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A longstanding goal of biology is to identify the key genes and species that critically
impact evolution, ecology, and health. Network analysis has revealed keystone species
that regulate ecosystems and master regulators that regulate cellular genetic networks.
Yet these studies have focused on pairwise biological interactions, which can be affected
by the context of genetic background and other species present, generating higher-order
interactions. The important regulators of higher-order interactions are unstudied.
To address this, we applied a high-dimensional geometry approach that quantifies
epistasis in a fitness landscape to ask how individual genes and species influence the
interactions in the rest of the biological network. We then generated and also reanalyzed
5-dimensional datasets (two genetic, two microbiome). We identified key genes (e.g.,
the 7bs locus and pykF) and species (e.g., Lactobacilli) that control the interactions
of many other genes and species. These higher-order master regulators can induce or
suppress evolutionary and ecological diversification by controlling the topography of
the fitness landscape. Thus, we provide a method and mathematical justification for
exploration of biological networks in higher dimensions.

epistasis | higher-order interaction | fitness landscape | microbiome | lifespan

Master regulators are nodes in a network that control the rest of the network. They are
often identified as highly connected nodes. For example, in eukaryotic cells, the protein,
target of rapamycin (TOR), interacts with many other proteins and pathways to control
cellular metabolism (1), which is important for understanding cellular metabolism as
well as for treating diseases including cancer, autoimmunity, and metabolic disorders
(1). Ecological master regulators are called keystone species, a classical example being the
starfish, Pisaster, which regulates the biodiversity of the intertidal zone by eating many
other species (2). Identifying key nodes in biological networks provides control points
that further basic science and enable applications, for instance, cancer therapy (through
TOR) or ecological restoration (through starfish).

Epistasis is a standard framework to quantify biological networks, specifically gene
networks, where the genes are nodes and interactions are specified by edges. Constructing
a gene network using epistasis works by iteratively mutating a set of individual genes
and pairs of these genes, and then using the phenotypes of the mutants to construct the
network. For instance, if genes A and B both affect a phenotype, C, we make the single
mutants 2 and 4 and the double mutant 26 and denote the phenotypes of these mutants
as C,, Cp, and C,p. By measuring the effects on a phenotype, e.g., fitness, it can be
determined if A and B operate in parallel to affect C (i.e., 4 = Cand B — C) or in
serial (i.e., A = B — C). These two possibilities are differentiated based on the degree
of non-additivity: If the C, and C, add up to C, the genes do not interact and thus
operate in parallel. If they are non-additive, the genes interact and thus operate in serial.
More specifically, if A — B — C, then mutants 4, 4, and a6 will each produce the same
phenotype, thus, C, + C; # C,, indicating non-additivity or epistasis.

Applying epistasis to genome-wide measurement of pairwise genetic interactions has
revealed biochemical pathways composed of discrete sets of genes (3, 4) as well as complex
traits, such as human height, that are affected by almost every gene in the genome (5, 6).
New innovations have applied epistasis to broader data types (7, 8) and at different
scales, making epistasis a widely valuable tool. The concept has been used to map
pairwise interactions for protein structure (9), genetics (3, 4, 7, 10, 11), microbiomes
(12, 13), and ecology (14-16).

Epistatic interactions are important in nature (17), for instance, when mutations occur
(18-20) or when sex, recombination, and horizontal gene transfer bring groups of genes
together (11, 21-25), making multiple loci interact. Epistasis between bacteria in the
microbiome has functional consequences (12, 13, 26-29) when community assembly
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combines groups of species in a fecal transplant. In this case, the
nodes in the network are bacterial species instead of genes.

Master regulators of biological networks are identified by their
position in the network, often as nodes with a higher degree
of edges than average (30). A known challenge of biological
networks is that they are high dimensional. Consequently, the
interactions can change depending on the biological context or
the genetic background (31); c.f. ref. 32 and references therein.
This is important because such networks cannot be fully captured
by pairwise interactions. Higher-order epistatic interactions are
interactions that require three or more interacting parts. From
a network standpoint, such loci that affect the interactions
between many other loci play a key role in regulation of network
structure.

Identifying such regulators requires a high-dimensional for-
mulation of epistatic interactions. Fitness landscapes are one
such approach (33, 34). They depict biological fitness as a
function of genotype space (18, 19, 35). Wright defined the
genotype space as a hypercube with each genetic locus represented
as an independent dimension (35). Previous work formalized
the fitness landscape of this genotype space and quantified
epistasis on the fitness landscape (23, 36-38). We developed
the epistatic filtration technique, which provides a global measure
of interactions in higher dimensions.

Here, we develop that framework further in order to apply
it to identify master regulators of high-dimensional interactions.
Rather than the traditional approach of assigning significance to
a gene or species based on its pairwise interactions (2, 3, 39—
41), we assign significance based on how the presence of that
gene or species influences the structure and magnitude of
interactions in the rest of the network. In order to compare
interaction magnitudes across different dimensions, we develop a
dimensionally normalized definition of epistasis. We also develop
a graphical approach to determine whether high-dimensional
epistasis has lower-dimensional roots and what they are. We then
analyze four datasets that are 5 dimensional. Two are genetic
datasets for i) mutations that arose in E. coli evolution (42), herein
called Ecoli,,y, and ii) f-lactamase antibiotic resistance (43),
herein called Ecoligj,. Two are microbiome datasets measuring
the impact of bacterial interactions on Drosophila lifespan, with
one previously published (12), herein called Dmel G, after the
lead author, and another generated here, called Dmelgy,. Our
framework identifies regulators of higher-dimensional network
structure in both the genetics and microbiome datasets. We find
that specific genes and bacterial species change interactions in
the rest of the network, meaning they regulate the higher-order
network structure.

Results

Epistatic Filtrations Describe Higher-Dimensional Biological
Networks. Our goal is to identify master regulators of biological
interactions in higher dimensions. Our approach is to first
measure epistasis on the high-dimensional fitness landscape and
then ask how individual loci, e.g., genes, change the shape of the
landscape. We use the epistatic filtration technique to quantify
epistasis on the fitness landscape. We use parallel epistatic
filtrations to quantify the changes in the landscape due to each
locus.

