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Abstract

Deep convolutional neural networks have achieved re-
markable success in face recognition (FR), partly due to
the abundant data availability. However, the current train-
ing benchmarks exhibit an imbalanced quality distribution;
most images are of high quality. This poses issues for gener-
alization on hard samples since they are underrepresented
during training. In this work, we employ the multi-model
boosting technique to deal with this issue. Inspired by the
well-known AdaBoost, we propose a sample-level weighting
approach to incorporate the importance of different sam-
ples into the FR loss. Individual models of the proposed
framework are experts at distinct levels of sample hard-
ness. Therefore, the combination of models leads to a robust
feature extractor without losing the discriminability on the
easy samples. Also, for incorporating the sample hardness
into the training criterion, we analytically show the effect of
sample mining on the important aspects of current angular
margin loss functions, i.e., margin and scale. The proposed
method shows superior performance in comparison with the
state-of-the-art algorithms in extensive experiments on the
CFP-FP, LFW, CPLFW, CALFW, AgeDB, TinyFace, 1JB-B,
and 1JB-C evaluation datasets.

1. Introduction

The classical Face Recognition (FR) frameworks are
based on extracting hand-crafted features [1, 41]. Nuisance
factors such as head pose, resolution, blur, occlusion, and
illumination variance in expression severely affect FR per-
formance [1]. Since the advent of deep Convolutional Neu-
ral Networks (CNN) and the introduction of large-scale FR
datasets, deep CNN-based FR have gained popularity [42].
The introduction of ResNet architecture and seminal works
of [3, 15, 41] have revolutionized FR into the challenge of
finding robust and suitable loss functions [16, 7]. The gen-
eral goal is to force the model to learn discriminative rep-
resentations with a minimal intra-class distance and a max-
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Figure 1: Illustrating the resolution and quality dispar-
ity between training (WebFace4M) and testing benchmarks
(TinyFace).

imal inter-class disparity [30]. As a metric learning task,
there are two main approaches to designing the loss func-
tion: 1) multi-class and 2) pair-wise supervision.

Due to the availability of large-scale labeled datasets, the
regular choice of training objective is Softmax. However, as
an open-set recognition task, the discriminability of feature
representation matters [53]. Despite being separable, the
representation yielded through Softmax loss exhibits poor
discriminability [30, 53]. The pioneering works in [42,
54] improved discriminability by using deep metric learn-
ing loss functions. Most recently, using angular distance
(instead of Euclidean) and angular penalty in the Softmax
improved the discriminability power of feature representa-
tions [50, 30, 51, 7]. In the state-of-the-art (SOTA) deep
FR framework, a model is trained using angular margin
objective until convergence [30, 51, 7]. However, current
SOTA performance demonstrates limited generalization on
low-quality and Low-Resolution (LR) inputs, such as im-
ages captured by surveillance cameras or captured from
long ranges [57].

Large-scale datasets such as WebFce260M [63], or MS-
Celeb-1M [12], mainly contain high-resolution (HR) in-
stances that have significant statistical disparity from real-
world surveillance images, as shown in Fig. 1 [18]. In
other words, difficult samples, i.e., including LR instances,
are under-represented. However, an implicit assumption in
conventional angular margin methods is that all samples are
equally important [26, 24]. Consequently, a manually se-
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Figure 2: Schematic diagram of the proposed method, based
on a CNN transfer learning for K = 1 and K = 2.
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lected margin squeezes all intra-class variations uniformly,
which can be sub-optimal [26, 8, 60, 51, 7, 38]. That being
said, leveraging FR frameworks with sample hardness has
attracted the researcher’s attention to increase the model’s
discriminability power [33].

