

000

001

002

CCFace: Classification Consistency for Low-Resolution Face Recognition

003

004

005

006

007

008

009

010

011

Abstract

In recent years, deep face recognition methods have demonstrated impressive results on in-the-wild datasets. However, these methods have shown a significant decline in performance when applied to real-world low-resolution benchmarks like TinyFace or SCFace. To address this challenge, we propose a novel classification consistency knowledge distillation approach that transfers the learned classifier from a high-resolution model to a low-resolution network. This approach helps in finding discriminative representations for low-resolution instances. To further improve the performance, we designed a knowledge distillation loss using the adaptive angular penalty inspired by the success of the popular angular margin loss function. The adaptive penalty reduces overfitting on low-resolution samples and alleviates the convergence issue of the model integrated with data augmentation. Additionally, we utilize an asymmetric cross-resolution learning approach based on the state-of-the-art semi-supervised representation learning paradigm to improve discriminability on low-resolution instances and prevent them from forming a cluster. Our proposed method outperforms state-of-the-art approaches on low-resolution benchmarks, with a three percent improvement on TinyFace while maintaining performance on high-resolution benchmarks.

037

038

039

1. Introduction

One of the key factors of the recent advances in Face Recognition (FR) is the introduction of large-scale datasets [6, 25, 26, 27]. Publicly available training benchmarks, such as CASIA-WebFace [54], VGGFace [3], MS1MV2/3 [12, 6], and WebFace4M [60], are rich in width (thousands of identities) and depth (number of images per identities) [9]. However, large-scale training datasets consist of web-crawled images and mostly contain high-resolution instances [36]. As a result, there is a notable difference between training and real-world testing statistics [7]. In particular, the images captured by security cameras exhibit a lower image resolution than the samples used for training, as seen in Fig. 2 [4, 29, 61]. This disparity leads to a huge

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Anonymous IJCB 2023 submission

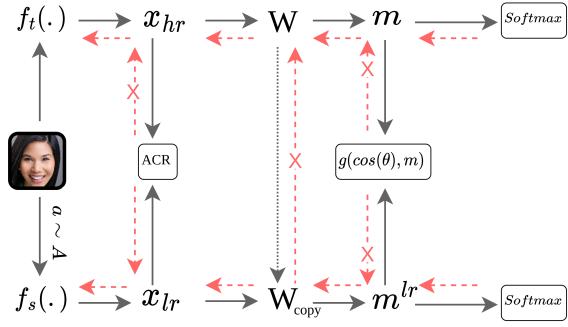


Figure 1. Our method aims to improve FR performance on LR input while maintaining the discriminability of the original HR embeddings. To achieve this, we propose to share the class proxies between student and teacher networks while asymmetrically pushing the LR feature embeddings to have higher mutual information with their HR counterparts.

performance gap in FR between High-Resolution (HR) and Low-Resolution (LR) since LR data are underrepresented during training [39]. Recently, studies have focused on developing better training objectives to solve this generalization problem [38, 39].

Whether a set of samples or a proxy represent an identity, FR training criteria can be categorized as proxy-less or proxy-based methods [9]. The former is based on pairwise similarities, such as contrastive or triplet loss learning [38, 40, 51, 43]. In the latter, a prototype (proxy) represents a person's identity and the network tries to learn a classification task (weights of the classifier represent the identities' proxy). In large-scale datasets, challenges concerning computationally expensive sample-mining of the proxy-less loss functions have led the current state-of-the-art (SOTA) FR training loss functions toward proxy-based approaches, such as L-Softmax [27], SphereFace [26], CosFace [48], and ArcFace [6]. Despite the remarkable improvement in numerous benchmarks, such as CFP-FP, LFW, CPLFW, and CALFW, significant performance degradation occurs when a FR is trained on these datasets and then applied to LR images [42, 39].

Two primary approaches have been explored to combat

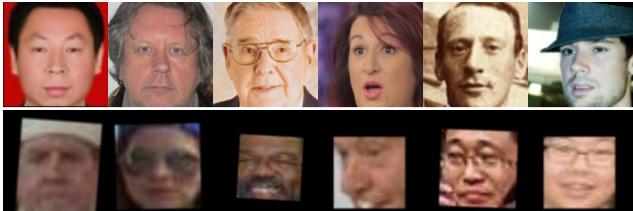


Figure 2. **Top:** Samples from the training datasets are mainly high-quality images. **Bottom:** TinyFace contains real-world low-quality instances. Comparing the top with the bottom, the gap between training and low-resolution testing benchmarks is apparent.

this: 1) construction-based and 2) projection-based methods. Construction-based methods involve enhancing the visual quality of the LR input before recognition, i.e., Face Super Resolution (FSR). This way, the FR process is separated into two tasks: identity-preserving FSR and Super Resolved Face Recognition (SRFR). Among face generation modules, special attention has been placed on Generative Adversarial Networks (GANs) [46, 18]. Despite the remarkable outputs concerning image quality and human perception, GANs add high-frequency components to the synthesized images, which negatively affects the recognition process [50]. Furthermore, since multiple HR faces exist for each LR image, FSR is an ill-posed problem [16]. Also, face images suffer from several other covariates (nuisance) factors, such as head pose, illumination, and expression. These factors result in a large gap between feature embeddings of HR and SR faces in the identity metric space, which significantly deteriorates the final FR performance [50].

Projection-based methods aim to create a shared embedding that can accommodate HR and LR images. To this end, synthetic LR data can be used to increase the resolution diversity of the dataset [42, 20]. However, due to the fixed-angular margin in conventional FR methods, they suffer from convergence problems and cannot fit well with data augmentations such as down-sampling or random cropping [58]. To address this issue, methods have been proposed to adaptively tune the margin based on the difficulty of the samples [57, 23, 32]. MagFace proposes to use the feature norm as the image-quality measure and tunes the margin. The adaptive margin has resolved the convergence problem to some extent. However, the performance still severely deteriorates when dealing with LR images [14]. For instance, typically the face verification accuracy on LFW is above 99%. However, the performance on Tinyface is around 59%.