First, we describe epistatic filtrations. Epistatic filtrations are
analogous to analyzing the drainage sectors within a watershed
(Fig. 1), which is a real physical landscape with altitude as a
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Fig. 1. Landscapes can be divided into sectors based on the ridges. (A) A
fitness landscape. (B) Ridges divide a physical landscape into sectors (colored
regions). Adjacent sectors share a common ridge.

function of latitude and longitude. Boundaries of a sector are set
by ridges, which determine where water will flow.

We can think of a fitness landscape as having sectors as
well. In a fitness landscape, the ridges are set not by altitude
but by measurements of organismal fitness as a function of
genotype. The latitude and longitude of a watershed correspond
to genotypes in the fitness landscape and the altitudes to
phenotype. However, unlike latitude and longitude, which are
continuous, genes are discrete (i.e., a gene is either wild type or
mutant). Our framework is discrete too.

We represent each gene with a separate dimension as proposed
by Wright (35); if the gene is wild type, its position is 0; if the
gene is mutant, its position is 1. The space of all genotypes has
many dimensions, one per mutated gene (32, 35). This high-
dimensional space is called a genotype hypercube (18, 19, 35).

We next quantify the epistasis of the fitness landscape. This
requires that we define sets of genotypes to compare. We do so by
segmenting the genotype cube into sectors (Fig. 2). Each sector
contains information about the steepness of the fitness landscape
at that location.

This approach is different from a previous approach that
defined epistasis based on paths, called circuits, that traverse the
landscape (37). An advantage of our approach is that there are
orders of magnitude fewer sectors in a landscape than there are
circuits, reducing the search space and the associated statistical
constraints from multiple testing comparisons (36).

The sectors are sets of adjacent genotypes in the hypercube.
Geometrically speaking, the shape of a sector is a simplex,
meaning each vertex (genotype) is directly connected to every
other vertex in the set. For instance, a 2D simplex is a triangle. To
segment the fitness landscape into sectors, we use a triangulation.
In Fig. 3 A-C, we illustrate how a two-dimensional fitness
landscape is triangulated using the phenotypes of the genotypes.
The phenotypes form a third dimension that we depict as a
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Fig. 2. Conceptual introduction to epistatic filtrations. An epistatic filtration
depicts the epistasis of a fitness landscape. By analogy with a watershed,
producing the filtration can be conceptualized in four steps: (A) The fitness
landscape defines the topography based on the ridges; (B) the landscape
is segmented into sectors based on these ridges, which connect adjacent
sectors; (C) epistasis is calculated as the shared area of adjacent sectors
and displayed on a dual graph, which depicts the adjacency relationships
of sectors; (D) the epistatic filtration depicts the rank order of epistasis
magnitude in the adjacent sectors as a set of merges. The black tick marks on
the left-most sector of each row indicate the magnitude of the merge. Widths
of sectors and gaps between them carry no magnitude information. Formal
definitions follow in Fig. 3 and S/ Appendix, Text.

height function on the vertical axis. The phenotype data uniquely
determine the ridges of the landscape. Projecting these ridges back
to the 2D genotype plane forms a triangulation of the genotypes,
which delineates the sectors. This diagram is similar to previous
illustrations of epistasis on a two-dimensional landscape (c.f. refs.
31 and 32), but our approach is unique in that we use the
geometry to sector the fitness landscape.
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Next, we construct a network representation of the sectored
genotype space to depict the pairwise adjacency of neighboring
simplices (nodes) (36). These simplices are groups of genotypes.
An edge in this network indicates that two simplices are adjacent,
meaning they share a face. This shape with two simplices sharing
a common base but having separate apexes is called a bipyramid.
Thus, the edges in our network correspond to bipyramids.

We calculate the magnitude of epistasis of each pair of adjacent
sectors in the triangulation by calculating the volume spanned by
the fitness phenotypes that correspond to the genotypes of the
vertices of the bipyramids. This definition of epistasis is unique
yet consistent with previous ones in lower dimensions (Fig. 3).
We additionally normalize the fitness phenotypes so that we can
compare epistasis between different dimensions and different
datasets. Scaling the phenotype height function 4 by a positive
constant does not change the regular triangulation, and thus,
it does not change the dual graph. To normalize, we read the
height function 4 as a vector of length 22, one for each vertex
of the D-dimensional hypercube, and rescale to Euclidean norm
1. Effectively, this amounts to reading the height function as
a direction in 2P-dimensional space. The epistatic volumes are
rescaled accordingly (S7 Appendix, section 1), allowing direct
comparisons of epistasis magnitude across dimensions. Our
definition of epistasis makes the framework self-consistent when
applying it to higher dimensions.

We next rank the volumes of the bipyramids from smallest to
largest. These merged sectors can be visualized as a network graph,
where the nodes are sectors and the edges are bipyramids. Because
there are multiple adjacent sectors, we denote the first merge of
a sector as a critical edge, consistent with Morse theory (44). If
an edge joins a cluster of simplices in the graph due to a separate
critical edge, this edge that was brought along by the critical
edge is called noncritical. Biologically, a critical edge supports
gene flow on a fitness landscape. Plotting the rank order of the
critical edges gives an epistatic filtration (Figs. 2 and 3). Together,
the network graph and the filtration represent the increasing
magnitude of epistasis and the connectivity between the regions
of the epistatic landscape where the significant epistasis occurs,
which is important because it helps identify sets of interacting
genotypes. We note that merging small sectors first is a choice
based on Theorem 8 in ref. 36 that emphasizes the finer details
of the landscape in the visualization by epistatic filtration. The
merge order can be reversed to give greater influence to larger
sectors in determining the filtration order.

To determine how an individual locus, e.g., gene or species,
affects the interactions in the rest of the network, we compare the
epistasis for each pair of adjacent sectors with the locus of interest
added or removed. This parallel filtration quantifies how adding
or removing a locus affects the epistasis of the individual sectors
on the high-dimensional fitness landscape (36). Discovering loci
that have out-sized effects on the fitness landscape allows a new
approach to identify master regulators that operate in higher
dimensions.

