation. We evaluate our model on various benchmarks and

demonstrate its superiority over SOTA methods. Overall, our

approach effectively addresses the limitations of transformers

in capturing local interactions by dividing the fusion module

and leveraging the IB principle. The experimental results

showcase the improved performance of our model compared

to existing methods. This paper contributes to the field of face

recognition by proposing an enhanced architecture for real-

world scenarios.
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