Methods have been developed to de-emphasize or over-
emphasize the instances based on selected characteristics as
the proxy of sample hardness, such as feature norm or un-
certainty [52, 33, 45]. However, the performance improve-
ment is inconsistent as they ignore hard samples [26, 24].
Also, convergence is not guaranteed due to the complex
essence of the FR problem when solely trained on hard in-
stances [26]. Data augmentation can enhance the frequency
of difficult images and the diversity of training benchmarks
[47, 24]. However, due to the tied angular margin in conven-
tional FR methods, they suffer from convergence problems
and cannot fit well with data augmentations [59]. Methods
have been proposed to adaptively tune the margin based on
the difficulty of the sample [58, 29, 33]. Although promis-
ing improvements have been gained via combining augmen-
tations and adaptive margin, the performance still needs to
be improved in testing benchmarks with a large distribution
gap, implying that augmented samples cannot mimic the ac-
tual distribution of in-the-wild images.

An optimal FR model must generalize across different
data distributions, such as off-angle, LR, and distorted im-
ages, to accommodate distribution shifts from training to
real-world applications. Ensemble learning is an effective
method that trains a set of models on the whole or subsets of
a dataset to mitigate the sensitivity to the distribution shift in
the data [36]. Most recently, combining boosting strategies
with CNNs for object classification and image denoising re-
sulted in promising improvements [13, 34, 4, 5]. Boost-
ing, as an ensemble learning technique, is capable of gener-
alizing over various distributions and good interpretability
[32, 22]. In contrast to methods that try to compensate for

the scarcity of low-quality samples by introducing a sam-
pling strategy [38, 21, 58, 29, 33], in boosting framework,
distinct models are designed which are experts for samples
with different hardness. To achieve this, the optimization
path changes in accordance with the sample’s hardness, and
as an ensemble of models, they can enhance the overall gen-
eralization power [25].

We propose a method to take advantage of Adaptive
Boosting (AdaBoost) to deal with the distribution shift on
FR applications. To this aim, we hypothesize that in large-
scale FR training benchmarks (i.e., LR, HR, long-range, and
distorted images) are available (an imbalanced distribution
concerning sample hardness). However, high-quality im-
ages dominate in these datasets (imbalance sample hard-
ness). We propose an ensemble learning framework such
that each learner adjusts the weight of the training samples
for the consecutive learners based on the samples’ hard-
ness. As a result, the subsequent learners will concentrate
on distinct samples compared to their predecessors, which
changes the optimization path and leads to a more diverse
feature representation. Consequently, we can: 1) explore
currently available training data more effectively and 2) in-
crease the generalizability of the resulting ensembled model
on hard instances while maintaining the performance on
easy facial images. Contributions of this work can be sum-
marized as follows:

* We move beyond class-level imbalance to propose a
novel sample-level objective function inspired by Ad-
aBoost that better compensates for data distribution
imbalance and give more importance to the misclas-
sified samples from the earlier trained model.

* We empirically and theoretically show the relationship
between sample mining and angular margin penalty.

* We propose a method to relieve the convergence issue
of the current FR training paradigm when there is more
emphasis on hard samples.

2. Related Work
2.1. Boosting

Boosting has been used in ensemble models to enhance
performance by cascading several sub-models [13, 34]. Out
of the many methods used for boosting, AdaBoost and Gra-
dient Boosting are two of the most commonly surfed tech-
niques [10, 11]. Boosting, also known as forward stagewise
additive modeling, was originally proposed to improve the
performance of classification trees. It has been recently in-
corporated into deep learning models to improve their per-
formance further. Schwenk and Bengio [43] improved the
ensemble accuracy of neural networks by using AdaBoost.
Kawana et al. [23] have proposed an ensemble of CNNs for
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Figure 3: Various examples (including easy and hard samples) from two subjects and their assigned weights d,, by our

method for (K = 1) and (K = 2).

human pose estimation, where each CNN in the ensemble
model is optimized for a range of poses. They integrated
the output of each individual CNN by feeding them as input
to an integration module. Instead of averaging, the boosted
CNN method in [34] uses the least square objective func-
tion to incorporate the boosting weights into training. Since
boosting increases the networks’ complexity, dense connec-
tions were adopted in a deep boosting framework to tackle
the problem of vanishing gradient [4]. Yang et al. [56] used
CNN to generate high-level features, followed by a boosted
Forest classifier. Boosting techniques have been studied in
classical machine learning methods and some limited areas
of deep learning; however, they have yet to be explored for
deep FR.