Another line of work is to use Knowledge Distillation (KD) to obtain resolution agnostic face representation [44]. The main idea is to transfer the prior knowledge from HR images to train a model on the LR instances [42]. A teacher

network trained on HR images guides the LR model toward capturing discriminative features from LR instances. Since FR is an open-set problem, forcing the LR model to share the embedding space with the HR model is essential. A straightforward solution is to directly minimize the Euclidian distance between LR and HR model representations, which aligns the embedding spaces; we call it Feature Distillation (FD). Previous methods mainly focused on FD because the embedding of the HR model includes more information than the LR model. In practice, it is shown that more than a FD is needed to align the models' representations [42, 39]. Enforcing a sample-level restriction on cross-resolution FR in a rigorous manner can be sub-optimal, as it eliminates the effect of negative instances and cause the network to prioritize factors such as the pose, glasses, or other facial attributes.

In this paper, we propose the Classification Consistency Face (CCFace) recognition paradigm, which takes advantage of KD and unsupervised representation learning to enforce a consistency between logits and feature embeddings of HR, and LR pairs, see Fig. 3. CCFace shares the same proxy between the HR and LR images and uses the output score of the HR images as a measure of sample hardness to tune the margin penalty of LR samples. In this manner, the training objective is relaxed for the LR inputs to alleviate the overfitting and convergence problem. As the HR embedding is more discriminative, we use two asymmetric methods to maintain the model's performance on HR images: 1) updating the proxies only from HR loss, 2) applying Asymmetric Cross-Resolution (ACR) learning between the HR and LR images with the detached features of HR inputs. Contributions of this work can be summarized as follows:

- We introduce a framework to maintain the consistency between HR and LR face recognition by sharing the proxies between different resolutions and asymmetrically updating the proxies via gradient from HR prediction.
- We introduce sample-mining in tuning the angular margin for LR samples to relax the training for hard samples and reduce overfitting.
- We asymmetrically apply contrastive learning to align the representation of HR and LR images without harming the discriminative power of the model on the original HR images.

2. Related Works

2.1. General Face Recognition

FR is among the oldest and most surfed problems in computer vision and has matured over the years from uti-

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
lizing handcrafted features and local descriptors toward using deep learning-based models [38]. Existing deep network architectures, such as CNNs and ViT variants [13, 8], are dominant feature extractors in this area [6, 25]. The critical issue is how to train the deep model using a large-scale dataset and prevent overfitting [39]. Deep FR training schemes are either proxy-less or proxy-based. The former utilizes a tuple of similar and dissimilar images. It encourages the network to map the faces with the same identity to close representations and faces with distinct identities to distant representations [38]. The fact that these loss functions directly supervise sample-wise similarities is aligned with the final objective of the FR system. However, the sampling process required for these methods becomes challenging in large-scale datasets, which leads to convergence problems [21]. Therefore, most of the research has been dedicated to classification-based loss functions, such as L-Softmax [27], SphereFace [26], CosFace [48], and ArcFace [6].

2.2. Low-Resolution Face Recognition

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
LR facial images lack the details of their HR counterpart, such as eyes and skin texture. Therefore, learning discriminative representations from LR samples are much harder, and applying general FR learning methods results in unsatisfactory performance [42]. Two main approaches have been surfed for LR face recognition: 1) construction-based and 2) projection-based methods [56, 49, 2, 42, 10, 30, 59].

262
263
264
265
266
267
268
269
Construction-based methods are based on super-resolving the LR input prior to recognition. Apart from the ill-posed nature of the FSR problem, the main scheme of FSR is not optimized for discrimination, resulting in the unsatisfactory performance of the subsequent FR task [38]. To alleviate this, Zhang et al. [56] use the face verification loss in the identity metric space to guide the reconstruction model toward preserving identity information. Several studies focused on dividing the FSR into different sub-tasks. Wang et al. in [49] dedicated one network to reconstructing global details and the other to enhancing local details. Cao et al. [2] used Reinforcement Learning (RL) to localize regions and a local network to attend to the specified regions. Current FSR methods produce visually appealing results; however, their integration with the FR model degrades the overall performance [42]. Also, these methods are computationally intensive [42].

262
263
264
265
266
267
268
269
The projection-based approaches try to map both HR and LR images to a unified embedding [10, 30, 59]. To this end, various works focused on distilling well-constructed features from HR teacher to LR student module [59]. Zhu et al. [59] utilized the general KD approach of using soft-logits prediction of the teacher module to guide the student module for the task of LR classification. Numerous studies applied intermediate representation distillation from the HR

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
network to improve LR performance [34, 30, 10]. However, the consistency between HR and LR representations was not imposed, deteriorating the performance on cross-resolution scenarios. Among the facial parts, key parts are essential in FR, such as eyes and ears [22]. Kumar et al. in [22] force the model to generate key points using an auxiliary layer which guides the network toward focusing more on key facial characteristics. These methods mainly focused on improving the results of the LR images and did not maintain the performance of the original HR imagery. Also, guiding the LR network using the proxies of the HR network has not yet been explored for LR face recognition. Therefore, we investigate a prediction consistency knowledge distillation approach to improve the performance on LR images and preserve the model performance on HR images.

2.3. Knowledge Distillation

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
399
Knowledge distillation (KD), first proposed in [15], is a form of model compression that transfers knowledge from a robust teacher model into a small student model. Since its introduction, numerous distillation techniques have been developed [37, 45, 42]. FitNet [37] directly reduces the Euclidian distance between the student and teacher network. Combining representation learning with KD, CRD [45] utilizes contrastive objective to increase the mutual information between the teacher and student model. Despite the remarkable improvement in conventional KD, these methods are mainly designed for closed-set classification and are incompatible with FR. For instance, in [15] Kullback-Leibler (KL) divergence between soft logits of teacher and student network is used to distill knowledge. In an open-set problem such as FR, obtaining the discriminative feature is most important. Furthermore, consistency between features obtained from the teacher and student model is essential because cross-resolution embedding of a specific identity must be close to each other.

3. Method

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
459
This section begins with a preliminary proxy-based FR loss function. Then, we explain our proposed classification consistency framework and how we prevent overfitting and alleviate the convergence problem. Then, we analyze the embedding of the FR module when dealing with LR instances and show that LR samples form a cluster well separated from other classes. Then, we introduce our asymmetric cross-resolution framework based on state-of-the-art representation learning methods to restrain the LR samples from forming a cluster.