A Volume-Based Definition of Epistasis Is Valid across Many
Dimensions. In this section, we explain the 2D genotype case of
the definition of epistasis that we employ throughout. With two
loci and two alleles (0 or 1) at each locus, we plot the genotypes
as a unit square in the x—y plane and the measured phenotypes of
each genotype on the z-axis (Fig. 34). The phenotypes thus lift the
genotypes into one dimension higher, here going from 2D to 3D.
Connecting the four phenotypes gives a simplex, shown as the
green polytope in Fig. 34. Depending on the relative magnitudes
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Fig. 3. Definition of epistasis and how triangulation is used to segment the fitness landscape. (A) The 2D genotype set has two loci, each of which can be 0 or 1:
{00, 01,10, 11}. Each genotype gets lifted into 3D space by appending the phenotype h(v) to each genotype coordinate in the set, v e {(00), (01), (10), (11)} c RZ.
Connecting these lifted phenotype points forms a convex hull, depicted as the green 3D body G(3) above the gray genotype set. The Euclidean volume of the
3D body G(3) yields a measure for epistasis (c.f. ref. 36). A lower degree of epistasis produces a lower volume of the green body, and higher epistasis produces
a larger volume. (B) The upper surface of the green body is two green triangles, which are divided by the ridge. The ridge sets a triangulation of the genotype
space in gray. This is done by removing the phenotype dimension from the ridge vertices, which projects it back to the 2D genotype space. (C) The ridge thus
splits the space into sectors, which are two adjacent triangles, {00, 01, 10}, and {01, 10, 11}, denoted as A and B. We note that in two dimensions, our volumetric
definition is equivalent to the absolute value of the established formula e = h(00) + h(11) — (h(10) + h(01)) for epistasis, scaled by a dimension related
constant factor. This approach also works in higher dimensions, with the triangles becoming simplices. (D) For the 3D case, the genotype set forms a cube.
(E) Using the phenotypes from the first three loci of the Ecolieyo data, the ridges produce a regular triangulation, the subdivision S, which consists of the six
tetrahedra, A, B, C, D, E, and F. Different data would produce a different triangulation. Epistasis is calculated from the union of adjacent tetrahedra, for example,
sectors A and F, which share a face. The vertices of the shared face are called base vertices. The unshared vertices of the two tetrahedra are called satellites.
(F) The lifted bipyramid with its corresponding fitness values is represented in matrix form, which allows us to calculate the volume by taking its determinant.
(G) Phenotypes of the 3D genotype cube taken from the Ecolieyo dataset. (H) The adjacency relations of the tetrahedra give rise to a network, which is the dual
graph of S. The edge 5 refers to the bipyramid comprised of A and F with vertices {100} + {001, 110, 101} + {111} [2]. The set {001, 101, 110} is the base where A
and F meet, and it separates the two satellites 100 and 111. The edge (G E) (dotted) is non-critical (see definitions in S/ Appendlix, Text). (/) The epistatic filtration
of the genotype-phenotype map depicts the iterative process of gluing bipyramids in a non-redundant manner, going from lowest to highest epistatic volume.
For example, rank 5 is the merge between A and F and has the lowest epistasis, rank 4 is the merge between £ and F, and so forth. The black vertical tick mark
at the left end of each row of blocks gives the epistasis added to the filtration at that rank.

of the phenotypes, the green simplex can be larger or smaller,  Epistatic Filtrations Reveal Higher-Order Structure in E. coli
with the perfectly additive (no epistasis) case giving zero volume. Evolution. To illustrate our approach, we examined Ecoli,y,, an
We define epistasis as the Euclidean volume of the green simplex. existing dataset from Lenski’s (45) classic experimental evolution

In the 2D case, this is proportional to the absolute value of the ~ of E. coli with each combination of the first five beneficial
established formula for epistasis, € = 4(00) + 4(11) — (h(10) +  mutations to fix in the population (42) (Fig. 44). The key finding
h(01)) (37). We call our definition the epistatic volume and note ~ was that epistatic interactions reduce the overall fitness benefit
that it is of one dimension higher than the genotype space due expected from additivity of the individual mutations (42), with
to the measured phenotype (Fig. 3). This definition of epistasis ~ the potential to slow the rate of adaptation (46). But an exception

based on volume is important because it applies equally well in  to this rule was that a single locus, pyruvate kinase (py£F), which
higher dimensions, as we discuss in S/ Appendix: “A primer on is critical for control of metabolic flux, showed an increase in
epistatic filtrations” and “Epistatic filtrations: the n—locus case.”  fitness benefit with other mutations. A remaining question is
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Fig. 4. E. coli evolution is guided by epistatic landscape distortions. (A) (i) E. coli mutants examined (42), (ii) their geometric relationships, and (i) experimental
approach to measure fitness. In (ii), light blue vertices are the satellites and dark blue are the base for the significant bipyramid indicated in B, C, and D. (B) Edge
labeled dual graph and (C) epistatic filtration restricted to n = 4 mutations in topA (locus 2), spoT (locus 3), g/mUS (locus 4) and pykF (locus 5). Locus 1, rbs, is fixed
0 (wild type). Note that the left edge of the bars in (C) indicates there is very little epistatic volume added to the filtration except for the final merge, where the
single genotype 00001 gives weight to the entire filtration. This final interaction corresponds to the vertices {00001} 4 {00000,01001,00101,00011} + {00010}.
(D) Dual graph for the complete Ecolievo dataset. Black indices in (B) label the critical edges of the dual graph of S(h). (E) In the parallel filtration, for Tsss,
where the rbs mutation is present, the landscape is distorted by a concentrated area of higher epistasis. Inset: graph in (B) recolored with weights from (E). The
lengths of the bars in the parallel transport figure () have no meaning. Only the horizontal position of the black marks, the vertical position of the bars, and
its coloring encode information. The horizontal shift represents the value of the epistatic volume, the vertical position of the bar indicates which dual edge is
transported and the color expresses if the epistatic volume is significant after parallel transport.

why bacteria in stable habitats continuously evolve even after
reaching a near optimum fitness (47).

We first examine # = 3 loci, corresponding to mutations in
topA, spoT, and pykF. Epistasis was generally low in magnitude
(42, 48) and occurs in two ways: i) either from merging groups
of simplices (c.f. BC + AFE in line #3 of Fig. 3/), or ii) from
merging a single simplex, c.f. D, with the group of the rest of
the simplices (c.f. line #2 of Fig. 37). Geometrically, this merge
constitutes a vertex split (49). Biologically, the significant sector
is evidence that this set of loci has a strong epistatic interaction.