2.2. Margin-based Face Recognition

In recent years, most of the studies in the area of deep FR
have been dedicated to enhancing performance by devising
novel training criteria. The standard Softmax loss does not
provide sufficient discriminability in embedding, i.e., intra-
class compactness and inter-class separability [17]. The pi-
oneer works of FaceNet [41] introduced a novel loss func-
tion that simultaneously uses positive (same identities) and
negative (different identities) samples to improve the deep
representations’ discriminative power. This is achieved by
bringing the anchor and positive sample closer together in
the embedding space and pushing the anchor away from the
negative sample [54, 49]. Several studies on the character-
istics of the Softmax embeddings found an angular distri-
bution in the representations. Therefore, the most recent
methods proposed to increase the discriminability power of
feature representation by mapping the Euclidian similarity
of standard Softmax to angular space. As a result, by incor-
porating the angular penalty into the angular Softmax func-
tion, SOTA results have been achieved in various studies,
including CosFace [51], ArcFace [7], and AdaFace [24].

2.3. Sample Mining in Face Recognition

Improving generalization ability is essential, and one
way to achieve this is through hard sample mining [28].

Studies in this area have focused on two aspects: 1) find-
ing a measure of sample hardness and 2) incorporating the
sample hardness into the training paradigm [52]. Shrivas-
tava et al., in [48], find easy and hard samples based on
the loss value. They emphasize hard samples and discard
easy samples (HM-SoftMax) to improve the generalization.
Lin et al. [27] re-weights all the samples by introducing a
soft mining strategy and training the network on a sparse
set of hard instances [27]. Recently, MV-Softmax [52] has
emerged as a framework that integrates margin and mining
techniques. This approach defines hard samples as misclas-
sified and emphasizes them by applying a predetermined
constant on their negative cosine similarities. Curricular-
Face [20] employs the Curriculum Learning strategy to fo-
cus on easy samples at the beginning of training and then
shifts the emphasis toward hard instances. Furthermore, Liu
et al. [28] showed that samples within the same class have
varying levels of importance and employed meta-learning
to assign weights to each sample based on multiple varia-
tion factors. They trained a model with four learnable mar-
gins corresponding to ethnicity, pose, blur, and occlusion to
achieve this. One major shortcoming of these works is the
inconsistency of the improvements, i.e., increasing the per-
formance on the harder benchmarks is gained by sacrificing
performance on the easy benchmarks [40]. We seek to train
multiple agents, e.g., deep CNNs, and combine their output
to obtain consistency across different benchmarks. Also,
we strive to mitigate the challenge of finding the hardness
measure by directly employing the model score to indicate
hardness.

3. Proposed Work
3.1. Overview of Angular FR Objective

The current SOTA FR training framework consists of a
stack of non-linear feature extractor layers (backbone) fol-
lowed by a classifier [2]. The whole architecture is trained
using gradient descent with angular penalty criterion:



Table 1: Perfomance (%) comparison of our method with other recent algorithms. 1:1 verification accuracy for LFW, CFP-FP,
CPLFW, AgeDB, and closed-set rank retrieval for TinyFace are reported. The backbone used here is Resnet18.

Method High Quality Low Quality (TinyFace)
LFW CFP-FP | CPLFW | CALFW | AgeDB AVG Rank-1 Rank-5 | Rank-20

HM-Softmax [48] 97.77 | 90.11 83.25 89.55 90.23 90.18 3221 37.55 39.45
MV-Softmax [52] 98.25 91.36 84.47 91.88 91.15 91.42 36.19 47.14 40.88
CosFace [51] 99.00 | 91.89 84.99 91.63 91.85 91.87 45.00 55.00 58.00
CurricularFace [20] 98.87 | 92.05 86.14 92.46 92.24 92.35 45.15 48.14 54.24
ArcFace [7] 99.01 92.76 86.16 92.65 92.70 92.65 52.47 58.63 62.23
AdaFace [24] 99.13 92.82 87.00 92.65 92.717 92.86 56.06 61.45 65.21
Ours (K=1 & 2) 99.23 | 92.96 87.07 92.93 93.00 93.04 57.83 63.31 67.17
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where W) € R%™ is j-th classifier (center), and dim is the
feature dimension, z; is the learned feature of i-th sample,
and y; is its corresponding ground truth. N and C repre-
sent the mini-batch size and the total number of classes,
respectively. M = (mg, me,m,) is the margin hyperpa-
rameter, f is a function of W, x;, and margin. d,, is the
indicator function which in angular margin losses is chosen
to be one, i.e., the equal importance of samples. Usually,
when the feature vectors and class centers are projected to
the unit-hypersphere, then f is written as a function of the
angle between the feature vector and the j-th center of the
classifier, f(W;,x;, M) = f(0;,:, M):

