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Abstract

With the increasing integration of smartphones into our
daily lives, fingerphotos are becoming a potential contact-
less authentication method. While it offers convenience,
it is also more vulnerable to spoofing using various pre-
sentation attack instruments (PAI). The contactless finger-
print is an emerging biometric authentication but has not
yet been heavily investigated for anti-spoofing. While ex-
isting anti-spoofing approaches demonstrated fair results,
they have encountered challenges in terms of universal-
ity and scalability to detect any unseen/unknown spoofed
samples. To address this issue, we propose a universal
presentation attack detection method for contactless finger-
prints, despite having limited knowledge of presentation at-
tack samples. We generated synthetic contactless finger-
prints using StyleGAN from live finger photos and integrat-
ing them to train a semi-supervised ResNet-18 model. A
novel joint loss function, combining the Arcface and Center
loss, is introduced with a regularization to balance between
the two loss functions and minimize the variations within
the live samples while enhancing the inter-class variations
between the deepfake and live samples. We also conducted
a comprehensive comparison of different regularizations’
impact on the joint loss function for presentation attack
detection (PAD) and explored the performance of a mod-
ified ResNet-18 architecture with different activation func-
tions (i.e., leaky ReLU and RelU) in conjunction with Arc-
face and center loss. Finally, we evaluate the performance
of the model using unseen types of spoof attacks and live
data. Our proposed method achieves a Bona Fide Classifi-
cation Error Rate (BPCER) of 0.12%, an Attack Presenta-
tion Classification Error Rate (APCER) of 0.63%, and an
Average Classification Error Rate (ACER) of 0.37%.

1. Introduction

Biometric systems have been used in wide range of ap-
plications such as law enforcement and forensics, individ-
ual identification, healthcare, and access control for smart

phone and tablet which increase convenience in our daily
life. Some of the traditional contact-based biometric sys-
tems such as fingerprints and palm prints required the phys-
ical touch of the user to a sensor, which then increases user
concern about hygiene and public shared devices. More-
over, aside from hygiene-related issues, the elasticity of hu-
man skin can lead to shape and detail changes in captured
touch base biometric when direct contact is made with scan-
ner [14, 3]. Due to this concern and the recent advancement
in sensors and cameras, contactless biometrics have gained
major popularity for commercial use. Contactless biometric
systems also offer high speed authentication/identification
since it does not require physical contact. For instance,
smartphones can be used to capture finger photos to be used
for biometric authentication. However, obtaining high qual-
ity image to extract minutia of fingerprints is challenging
compared to contact based sensors due to low contrast of
ridge and valley patterns [16, 7]. Furthermore, although
contactless biometrics provide a number of advantages as
mentioned earlier, they are also more susceptible to deep-
fake and spoofing attack [5]. For instance, facial recogni-
tion systems are vulnerable to deepfake such as masking,
or contactless fingerprint are susceptible to photopaper or
synthetic.

The presence of various types of attacks, as well as the
emergence of unpredictable attack techniques, highlights
the need for generalization in presentation attack detection
(PAD) systems to effectively detect unseen types of attacks
[11]. Although face biometric anti-spoofing has been exten-
sively studied in the literature, there is currently a lack of re-
search regarding the study of presentation attack detection
on contactless fingerprint biometric systems. Furthermore,
the current research on PAD heavily relies on supervised
learning techniques, where both genuine and spoofed sam-
ples are used during the model training — exhibits poor per-
formance against unseen attacks. To address that limitation,
we present a semi-supervised learning model that utilizes a
residual network (ResNet18) with training of only live and
synthetic spoofed samples. The main contributions of this
paper are as follows:
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Figure 1. Different spoofed samples from CLARKSON and COLFISPOOD dataset.

* We proposed a universal presentation attack detection
mechanism for contactless fingerprints based on lim-
ited knowledge of presentation attack samples. To
that end, we generated synthetic contactless fingerpt-
ints from live samples using StyleGAN to train a semi-
supervised RestNetl8. The model is trained on gen-
uine data along with only synthetic spoof attacks.

