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Abstract

We introduce caption-guided face recognition (CGFR)
as a new framework to improve the performance of
commercial-off-the-shelf (COTS) face recognition (FR) sys-
tems. In contrast to combining soft biometrics (e.g., facial
marks, gender, and age) with face images, in this work,
we use facial descriptions provided by face examiners as
a piece of auxiliary information. However, due to the het-
erogeneity of the modalities, improving the performance
by directly fusing the textual and facial features is very
challenging, as both lie in different embedding spaces. In
this paper, we propose a contextual feature aggregation
module (CFAM) that addresses this issue by effectively ex-
ploiting the fine-grained word-region interaction and global
image-caption association. Specifically, CFAM adopts a
self-attention and a cross-attention scheme for improving
the intra-modality and inter-modality relationship between
the image and textual features. Additionally, we design a
textual feature refinement module (TFRM) that refines the
textual features of the pre-trained BERT encoder by up-
dating the contextual embeddings. This module enhances
the discriminative power of textual features with a cross-
modal projection loss and realigns the word and caption
embeddings with visual features by incorporating a visual-
semantic alignment loss. We implemented the proposed
CGFR framework on two face recognition models (Arc-
Face and AdaFace) and evaluated its performance on the
Multimodal CelebA-HQ dataset. Our framework improves
the performance of ArcFace from 16.75% to 66.83% on
TPR@FPR=1e-4 in the 1:1 verification protocol.

1. Introduction

Despite remarkable advancements in face recognition
due to the adoption of margin-based loss functions [2, 14],
face recognition in unconstrained scenarios remains a chal-
lenging problem [38]. The presence of covariate factors in
an unconstrained environment, such as resolution, illumina-
tion, and pose, affects the face image quality, thus, decreas-

ing the recognition performance. Providing auxiliary in-
formation, such as facial marks, gender, ethnicity, age, and
skin color, to a face recognition (FR) system can improve
its recognition performance [5, 39]. For example, in an un-
constrained environment such as video surveillance, where
a prevalent commercially-off-the-shelf (COTS) system per-
forms poorly [38, 41], the application of soft biometrics has
been proven to improve the performance of hard biomet-
rics [30, 5].

Natural language captions that describe the visual con-
tents of a face are an essential soft biometric trait for face
recognition. In this study, we will explore whether we can
boost the performance of a FR system using caption super-
vision. Our caption-guided face recognition (CGFR) has
enormous potential in various applications, such as crim-
inal and intelligence investigation, video surveillance, etc.
For example, using a CGFR model, law-enforcement agen-
cies can quickly retrieve the suspect face from a low-quality
CCTV footage and a short description of eyewitnesses.

Although captions are rich, they face many challenges
that limit their application in the biometric system. As nat-
ural language contains high-dimensional information, it is
often much more abstract than images. A short textual
description of a given face consisting of a few sentences
is insufficient to describe all the minute details of the fa-
cial features. Consequently, CGFR is significantly different
from other tasks such as cross-modal image-text retrieval
(ITR) [13, 17] and image-text matching (ITM) [16], where
the matching text has a description of the various objects,
background scenes, styles, etc. Moreover, different people
may have different captions for a particular face.

To improve the performance of the FR systems using
CGFR, it is essential to find not only the semantic under-
standing of textual contents but also the proper association
between visual and textual modalities. This is because the
embedding space of images and text lies in different spaces
due to the heterogeneity of the two modalities [17]. Align-
ing the image features with word embeddings is thus cru-
cial, as it has a significant impact on the performance of a
cross-modal fusion algorithm [17]. In this work, we fine-
tune the state-of-the-art BERT model [4] to update the con-
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textual associations among words in the caption by incor-
porating a visual-semantic alignment loss [36] and a cross-
modal classification loss [40]. Finetuning the text encoder is
essential because the BERT model was trained with differ-
ent objectives than ours. Therefore, we finetune to achieve
two objectives: (1) to learn visually aligned text embedding,
ı.e., to realign word and caption embeddings with visual in-
formation, and (2) to enhance the discriminative power of
textual features.

However, a simple feature-level cross-modal fusion
without fine-grained interaction between image-text tokens
does not perform well. Therefore, we propose a novel
module, namely, contextual feature aggregation module
(CFAM), to effectively carry out the fine-grained word-
region interaction and global image-caption association on
two different granularities. There are mainly three net-
works in the proposed CFAM: caption-level context mod-
eling, word-level context modeling, and a feature aggre-
gation network. Both context modeling networks adopt a
self-attention and a cross-attention mechanism. The self-
attention mechanism increases the intra-modality relation-
ship within each modality, while the cross-attention mecha-
nism improves the inter-modality relationship between im-
age and textual features. The inputs to the feature aggre-
gation network are the context-enhanced features from the
word and caption level context modeling.