We next add a fourth mutation, in the g/mUS locus (Fig. 4
B and C), encoding peptidoglycan availability, which is an
essential component of the cell wall. The filtration reveals an
additive landscape with one dominant sector where epistasis arises
only in the final merge of the filtration (Fig. 4C), meaning
the epistatic topography of the entire landscape (Fig. 4D)
rests upon the single vertex, 00001, pykF. Consistent with the
published analysis, which detected a significant, marginal effect
of pykF (42), filtrations reveal the geometric structure in terms
of which specific combinations of loci are responsible for the
effect (Fig. 4F): We establish an interaction between glmUS,
{00010}, and pykF, {00001}. The interaction depends on the
genotypes {00000, 01001, 00101, 00011} in the bipyramid base
(Fig. 4 A, ii).

Interestingly, the four locus context involves genotypes with
the wild type and only up to double mutants. But these double
mutants must be present together to yield a higher dimensional

PNAS 2023 Vol. 120 No. 51 e2300634120

interaction. This conclusion is consistent with recent genome-
wide work on trans-gene interactions (5), suggesting that complex
traits may arise from genome-wide sign epistasis, where each
mutation’s contribution to the trait depends on the presence of
other mutations. Additionally, we observe that the interaction
of {00001}, {00000, 01001, 00101, 00011}, {00010} in the 4D
case (with the first locus wild type) remains significant in the
full 5-locus setting: See the blue critical edge in the dual graph of
Fig. 4D, which indicates that this interaction in lower dimensions
is unaffected when the mutation is introduced in the first locus.

Parallel Epistatic Filtrations Reveal Master Regulators in E. coli
Evolution. To discern the role of each locus on the 4D network
structure, we applied parallel filtrations (Fig. 5) (36, section
6.6). This technique measures context-dependence in the fitness
landscape by assessing how the epistasis of sectors changes when
a particular locus is mutated versus wild type. Changes in the
fitness landscape induced by a single locus are important because
they identify master regulators. To discuss parallel filtrations, we
introduce the notation, *, to indicate that a locus is variable
in the analysis as opposed to being fixed. For example, the
epistatic filtration can be calculated for Osxsss, where the first
locus is fixed as wild type and the filtration is performed for the
remaining 4 loci, which are varied in the analysis. This yields
a set of bipyramids for which the epistasis is calculated. In the
parallel filcration, we compare the epistasis for Ok with the
epistasis for 1ok using the bipyramids set by Oss#x as well as
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the rank order. In this way, two parallel faces of the 5—cube are
compared (Fig. 5 and SI Appendix, Fig. S1). Parallel filtrations
extend the concepts of conditional, marginal, and sign epistasis
(17, 50) into the geometric framework of epistatic filtrations.

Examining the Ecoli,,, data with and without the pykF mu-
tation (42) (SI Appendix, Fig. S2) showed increased significance
in 8 out of 22 of the dual edges, when pykF was mutated. Each
bipyramid in S/ Appendix, Fig. S2, Left matches a bipyramid in
SI Appendix, Fig. S2, Right via the parallel transport operation
(36). Examining the restoration of pykF to wild type (S/ Appendix,
Fig. S3), only 3 of 22 edges changed significance and just one
critical edge lost significance, emphasizing that effects on the
fitness landscape are not always bidirectional (43).

The biological interpretation of the parallel transport operation
is simple. It measures the effect of genetic background on the
fitness landscape. For Fig. 4F, this means that epistatic volumes
with wild-type rbs are different when rbs is mutated. Since rbs
is fixed in the parallel transport operation, we call this locus the
bystander. Here, changing the bystander state from wild type
to mutant modifies the magnitude and significance status of
the epistatic volumes (Fig. 4 C and E), with epistatic volumes
generally higher when 7bs is mutated. Thus, mutating the rbs
locus distorts the fitness landscape with new epistatic interactions,
which in turn opens up new evolutionary trajectories. We note
that the precise locations of the distortions are concentrated as a
set of adjacent blue edges in the dual graph (Fig. 4 E, Inser). We
call loci that change the fitness landscape in higher dimensions
high-dimensional master regulators.

Lactobacilli and Acetobacters Are Master Regulators of the
Microbiome. Up to this point, we have focused on genetic
epistasis, but our framework is equally valid for interactions
of environmental parameters, including ecological interactions
between bacterial species in the gut microbiome. Like the
genome, which is composed of many genes that interact to
determine organismal fitness, the microbiome is also composed of
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F filtration of black cube sectors

dual graph for black cube sec-
tors with 4th locus influence Fig. 5.

Parallel epistatic filtration for three loci when a fourth
locus is modified. (A) The 3D genotype space. (B) Adding a
locus produces a 4D genotype space that can be visualized
as two parallel 3D genotype spaces, depicted in black and gray,
where the gray genotype space has a mutation in the fourth
locus and the black is wild type at the fourth locus. (C) The
dual graph of S for the black genotype space. (D) The parallel
dual graph for the gray genotype space. Note several edges in
C (black cube) shift to significant in D (gray cube), indicating the
context of the fourth locus influences the interactions. (E) The
epistatic filtration of the black genotype space. (F) The parallel
filtration calculates epistasis of the black genotype sectors with
the phenotypes of the parallel cube (i.e., when the fourth locus
is present). This approach measures the influence of the fourth
locus on the rest of the epistatic interactions in the network.
Specifically, note the shift in the x-values of the black vertical
tick marks on the left sides of the left-most colored bars in
E versus the corresponding tick mark and bar in F.

many smaller units, i.e., bacterial species, which carry their own
sets of genes. Hosts are known to select and maintain a certain
core set of microbes (51, 52); the interactions of these bacteria
can affect host fitness (12); and it is debated to what extent these
interactions are of higher order, c.f. ref. 27. See also ref. 32 for a
broad overview of papers elaborating on possible meanings and
instances of higher-order epistasis. While vertebrates have a gut
taxonomic diversity of ~ 100 to 1,000 species, precluding study
of all possible combinations, the laboratory fruit fly, Drosophila
melanogaster, has naturally low diversity of & 5 stably associated
species (53).

To assess how bacterial interactions affect fly health, we made
gnotobiotic flies inoculated with each combination of a set of
n = 5 bacteria (2° = 32 combinations) that were isolated from
a single wild-caught D. melanogaster, consisting of two members
of the Lactobacillus genus (L. plantarum and L. brevis) and
three members of the Acetobacter genus (Fig. 64). We measured
fly lifespan, which we previously identified as a reproducible
phenotype that is changed by the microbiome (12). Overall a
reduction of microbial diversity (number of species) led to an
increase in fly lifespan as with a taxonomically similar set of
bacteria we examined previously, which came from multiple hosts
(12). The key finding of the previous work was that higher-order
interactions between bacterial species change the fitness of the
host fly.