j=u @
j 7é Yis
where the 6; ; represents the angle between j-th center and
1-th sample.

scos(msbj; +mq) — me;
scos(0;,:);
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3.2. Integrating Ensemble Boosting to FR Training

AdaBoost was initially designed for a binary classifica-
tion task in combination with a decision-tree algorithm [9].
Here, we utilize its original idea to fit it in a multi-class
paradigm of FR training [14]. The goal is to enhance the
representation power on the hard instances while maintain-
ing the performance on the easy images. To do so, we
consider K models (K=2 in our experiments) to form our
ensemble model. The first model should be trained using
the standard FR framework, d,, = 1 in Eq. 1. The classi-
fier’s centers can be considered the average of the samples
in each class [40]. Therefore, Eq. 2 reflects the similarity
of each sample with the average of samples in the specified
class. Because the FR training benchmarks are imbalanced
concerning the hardness of the samples [24], class centers
tend to drift toward more frequent samples, which results
in reducing the loss by increasing the similarity between
the centers and over-represented instances, see Fig. 4. Con-
sequently, the model is inclined toward forgetting the hard
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Figure 4: Similarity scores between samples in each class
and its corresponding class center (average of samples),
higher scores represent the high-quality and most frequent
samples and lower scores represent the low-quality and hard
samples.

instances during the training, which can result in a lack of
generalization over the hard samples.

For a given sample ¢, Eq. 2 reflects the similarity of the
sample with its class center, which can be interpreted as the
sample’s hardness [33]. To obtain the samples’ hardness,
between the range 0 and 1, we explicitly utilize the Softmax
output score instead of the Cosine score:

6f<Wyi 7137‘,7M)

pi = of Wygowi, M) Z?zl ef Wj,zi, M)’ 3)
J#Yi

In the standard AdaBoost framework, the constraint is
that each binary classifier’s accuracy is better than random
guessing rather than 1/2. However, we want to increase the
discrimination power among the hard samples in the FR
training paradigm. It is important to mention that solely
training on the hard instances can lead to suboptimal so-
lutions and overfitting [37]. Our approach obtains sample
weights independent from the visual quality, such as feature
norm, and the hardness has directly resulted from the opti-
mization path. To this aim, we chose a simple yet effective
weighting scheme that is easy to implement and compre-
hend, as given by Eq. 4:

S O

Eq. 4 puts more emphasis on the hard instances in a way that



Table 2: Perfomance (%) comparison of our method with other recent algorithms. True Acceptance Rate (TAR) at a different
level of False Acceptance Rate (FAR) are reported for IJB-B and IJB-C. The backbone used here is Resnet18.

Method Mix Quality (JB-B) Mix Quality (UB-C)
le-06 | 1e-05 | le-04 | 0.001 0.01 0.1 le-06 | 1e-05 | le-04 | 0.001 0.01 0.1