We conduct our experiments on a benchmark text-to-
face dataset, namely, Multi-Modal CelebA-HQ [33] (MM-
CelebA). Sample image-caption pairs of the dataset are il-
lustrated in Figure 1. In fact, the dataset is based on a sub-
set of the CelebA dataset [21] that contains high-resolution
images with very low variation. In our experiment, we re-
move the crucial face-alignment step and apply some pre-
processing steps such as random sub-sampling, rotation,
flip, etc., to augment our database as well as downgrade
the image quality in order to mimic real-world low qual-
ity video surveillance scenarios. The verification rate of FR
systems, such as ArcFace [2] and AdaFace [14], drops dras-
tically on this preprocessed dataset because the images are
corrupted with down-sampling and noise, which adversely
affect their facial analysis procedure [41]. We then apply
our CGFR framework to both systems. The experimental
results demonstrate a remarkable performance leap over the
COTS systems.

In this study our contributions are: (1) exploring a new
paradigm to improve face recognition with natural language
supervision, (2) proposing the CFAM module to exploit
fine-grained interaction among local and global features us-
ing word and caption-level of granularity, (3) designing a
textual feature refinement module (TFRM) to refine textual
features and align them with visual content by fine-tuning
the BERT encoder, and (4) conducting extensive experi-
ments on the MMCelebA [33] dataset using the proposed

This attractive person has sideburns, 

bushy eyebrows, mustache, big nose, 

goatee, and oval face.

This man has wavy hair, oval face, 

mustache, bushy eyebrows, sideburns, 

bags under eyes, and big nose.

This woman has mouth slightly open. 

She is attractive, and young and is 

wearing heavy makeup.

The person has big lips, wavy hair,

arched eyebrows, high cheekbones,

bags under eyes, brown hair, and pointy

nose. She is wearing lipstick.

Input Caption Preprocessed Images

Figure 1. Sample image-caption pairs from the state-of-the-art
Multi-Modal CelebA-HQ text-to-face dataset.

CGFR framework to demonstrate substantial improvements
over existing FR systems. Finally, this work demonstrates
excellent potential for caption-guided face recognition and
provides a promising approach for further research.

The rest of this paper is organized as follows: an
overview of the related works is presented in Section 2. A
detailed description of the proposed method, including steps
to finetune the BERT encoder, is presented in Section 3. In
Section 4, we demonstrate the experimental evaluation of
the CGFR framework. Finally, we summarize our results
with some possible future research directions in Section 5.

2. Related Work
2.1. Soft Biometrics

Facial semantic attributes, such as facial marks, hair
color, gender, ethnicity, age, and skin color, have been sig-
nificantly exploited as auxiliary information to improve the
performance of tasks such as face image retrieval and face
verification. However, most of the prior works in the liter-
ature on improving face recognition using soft biometrics
have been based on using categorical labels [5, 39]. Zhang
et al. [39] integrated a set of five soft biometrics (ethnic-
ity, gender, eyebrow, eye color, and hair color) with hard
biometric systems. Compared to the baseline recognition
rates at FAR = 0.001, their verification rate improved up to
15.5% when introducing all the soft biometrics and 16.4%
when introducing gender information on the ugly part of
the GBU database. Furthermore, authors in [5] empirically
proved that a manual estimation of the six most discrimina-
tive soft biometric improves the relative performance of the
FR systems (COTS Face++ and VGG-face) up to 40% over
the LFW database.

2.2. Caption-Guided Face Recognition

Several early works have been proposed for caption-
supervised face recognition [11, 7]. Huang et al. [11] im-
proved state-of-the-art face recognition using web-scale im-

2
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ages with captions by learning the feature space in an itera-
tive label expansion process. However, they only employed
captions to extrapolate the labels of the face identity.

Recently, with the development of generative adversar-
ial networks (GANs) [6] and transformers [31], text-to-face
synthesis [32, 29], and facial attribute editing [9, 33] with
textual descriptions have gained increasing popularity. For
example, TediGAN [33] uses latent code optimization of
pre-trained StyleGAN for caption-guided facial image gen-
eration and manipulation. In contrast to these works, we in-
troduce a new line of research by exploring the idea of using
natural language captions to improve the performance of the
FR systems. As there are no publicly available datasets that
contain large-scale image-caption pairs for our task, we em-
ploy MMCelebA [33] dataset which has been widely used
for text-to-face synthesis.