The dual graph for the 5-loci genotype space revealed a single
significant and critical epistatic interaction (Fig. 65). Abundant,
significant, non-critical edges were distributed throughout the
graph (Fig. 6C) indicating prevalent interactions that weakly
affect the fitness landscape. We note that such interactions were
absent from the E. coli fitness landscape (compare the number of
blue edges in Fig. 6B vs. Fig. 4D).

Using parallel filtrations to measure the role of individual
bacterial species on the overall network, we found that the
Lactobacilli drive changes in the global structure (Fig. 6 D and F).
In 46 out of 128 (36%) interactions, significance changed due to
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Fig. 6.

Loss of lactobacilli causes global distortion of the microbiome epistatic landscape. (A) Experimental design for Dmelgy,;, and Dmel 14 (12) microbiome

manipulations in flies. (B) Full graph of s for the Dmelgy, data. (C) Filtration of S(h) for the 4-face, 1sxsx, of Dmelgy, data, where L. plantarum is present,
indicates epistasis where two clusters of sectors merge. (D) Parallel filtration with L. plantarum removed shows a landscape distortion. (E) Filtration for x1ssx,
where L. brevis is present has similar structure to 1. (F) Parallel filtration with L. brevis removed shows a landscape distortion.

adding or removing a Lactobacillus (Fig. 6 C—F and SI Appendix,
Figs. S7 and S8). These changes in significance primarily derive
from non-significant interactions when L. brevis is present that
become significant when it is removed and vice versa, indicating
L. brevis is a master regulator that suppresses epistatic interactions
that affect fly lifespan.

However, L. brevis is not unique as a master regulator. In the
Dmel gy, dataset, each of the species changes interactions that
affect lifespan when it is removed from the 5—species group
(Table 1). A similar pattern exists in the Dmelc,,;; dataset,
with L. plantarum showing the most prevalent effects and the
Acetobacters showing lower overall impact. Thus, both Lactobacilli
and Acetobacters can be master regulators of fly lifespan.

The gut microbiome has been suggested as a driver of human
aging (54), and it is well documented to influence aging in
Drosophila (55), including an increase in bacterial abundance
as flies age (56). Microbiome interactions affecting abundances
could drive the effects on host lifespan; however, comparing the
epistatic landscapes for CFUs and lifespan, we found that only 2
0f 99 dual edges were significant for both the bacterial abundance

and fly lifespan datasets (S/ Appendix, Figs. S9, $10, S11, and S12
and Tables S2, S3, S4, and S5), and there was a lack of correlation
between the epistatic volumes of the bipyramids (Spearman rank
correlations: P = 0.7, P = 0.5, P = 0.3, and P = 0.3
respectively). This discord between the epistatic landscapes for
microbiome fitness and host fitness could, e.g., diminish the
rate of co-evolution between host and microbiome because the
interactions influencing microbiome fitness (i.e., abundance)
are different from the ones influencing host fitness through

aging.

The Epistatic Landscape within a Single Enzyme Is Rugged. As
a point of comparison with the Ecoli,,, dataset for genome
evolution, we re-analyzed the Ecolig, dataset, a fully factorial
combination of 5-mutations in a single gene, f-lactamase, which
confers antibiotic resistance. Each mutation is in a separate
residue of the same enzyme (43, 57). Weinreich et al. (57)
found that there was a single fitness peak with a low number
of evolutionary paths to reach it. Tan et al. (43) found limited
potential for reverse evolution despite the relative simplicity of

Table 1. Role of each microbiome species as a regulator of interactions influencing fly lifespan

Species Dmelgpe 1 — 0 Dmelgoyig 1 — 0 Dmelgpje 0 — 1 Dmel oy 0 — 1
L. plantarum 7 8 2 8

L. brevis 14 5 0 7
Acetobacter sp. 1 12 6 3 4
Acetobacter sp. 2 13 2 2 4

A. orientalis 7 0 4 6

Number of interactions out of ~ 22 that become significant in the parallel filtration by removing (1 — 0) or adding (0 — 1) the bacterial species.
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the fitness landscape. In our reanalysis, we note that the data
are discrete (growth/no growth for a given set of antibiotic
concentrations), and this type of microbiology experiment does
not show variation in general. Thus, we can generally treat the
calculated interaction magnitudes as accurate. Our computations
are based on the reported mean values from Tan (43).

Examining the filtration, the epistasis arises in many steps
with increasing magnitude in each step (SI Appendix, Figs. S5
and S6), consistent with the low number of possible evolutionary
paths observed by Weinreich et al. (57), and distortions are
apparent in the shifted magnitude of epistasis by parallel transport
(81 Appendix, Figs. S5 and S6), consistent with the irreversible
evolutionary paths observed by Tan et al. (43). The filtration also
reveals a tiered structure to the epistasis, c.f. the largest weight
merges two clusters of simplices (see dual edge #2 in SI Appendix,
Figs. S5 and S6) in contrast to the Ecoli,, dataset, where epistasis
came from one individual simplex, indicating that epistasis arises
due to interactions between sets of mutations in the f-lactamase,
which could relate to the subdomains of this enzyme.

Normalization of Phenotypes Allows Comparison of Epistasis
across Dimensions and across Datasets. To gain a perspective
on the generality of higher-order interactions, it is desirable
to compare epistatic landscapes, such as between the point
mutations in f-lactamase, the genomic mutations in E. coli,
and the microbiome communities that we examine here. Do
these very different biological systems have similar higher-order
interactions? And do the interactions vary across dimensions? Dif-
ferent phenotypes have different metrics, making comparisons
difficult for current approaches to epistasis. Filtrations are well
suited in this sense based on our unique normalization approach.
The resulting normalization of epistatic volumes provides a
standardized metric for epistasis across different dimensions and
across different datasets.

Comparing the magnitudes of interactions between the dif-
ferent datasets (Fig. 6D), the epistatic volume (i.e. magnitude)
for the microbiome data generated a ~ 5% effect, roughly three
times the weight in the Ecoli,,, data and half that in the Ecolig,,
landscape (43) (c.f. x-axis between Fig. 6 and ST Appendix, Figs.
S4 and S5), indicating the magnitude of epistasis varies by over
two doublings across the different scales and different selection
pressures of these biological systems. Epistatic filtrations provide
a tool to explore the reasons for these differences.