3.1. Preliminary

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
479
The majority of FR models consist of feature extractor $\mathcal{F} : \mathcal{I} \rightarrow \mathcal{X}$ mapping input faces \mathcal{I} from image space to an embedding space \mathcal{X} . At the top of the feature extractor,

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

there is a classifier $\mathcal{W} : \mathcal{X} \rightarrow \hat{\mathcal{Y}}$ to predict the input identity from the embedding. Using gradient descent, both the feature extractor and classifier will be trained end-to-end. To this end, the widely used Softmax cross-entropy is applied on the predicted labels [1, 19]:

$$L_i = -\log \frac{e^{W_{y_i}^T x_i}}{\sum_{j=1}^C e^{W_j^T x_i}}, \quad (1)$$

where $x_i \in \mathbb{R}^d$ is the d -dimensional representation of i -th input. $W \in \mathbb{R}^{d \times C}$ represents the learnable matrix where each column W_j is the proxy of j -th class. When both the x_i and W_j are mapped to a unit hypersphere, then the dot product $W_j^T x_i$ reflects the cosine of the angle between representation and proxy:

$$L_i = -\log \frac{e^{s \cos(\theta_{y_i})}}{\sum_{j=1}^C e^{s \cos(\theta_j)}}. \quad (2)$$

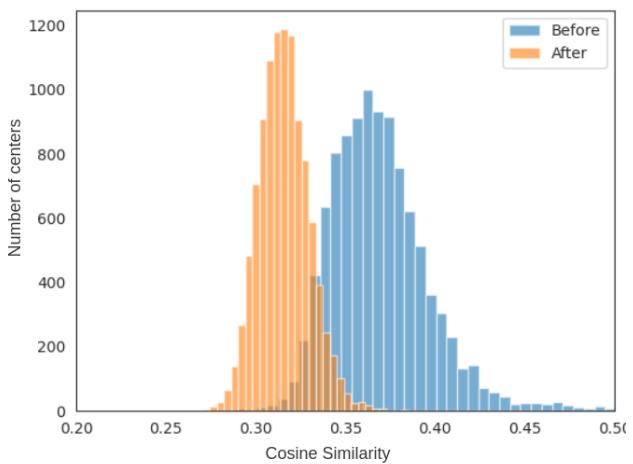
The introduction of angular penalty to the classification framework has been shown to be effective in increasing inter-class separability and intra-class compactness. SphereFace [26] argues that large-margin classification better aligns with open-set FR and introduces multiplicative angular margin for learning more discriminative features (period of the $\cos(\theta_{y_i})$). CosFace proposes using a vertical shift of the function $\cos(\theta_{y_i})$, which leads to more powerful feature discrimination and improved stability. ArcFace suggests using additive angular margin (phase shift of $\cos(\theta_{y_i})$), which has more clear geodesic interpretation and also improves the performance. In Eq. 3, m_s , m_c , and m_a show the angular penalty introduced by SphereFace, CosFace, and ArcFace, respectively.

$$L_i = -\log \frac{e^{s \cos(m_s \theta_{y_i} + m_a) - m_c}}{e^{s \cos(m_s \theta_{y_i} + m_a) - m_c} + \sum_{j=1, j \neq y_i}^C e^{s \cos(\theta_j)}}. \quad (3)$$

3.2. Classification Consistency

Here unlike conventional KD approaches, the teacher and student networks have the same architecture. Instead, the teacher network only sees the original images, and the student network the down-sampled instances. Given a training set D , the LR samples are obtained from down-sampling with varying interpolations (s): $D_{LR} : \{(I_i^{LR}, y_i) : I_i^{LR} = I_i \downarrow_s\}_{i=0}^N$, $s \in S$. N is the total number of samples. As presented in Fig. 4, $f_t(\cdot)$ and $f_s(\cdot)$, map the HR and LR faces to a d -dimensional embedding space; $x_i^{HR} = f_t(I_i)$ and $x_i^{LR} = f_s(I_i^{LR})$.

As discussed in section 3.1, in the current SOTA FR objective functions, the similarity between features is guided through the cosine angle between features and softmax proxies. Therefore, the inter-class discrepancy increases if



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 3. Maximum similarity between classifier proxies, before and after applying CCFace to a model trained by LR instances.

the proxies are well distributed on the hypersphere. Recently, numerous studies have been conducted on uniformly distributing the proxies on the hypersphere [24]. In Fig. 3, we show our studies on the inter-class similarity from the proxies' viewpoint. We illustrate the maximum inter-class cosine value in two scenarios: 1) model trained on the original MS1MV2 dataset, 2) model trained on the down-sampled version of MS1MV2. This observation shows that naively training on the LR samples will result in poor discrimination (increase in inter-class similarity). The inter-class similarity is drastically increased in the model trained on LR images. Therefore, features being supervised through these proxies would not achieve preferred discriminability.

To overcome this issue, we propose sharing the teacher network's proxies with the student model: $W^{HR} = W^{LR} = W$. However, the student model does not adjust the proxies and only uses them as a part of its forward propagation. Also, both networks are being trained using conventional large-angular margin loss function:

$$L_i^{HR} = -\log \frac{e^{s \cos(\theta_{y_i}^{HR} + m)}}{e^{s \cos(m_s \theta_{y_i} + m)} + \sum_{j=1, j \neq y_i}^C e^{s \cos(\theta_j^{HR})}}, \quad (4)$$

$$L_i^{LR} = -\log \frac{e^{s \cos(\theta_{y_i}^{LR} + m^{LR})}}{e^{s \cos(m_s \theta_{y_i} + m^{LR})} + \sum_{j=1, j \neq y_i}^C e^{s \cos(\theta_j^{LR})}}, \quad (5)$$

where m and m^{LR} are the angular margins applied to HR and LR samples, respectively. In this way, the feature representation of LR images is implicitly forced to move toward HR representation in high-dimensional embedding space. In the following section, we explain how we utilize the HR