* We introduced a novel joint loss function by combin-
ing the Arcface and Center Loss functions along with
regularization to balance between two loss functions.
By employing the joint loss function, we aim to mini-
mize the variations within the live samples, while si-
multaneously enlarging the inter-class variations be-
tween deepfake and live samples.

* We conducted a comprehensive comparison of vari-
ous regularizations’ impact on the joint loss function
for PAD. Additionally, we evaluated and demonstrated
the results of using a modified ResNet-18 architecture
with different activation functions, such as leaky ReLLU
and ReLU, in combination with Arcface and Center
loss. Our findings shed light on the effectiveness of
these combinations and their performance in the con-
text of anti-spoofing.

* To evaluate our universal PAD, we have stressed out
the proposed model with unseen spoofed samples. The
model is tested under two public PAI data adopted
from COLFISPOOF and CLARKSON. The BPCER
and APCER are used as the standard metrics to demon-
strate the effectiveness of our proposed technique. The
results show that we were able to achieve 0.12% of
BPCER, 0.63% APCER on various types of spoofed
samples.

* We also conducted a comprehensive comparison with
state-of-the-art techniques in terms of various scenar-
ios such as evaluation metrics, number of subjects, and
detection of unseen attacks under two public datasets.
Our proposed work achieved a remarkable 99% im-
provement in BPCER at an APCER of 10% compared

to the results in [6]. Furthermore, when compared to
the findings in [13], our model exhibited substantial
improvements of 69.58% for Photopaper, 1.55% for
Playdoh, and 0.94% for the synthetic sample

The paper is structured as follows: In section 2 we pro-
vide an overview of the previous research on contactless
fingerprint anti-spoofing detection. In section 3, we present
our deep learning architecture used in our experiments. We
will demonstrate the database, and experimental set up such
as database, evaluation metrics in Section 4. We present and
analyze the results obtained from our experiments, compar-
ing them with several approaches found in the literature in
Section 4. Finally, we conclude our paper in Section 5.

2. Related Work

In this section, we present a comprehensive overview
of recent research in the field of contactless fingerprint
anti-spoofing. We summarize key aspects of each study,
including the employed methods (handcrafted features or
deep learning-based approaches), the number of subjects in-
volved, the type of database used (public or private), the va-
riety of presentation attack instruments considered, the eval-
uation metrics utilized (e.g., BPCER and APCER), and the
scalability of the proposed methods. Earlier work on PAD
in contactless fingerprint system was based on handcrafted
techniques. These approaches were proposed in [15, 17, 19]
involved extracting feature vectors from fingerphotos such
as local binary patterns (LBP), dense scale invariant fea-
ture transform (DSIFT), and locally uniform comparison
image descriptor (LUCID), histogram of oriented gradi-
ents (HOG), binarized statistical image features (BSIF) and
making decisions based on binary classification using sup-
port vector machine (SVM). The evaluation results of Stein
et al. [15] reported a 77% success rate of attack detection
with 37 subjects. Taneja et al. [17] also obtained 3.71%
EER based on photo printed attacks. Wasnik et al. [19]
also achieved D-EER of 4.43% based on 50 subjects us-
ing three types of attack samples. Previous works relying
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Author Year | Method Database device Spoof type Metrics Results
TIITD: Print Attack EER
Tanej et al. [17] 2016 | Hand crafted class: 128 iphone 5 TAR EER =3.71%
. Photo Attack
images: 5100 FAR
Wasnik et al. [19] so1g | Hand crafted LBP, ?;?65;?:255% 10S, iphone, El':c‘:rj";ect“:; N APCER BPCER = 1.8, 0, 0.66,
asmietal BSIF, HOG, SVM 1mages: ipad nuc repiay BPCER APCER = 10
videos: 150 elctronic dispaky
.. Live: 4096 ios, android, Print Attack _
Fujito et al. [2] 2018 | AlexNet spoofe sample: 8192 windows Photo Attack HTER HTER = 0.04%
AlexNet DenseNet201, Apple iphone 5, _
Marasco et al. [9], [10] | 2022 | ResNet18,DenseNet121, IIITD Flash off, Print AttackPhoto Attack DEER g:ggﬁ’éleﬁ\]tet__ozég/
ResNet34, MobileNEt-V2 8MP resolution -nesivet =0.277%
Knetosil, Mould glue,
latex, silly putty,
COLFISPOOF: paper printout, s
Kolberg et al. [5] 2023 | Not Reported 7200 spoof samples Not Reported chool glu§ ’ Not Reported | Not Reported
. dragonskin,
72 different PAI .
ecoflex, gelatin,
glue, modelling clau,
playdoh
pumapatia etal, [13] | 2023 | DenseNet 121, ;St :C‘]EJS:S 121“7’ Slfgde‘”ces o andsios ecoflex, playdoh, wood glue, | APCER APCER = 0.14%
P . NASNet amp’e: /- 108, synthetic, fingerphoto, latex | BPCER BPCER =0.18%
synthetic: 10000
AlexNet, DenseNet201,
MobileNet-V2, NASNet, e )
Hailin Li et al. [6] 2023 | ResNet50, GoogleNet, 3886 bonafide and 4247 ios, android ecoflex, playdoh, wood glue, | APCER EER = 8.26%
. attack samples with 4 PAIs fingerphoto, latex BPCER
EfficientNet-BO and
Vision Transformers