HM-Softmax [48] 0.00 0.00 8.06 | 68.80 | 87.07 | 93.12 | 0.00 0.10 876 | 64.37 | 88.68 | 90.76
MV-Softmax [52] 0.00 0.00 0.00 8.90 68.97 | 94.11 0.00 0.15 10.54 | 68.15 | 90.05 | 94.60
CosFace [51] 0.00 0.11 10.01 | 70.16 | 89.69 | 95.81 0.00 0.80 1475 | 69.05 | 91.58 | 96.02
CurricularFace [20] 0.00 0.15 10.14 | 70.95 | 90.01 | 95.86 | 0.01 1.01 1525 | 69.18 | 91.89 | 96.42
ArcFace [7] 0.01 1.02 12.27 | 71.89 | 91.98 | 97.11 0.13 1.12 1598 | 70.19 | 9341 | 97.83
AdaFace [24] 0.11 1.26 13.28 | 72.81 | 92.53 | 97.40 | 0.13 1.26 17.80 | 71.23 | 93.44 | 97.84
Ours (K=1 & 2) 1.70 7.20 | 40.63 | 82.55 | 93.36 | 97.88 1.14 6.12 | 41.42 | 83.37 | 94.68 | 98.25

more challenging samples in each class will receive more 0 — alpha=005

weights during training, as shown in Fig. 5. Also, since the e

easy samples are not completely ignored, they relieve the
feature representations from collapsing [39]. In evaluation,
the final matching score is the weighted sum over the match
score of K backbones:

K
Hyinai(z:) = Z@ka(SEi)7 (%)
k=1

where ), hyperparameters are the weights associated to
each trained model.

3.3. Sample Hardness as Angular Margin

There are two categories of sample mining methods:
over-sampling and weighting schemes [52]. In the context
of FR, over-sampling can lead to poor performance by re-
ducing the diversity of samples. To alleviate this issue, one
may resort to weighting methods [58, 52]. Here, we pro-
pose that naively applying samples’ weights to the angular
framework can be suboptimal. Although introducing sam-
pling importance aims to compensate for misclassified data,
sample weights can have hidden affect in the angular space.
Applying sample mining, the term d,, in Eq. 1 is no longer
uniform for all the samples.

In Eq. 1, as the training converges, the denominator
can be estimated by a constant value [58]. In convergence,
cosine similarity between samples and negative classes is
close to zero, i.e., f(W;,x;) = f(8;,) = 0. Therefore, the
denominator can be approximated as:

c
ef(wyi,zi,M) + Z ef(w_,»,z,;,M) ~ ef(Wyi,z,;,]W) Lo -1,

j=1
J#Yi
(6)
replacing the denominator in Eq. 1 with Eq. 6, then we can
rearrange the Eq. 1 as:

N ) d
1 o (Wy, i, M) .
L__N;10g<ef(WU1’m7’M)+C—1 ; (7)

consequently, the essential and differentiable component is
the f(W,,,x;, M)%: which can be rewriten as the follow-
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Figure 5: Illustrating the proposed sample hardness, d,
against the output probability of the classifier. It is impor-
tant to consider the impact of the parameter « in Eq. 4.
When « has a large value, it can result in the weights of
certain samples being overemphasized and easier samples
being disregarded; more information is in Table 5.
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In other words, the scaling factor and the cosine margin are
adaptively tuned with respect to the samples’ hardness. To
further study the effect of the scale hyperparameter, s, we
plot the Softmax output score versus ¢; ; for different s as
shown in Fig. 6. When the value of s is too small, such as
s = 10, it is apparent that the maximum output score cannot
reach one. This outcome is not desirable because even if the
network is highly confident in the corresponding prediction,
the loss function will still penalize the network, leading to
poor performance for easy samoples. Conversely, when s is
excessively large, the output curve is problematic as it pro-
duces a very high probability even when the angle is close to
5. Consequently, the loss function with large s may not pe-
nalize misclassified samples, resulting in poor performance
on hard samples. To alleviate this issue, we propose to tune



Table 3: Perfomance (%) comparison of our method with other recent algorithms. 1:1 verification accuracy for LFW, CFP-
FP, CPLFW, AgeDB, closed-set rank retrieval for TinyFace and TAR @FAR=0.01% for 1JB-B and 1IJC-B are reported. The
backbone used here is Resnet50.