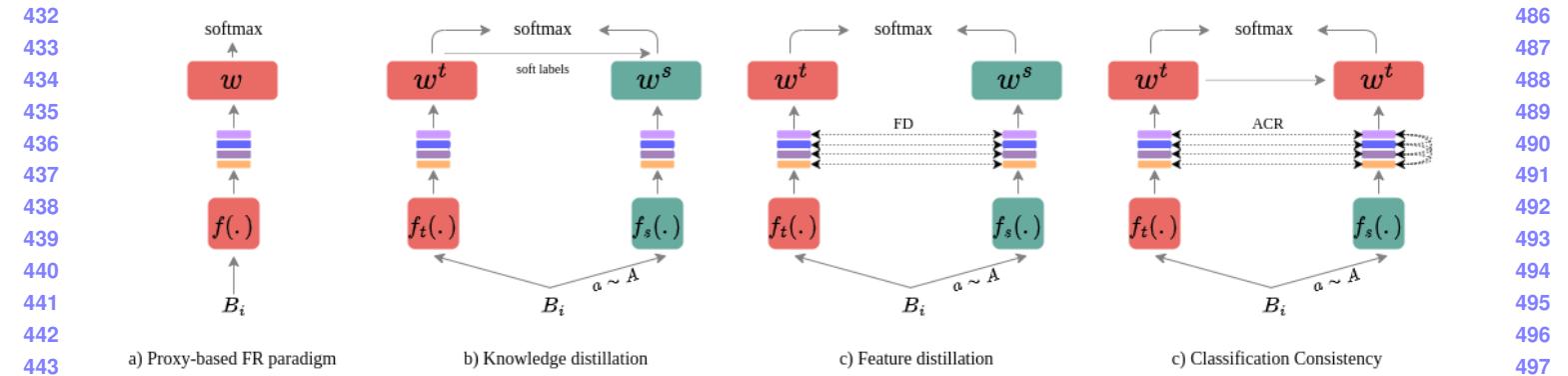


Figure 4. a) The general framework of proxy-based face recognition training has convergence issues when there are many hard samples (augmented data). b) The original knowledge-distillation paradigm in which the predicted probability of the teacher model is used as the target for the student model. c) Feature distillation derived from Knowledge-distillation. The similarity between teacher and student model features is being directly supervised, only via positive pairs. d) Classification consistency framework in which the teacher model knowledge is transferred to the student model through the classifier proxies and the feature similarity supervision. Also, ACR pushes the negative pairs of low-resolution instances to prevent forming a cluster.

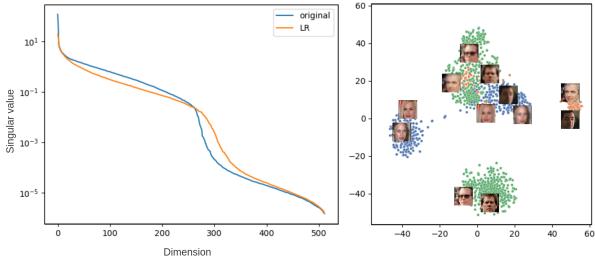


Figure 5. **left:** Singular value spectrum of embedding spaces. The representations were obtained from trained R50 on 1,000 randomly selected samples of the training data and their down-sampled version. Each feature vector has 512 dimensions. **right:** A visualization of hypersphere embeddings of the training dataset (every color represents an identity) generated by t-SNE [27]. Perturbs images, i.e., low-resolution augmentation, causes embeddings to migrate to form a common cluster.

model prediction to tune the angular margin of the LR samples. Also, we further elucidate why simultaneously training two models helps the final performance of the student model.

3.3. Cross-resolution Angular Margin Adaptivity

Generally, there are three types of samples on the original training dataset: 1) easy, 2) hard, and 3) unrecognizable [39]. Applying augmentation on different samples can produce different types of samples, whether unrecognizable or hard. Angular margin helps the model push the features toward the corresponding positive proxy, i.e., by reducing the value of $\cos(\theta)$. Larger margin results in more loss and eventually more gradient to adjust the network weights. For a better illustration of the effect of angular margin on the

loss and the magnitude of the gradient that the loss imposes on the network, we conduct a simple experiment. In a 2k classification problem, we changed the value of $\cos(\theta_{y_i})$ from zero to one while the negative similarity scores with all of the classes are fixed to 0.1, $\cos(\theta_j) = 0.1; j \neq y_i$. Reducing the Eq. 3 to ArcFace:

$$L_i = -\log \frac{e^{s \cos(\theta_{y_i} + m_a)}}{e^{s \cos(\theta_{y_i} + m_a)} + \sum_{j=1, j \neq y_i}^C e^{s \cos(\theta_j)}}, \quad (6)$$

by deriving the gradient of Eq. 6 with regard to x_i :

$$\begin{aligned} \frac{\partial L_i}{\partial x_i} &= (p_{i,y_i} - 1) \frac{\partial \cos(\theta_{y_i} - m)}{\partial \cos(\theta_{y_i})} w_{y_i} + \sum_{j=1, j \neq y_i}^C p_{i,j} w_j \\ &= \sum_{j=1}^C w_j (p_{i,j} - \mathbb{1}(y_i = j)) \left(\frac{\partial \cos(\theta_j - m(y_i = j))}{\partial \cos(\theta_j)} \right), \end{aligned} \quad (7)$$

$$p_{i,j} = \frac{\exp(s \cos(\theta_j + m(y_i = j)))}{\exp(s \cos(\theta_{y_i} + m)) + \sum_{j=1}^C \exp(s \cos(\theta_j))}, \quad (8)$$

where we denote with $\mathbb{1}[E]$ the indicator vector which outputs m if the event E is true and 0 otherwise. Note that the feature and softmax proxies are mapped to the unit hypersphere: $\|w_j\| = 1$. Therefore, in Eq. 7 only the term $(p_{i,y_i} - \mathbb{1}(y_i = j)) \left(\frac{\partial \cos(\theta_j - m(y_i = j))}{\partial \cos(\theta_j)} \right)$ affects the gradient magnitude. In Fig. 6, we illustrate the gradient magnitude and the loss function value, which shows that the larger angular margin results in more adjustments for the backbone. Therefore, applying the same angular margin on HR and LR samples can result in a convergence problem or overfitting of the student model [20, 32, 39]. We propose dynamically tuning the LR samples' margin value based on the