Table 1. Summary of state-of-the-art approaches for contactless fingerprint anti-spoofing. HOG- histogram of oriented gradients (HOG),
SVM- support vector machine, LBP-local binary patterns, BSIF-binarized statistical image features, EER — equal error rate, TAR — true
acceptance rate, FAR — false acceptance rate BPCER—-bonafide presentation classification error rate, HTER — half total error rate, APCER—

attack presentation classification error rate.

on handcrafted features were not robust against state-of-
the-art presentation attack scenarios, including those gen-
erated by synthetic models from a wide range of adversarial
techniques. Additionally, these studies often used a limited
number of attack samples and failed to demonstrate their
evaluation metrics, such as BPCER and APCER.

The next-generation techniques were deployed based on
deep learning approaches in which the model was trained
on both live and spoofed samples. Fujio et al. [2] were pio-
neers in exploring the use of deep neural networks, specif-
ically ”Alexnet,” for contactless fingerprint anti-spoofing.
They trained the model using a combination of bonafide
samples and photo-printed attack samples. Their dataset in-
cluded 9,192 spoofed samples and 4,096 genuine samples,
and they achieved an impressive half-error rate of 0.04%.
Marasco et al. [9] utilized ResNet and AlexNet architecture
based on the IIITD Spoofed Finger photo Database. The
database contains 2,048 print attacks, 6,144 photo attacks,
and 4,096 live samples. They achieved a D-EER of 2.14%
for AlexNet and .07% for ResNet, respectively. In subse-
quent research by Marasco et al. [10], there was a slight
improvement in the results compared to the baseline ap-
proach. However, it should be noted that the ResNet ar-
chitecture used in their model was trained on both live and
spoofed images, which may not be practical or representa-
tive of real-world scenarios. Recently, Purnapatra et al.[13]
proposed DenseNet-121 and NasNetMobile models with
new public database which includes 35 subjects with 65,972

images which includes 29,204 live samples. Their model
achieved 88.3% APCER and 0.48% BPCER. Furthermore,
Hailin Li et al. [6] demonstrated PAD using various models
such as AlexNet, DenseNet-201, MobileNet-V2, NASNet,
RestNet50, and Vision transformer. They have integrated
5,886 live samples and 4,247 spoofed samples and obtained
an EER of 8.6% on RestNest50. Nevertheless, while recent
models demonstrated fair performance on spoofed images
during training, their generalizability is limited, leading to
poor performance when tested on unseen spoofed images.