Method High Quality Low Quality (TinyFace) Mix Quality
LFW | CFP-FP | CPLFW | CALFW | AgeDB | AVG | Rank-1 | Rank-5 | Rank-20 | IIB-B | IIB-C
HM-Softmax [48] 97.85 | 92.85 90.14 91.75 92.33 92.98 | 46.71 48.21 50.47 89.10 | 62.96
MV-Softmax [52] 99.08 | 94.39 93.10 94.01 92.33 94.58 | 52.36 55.74 58.89 91.39 | 64.14
CosFace [51] 99.51 | 95.44 93.90 94.70 94.56 95.62 | 60.14 63.77 65.77 92.52 | 65.42
CurricularFace [20] | 99.42 | 96.32 93.85 94.78 94.81 95.84 | 61.89 65.51 67.86 92.51 | 65.26
ArcFace [7] 99.70 | 97.14 94.05 95.14 95.15 96.24 | 68.99 73.89 76.04 94.39 | 96.19
AdaFace [24] 99.78 | 97.14 94.16 95.98 97.78 96.97 | 70.25 74.034 | 76.31 95.44 | 96.98
Ours (K=1 & 2) 99.75 | 97.24 94.13 96.05 97.85 97.01 | 71.01 74.54 76.80 9547 | 97.00

output

0 n/8 n/4 3n/8 n2
6

Figure 6: Curves of Softmax output w.r.t. 6; by choosing
different scale values.

the scale value with the normalized hardness score:
d—d

4= S

A )

where d is the moving average over the seen samples’
weights, and std represents the standard deviation. Sfd;(fl)
which makes the batch distribution of d close to the normal
Gaussian with zero mean and unit standard deviation. To
further increase the concentration around the zero, A is used
as a hyperparameter. Then, we use the d to fine-Ftune the
scale, s:

s =5 |d| %% s, (10)

we clip the d to be within (—0.33,0.33) so the noisy sam-
ples do not distract the training [24]. By this adaptivity, we
can emphasize the hard samples while maintaining the dis-
crimination on the easy instances [28]. A low value of d
results in negative d which increases the value of s (higher
output score for easy samples) and vice versa.

4. Experimental Results
4.1. Datasets

We employ publicly available WebFace4M [63] as our
training datasets which is a subset of the recently released

FR dataset called WebFace260M. WebFace4M contains
around 4M samples from 200k identities. Following the
protocol of [46], we evaluate our models on five widely
applied benchmarks in good quality, including LFW [19],
CFP-FP [44], CPLFW [61] AgeDB [35] and CALFW [62].
Also, two mixed-quality datasets from the Janus program,
including: the ITARPA Janus Benchmark-B (IJB-B) [55] and
Benchmark-C (IJB-C) [31] were used in our evaluations.
Additionally, we use TinyFace as a challenging low-quality
evaluation benchmark [6].

LJB-B and IJB-C: The IJB-B [55] dataset is a collection of
face images and videos that is used to benchmark FR sys-
tems. It contains 21,800 images (11,800 face and 10,000
non-face images) and 7,000 videos (55,000 frames). The
dataset includes 1,845 identities. The experimental proto-
cols for 1JB-B follow the standard 1:1 verification proto-
col, which contains 10,270 positive and 8 million negative
matches. A template-based matching process is used, where
the global feature vector for each template is obtained by
averaging over the instances in the template. 1JB-C is an
extension of the IJB-B dataset, which contains 31,300 im-
ages and 117,500 frames from 3,531 identities. The testing
protocol for IJB-C is similar to the protocol for [JB-B.
TinyFace: The TinyFace is a low-quality FR evaluation
dataset comprising 5,139 labeled identities with 169,403
images. The images are designed for 1: /N recognition tests
and have an average size of 20x 16 pixels. The TinyFace
images were collected from public web data and face were
captured under various uncontrolled conditions, including
different poses, illumination, occlusion, and backgrounds.
Fig. 7 illustrates the quality of some samples from Tiny-
Face and 1JB-B datasets.