2.3. Attention Techniques

Recently, different attention mechanisms, such as self-
attention, cross-attention, etc., have been extensively ex-
ploited in various multimodal tasks [18, 16, 36, 37]. Cross-
attention or co-attention is an attention mechanism initially
proposed in transformers [31] that interacts with two em-
bedding sequences from different modalities (e.g., text, im-
age). Li et al. [18] propose a latent co-attention mecha-
nism in which spatial attention relates each word to corre-
sponding image regions. Also, Lee et al. [16] developed a
stacked cross-attention network that learns the cross-modal
alignments among all regions in an image and words in a
sentence. Xu et al. [36] applied an attention mechanism to
guide the generator to focus on different words while gen-
erating various image sub-regions. They also proposed a
deep attentional multimodal similarity model (DAMSM) to
improve the similarity between the generated images and
the given descriptions. To re-weight the importance of local
image regions in tasks such as image synthesis [36], image
caption generation [35], image segmentation [28, 37], and
image-text matching [16, 18], word-level attention has been
employed. However, only employing word-level attention
cannot ensure global semantic consistency due to the di-
versity of the text and image modalities. Global contextual
information is also important as it provides more informa-
tion on the visual content of the image, and context of the
caption. Therefore, global image-caption attention should
also be considered to drive the global features toward a se-
mantically well-aligned context.

2.4. Multimodal Representation Learning

In recent years, dual-stream approaches, where the im-
age and text encoder are trained on large-scale datasets
individually with different cross-modality loss functions,
have become widely popular in tackling various multimodal
downstream tasks [25]. A lot of cross-modal loss functions

such as contrastive [25, 19], triplet [16], word-region align-
ment [36], cross-modal projection [40], etc., have been pro-
posed as part of the training objectives. Zhang et al. [40]
proposed a novel projection loss that consists of two losses:
a cross-modal projection matching (CMPM) loss for com-
puting the similarity between image-text pairs and a cross-
modal projection classification (CMPC) loss for learning
a more discriminative visual-semantic embedding space.
However, most of the dual-stream approaches in the lit-
erature cannot effectively and accurately exploit the fine-
grained interaction among word-region features.

Furthermore, other researchers [37] has used image and
textual features, extracted from separate encoders, which
are often concatenated to be fed into a fusion module
to learn joint representations. However, a simple fusion
scheme may not be effective since the unaligned visual
and word tokens lack prior relationships. Therefore, cross-
modal interaction from local and global contexts is essen-
tial to improve multimodal fusion performance. For exam-
ple, Niu et al. [24] map phrases-region and image-caption
into a joint embedding space using an image-text alignment
method that consists of three different granularities: global-
global alignment, global-local alignment, and local-local
alignment.

In this work, we adopt a dual-stream approach to
extract facial and textual features from pre-trained en-
coders. We use a visual semantic alignment loss, known as
DAMSM [36], to align the visual and word tokens locally
and globally. We also employ CMPC loss [40] to enhance
the discriminative power of the features. Finally, for fine-
grained cross-modal interaction, we design CFAM.

3. Framework
An overview of our proposed framework is depicted in

Figure 2. The framework comprises three modules: a fea-
ture extraction module consisting of an ArcFace FR mod-
ule, a contextual feature aggregation module, CFAM, and a
refined pre-trained text encoder, TFRM.

3.1. Facial Feature Extraction

We first employ the ArcFace model [2] as a feature ex-
tractor to extract the facial features from the input image.
Specifically, we choose ResNet18-IR [8, 2] for the back-
bone of the ArcFace model, which was pre-trained on the
MS1MV3 dataset [3]. Here, we modify the ResNet18-IR
architecture by replacing the global average-pooling layer
with a fully connected layer. The output of the fully con-
nected layer is a 512-dimensional feature vector, which is
considered as the global features v ϵ R512 of the input im-
age, as it contains high-level visual information. We extract
the local features of the image I ϵ R256×14×14 from the
output of the third IR block. The size of the input image is
3 × 112 × 112. We further employ CGFR on the AdaFace

3
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 Textual Feature Refinement Module (TFRM) Contextual Feature Aggregation Module (CFAM)

Word
Embeddings

MaxPooling

64

Convolution-
Based

Projection

64 x (L-1)
(L-1) x 768

Local Image
Features

Projection
Head

256x16x16 64x16x16

Linear
Projection

Global Image
Features

64
512

DAMSM Loss
+

CMPC Loss

Caption
Embedding

 Input   Feature Extraction

The person has
bangs, straight

hair, and narrow
eyes. He is young
and attractive. He

has no beard.