540 Table 1. Verification performance comparison on the IJB-B and
 541 IJB-C datasets.

Method	IJB-B	IJB-C
TAR@FAR: 0.0001		
CurricularFace	94.80	96.10
MagFace	94.51	95.97
Mv-Arc-Softmax	93.6	95.2
Ours	94.91	96.29

548
 549
 550 HR samples' difficulty. One of the well-established sample
 551 difficulty measures is the softmax's output score. Here, we
 552 utilized the probability output of the teacher network to tune
 553 the margin value in the student model:

$$554 \quad m^{LR} = \max(0, m * \cos(\theta_{y_i})), \quad (9)$$

555 where $\max(\cdot)$ is for cases when the original sample is either
 556 unrecognizable or extremely hard for the teacher model.
 557 Therefore, applying margin on the LR version of that sample
 558 is not preferred [39]. Since both models are being simultaneously
 559 trained, Eq. 9 helps the student model to ignore hard samples at the
 560 beginning of the training. Then at the final epochs, the model is able to
 561 concentrate more on the hard instances.

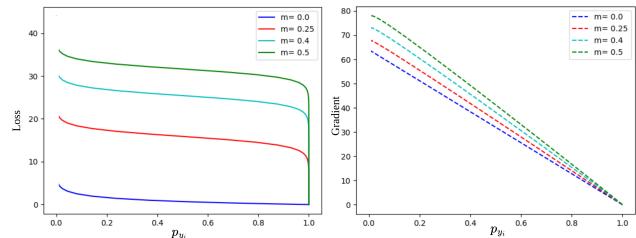
562 3.4. Asymmetric Cross-Resolution Learning

563 Here, we describe the Asymmetric Cross-Resolution
 564 Learning (ACR) learning of CCFace in detail. To begin
 565 with, we first discuss the need for the ACR learning. Then
 566 we describe our asymmetric loss function, which is based
 567 on the state-of-the-art approaches for representation learning.

568 During the training of angular-based FR algorithms, the
 569 network maps the hard instances of each class near the decision
 570 boundary [32]. The general idea is that the LR version
 571 of images would also be mapped near the class boundary
 572 since they are hard samples for the network [7]. However,
 573 studies have shown that the LR samples tend to cluster with
 574 each other [36, 7]. Fig. 5 shows this counterintuitive
 575 phenomenon, which we validate in the following experiment.
 576 We experimented with the representation obtained from the
 577 original and down-sampled training instances. First, we
 578 randomly picked 1000 samples and computed their represen-
 579 tations, $X \in R^{512 \times 1000}$. Then, we compute the covari-
 580 ance matrix, $C \in R^{512 \times 512}$:

$$581 \quad C = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})(x_i - \bar{x})^T, \quad (10)$$

582 where $N = 1,000$ is the number of samples. Fig. 5 shows
 583 the singular value decomposition of C in logarithmic scale
 584 and sorted order. As can be seen in this figure, the differ-
 585 ence between the order of magnitude of singular values does
 586 not imply the dimensional collapse. From the observation



587 Figure 6. Shows the curves for the loss values (left) and the gradi-
 588 ent received to the backbone (right) versus $p_{y_i} = \frac{e^{s(\cos(\theta_{y_i}))}}{\sum_{j=1}^C e^{s(\cos(\theta_j))}}$,
 589 when $\cos(\theta_{y_i})$ changes from -1 to 1.

590 In Fig. 5, we can conclude that dimensional collapse is not
 591 happening in LR samples, and LR instances are forming a
 592 cluster well separated from the other classes. An explicit
 593 solution is reducing the pairwise distance between the nor-
 594 malized HR and LR representation of every subject presented
 595 in a mini-batch:

$$596 \quad L_{fd} = \frac{1}{2N} \sum_{i=1}^N \left\| \frac{x_i^{LR}}{x_i^{LR}} - \frac{x_i^{HR}}{x_i^{HR}} \right\|^2, \quad (11)$$

597 where N is the number of samples in a mini-batch. L_{fd}
 598 reduces the discrepancy between (HR, LR) pairs; However,
 599 rigidly adopting such a sample-level constraint to the cross-
 600 resolution FR is sub-optimal, i.e. no negative instances are
 601 in Eq. 11. Using L_{fd} , the network may be induced to fo-
 602 cuse on the frontal pose, the glasses, or other non-identity
 603 facial attributes instead of the identity features of the HR-
 604 LR image pair. To increase the cross-resolution intra-class
 605 compactness, the network should consider different sam-
 606 ples of an identity. Furthermore, to prevent LR represen-
 607 tations from forming a cluster, the loss function should in-
 608 crease the inter-class discrimination among LR representa-
 609 tions. To this end, we proposed ACR to promote dis-
 610 crimination among the LR images and increase the mutual
 611 information among the HR and LR counterparts of the same
 612 subject:

$$613 \quad h(x^{LR}, x^{HR}) = \exp\left(\frac{1}{\tau} \frac{x^{LR} \cdot x^{HR}}{\|x^{LR}\| \cdot \|x^{HR}\|}\right), \quad (12)$$

$$614 \quad L_{acr,i} = -\log \frac{1}{|P_i|} \sum_{p \in P_i} \frac{h(x_p^{HR}, x_i^{LR})}{\sum_{j \in N_i} h(x_j^{HR}, x_i^{LR})}. \quad (13)$$

615 In Eq. 13, N_i is a set of all negative LR samples presented
 616 in the mini-batch for x_i ($N_i \equiv n \in B : y_n \neq y_i$), P_i is a
 617 set of all positive HR samples ($P_i \equiv p \in B : y_p = y_i$) and
 618 $|P_i|$ is its cardinality. To maintain the performance on orig-
 619 inal HR data and since the HR representations have good
 620 intra-class compactness and inter-class discrimination, the
 621 detached HR features are used in Eq. 13. Therefore, Eq.
 622 13 asymmetrically forces the LR representation to increase

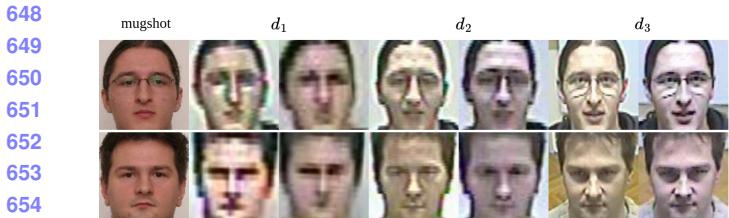


Figure 7. Samples of SCFace. The first column shows the high-quality mugshot instances. For every distance $\{d_1, d_2, d_3\}$, images are taken using seven different cameras. Two images per distance are shown here, demonstrating the effect of changing the camera in the images.

their mutual information with their HR counterparts [38]. Also, it penalizes the similarity between negative LR representations, which prevents them from forming a cluster.