3. Proposed Method

As illustrated in Figure 2 we applied supervised learn-
ing on two fingerprint classes, live and synthetic. In order
to increase the resolution and quality of dataset, we applied
enhanced super-resolution generative adversarial networks
(ESRGAN) on dataset. Additionally, we created synthetic
attacks by applying StyleGAN2 with adaptive discriminator
augmentation (ADA) [4] on the live dataset. Furthermore,
we employed a pretrained ResNet18 architecture, making
some modifications (details of architecture is described in
Section 3.2). To improve presentation attack detection suc-
cess rate, we introduced a novel loss function which is a
combination of the Arcface loss and Center loss. Our model
successfully classified live data samples from unseen spoof
type of attacks. In the rest of this section, we will provide
a comprehensive explanation of our method and new joint
loss function. This method is specifically designed to ad-
dress contactless fingerprint anti-spoofing.
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Figure 2. Resnet-18 with Leaky-Relu activation function and using a joint loss function a combination of the Arcface and center loss
functions. The model is trained on live samples and synthetic spoofed fingerphotos and tested under various spoofed images such as photo

paper, Ecoflex, playdoh, woodglue, and etc.

3.1. Joint Loss Function

In this project, we propose a novel approach for contact-
less fingerprint anti-spoofing using a joint loss function that
combines the Arcface Loss [1] and Center Loss [20]. Since
our approach focouses on universal deepfake detection, uti-
lizing joint loss function will help us to obtain lower error
detection rate. By employing the joint loss function, we
aim to minimizing the variations within live samples, while
simultaneously enlarging the inter-class variation between
deep-fake and live samples. Equation 1 demonstrates how
our proposed joint function has been calculated by combin-
ing Arcfac and center loss. We used the Arcface loss to map
the input data (live and synthetic) to angular space and used
center loss to minimizing the variations within each class
and pulling together the embeddings of samples belonging
to the same class in the feature space:

6zcos(0yi +m)

zcos(0y, +m) N xcosby .
PO Y g €

Ljoint = _lOg

I 5
+)\§Z||xi—cyi 25
i=1
Ljoint =Ls+ )\Lca (1)

where L, is the Arcface loss, L. is the Center loss, and A
is a regularization parameter which is used to balance the

two loss functions. We achieve the best value for A during
network training.

3.2. ResNet

We used ResNet-18 as a deep convolutional Neural Net-
work architecture by applying some modifications to the ar-
chitecture. We replaced the RELU activation function with
Leaky-Relu. The ReLU activation function can encounter
a problem called ”Dead Neuron” [21]. Where neurons be-
come inactive for negative inputs, resulting in unchanging
weights during training. To tackle this problem, we replace
the ReLU activation function with the Leaky-Relu activa-
tion function. Using Leaky-Relu addresses this issue by
allowing a small, non-zero output for negative inputs, en-
suring that neurons don’t die out completely and giving an
opportunity for weights to be updated during training [8].
In simpler terms, Leaky-ReLU prevents the dying neuron
problem of ReLLU by permitting some activity for negative
inputs.

The ResNet-18 contains 5 layers and each layer contains
convolutional layers, activation functions, and batch nor-
malization. The input image is 1024 x 1024 with 3 channels
(RGB) and fed to the ResNet-18 network. After the first
convolutional the number of channels increases to 64, and
in the last layer it would have 512 channels. In layers 2, 3,
and 4 we have residual blocks in each of them. Each resid-
ual block contains two convolutional layers. After the last
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layer, we have a fully connected layer which is the classifi-
cation layer, is responsible for converting the learned high-
dimensional features from the previous layers into a format
suitable for making class predictions. The last block is soft-
max activation function and it is applied to the output of the
last fully connected layer. It takes the single scores for each
live and spoof class and converts them into a probability
distribution. According to Figure 2.b, we use live and gen-
erated synthetic samples from the live dataset as an input to
the modified ResNet-18 (See Figure 2-a). We then apply the
Arcface and center loss on each feature vector and combine
them to achieve a better classification.

SPOOF
API NUMBER of IMAGES
ECOFLEX 1248
PHOTOPAPER 1104
PLAYDOH 1700
WOODGLUE 272
LIVE (26 subjects)
LIVE 5886

Table 2. Statistics of CLARKSON Dataset.

Spoof Number of Images
dragonskin 1700
ecoflex 300
gelafix 100
gelatin 100
glue 200
knetosil 200
latex 100
modelling-clay 100
mouldable-glue 900
paper-printout 1200
playdoh 1700
silly-putty 600

Table 3. Statistics of the COLFISPOOF dataset.