Caption

ArcFace
Encoder

BERT
Encoder

Image

Arc Loss

Word-Level
Context Modeling

Caption-Level
Context Modeling

Feature
Aggregation

Network64

1024
768Concat 1088

Figure 2. An overview of our proposed CGFR framework: it contains an ArcFace FR module and a pre-trained text encoder for extracting
the facial features and textual embeddings from the input image-caption pair, respectively. First, TFRM updates contextual associations
of the text embedding by finetuning the text encoder using the state-of-the-art DAMSM loss [36] and a cross-modal projection loss [40].
Next, CFAM fuses the facial features with textual embeddings through cross-attention at both the word and caption-level of granularities.

model [14]. Here, the backbone ResNet18-IR is similar to
the ArcFace model; however, it was pre-trained on the Web-
Face4M dataset [42]. In contrast to ArcFace, the input is a
BGR image.

3.2. Textual Feature Extraction

3.2.1 BiLSTM

Most of the works in the literature usually employ a long
short-term memory network (LSTM) [10] as an encoder
to extract text embeddings from natural language descrip-
tions [35, 36]. Therefore, in this work, as a baseline, we
use a bidirectional LSTM (BiLSTM) [27] as a text encoder
to extract semantic vectors from the input captions. The
BiLSTM encoder encodes the input caption as a matrix of
W ϵ RL×D. Here, D denotes the dimension of the word
vector, and L denotes the maximum number of words in
a caption. In our experiment, for the BiLSTM encoder,
we consider a maximum of 18 words per caption, and the
dimension of the word embedding is 256. Therefore, for
an input caption of L words, the word embeddings are
[w1,w2, · · ·wL], where wL ϵ RD is the caption embed-
ding.

3.2.2 BERT

One of the limitations of traditional word embedding (such
as word2vec) is that they only have one context-independent
embedding for each word. Devlin et al. [4] introduced
BERT, a deep bidirectional encoder that considers the con-
text of a word for each occurrence. In this work, we adopt a
pre-trained BERT-base model with 12 encoder layers, each
having 12 attention heads. It obtains the contextual embed-
ding of each word by exploiting all the words in the cap-
tion. Furthermore, in addition to the input tokens, we add a
[CLS] token at the beginning and a [SEP ] token at the end
of each sentence in the caption. The maximum length of the

token sequence, L, is set to 21. Additional [PAD] tokens
are added for short-length captions after the last [SEP ] to-
ken. Extra tokens are truncated if the length of the input
tokens is higher than L. Therefore, the input to the BERT-
base model looks like this:

[CLS], w2, w3, · · · , wL−3, [SEP ], [PAD], [PAD], · · ·

The output of the BERT layer gives a word matrix,
W ϵ RL×768, where each contextualized token has an em-
bedding of 768 dimensions. Here, the first token, [CLS],
is a classification token that represents the global embed-
ding of the caption. The remaining L − 1 tokens represent
the contextualized word embeddings. In addition to BERT-
base, we also experimented with other variants of BERT
such as BERT-large, DistilBERT-base [26], and RoBERTa-
base [20]. However, in our experiments, we found that the
performance of these variants is almost the same.

3.3. Textual Feature Refinement Module

In this subsection, we briefly describe the proposed tex-
tual feature refinement module (TFRM). Because our text
encoder was pre-trained with objectives that are totally dif-
ferent from ours and it creates embeddings that are un-
aligned to the image features, we need to refine the textual
features. We design TFRM to realign the word and caption
embedding with visual information. As shown in Figure 2,
our TFRM consists of a convolution-based projection for
text embeddings, a projection head for local image features,
and a module to implement the visual-semantic alignment
loss, DAMSM, and a cross-modal projection classification
loss.

3.3.1 Projection Heads

Convolution-based Projection: As a caption has a natu-
ral order of word sequences, it is useful to extract not only

4
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The man has black
hair, and big nose. He
is smiling. He wears

necktie. He has beard.