4.2. Metrics

There are two main ways to evaluate the performance of
a face recognition paradigm: recognition and verification.
Recognition is a 1:N task where the network calculates the
similarity score of a given probe image against all the sam-
ples in a gallery and identifies the probe image. Verification
is a 1:1 task in which the network determines whether a
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Figure 7: Left: samples from the IJB-B dataset. Right: sam-
ple from TinyFace. IJB-B consists of high-quality and low-
quality images, while TinyFace mainly contains low-quality
samples.
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Figure 8: The rank-1 face identification accuracy on the
TinyFace dataset using the AdaFace [24], ArcFace [7] and
CosFace [51] FR methods when there are just one model
(K=1, original) and when our proposed method is applied
(., K =1& K = 2, ours).

given pair of images represents the same identity. We re-
port the verification results on the LFW, CFP-FP, AgeDB,
CPLFW, 1JB-B, IJB-C, and CALFW datasets. The identifi-
cation results are reported on the TinyFace dataset.

4.3. Implementation

We followed the ArcFace setup for preprocessing [7].
All the images are resized to 112x 112, aligned canonical
view, and pixel values are normalized to [—1, 1]. The exper-
iments are conducted with ResNet18 and Resnet50 as the
backbone, and the models, are trained for 24 epochs with
AdaFace loss [24]. The optimizer is SGD, with the learn-
ing rate starting from 0.1, which is decreased by a factor of
10 at epochs {10, 16, 22}. The optimizer weight-decay is
set to 0.0001, the mini-batch size on each GPU is 512, and
the model is trained using two Quadro RTX 8000. Fig. 2
shows the architecture and our proposed method for K =1
and K = 2 in both training and evaluation settings. We
investigate the impact of varying values of « in Eq. 4 on
the performance of our method across different evaluation
datasets. Our empirical analysis in Table 5 showed that an
alpha value of 0.1 produced the best results. Also, 51 = 1
and 2 = 0.1 are obtained empirically.

4.4. Performance Comparison

Our proposed method’s performance against SOTA stud-
ies has been assessed in Tables 1, 2, and 3. According to

the results, the gain on the high-quality dataset is less pro-
nounced since these datasets mostly contain high-quality
samples. Therefore, the current performance of other com-
petitors is saturated. On the other hand, results show re-
markable improvements on the more challenging bench-
marks of IJB-B, IJB-C, and TinyFace. In the case of IJB-B
and IJB-C, our method achieves over 10 percent improve-
ment using the R18 backbone at TARQFAR = 1074,
Also, over one percent improvement on TinyFace which
shows that our method successfully maintains the perfor-
mance on the high-quality samples and at the same time, it
increases the discriminability among the hard instances. It
should be noted that the improvement is more sensible when
we are using the weaker backbone, Resnet18, as shown in
in Tables 1 and 2.

5. Ablation Study
5.1. Training with hard samples

Solely training the K*" model on the hard instances can
lead to suboptimal solutions and overfitting. Because dis-
carding easy samples completely can be harmful, as they
play a crucial role in relieving the representations from col-
lapsing [39]. We investigated this effect by using only mis-
classified samples (from the training dataset) of the first
model for training the second model (K = 2). As it
is shown in Table 4 (fourth row), the performance of our
method degrades severely. This reduction in discriminabil-
ity can be attributed to 1) the reduction of the diversity of
the data and 2) the extremely complex FR task when solely
using hard instances.

5.2. Discussion on Individual Model’s Performance

Boosting refers to combining different models to im-
prove their overall performance. In this section, we eval-
uate the performance of individual models extracted from
an ensemble model. Our results, presented in Table 4, in-
dicate that the overall performance of the combined mod-
els is superior to that of any single model. This is because
each model has its expertise in different groups of the train-
ing samples. Combining these models provides diverse dis-
criminant information, resulting in a robust feature extractor
with higher generalization.

Furthermore, in the classical AdaBoost, each model is
trained from scratch, which is unsuitable for CNN and
might force the CNN to become overfitted on those samples
with higher weight. Transferring the currently learned pa-
rameters to the next CNN helps the following CNN preserve
the previous knowledge acquired during the learning pro-
cess and reduces the computational cost. Table 4, shows the
comparison between our proposed method when the model
corresponding to K = 2 trained from scratch (OursV3) or
fine-tuned from the previous model (OursV1). The higher



Table 4: Ablation study on model’s performance for K = 1, K = 2, and the combination of them in different settings.
OursV1 (best): using all the training samples with assigned weights for training the second model (K = 2); OursV2: using
hard samples for training the second model and OursV3: training the second model (X = 2) from the scratch.