4. Experimental Setup
4.1. Database

In our research, we made use of two publicly available
databases: CLARKSON and COLFISPOOF. The CLARK-
SON database, introduced by Purnapatra et al. [13], con-
sists of a variety of images. It includes 7,500 images of
four-finger attacks, over 14,000 manually segmented im-
ages of single-fingertip attacks, and 10,000 synthetic fin-
gertip images generated using deepfake techniques. These
images were obtained from six different Presentation At-
tack Instruments (PAI) that cover three levels of difficulty.
Furthermore, the CLARKSON database contains a total of

31,702 images of 26 subjects captured from live finger pho-
tos. Among these images, 2,150 were collected from the
four-finger scenario, and 7,768 were collected from single
fingertip scenarios. To assess the effectiveness and perfor-
mance of each device, we evaluated the six different smart-
phones: iPhone X, iPhone 7, Samsung Galaxy S9, Google
Pixel, Samsung Galaxy S6, and S7. For generating spoofed
fingertip images, we used different smartphones, such as
synthetic, Ecoflex PAI, Playdoh PAI, Wood Glue PAI, Fin-
ger Photo PAI, and Latex PAIL

In contrast, the COLFISPOOF database, introduced by
Kolberg et al. [5], exclusively contains spoof images from
various categories, including dragonskin, ecoflex, gelafix,
gelatin, glue, knetosil, latex, modelling-clay, moduldable-
glue, paper-printout, playdoh, and silly-putty. The statis-
tics of the databases are presented in Table 2 and Table 3,
showing the details of the CLARKSON and COLFISPOOF
datasets, respectively.

APCER%
API/METHOD ResNet-Leaky-Relu ResNet-Relu
ECOFLEX 0 0
PHOTOPAPER 943 11.21
PLAYDOH 0 0
WOODGLUE 0
SYNTHETIC 0.15 0.15
BPCER%
LIVE 0.12 0.35

Table 4. Results on CLARKSON dataset (APCER%, BPCER%).

APCER®

API/METHOD ResNco-i.Relu  ResNet-Relu

DRAGONSKIN
ECOFLEX
GELAFIX
GELATIN

GLUE
KNETOSIL
LATEX
MODELLING-CLAY
MODULABLE-GLUE
PAPER-PRINTOUT
PLAYDOH
SILLY-PUTTY

SO
()

eNeololoNoNoNolelele]

<>
o

Table 5. Results on COLFISPOOF dataset (APCER%).

It is important to note that the CLARKSON dataset used
in our study contains a smaller number of live and spoofed
samples compared to the one reported in the aforemen-
tioned reference. The original database also includes syn-
thetic spoofed samples that were not investigated in our
study. In order to generate synthetic samples from live fin-
gers, we implement StyleGAN with Adaptive Discriminator
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APCER%

Metricss METHOD  ResNet-Leaky-Relu ResNet-Relu
APCER% 0.63 0.75
BPCER% 0.12 0.35

ACER% 0.37 0.55

Table 6. Average of APCER, BPCER, and ACER on both
COLFISPOOF and CLARKSON dataset.

Receiver Operating Characteristic

08

°
S

True Positive Rate

JC =0.7691
A3, AUC = 0.7973
As, AUC = 0.9642
A1, AUC = 0.9674

02

0.0

0.4 0.6 0.8 1.0
False Positive Rate

Figure 3. ROC curves for the ResNet architecture trained using
live and synthetic samples from StyleGAN, varying the A regular-
ization to find the optimal value.

Augmentation (ADA) [4] and generate 5,000 synthetic sam-
ples from 26 live subject from CLARKSON dataset. Also,
in order to increase the resolutiuon of images, we apply En-
hanced Super Resolution Generative Adversarial Networks
(ESRGAN)[18] on both live and synthetic images.

Table 2 and Table 3 shows the detailed statistics of the
CLARKSON and COLFISPOOF databases, respectively.
Figure 1 shows different spoof types that we used in our
study.