4. Experiments

4.1. Datasets.

We report our experiments based on using MS1MV2 as the training dataset [12, 6]. The MS1MV2 dataset is a refined version of the MS-Celeb-1M dataset with 85k identities and 4 million images. Images were down-sampled using random interpolation to construct the HR and LR pairs. For evaluation, we report our results on LFW, CFP-FP, AgeDB, CPLFW, and CALFW. To validate the proposed method's performance on real-world LR faces, we also report our results on the TinyFace [5] and SCFace [47] datasets. We used an aligned version of these datasets in which samples are resized to 112 by 112 [20]. Also, we report our performance on IJB-B and IJB-C as benchmarks which contain both HR and LR samples.

IJB-B and IJB-C: IJB-B [52] contains around 21.8K images (11.8K faces and 10K non-face images) and 7k videos (55K frames). A total of 1,845 identities are presented in this dataset. Our experimental protocols follow the standard 1:1 verification, which contains 10,270 positive and 8M negative matches. There are 12,115 templates in the protocol, each of which consists of multiple images or frames. Consequently, a template-based matching process is used. Specifically, we average over the instances in a template to obtain the global feature vector for each template. IJB-C [31] is the extended version of IJB-B, including 31.3K images and 117.5K frames from 3,531 identities. The testing protocol of IJB-C is similar to IJB-B.

SCFace: SCface [16] is a challenging cross-resolution FR dataset. It contains HQ mugshot and LQ images captured by surveillance cameras. The images were taken from 130 subjects in an uncontrolled indoor environment using five video surveillance cameras at different distances $d_i \in \{4.2, 2.6, 1.0\}$ (meter); five images at each distance. Also, one frontal mugshot image for each subject is ob-

Table 2. Identification accuracy on TinyFace

	Architecture	DataSet	Acc@1	Acc@5
AT [55]	ResNet50	CASIA	36.54	50.62
HORKD [10]	ResNet50	CASIA	45.49	54.80
A-SKD [42]	ResNet50	CASIA	47.91	56.55
URL [41]	ResNet100	MS1MV2	63.89	68.67
CurricularFace [17]	ResNet100	MS1MV2	63.68	67.65
CCFace	ResNet100	MS1MV2	65.71	69.25

tained using a digital camera, Fig. 7. In an experiment similar to [16], we employ frontal mugshot images as our gallery and samples taken by surveillance cameras as probes.

4.2. Metrics.

There are two primary approaches to validating an FR paradigm's performance: 1) Recognition and 2) Verification. Recognition is a 1:N task where the network should calculate the similarity score of a given probe image with all the samples in the gallery and determine the identity of the probe image. Face verification is a 1:1 task where the network should determine whether a given pair of images represent the same identity. We report the verification results on the LFW, CFP-FP, AgeDB, CPLFW, IJB-B, IJB-C, and CALFW datasets. The result for identification is reported on the SCFace and TinyFace datasets.

4.3. Implementation details.

We followed the ArcFace setup for preprocessing [6]. All the images are resized to 112×112 , aligned to a canonical view, and pixel values are normalized to $[-1, 1]$. To produce synthetic low-resolution samples, we randomly apply different down-sampling interpolations on the I_{HR} , including bilinear, nearest neighbor, and bicubic. Also, the size of the LR image is uniformly sampled from $\{(16 \times 16), (20 \times 20), (32 \times 32)\}$. Together, there would be twenty-seven distinct augmentations. The experiments are conducted with ResNet100 as the backbone [6] unless mentioned. The model is trained for 24 epochs with the Arcface loss. The optimizer is SGD, with the learning rate starting from 0.1 decreased by a factor of 10 at epochs $\{10, 16, 22\}$. The optimizer weight-decay is set to 0.0005, and the momentum is 0.9. During training, the mini-batch size on each GPU is 512, and the model is trained using two Quadro RTX 8000. After training is finished, we disregard the teacher model and only use the student model for evaluation.

4.4. Performance Comparison

In this section, we assess CCFace's performance against the SOTA methods, such as CurricularFace, MagFace, and URL, using TinyFace, SCFace, IJB-B, and IJB-C datasets. Results in Table 1 demonstrate CCFace's competitive performance against other methods. Showing the efficacy of

756 Table 3. Identification accuracy on SCFace
757

Method	Distance		
	d1	d2	d3
SKD [11]	43.5	48.0	53.50
CGAN [44]	44.81	49.61	54.30
MDS [33]	60.3	66.0	69.5
DMDS [53]	61.5	67.2	62.9
VGGFace [35]	41.3	75.5	88.8
DCR [28]	73.3	93.5	98.0
CCFace (r50,MS1MV2)	74.8	94.01	99.47

766 alignment between teacher and student model. Since IJB-B
767 and IJB-C contain both HR and LR samples, this performance
768 shows the ability of the proposed method to generalize across a wide range of resolutions. Table 2 demon-
769 strates the results on TinyFace. According to this result,
770 CCFace can effectively boost the discrimination power over
771 the LR data, which results in over 3 percent improvement
772 in TinyFace data. To evaluate the performance of CCFace
773 for cross-resolution scenarios, Table 3 shows the identifi-
774 cation result on the SCFace dataset. CCFace could improve
775 the results of the previous methods by more than one per-
776 cent. Success across datasets with varying quality levels,
777 from LR to HR, shows the efficacy in alignment between
778 teacher and student embedding space, and maintaining the
779 discriminability on both HR and LR images.