Input Text
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Word 
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Max-Pooling +

Normalization


1

L-1
Max-Pooling

Caption 

Embedding

64 Dimension 1

L-1

64 Dimension

Figure 3. The proposed convolution-based projection for creating
the word embeddings and global embedding for the caption. 2D-
convolutions with three different kernel sizes are applied to the
output representations of the BERT encoder to extract both the
word- and phrase-level information.

word-level features but also phrase-level features. Thus,
we apply a 2D-convolution to the output of the BERT se-
quence to extract both word-level and phrase-level informa-
tion from the input caption. The first dimension of the ker-
nel size K is set to 1, 2, and 3 to project uni-gram, bi-gram,
and tri-gram word sequences, respectively. For K = 2 and
3, the word representations, W , are appropriately padded
to maintain the fixed length of the sequence. All of these
convolutions have a total of 64 filters with a stride of 1.
Next, we apply the max-pooling operation followed by an
L2 normalization across the outputs of the convolutions to
generate the word embeddings, R(L−1)×64. Figure 3 illus-
trates the proposed scheme for creating word embeddings
from the output of BERT encoder.

Caption Embedding: There are multiple ways of creat-
ing the global embedding for the input caption, c ϵR64. One
common way to create caption embedding is to employ a
linear projection followed by a batch normalization [12] on
the [CLS] token of the BERT output layer. We can also
create the caption embedding by applying the max-pooling
operation across the word embeddings of the convolution-
based projection followed by an L2 normalization. How-
ever, we achieved better results from the embeddings which
was created by the later scheme. Figure 3 also depicts the
scheme.

Projection Head for Image Features: We need to project
the local image features I , into 64 dimension which is the
optimal dimension of the word embeddings. So, we design
a projection head which consists of a 1×1 convolution with
64 filters and a Leaky ReLU [34] for non-linearity.

3.3.2 Objective Function

DAMSM Loss: AttnGAN [36] introduced DAMSM loss
to align image-caption pair by using word-level and
caption-level attention. Let (W, I) denote an image-caption
pair, where W ϵ RL×D represents the word embeddings,
and I ϵ RH×W×D represents the transposed local image
features. Then, we apply DAMSM loss [36] to perform
cross-modal contrastive learning between image-caption
pair. The loss actually minimizes the negative log poste-
rior probability of the similarity scores between the image-
caption pair.

Cross-Modal Projection Classification Loss: In order
to produce discriminative textual features, we also apply
a cross-modal projection classification (CMPC) [40] loss.
This loss first tries to project the representations from
one modality onto the corresponding features from another
modality and then classify them using normalized softmax
loss. The input to the CMPC is the global image features,
v, and caption embeddings, c. First, the image features are
projected onto the normalized text embeddings, c̄. There-
fore, the normalized softmax loss for the image features,
Lipt, is given by:

Lipt =
1

N

∑
i

−log(
exp(WT

yi v̂i)∑
j exp(W

T
j v̂i)

). (1)

Here, v̂i = vTi c̄i.c̄i denotes the vector projection of the im-
age features. Now, let’s project the text embeddings onto
the normalized image features, v̄. Therefore, the text classi-
fication loss function, Ltpi, is given by:

Ltpi =
1

N

∑
i

−log(
exp(WT

yi ĉi)∑
j exp(W

T
j ĉi)

). (2)

Here, ĉi = cTi v̄iv̄i denotes the vector projection of the tex-
tual features. The total CMPC loss is the summation of the
two losses, as defined by Eq. 1 and Eq. 2.

Full Objective: Our overall loss function is the weighted
combination of the DAMSM and CMPC losses:

Lloss = λ1LDAMSM + λ2LCMPC (3)

where, λ1 and λ2 are the hyperparameters that control the
DAMSM and CMPC losses, respectively.

3.4. Contextual Feature Aggregation Module

Recent works suggest that introducing global image-
caption associations in addition to fine-grained word-region
interaction can lead to a more effective cross-modal fu-
sion [24]. Therefore, it is equally important to enforce both

5
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Figure 4. The block diagram of the proposed contextual feature aggregation module. It applies cross-modal feature interaction on both
word and caption levels using an attention-guided mechanism. The module consists of three networks. The first network, caption-level
context modeling, produces a 64-dimensional global context-enhanced features whereas the second network produces a 1024-dimensional
regional context-enhanced features. The final network aggregates the contextual features and finds an optimal representation of it.

word-region interaction and global image-caption associa-
tions. In this study, we propose a contextual feature aggre-
gation module (CFAM) that applies cross-modal feature in-
teractions in two different granularities: word and caption.
The block diagram of the proposed CFAM is illustrated in
Figure 4.