4.2. Implementation Details

We implemented our combined loss function on ResNet-
18 with several modifications, including changing the acti-
vation function to Leaky ReLU. The model was trained for
20 epochs using the Adam optimizer with a learning rate
of 0.001. Throughout the training process, we assessed the
model’s performance to determine the optimal value for the
A in Equation 1, which balances the two loss functions. Fig-
ure 3 illustrates the ROC curve for different A values, and
we obtained the best value based on the ROC curve of the
validation set. In the Arcface loss function, we set the angle
equal to 30° and added a margin of 0.3 to the angular.

4.3. Metrics and Evaluation Protocols

During the validation phase of our study, we computed
the True Positive Rate (TPR) and False Positive Rate (FPR)
to determine the probability of correctly classifying live
finger images as live and spoof finger images as live im-
ages. Additionally, we calculated the Bona Fide Presenta-
tion Classification Error Rate (BPCER), Attack Presenta-
tion Classification Error Rate (APCER), and Average Clas-
sification Error Rate (ACER). ACER is defined as the aver-
age of APCER and BPCER, and these metrics help evaluate
the performance of our model in distinguishing between live
and spoofed finger images.

We trained the RestNet model to determine the optimal A
value (regularization parameter) used in the joint loss func-
tion (details in Section 1, Figure 3). To that end, both
live samples and synthetic images generated from Style-
GAN were used for binary classification. The goal was
to minimize variations within live samples while enhanc-
ing the inter-class variation between deepfake and live sam-
ples. Finally, the evaluation of the proposed framework was
based on unseen spoofed and live samples. In the testing
phase, pretrained model was stressed out on testing datasets,
which contains both spoof and live dataset (CLARKSON
and CLFISPOOY(), and the synthetic samples that we gen-
erated using the styleGAN-ADA. Subsequently, we com-
puted APCER (for spoofed samples), and BPCER (for live
dataset). By plotting the receiver operating characteris-
tic (ROC) curve and calculating the area under the curve
(AUC), we have evaluated the performance of our model.
It is important to consider that we evaluate the performance
of our model on unseen spoof types of attacks (expect syn-
thetic type) and unseen live subjects.

4.4. Results

During the training and validation process, we deter-
ni=ad the best value for A. Based on Figure 3, we selected
;.75 it demonstrated the best performance during valida-
tion. We tested the trained model on both the CLARKSON
and COLFISPOOF datasets, which included live and spoof
data. As previously mentioned, we trained the model on a
combination of live data (from the CLARKSON dataset)
and synthetic data generated using StyleGAN-ADA [4]
from the live dataset. Next, we evaluated the model’s
performance on unseen spoof attack types from both the
CLARKSON and COLFISPOOF datasets, as well as on
unseen live subjects. Tables 5 and 6 present the results
showcasing the performance of our model on the respective
datasets. To provide a better comparison, we trained the
ResNet-18 model with both ReLU and LeakyReLU activa-
tion functions, utilizing the combined Arcface and Center
loss functions. According to Figure 4, the ResNet-18 model
with LeakyReLU activation function and the combined loss
achieved the best performance among the other methods.
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Method (%)APCER (%)BPCER
ECOFLEX | PHOTOPAPER | PLAYDOH | WOODGLUE | SYNTHETIC | LIVE
DenseNet-121 [13] 0 88.03 0.14 0 0.13 0.18
DenseNet-121 (keras) [13] 0 79.01 1.55 0.94 0.79 3.64
NasNetMobile 0 82.15 0.71 5.96 4.12 9.04
DenseNet-121 (grayscale) 0.16 98.9 1.98 11 11.58 0.18
ResNet-18/Relu (Combined Loss) 0 11.21 0 0 0.15 0.35
Resnet-18/Leaky Relu (Combined Loss) | 0 9.43 0 0 0.15 0.12
ResNet-18/Relu (Arcface Loss) 0 45.12 0 0 0.32 0.37
ResNet-18/Relu (Center Loss) 0 20.14 0 0 0.26 0.21

Table 7. Performance of different deep learning architectures across spoofed and non-spoofed samples, measured in terms of BPCER and

APCER.