Interactions Are Sparse in Higher Dimensions. Previous liter-
ature is somewhat equivocal on the extent to which higher-
order interactions are important. We used epistatic filtrations to
systematically evaluate the prevalence of higher-order interactions
as a function of the number of dimensions. Critical, significant,
higher-order interactions were less frequent than pairwise inter-
actions (P < 107, Z-test) for each of the Ecoli,y,, Dmel gy, and
Dmel G4, datasets, with a decreasing probability as a function of
the face dimension (Table 2). This occurs for three primary
reasons. First, the degrees of freedom increase fast in higher
dimensions. Second, the probability of selecting a significant
interaction from the set of all possible interactions decreases
because the total number of interactions increases dramatically
with increasing dimensions. Finally, the absolute number of
significant interactions decreases in higher dimensions (Table 2),
meaning they are biologically less prevalent (11). Overall, ~ 10%
of possible dual edges were significant at higher order, with ~ 1%
significant for » = 5 dimensions (Table 2), suggesting limits to
the dimensions of biological complexity.

8of 12 https://doi.org/10.1073/pnas.2300634120

Table 2. Prevalence of interactions at different levels
of complexity in genetics and microbiome datasets

Interaction Dataset: Dataset: Dataset:
dimension Ecolieyo Dmelgpje Dmelgoyid
2: 20/80 (25%) 24/80 (30%) 22/80 (28%)
>3: 29/508 (5.7%) 58/540 (10%) 21/520 (4.0%)
3: 217194 (11%) 35/199 (17%) 14/194 (7.2%)
4. 7/214 (3.2%) 22/226 (10%) 6/216 (2.7%)
5: 1/100 (1.0%) 1/115 (0.8%) 1/110 (0.9%)
total: 49/588 (8.3%) 82/620 (13%)  43/600 (7.1%)

Significant critical dual edges (P < 0.05).

Higher-Order Interactions Can Arise from Lower-Order Inter-
actions. Lower-order interactions can produce interactions in
higher dimensions (48). In examining the higher-order epistasis
present in our datasets, we noted that the clusters where
significant epistatic volumes occur are often preceded in lower
dimensions by clusters with nearly significant epistatic volumes
(S Appendix, Fig. S4). More explicitly, higher-dimensional
bipyramids with significant epistatic volumes often have lower
dimensional projections that also have significant epistatic
volumes. Considering that epistasis is calculated as the vol-
ume of the bipyramid, it is intuitive that high-dimensional
shapes with large volumes might have projections in lower
dimensions that also have large volumes. However, that is not
guaranteed.

We developed a graphical approach to distinguish these cases
from those that arise de novo (S Appendix, Fig. S14 B and C
and Meta-Epistatic Charts). These charts are intended to answer
the questions of i) to what extent are higher-order epistatic
effects induced by lower dimensional ones and ii) which lower
dimensional interactions maintain significance when embedded
into higher dimensions? The reasoning is similar to regression-
based epistasis calculations, where one can assign a certain portion
of a higher-order interaction into the fitted coefficients of lower-
order interactions.

In ST Appendix, Fig. S14B, we exhibit an example for the
Dmel gy, dataset, with 5 loci, where we consider the three
4-dimensional faces O, *0%*% and *%0%x. For each such
face, we computed the corresponding filtration of epistatic
volumes. We then repeated this procedure for the relevant
3-dimensional projections (SI Appendix, Fig. S14B second row)
and 2-dimensional projections (SI Appendix, Fig. S14B last
row). We performed the same operations on the Dmel g,y and
Ecoli,y, data, where there are overall fewer significant epistatic
volumes.

We observed examples of lower-order interactions inducing
higher-order ones (87 Appendix, Fig. S14C). We also observed
that several higher-order interactions in the Dmel gyy,, Dmel G4
and Ecoli,,, data could not be attributed to lower-order effects
(81 Appendix, Fig. S14 B and C as well as S Appendix, Table S6)
in four, three, or two interacting loci inside the 5-locus system,
regardless of their significance (c.f. SI Appendix, Fig. S14C).
Thus, some interactions arise only in the higher-dimensional
context and cannot be discovered or predicted by studying lower-
order interactions. Specifically, our analysis suggests that < 10%
of higher-order interactions cannot be predicted by studying their
components in lower dimensions (Table 2).

As we noted previously, the 4-dimensional interaction in the
E. coli evolution experiment involved loci with two genes mutated
(Fig. 4), whereas in the microbiome, interactions involved
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loci with four species present, suggesting different underlying
geometries for the interactions between genes in evolution versus
between species in the microbiome.

The Analysis Tools Are Available through an Online Client. In
order to enable other researchers access to these tools, we made
an online client at https://www3.math.tu-berlin.de/combi/dmg/
data/epistatic_filtrations/, where users can upload their datasets
and receive the complete analysis. The site calculates the filtration
and then iteratively computes the parallel filtrations for each
locus separately. The outputs are the dual graph, the epistatic
filtration, and a table of the results for each locus. From the
summary table, users can quickly determine whether any loci are
master regulators. In order for users to be able to test out the
tools, the Dmel gyj,, Dmel G,14, and Ecoli,,, datasets can also be
downloaded from the site and analyzed. Users may also wish to
test synthetic datasets.

Discussion and Conclusions

New Biological Findings. From an evolutionary perspective, the
Red Queen hypothesis emphasizes how conflicts with other
organisms can drive continuous genetic innovation (58). In
our analysis of the shapes of fitness landscapes, we find that
epistasis in higher dimensions reshapes the fitness landscape
(59). Thus, the continuous diversification observed in long-
term evolution experiments (47) could be generated by the
continuously changing fitness landscape as new mutations occur.
In particular, we identify master regulators that operate in higher
dimensions by significantly enhancing or suppressing interactions
in the rest of the biological network. In the microbiome, both
Lactobacilli and Acetobacters can be master regulators. It is
interesting to note that the Dmel g, dataset shows stronger effects
of the individual species than the Dmel,,;,; dataset. A possible
contributing factor is that the Dmel gy, bacteria were all isolated
from the same individual wild fly, whereas the Dmel g,,,; bacteria
were isolated from multiple flies. Thus, the established ecological
community may have stronger interactions. In E. coli evolution,
we identified 7bs and pykF as master regulators that open up
new evolutionary trajectories. While it would require future
experiments, it might be expected that higher-order master
regulator genes may similarly regulate the onset and progression
of evolutionary diseases such as cancers.