3.4.1 Linear Fusion

First, we concatenate the global image features v ϵR512 and
the caption embeddings c ϵ R64 from the convolution-based
projected head. Thus, we have a joint 576-dimensional mul-
timodal representation. We then apply a fully connected
(FC) layer. This network serves as a fusion scheme for our
baseline approach.

3.4.2 Word-Level Context Modeling

In this network, we apply fine-grained cross-modal interac-
tions between local image features and word embeddings.
Here, we use word embeddings as cues to attend to the lo-
cal image features extracted from the ArcFace FR module.
We also experimented with using image features as cues to
attend to words. However, that did not improve the perfor-
mance, as words in a caption contain more abstract informa-
tion than image regions. Figure 4 illustrates the word-level
context modeling.

The inputs to the network are the word embeddings ma-
trix, W ϵ RL×64, and local image features I ϵ R256×14×14.
Batch normalization [12] is applied to the image features,
before feeding it to a convolution layer of 64 filters with a
kernel of size 3, and padding of 2. A max-pooling layer with
a stride of size 2 is applied to the features map to reduce the
spatial size to 64× 8× 8. Next, a self-attention layer with
a scale = 0.5 is applied to increase the intra-modality rela-
tionship among the local image features, followed by layer
normalization [1].

Thus, due to the application of self-attention, each image
region now contains information about the whole image. In

the self-attention layer, the keys, queries, and values are
learned from 1 × 1 convolutions. However, the number of
filters in 1 × 1 convolutions for projecting key and query
are the multiplication of a scale factor of the number filters
of the 1 × 1 convolution for learning values. Note that
the application of normalization and self-attention in this
network, as analyzed in Table 3, is very crucial.

Contrary to image features, word embeddings W , have
different dimensions. Therefore, we, first, calculate the cor-
relation of the word embeddings matrix, WTW ϵ R64×64.
Next, we reshape the embeddings matrix to size 64× 8× 8.
Similar to image features, we also experimented to imple-
ment self-attention to the reconstructed word features, but
that does not improve the performance. The reason for
this could be that as textual features are extracted from
transformer-based BERT architectures, the intra-modal re-
lationship among the features is already high. Afterward,
the word embeddings and image features are fed into a
cross-attention scheme to increase the inter-modality rela-
tionship. Here, the queries are learned from the word em-
beddings matrix, and keys and values are learned from the
image features using 1×1 convolutions with a scale of 0.5.
Finally, after applying another max-pooling layer, we flatten
the feature matrix to produce a 1024-dimensional output.

3.4.3 Caption-Level Context Modeling

Similar to the word level of granularity, we take the cap-
tion embedding as cues to attend to the global image fea-
tures. Multi-head cross-attention has been employed to ex-
plore inter-modal associations between global image fea-
tures and caption embedding. First, we reshape the global
features into v ϵ R8×64. Then, we calculate the queries
from caption embedding, c ϵ R64 and the keys, and values
from global features v using linear projection. The output
of the cross-attention is a 64-dimensional vector, which is
followed by a layer normalization [1].
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Table 1. The 1:1 verification and 1:N identification (Rank-1) re-
sults of our CGFR framework with ArcFace trained on the MM-
CelebA dataset. The top row represents the results of ArcFace
when pre-trained on MS1MV3 dataset [3].

Architectures
ROC Curve TPR@FPR Id(%)
AUC EER 1e-4 1e-3 Rank-1

Pre-trained ArcFace [2] 85.27 23.48 16.75 25.73 17.56
Baseline 93.98 13.50 21.92 31.28 38.78
CGFR 98.51 6.65 66.83 68.28 67.65

Proposed CGFR

(a) ArcFace System                                                                              (b) AdaFace System

Figure 5. ROC curves of 1:1 verification protocol of the proposed
CGFR framework with (a) ArcFace, (b) AdaFace FR module.

3.4.4 Features Aggregation Network

At the final stage of CFAM, we aggregate the contextu-
alized features from the word-level CM and caption-level
CM. Finally, a dense layer learns the optimal representa-
tion in a joint multimodal feature space. In our experiment,
we found that the optimal dimension of the dense layer is
768. We also experimented to implement the CFAM mod-
ule on the textual features extracted from the BiLSTM text
encoder. However, it does not perform well as we failed
to obtain the contextual embeddings from the BiLSTM en-
coder.