Method High Quality TinyFace Mixed Quality
LFW | CFP-FP | CPLFW | CALFW | AgeDB | AVG | Rank-1 | Rank-5 | IIB-B | IJB-C

AdaFace (K=1) 99.13 | 92.83 87.00 92.65 92.72 92.87 | 56.06 61.454 | 13.28 | 17.80
Ours (K= 2) 98.90 | 91.43 84.71 92.35 92.00 91.88 | 52.60 58.48 29.49 | 19.28
OursV1 (K=1 & 2) | 99.23 | 92.96 87.07 92.93 93.00 93.04 | 57.83 63.31 40.63 | 4142
OursV2 (K=1 & 2) | 99.05 | 92.20 85.92 92.52 92.17 92.37 | 53.84 59.33 13.01 | 15.04
OursV3 (K=1 & 2) | 99.12 | 92.69 85.95 93.00 92.08 92.47 | 52.55 58.07 13.01 | 15.04

Table 5: An ablation study to investigate the impact of
varying values of o in Eq. 4 on the performance of
our proposed method across different evaluation datasets.
1:1 verification average accuracy (Avg) for high-quality
datasets, TAR@FAR=0.01% for 1JB-B and Rank-1 accu-
racy for TinyFace are reported. The backbone used here is
Resnet18, respectively.

Experiment | « Avg TinyFace | 1JB-B
1 0.05 | 92.15 | 5445 12.47
2 (Best) 0.1 93.04 | 57.83 40.63
3 0.3 91.71 | 53.98 15.35
4 0.5 91.59 | 53.86 14.65

performance of OursV1 demonstrates that transfer learning
is significant in our approach.

5.3. Discussion on Re-weighting Samples During
Training

Fig. 3 shows the easy and hard samples for two sub-
jects from training dataset and their corresponding weights
obtained by our method for K = 1 and K = 2. As
it illustrates, the training of the first model indicates that
frontal and high-quality faces are straightforward samples,
resulting in lower corresponding weights compared to im-
ages with extreme poses or blurriness for training the sec-
ond model. In the first model (K = 1), all samples are
assigned the same weight. However, for the second model
(K = 2), the weights of each sample are changed (based
on Eq. 3 and 4), enabling the model to prioritize more chal-
lenging and hard samples during the training of the second
model.

5.4. Orthogonality to Angular Criterion

Our training framework includes ensemble learning
when designing a FR module. We want to evaluate the ef-
fectiveness of this approach with various loss functions. Al-
though our main experiments used the AdaFace loss func-
tion, our method represents an independent improvement
on AdaFace. Specifically, we applied two other SOTA loss
functions, including ArcFace and CosFace (each with iden-
tical hyperparameters for margin and scale). Our results on

the TinyFace dataset, as illustrated in Fig. 8, demonstrates
that our approach enhances the feature embedding discrim-
inability in all cases, indicating its independence from the
choice of the training criterion.

6. Conclusion

To address the issue of imbalanced quality distribution in
face recognition training datasets, we have proposed a novel
approach that employs a sample-level weighting technique
inspired by the traditional AdaBoost algorithm. By giving
higher importance to the underrepresented tail samples dur-
ing the training of a new model, our method is designed to
improve the generalization performance of FR methods on
such samples. The training loss function of an earlier model
is used to update the sample training weights. If a sample is
effectively trained by the first prior model, the weight asso-
ciated with that sample is exponentially decreased, result-
ing in a negligible effect on the training of the next model
and vice versa. This process results in the subsequent CNN
becoming proficient in training samples with high weights.
The combination of different models, where each of them
is an expert in different groups of training samples, leads
to a robust classifier. Our approach successfully outper-
forms any SOTA FR single model in several challenging
face benchmarks as depicted in the experimental section.
We believe that our approach could be very helpful for
large-scale unbalanced data training in each method.
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