4.5. Discussions

Based on the results presented in Table 7, our proposed
method, ResNet-18 with Leaky-ReLU and the joint loss
function, achieved the best performance compared to other
methods in classifying unseen spoof attacks and unseen live
datasets. In comparison to DenseNet-121 (keras)[13], our
model’s error rate in classifying Photopaper improved by
69.58%, Playdoh improved by 1.55%, and for the synthetic
samples improved by 0.94%. Additionally, we achieved
an APCER of 0% for both Ecoflex and Woodglue sam-
ples. Furthermore, our model’s performance on the live
dataset improved by 3.52%. We also conducted experi-
ments with ResNet-18 using the ReLU activation function
and the joint loss function to extract features from images.
However, we found that the performance of ResNet with
Leaky ReLU was superior. This is because Leaky ReLU
addresses the “dying neuron” problem, which occurs when
ReLU-activated neurons in a neural network become stuck
and stops learning during training [12, 8]. Additionally, we
trained ResNet-18 with Leaky ReLU using center loss and
Arcface loss independently. According to Table 7, the mod-
ified version of ResNet-18 with Arcface loss improved by
42.91% and 0.14% compared to DenseNet-121 in detecting
photopaper and playdoh spoof attacks, respectively. How-
ever, the results improved even further when applying the
Center loss function (refer to Table 7). ResNet-18 with the
center loss function exhibited a 67.89% improvement in de-
tecting photopaper compared to DenseNet-121 and a 0.14%
improvement in detecting playdoh.

To achieve the best performance, we decided to com-
bine these two loss functions, and as shown in Table 7,
our proposed method achieved the best performance in de-
tecting photopaper, which was the most challenging among
the other types of spoof attacks. In addition, in our study,
we compared our proposed work with the research con-
ducted by Hailin Li et al. [6]. They considered four sce-
narios in their study, and their ResNet50 architecture was
trained as follows: Case-1: Training with photopaper, play-
doh, and woodglue, and testing with ecoflex. Case-2: Train-
ing with ecoflex, playdoh, and woodglue, and testing with

Error Detection Presentation Attack

o —e— ResNet18,LRelu,joint loss
ResNet18,LRelu, Arcface loss

—e— ResNet18,LRelu,Center loss

—e— ResNet18,Relu,joint loss

BPCER

APCER

Figure 4. ROC curves illustrate the performance of different loss
functions and activation functions using the proposed ResNet ar-
chitecture.

photopaper. Case-3: Training with ecoflex, photopaper,
and woodglue, and testing with playdoh. Case-4: Train-
ing with ecoflex, photopaper, and playdoh, and testing with
woodglue. In our proposed approach, our model was exclu-
sively exposed to synthetic and live samples during train-
ing and subsequently tested on all types of unseen spoofed
attacks. This strategy allowed us to evaluate the robust-
ness and generalizability of our model against various un-
seen spoofing scenarios. Based on the findings, in case
two where the model is tested on photo-printed attacks,
our model demonstrated a remarkable 99% improvement in
BPCER at an APCER of 10%. This significant improve-
ment highlights the effectiveness of our proposed model in
detecting photo-printed attacks.

5. Conclusion

The rising popularity of contactless fingerprint biometric
systems has led to their potential replacement of conven-
tional touch-based fingerprint recognition systems. How-
ever, these systems have some drawbacks, particularly
their vulnerability to presentation attacks involving photo-
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printed or paper printout spoof samples. Current research
in presentation attack detection (PAD) predominantly relies
on supervised learning techniques, utilizing both genuine
and spoofed samples during training. Nevertheless, these
methods often exhibit poor performance against unseen at-
tacks, limiting their scalability. In this paper, we propose
a novel approach to address this issue. We introduce a new
loss function that combines the Arcface loss to minimize the
intra-class variation and the Center Loss to maximize the
intra-class variation. By finding the optimal value for a pa-
rameter called lambda (\), we strike a balance between the
two loss functions. Importantly, our deep learning approach
is trained solely on genuine images and focuses on detect-
ing a specific type of spoof attack (synthetic). During the
testing phase, we evaluate our model using unseen spoofed
samples. The proposed scheme demonstrates promising re-
sults, with an average BPCER (Bonafide Presentation Clas-
sification Error Rate) of 0.12% and an APCER (Attack Pre-
sentation Classification Error Rate) of 0.63% for presenta-
tion attacks involving various types of spoofed samples.
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