3.5. Training Strategy

We train our proposed framework in two phases. First,
we train the TFRM module to update the contextual embed-
dings of the text encoder using the objective function men-
tioned in Equation 3. We finetune the BERT encoder for
only 4 epochs and use a mini-batch AdamW optimizer [23]
with a weight decay of 0.02. The learning rate is initialized
to 0.00001 and is warmed up to 0.0001 after 2,000 training
iterations. We then decrease it using the cosine decay strat-
egy [22] to 0.00001. The batch size is set to 16. For the pro-
jection head of both visual and textual streams, we employ
the Adam optimizer [15] with β1 = 0.5 and β2 = 0.99. The
initial learning rate, in this case, is set to 0.001. In the sec-
ond phase, we train the whole framework end-to-end for 24
more epochs. However, the text encoder and the projection
head were trained with a similar setup to the first phase ex-
cept with a lower learning rate. Note that, in all the phases,
the parameters of the FR module were fixed.

Table 2. The 1:1 verification and 1:N identification (Rank-1) re-
sults of our CGFR framework with AdaFace trained on the MM-
CelebA dataset. The top row represent the results of AdaFace
when pre-trained on the WebFace4M dataset [42].

Architectures
ROC Curve TPR@FPR Id(%)
AUC EER 1e-4 1e-3 Rank-1

Pre-trained AdaFace [14] 85.55 22.88 11.46 20.00 8.45
Baseline 93.97 12.88 24.28 33.00 22.55
CGFR 98.10 7.52 58.08 59.12 53.23

4. Experiments

4.1. Dataset

The Mulit-Modal CelebA-HQ [33] (MMCelebA) is a
large-scale text-to-face dataset, originally built for face im-
age generation and facial attributes editing. It has a total of
30,000 high-resolution face images from the CelebA-HQ
dataset [21]. The dataset is split between 24,000 training
images and 6,000 test images. Each image has 10 auto-
generated captions from a total of 38 facial attributes.

4.2. Preprocessing

First, we implement standard data augmentation tech-
niques such as random sub-sampling, color jittering, hori-
zontal flipping, rotation, and Gaussian noise to degrade the
image quality of the MMCelebA dataset. Then, we resize
all the images to 3 x 112 x 112. Sample preprocessed im-
ages are shown in the Figure 1. The top row of Table 1
and Table 2 represent the performance of the pre-trained
ArcFace and AdaFace models on this preprocessed dataset,
respectively. From these tables, we observe that the perfor-
mance of both the pre-trained ArcFace and AdaFace mod-
els substantially degraded due to the poor generalization on
the low-quality images, which adversely affects their facial
analysis procedure [41].

4.3. Implementation

We implemented our architecture using two NVIDIA Ti-
tan RTX GPUs. In our experiment, we empirically set the
hyper-parameters in Equations 3 as follows: λ1 = 1, and λ2

= 0.5. Since we employ pre-trained encoders, training the
proposed framework is very fast. Finetuning BERT for 4
epochs takes approximately 80 minutes on the MMCelebA
dataset while training the whole network end-to-end takes
8 hours. Also, due to the parallel strategy of our proposed
framework, the model has a very low time complexity dur-
ing inference. The inference time, which requires only one
forward process, is 220ms for an image-caption pair.

4.4. Performance Evaluation

ArcFace System: We compare our proposed CGFR to the
pre-trained ArcFace and the baseline approach, as shown
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Table 3. Ablation experiments of different networks on the CFAM
module. Experimental results verifies the notion of fusing cross-
modal features at multiple granularities improves 1:1 VR(%).

Modules
ROC Curve TPR@FPR
AUC EER 1e-4 1e-3

w/o modules 89.96 18.27 15.95 21.42
Word (w/o Norm) 86.36 22.27 8.63 20.63

Word (w/o SA) 96.30 10.42 27.02 33.13
Word (SA+Norm) 96.86 9.88 53.42 54.45
Word + Caption 97.22 9.38 63.75 64.42

Word + Caption + FAN 98.51 6.65 66.83 68.28

in Table 1. Our baseline is a dual-stream model employ-
ing a BiLSTM text encoder with a linear fusion. In the
1:1 verification protocol, the proposed CGFR achieves the
highest verification rates (VR). It improved the pre-trained
ArcFace by 71.68% and the baseline by 50.74% on the
equal error rate (EER) metric. Also, using the true posi-
tive rate (TPR) and false positive rate (FPR) metrics, as il-
lustrated in Figure 5(a), our proposed CGFR improves the
VR(%) by a significant margin. In particular, as compared
to the pre-trained ArcFace model, our framework boosts
TPR(@FPR=1e-4) from 16.75% to 66.83%.