780 5. Ablation Study

781 5.1. Impact of Augmentation

782 One of the major issues with angular-margin-based loss
783 functions, which are dominant in FR, is that their integration
784 with data augmentation is challenging [39]. In order to al-
785 levi-
786 ate this issue, we use the output probability of the teacher
787 network to tune the margin value for augmented samples;
788 see section 3.3 for more detail. Table. 4 shows the student
789 model’s performance with different augmentation proba-
790 bilities. Increasing the augmentation occurrence boosts the FR
791 performance on the LR faces considerably; however, negli-
792 gible performance degradation is observed on high-quality
793 benchmarks. Table. 4 also shows the performance of the
794 student model without using an adaptive margin. Since the
795 augmentation process increases the chance of unrecogniz-
796 able instances, the performance gain is inconsistent.

801 5.2. Components of Proposed Training

802 Here, we analyze the impact of different elements within
803 our training paradigm on performance. Our experiments
804 utilize R18 as the backbone and CASIA as the training
805 dataset. As shown in Table. 5, training a network solely
806 with a single classifier results in poor performance on the
807 LR samples. However, sharing the classifier between the
808 teacher and student improves performance to some ex-

810 Figure 8. **Top:** Original samples of the training dataset. **Bottom:**
811 The augmented version of training samples. Comparing original
812 and augmented images, the samples’ hardness is clearly increased
813 implying that naive training on augmented samples with constant
814 margin results in convergence issues or overfitting.

815 Table 4. Verification TAR@FAR:0.0001 for the IJB-B and IJB-C
816 datasets with different amounts of augmentation during the train-
817 ing.

Augmentation Prob.	Adaptive Margin	IJB-B	IJB-C
0.0	✓	94.53	95.29
0.1	✓	94.74	95.59
0.2	✓	94.91	96.29
0.2		94.56	95.42

818 Table 5. Ablation study on the effect of the proposed method on
819 the performance. CR: Cross-resolution matching (every testing
820 pair contain one HR and one LR image), SC: Shared classifier,
821 AM: Adaptive angular margin.

Res	CR	SC	AM	ACR	LFW	CFP-FP	CPLFW	CALFW	Age-DB
16	✓				91.2	73.3	74.3	75.3	68.7
	✓	✓			92.3	75.9	79.9	78.4	71.5
	✓	✓	✓		95.9	83.6	83.0	82.0	75.4
	✓	✓	✓	✓	92.1	73.9	80.1	74.2	68.8
64	✓				99.7	98.3	93.4	95.9	97.9
	✓	✓			99.7	98.5	93.3	96.01	98.12
	✓	✓	✓		99.8	98.8	93.3	96.13	98.3
	✓	✓	✓	✓	99.7	98.0	94.4	95.6	97.9

822 tent. Additionally, incorporating an adaptive margin into
823 the model enhances performance on the LQ dataset. No-
824 tably, the application of ACR between the teacher and stu-
825 dent significantly improves the cross-quality scenario.

826 6. Conclusion

827 The proposed CCFace framework strives to maintain its
828 performance on a wide variety of resolutions and general-
829 ize well for cross-resolution FR by simply sharing the clas-
830 sifier between the student and teacher network. We estab-
831 lished that identities’ proxies constructed from HR images
832 are simple yet effective knowledge that can help the model
833 to compensate for the information loss in the LR images and
834 find a discriminative representation for the LR instances.
835 Furthermore, our method prevents LR samples from form-
836 ing a distinct cluster by applying pushing force directly be-
837 tween LR samples in a contrastive manner.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

References

[1] P. Aghdaie, B. Chaudhary, S. Soleymani, J. Dawson, and N. M. Nasrabadi. Morph detection enhanced by structured group sparsity. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 311–320, 2022.

[2] Q. Cao, L. Lin, Y. Shi, X. Liang, and G. Li. Attention-aware face hallucination via deep reinforcement learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 690–698, 2017.

[3] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces across pose and age. In *2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018)*, pages 67–74. IEEE, 2018.

[4] Z. Cheng, X. Zhu, and S. Gong. Low-resolution face recognition. In *Asian Conference on Computer Vision*, pages 605–621. Springer, 2018.

[5] Z. Cheng, X. Zhu, and S. Gong. Low-resolution face recognition. In *Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14*, pages 605–621. Springer, 2019.

[6] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4690–4699, 2019.

[7] S. Deng, Y. Xiong, M. Wang, W. Xia, and S. Soatto. Harnessing unrecognizable faces for improving face recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 3424–3433, 2023.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

[9] H. Du, H. Shi, Y. Liu, J. Wang, Z. Lei, D. Zeng, and T. Mei. Semi-siamese training for shallow face learning. In *European Conference on Computer Vision*, pages 36–53. Springer, 2020.

[10] S. Ge, K. Zhang, H. Liu, Y. Hua, S. Zhao, X. Jin, and H. Wen. Look one and more: Distilling hybrid order relational knowledge for cross-resolution image recognition. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 10845–10852, 2020.

[11] S. Ge, S. Zhao, C. Li, and J. Li. Low-resolution face recognition in the wild via selective knowledge distillation. *IEEE Transactions on Image Processing*, 28(4):2051–2062, 2018.

[12] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part III 14*, pages 87–102. Springer, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

[14] M. He, J. Zhang, S. Shan, and X. Chen. Enhancing face recognition with self-supervised 3d reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4062–4071, 2022.

[15] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2(7), 2015.

[16] R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2439–2448, 2017.

[17] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In *proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5901–5910, 2020.

[18] Y.-J. Ju, G.-H. Lee, J.-H. Hong, and S.-W. Lee. Complete face recovery GAN: Unsupervised joint face rotation and de-occlusion from a single-view image. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 3711–3721, 2022.

[19] H. Kashiani, S. M. Sami, S. Soleymani, and N. M. Nasrabadi. Robust ensemble morph detection with domain generalization. *arXiv preprint arXiv:2209.08130*, 2022.

[20] M. Kim, A. K. Jain, and X. Liu. Adaface: Quality adaptive margin for face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18750–18759, 2022.

[21] Y. Kim, W. Park, and J. Shin. Broadface: Looking at tens of thousands of people at once for face recognition. In *European Conference on Computer Vision*, pages 536–552. Springer, 2020.

[22] A. Kumar and R. Chellappa. S2ld: Semi-supervised landmark detection in low-resolution images and impact on face verification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 758–759, 2020.