The prevalence and importance of higher-order interactions
is debated, with some studies suggesting pairwise interactions
predict the vast majority of interactions in complex communities
(27) and others suggesting a large influence of context-dependent
effects (12, 29), which would make higher-order interactions
unpredictable. Ample evidence that higher-order epistasis has
at least some evolutionary impact was established in recent
publications; see ref. 32 and its references. Our analyses indicate
that higher-order interactions exist at least as high as 5 dimensions
but that the prevalence of epistasis in higher dimensions is quite
low. Thus, we find that the unpredictability of higher-order
interactions exists, but it is rare to the extent that lower-order
interactions should be predictive a majority of the time.

Relation between Epistatic Filtrations and Other Measures
of Epistasis. Simple regression-based approaches detect higher-
order interactions in the same datasets that we analyze here
(12, 42), but they are limited in that they are locus-focused,
meaning that they do not detect interactions between genotypes,
which are the basis for the fitness landscape. For example,

PNAS 2023 Vol. 120 No. 51 e2300634120

simple regression approaches would miss the interactions between
sets of double mutants such as we detect for the Ecoli,,, data
(Fig. 4).

From a methodological point of view, the present work lays the
geometric groundwork for detecting epistasis via interactions of
higher-order as well as other geometric properties of large fitness
landscapes. Our work relies on polytope theory, following the
shape approach of (37, 60), as this is a natural framework allowing
a mathematical definition of epistasis in a fine-grained manner for
a general n-locus system. By this we mean, that our interactions
involve a minimal number of genotypes in the sense of a minimal
set of dependent points, e.g., simplices (61). The motivation for
this is that these sets generalize the notion of adjacent triangles
in a 2-locus system to an #-locus system. Additionally, in this
way, interactions have a geometric meaning, which makes them
comparable across datasets. Although our method has similarities
with (37, 60), it also has significant theoretical and computational
differences and improvements. For example, our analyses heavily
rely on studying the dual graph of the induced triangulation
together with the filtration. This is a novelty in the theory and
provides a number of new biological findings. For example, we
localize regions of epistasis in four fitness landscapes, we quantify
the sparsity of these regions, and we compare portions of fitness
landscapes via the parallel transport operation, where we examine
the effects of different bystanders on the rest of the interactions.
We also further develop (36) by providing a new framework to
detect and interpret how higher-order epistasis arises from lower-
order epistasis via meta-epistatic charts.

More specifically, epistatic volumes capture new properties
of fitness landscapes even in the 3-locus case. In this case,
there are between four and six epistatic volumes, as these are
the number of adjacent pairs of simplices in the subdivision
of the 3D cube, which appear as edges in the dual graph
(62, figure 3). In contrast, there are 20 circuit interactions
(37, Ex. 3.9) and many more possible and potentially relevant
interactions that must be checked in a randomized, exhaustive
search. In addition to reducing the search space, epistatic volumes
can be localized in the fitness landscape, allowing the occurrence
of mutations to be linked to changes in the topography of the
epistatic landscape. Furthermore, we can link these changes across
dimensions, tracking the source of the interactions.

Our method relates to other measures of epistasis, for example
to linear regression approaches, as we explain in S/ Appendix:
Comparison with a simple linear regression approach; see also
the recent work (8). It also relates to methods originating
from harmonic analysis, c.f. refs. 48, 63, and 11; and to
correlations between the effects of pairwise mutations, as we
pointed out in ref. 36. More concretely, in a 2-locus system,
all these methods can easily be recovered from one another;
some of them even agree. This is also true for some ecological
approaches, including the generalized Lotka—Volterra equations,
which yield a mathematically equivalent form of epistasis for
certain situations; c.f. see equation 9 of ref. 14. In higher
dimensional systems, these methods remain conceptually closely
related but they generally yield different insights about the
problem, such as which interactions are considered, whether
the interactions are significant, what their magnitude is, and
what their sign is. Because these previous methods make specific,
a priori assumptions about the forms of interactions, they
are limited by these assumptions. Epistatic filtrations add a
global perspective, determining the structure of interactions
from the shape of the fitness landscape in a parameter-free

approach.
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Finally, rank orders play an important role in the recent fitness
landscape theory (38, 64). For an overview and for references
to relevant work in the theory, see the review article (32). It
is straightforward to recast the fitness landscapes presented here
into a rank-order fitness graph and then count the number of
peaks, i.e., the number of sinks in a fitness graph. The technical
details are beyond the scope of the present paper.

Interactions in Higher Dimensions. We found that biologically
significant epistatic interactions in four and five dimensions are
sparse and sometimes rooted in lower order, meaning that a
limited number of regions of epistasis and hence of distortion exist
in these fitness landscapes. This extends to higher dimensions
the trend that 3-way interactions are often predicted from 2-way
interactions (7, 12, 27). However, our finding that key genes
and species cause distortions emphasizes the need to identify the
significant higher-order interactions from the vast number of
possible ones, a task that epistatic filtrations enable.

In a five-loci case, we also found that the fitness landscape in
the Dmel gy, dataset is much more distorted, i.e., non-linear, than
the Ecolipy, or Dmel G,y,14 fitness landscapes. We also found the
precise locations of distortions inside the corresponding fitness
landscapes and contextualize them in terms of distortions visible
in their lower dimensional sub-landscapes through meta-epistatic
charts. This graphical approach to isolate the source of higher-
order interactions is new and cannot be established with previous
methods.

Strength and Limitations of Epistatic Filtrations. A major ad-
vance of this work is that we provide a way to discover
high-dimensional regulators of biological networks. Rather
than identifying key nodes as having a high number of low-
dimensional edges, we developed a method to identify nodes
that regulate the higher-dimensional interactions in the rest
of the network. This operation is performed by the parallel
transport function, and we provide a web-based tool to perform
the analysis. The implications of these findings are that certain
genes and species modulate the interactions in the rest of the
network, and perturbing these loci can destabilize the network.
Destabilizing an unhealthy biological network could be crucial
to restoring a degraded ecosystem, a sick microbiome, or curing
a cancer, while destabilization of a healthy biological network
could have the opposite consequences.