Similarly, when compared to the baseline approach, our
framework improves the TPR(@FPR=1e-4) from 21.92%
to 66.83% and TPR(@FPR=1e-3) from 31.28% to 68.28%.
Furthermore, in the 1:N identification protocol, the pro-
posed CFGR secures an improvement of 74.44% and
285.25% on Rank-1 identification accuracy over baseline
and pre-trained ArcFace, respectively. Therefore, as the re-
sults show, the ArcFace FR module, which performs poorly
due to low quality and noise, could be significantly im-
proved using natural language supervision.

AdaFace System: In Table 2, we conduct further exper-
iments to evaluate the performance of our CGFR frame-
work with an AdaFace FR module. As illustrated in Fig-
ure 5(b), our framework significantly improves the VR(%)
over the baseline and pre-trained AdaFace. It improves the
pre-trained AdaFace by 67.13% and the baseline by 41.61%
on the EER metric. Also, in 1:1 verification protocol, un-
der the evaluation metric of TPR(@FPR=1e-4), our frame-
work boosts the performance of pre-trained AdaFace from
11.46% to 58.08% and TPR(@FPR=1e-3) from 20.00% to
59.12%. Furthermore, as reported in Table 2, the Rank-1
identification accuracy of our CGFR framework improves
by 136.05% over the baseline. Thus, the VR (%) of the
above-mentioned experiments proves the effectiveness and
generalizability of the proposed framework.

4.5. Analysis of CFAM

We design an ablation experiment to evaluate the ef-
fectiveness of the proposed CFAM module. Specifically,

10−4 10−3 10−2 10−1 100

False Acceptance Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fa
ce

 V
er

ifi
ca

tio
n 

R
at

e

Word-Level CM w/o Norm
Word-Level CM w/o SA
Word-Level CM w SA+Norm
Word+Caption-Level CM
Word+Caption-Level CM+FAN

Figure 6. Face verification evaluation on different modules of the
proposed CFAM using ROC curves. Verification rates (%) illus-
trates the need for fusing contextual features in both word-level
and caption-level granularities.

we analyze the role of individual granularities and atten-
tion schemes. Table 3 demonstrates that a fusion scheme
without any granularity decreases the VR(%) and proves
the need for fusing contextual features at multiple granu-
larities. In fact, under the evaluation metric of TPR, word-
level contextual modeling (CM) increases the performance
by 234.92% (@FPR=1e-4) over the simple concatenation
of multimodal features. However, the choice of adding
normalization [12, 1] and self-attention are crucial to the
performance of this module. We observe a drastic perfor-
mance drop of 12.15% in AUC without normalization (one
batch norm [12] and two-layer norm [1]). Also, adding
self-attention to the image features reduces the EER from
10.42% to 9.88%.

We also observe that the fusion of word-level and
caption-level CM improves the VR(%) by 5.06% on EER
and 19.34% on TPR@FPR=1e-4 compared to word-level
CM. Furthermore, the ablation study shows that the im-
plementation of the feature aggregation network further
boosts the VR(%), improving TPR from 63.75% to 66.83%
(@FPR=1e-4). Figure 6 depicts the performance compar-
ison of these networks on ROC curves. Figure 6 illus-
trates that the proposed CFAM, with both CM networks
and the feature aggregation network, achieves the high-
est VR(%), proving the effectiveness of applying fine-grain
word-region and image-caption interaction.

5. Conclusion

We have introduced a new framework, called the
caption-guided face recognition (CGFR) model, to improve
the performance of FR systems using textual descriptions.
Our framework is based on a dual-stream model with a tex-
tual feature refinement module (TFRM), and a contextual
feature aggregation module (CFAM). CFAM applies fine-
grained cross-modal feature interaction at multiple granu-
larities using cross-attention. In contrast, TFRM helps the
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framework to learn an effective joint multimodal embed-
ding space by realigning the text embeddings with visual
features. Our CGFR has significantly improved the perfor-
mance of two FR models. It has also enhanced the robust-
ness and reliability of the FR systems by offering higher
resistance to spoofing attacks. In the future, we aim to em-
ploy large-scale face image-caption pair datasets to assess
the generalizability of our proposed method.
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