[23] H. Liu, X. Zhu, Z. Lei, and S. Z. Li. Adaptiveface: Adaptive margin and sampling for face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11947–11956, 2019.

[24] W. Liu, R. Lin, Z. Liu, L. Liu, Z. Yu, B. Dai, and L. Song. Learning towards minimum hyperspherical energy. *Advances in neural information processing systems*, 31, 2018.

[25] W. Liu, Y. Wen, B. Raj, R. Singh, and A. Weller. Sphereface revived: Unifying hyperspherical face recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2022.

[26] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding for face recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 212–220, 2017.

[27] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural networks. *arXiv preprint arXiv:1612.02295*, 2016.

972 [28] Z. Lu, X. Jiang, and A. Kot. Deep coupled resnet for low- 1026
 973 resolution face recognition. *IEEE Signal Processing Letters*, 1027
 974 25(4):526–530, 2018. 1028
 975 [29] Y. M. Lui, D. Bolme, B. A. Draper, J. R. Beveridge, 1029
 976 G. Givens, and P. J. Phillips. A meta-analysis of face 1030
 977 recognition covariates. In *2009 IEEE 3rd International Conference 1031
 978 on Biometrics: Theory, Applications, and Systems*, pages 1– 1032
 979 8. IEEE, 2009. 1033
 980 [30] F. V. Massoli, G. Amato, and F. Falchi. Cross-resolution 1034
 981 learning for face recognition. *Image and Vision Computing*, 1035
 982 99:103927, 2020. 1036
 983 [31] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, 1037
 984 C. Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, 1038
 985 et al. Iarpa janus benchmark-c: Face dataset and protocol. In 1039
 986 *2018 International Conference on Biometrics (ICB)*, pages 1040
 987 158–165. IEEE, 2018. 1041
 988 [32] Q. Meng, S. Zhao, Z. Huang, and F. Zhou. Magface: A 1042
 989 universal representation for face recognition and quality 1043
 990 assessment. In *Proceedings of the IEEE/CVF Conference on 1044
 991 Computer Vision and Pattern Recognition*, pages 14225–14234, 1045
 992 2021. 1046
 993 [33] S. P. Mudunuri and S. Biswas. Low resolution face 1047
 994 recognition across variations in pose and illumination. *IEEE 1048
 995 transactions on pattern analysis and machine intelligence*, 1049
 996 38(5):1034–1040, 2015. 1050
 997 [34] W. Park, D. Kim, Y. Lu, and M. Cho. Relational knowledge 1051
 998 distillation. In *Proceedings of the IEEE/CVF Conference on 1052
 999 Computer Vision and Pattern Recognition*, pages 3967– 1053
 1000 3976, 2019. 1054
 1001 [35] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep 1055
 1002 face recognition. 2015. 1056
 1003 [36] W. Robbins and T. E. Boult. On the effect of atmospheric 1057
 1004 turbulence in the feature space of deep face recognition. In 1058
 1005 *Proceedings of the IEEE/CVF Conference on Computer Vision 1059
 1006 and Pattern Recognition*, pages 1618–1626, 2022. 1060
 1007 [37] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, 1061
 1008 and Y. Bengio. Fitnets: Hints for thin deep nets. *arXiv 1062
 1009 preprint arXiv:1412.6550*, 2014. 1063
 1010 [38] M. S. E. Saadabadi, S. R. Malakshan, S. Soleymani, 1064
 1011 M. Mostafa, and N. M. Nasrabadi. Information 1065
 1012 maximization for extreme pose face recognition. *arXiv preprint 1066
 1013 arXiv:2209.03456*, 2022. 1067
 1014 [39] M. S. E. Saadabadi, S. R. Malakshan, A. Zafari, M. Mostafa, 1068
 1015 and N. M. Nasrabadi. A quality aware sample-to-sample 1069
 1016 comparison for face recognition. In *Proceedings of the 1070
 1017 IEEE/CVF Winter Conference on Applications of Computer 1071
 1018 Vision (WACV)*, pages 6129–6138, January 2023. 1072
 1019 [40] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A 1073
 1020 unified embedding for face recognition and clustering. In 1074
 1021 *Proceedings of the IEEE conference on computer vision and 1075
 1022 pattern recognition*, pages 815–823, 2015. 1076
 1023 [41] Y. Shi, X. Yu, K. Sohn, M. Chandraker, and A. K. Jain. 1077
 1024 Towards universal representation learning for deep face 1078
 1025 recognition. In *Proceedings of the IEEE/CVF Conference on 1079
 Computer Vision and Pattern Recognition*, pages 6817–6826, 2020.

1080 [57] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li. Adacos: 1134
 1081 Adaptively scaling cosine logits for effectively learning deep 1135
 1082 face representations. In *Proceedings of the IEEE/CVF Conference 1136
 1083 on Computer Vision and Pattern Recognition*, pages 1137
 1084 10823–10832, 2019. 1138
 1085 [58] Y. Zhang, S. Herdade, K. Thadani, E. Dodds, J. Culpepper, 1139
 1086 and Y.-N. Ku. Unifying margin-based softmax losses in face 1140
 1087 recognition. In *Proceedings of the IEEE/CVF Winter Conference 1141
 1088 on Applications of Computer Vision*, pages 3548–3557, 1142
 1089 2023. 1143
 1090 [59] M. Zhu, K. Han, C. Zhang, J. Lin, and Y. Wang. Low- 1144
 1091 resolution visual recognition via deep feature distillation. 1145
 1092 In *ICASSP 2019-2019 IEEE International Conference on 1146
 1093 Acoustics, Speech and Signal Processing (ICASSP)*, pages 1147
 3762–3766. IEEE, 2019. 1148
 1094 [60] Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, 1149
 1095 T. Yang, J. Lu, D. Du, et al. Webface260m: A benchmark 1150
 1096 unveiling the power of million-scale deep face recognition. 1151
 1097 In *Proceedings of the IEEE/CVF Conference on Computer 1152
 1098 Vision and Pattern Recognition*, pages 10492–10502, 2021. 1153
 1099 [61] W. W. Zou and P. C. Yuen. Very low resolution face 1154
 1100 recognition problem. *IEEE Transactions on image processing*, 1155
 21(1):327–340, 2011. 1156
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133