Methodologically, we also improve the framework in which
higher-order epistasis can be mathematically formalized and
analyzed geometrically. We provide concrete tools to find
epistatic interactions in the fitness landscape and to distinguish
whether the landscape is locally flat, i.e., close to a hyperplane of
a certain dimension. Our work additionally allows us to localize
and contextualize regions inside the fitness landscape which are
not flat and hence distorted.

Our approach does not require a distinction between positive
and negative epistasis, but only between presence and absence
of epistasis. We note that the sign in traditional versions of
epistasis depends on the choice of the origin, i.e., wild type
for the interaction space, which does not have a clear biological
motivation, particularly if different races are compared in the
dataset. The 2-locus case provides an elementary example. In
traditional terms, the epistasis in Fig. 3 is negative since the
fitness of 11 lies below the plane spanned by the fitnesses of 00,
10, and 01. Picking that particular plane for choosing the sign
rests on picking 00 as wild type. If instead we use the genotype
10 as the origin, then the fitness of that genotype and those of its
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two neighbors, 00 and 11, span a plane such that the fitness of
10 lies above that plane of reference. This is important because
the same data can yield positive or negative epistasis depending
on the choice of origin. In our approach, the location of epistasis
is concisely encoded in the regular triangulation induced by the
phenotypes as described (c.f. Fig. 3). In this sense, the lack of
sign is not a limitation of epistatic filtrations but a consequence
of the high-dimensional approach.

The bipyramids that occur in an epistatic filtration are special
cases of the circuits studied by Beerenwinkel et al. (37). In this
way, our method only considers some of the epistatic effects
visible via more general circuits c.f. ST Appendix, Table S1. There
are two reasons for this restriction. First, the simplices that are
at the foundations of epistatic filtrations are characterized via
fittest populations because they are defined by the ridges, which
are the highest points of the convex hull (see ref. 36, Section
2.2), meaning that interactions of low fitness are ignored because
we do not examine the valleys. It is a simple operation to shift
focus to the valleys (36). Second, with an increasing number of
genes, the total number of circuits to consider from ref. 37 grows
dramatically. These are too many for a statistical study, even for
as few as n = 5 genes; see SI Appendix, Table S1.

Finally, we note that the phenotypes that we consider in this
manuscript are roughly linear. When non-linear phenotypes are
considered, there is a risk of detecting spurious epistasis (48).
Appropriate transforms can be applied, or a rank-based approach
could be developed for epistatic filtrations. These issues are
beyond the scope of the present work.

Outlook. This geometric approach could be extended, e.g., to
GWAS (5, 10, 65), ecosystems (14, 15), or neuronal networks
(66), to discover non-additive higher-order structures at different
scales. Resolving these structures should become increasingly
possible as higher throughput methodologies enable generation
of larger datasets, approaches where each experimental factor is
combinatorically included with respect to each other factor, as
with the E. coli genes and microbiome species datasets here. To
facilitate researchers analyzing their own data, we developed a
web-based interface tool that allows researchers to upload their
data and receive the results. The datasets analyzed in this work
are provided and can be directly uploaded so that prospective
users can explore the method.

It should be noted that the polyhedral geometry methods for
analyzing epistasis deserve to be developed further from the
mathematical point of view. We believe that more concepts
related to curvature for piece-wise linear manifolds will be
useful (67).

Taken together, our approach offers a number of insights
into higher-dimensional properties of fitness landscapes and their
biological implications, and we think these will be useful as higher
throughput experiments enable more combinatorial approaches.
SI datasets. Three datasets are supplied in SI Appendix that
can be directly analyzed using the online client: KhanFit-
nessNormalized.csv (68), EbleSurvivalDataNormalized.csv, and
GouldSurvivalDataNormalized.csv (12).

Materials and Methods

Fly Husbandry. Flies were reared germ-free and inoculated with one combina-
tion of bacteria on day 5 after eclosion. N > 100 flies were assayed for lifespan in
n > 5independentvials per bacterial combination for a total of 3,200 individual
flies. Food was 10% autoclaved fresh yeast, 5% filter-sterilized glucose, 1.2%
agar, and 0.42% propionic acid, pH 4.5. Complete methods are described in
Gould etal. (12).

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2300634120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2300634120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2300634120#supplementary-materials

Downloaded from https://www.pnas.org by 38.124.146.145 on March 21, 2024 from IP address 38.124.146.145.

Bacterial Cultures. Bacteria were cultured on MRS or MYPL, washed in PBS,
standardized to a density of 107 CFU/mL and 50 uL was inoculated onto the fly
food. Strains are indicated in SI Appendix, Table S7. See Gould et al. (12) for
complete methods.

Genetics Data. Existing genetics datasets were gotten from Sailer and Harms
2017 (48) GitHub repository (https:/github.com/harmslab/epistasis) or from
Tan et al. (43). For the Ecoligy,, dataset, we focused on the piperacillin with
clavanulate data from ref. 43 as it is the better behaved. More details are
provided in S/ Appendix.

Microbiome Datasets. In thiswork, Drosophila microbiome fitness landscapes
consist of experimental measurements on germ-free Drosophila flies inoculated
with different bacterial species. The lifespans of approximately 100 individual
flies were measured for each combination of bacterial species, giving roughly
3,200 individual fly lifespans for each of the two datasets presented. The
experimental methods are described in ref. 12. The first dataset is the exact
data presented in ref. 12. The second dataset is the second set of species with
exactly the same methods used in ref. 12. Each bacterial composition consists
of all possible combinations of five species selected from a set of seven that
occur naturally in the gut of wild flies: Lactobacillus plantarum (LP), Lactobacillus
brevis (LB), Acetobacter pasteurianus (AP), Acetobacter tropicalis (AT), Acetobacter
orientalis (AO), Acetobacter cerevisiae (AC), Acetobacter malorum (AM). The 5-
member communities both stably persist in the fly gut. For the purposes of this
work, we define stable as maintaining colonization of the gut when < 20 flies
are co-housed in a standard fly vial and transferred daily to fresh, sterile food. By
this method, we observe that the total number of species found stably associated
with an individual fly is typically between 3 and 8. Consistently, Lactobacillus
plantarum and Lactobacillus brevis are found with two to three Acetobacter
species. Less consistently, species of Enterobacteria and Enterococci occur and
these have been described as pathogens. While more strains may be present, for
each of the two datasets in the present work, a set of five non-pathogen species
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