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Abstract
Mungbean (Vigna radiata (L.) Wizcek) is an important pulse crop, increasingly used

as a source of protein, fiber, low fat, carbohydrates, minerals, and bioactive com-

pounds in human diets. Mungbean is a dicot plant with trifoliate leaves. The primary

component of many plant functions, including photosynthesis, light interception, and

canopy structure, are leaves. The objectives were to investigate leaf morphologi-

cal attributes, use image analysis to extract leaf morphological traits from photos

from the Iowa Mungbean Diversity (IMD) panel, create a regression model to pre-

dict leaflet area, and undertake association mapping. We collected over 5000 leaf

images of the IMD panel consisting of 484 accessions over 2 years (2020 and 2021)

with two replications per experiment. Leaf traits were extracted using image anal-

ysis, analyzed, and used for association mapping. Morphological diversity included

leaflet type (oval or lobed), leaflet size (small, medium, large), lobed angle (shal-

low, deep), and vein coloration (green, purple). A regression model was developed

to predict each ovate leaflet’s area (adjusted R2 = 0.97; residual standard errors

of < = 1.10). The candidate genes Vradi01g07560, Vradi05g01240, Vradi02g05730,
and Vradi03g00440 are associated with multiple traits (length, width, perimeter,

and area) across the leaflets (left, terminal, and right). These are suitable candidate

genes for further investigation in their role in leaf development, growth, and func-

tion. Future studies will be needed to correlate the observed traits discussed here

with yield or important agronomic traits for use as phenotypic or genotypic markers

in marker-aided selection methods for mungbean crop improvement.

Abbreviations: ATP, adenosine 5′-triphosphate; BLUPs, best linear unbiased predictors; GAPIT, Genome Analysis and Prediction Integrated Tool; GWAS,

genome-wide association study; NCBI, National Center for Biotechnology Information; PI, plant introduction; Q-Q, quantile-quantile; QTL, quantitative trait

locus; RGB, red, green, and blue bands; SNP, single nucleotide polymorphism; SVEN, Selection of Variables with Embedded screening using Bayesian

methods; TASSEL, Trait analysis by ASSociation, Evolution, and Linkage.
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1 INTRODUCTION

Mungbean (Vigna radiata (L.) Wizcek) is an important

pulse crop mostly in tropical areas of the world, with

rapidly growing usage in northern latitude countries (Nair &

Schreinemachers, 2020; Sandhu & Singh, 2021). It is a source

of protein, fiber, low fat, carbohydrates, minerals, and bioac-

tive compounds (Hou et al., 2019; Sandhu & Singh, 2021;

Singh et al., 2021; Tang et al., 2014). Mungbeans are mostly

used for human consumption as mature whole/split seeds to

make soups, sprouts, and pastries with minimal use as live-

stock feed (Nair & Schreinemachers, 2020). In recent years,

mungbean has gained a reputation in the campaign for plant-

based protein intake in lieu of animal protein due to the lower

carbon footprint to combat climate change (Iseki et al., 2018;

Tang et al., 2014; van Vliet et al., 2020). Major breeding

objectives in mungbean are to increase seed yield and pro-

tein. To increase seed yield, direct or indirect selection can

be used (Singh et al., 2021). Direct selection can be done

by testing varieties in the field and measuring the harvested

seed yield. Indirect selection can be done with the use of phe-

nomics approaches, such as reflectance and vegetation indices

(Chiozza et al., 2021; Parmley et al., 2019), canopy coverage

(Howard & Jarquin, 2019; Xavier et al., 2017), and repro-

ductive organs (Riera et al., 2021). Physiologically, yield is

a product of total biomass and its harvest index. Leaves are an

integral part of total biomass. In addition to canopy coverage,

leaves also have distinct shapes and sizes and orientations.

Leaves are central to various plant processes like photosyn-

thesis, light interception, disease and pests warning signals,

soil erosion from leaf residue, crop-weed competition, and

overall canopy structure (Schrader et al., 2021; Stewart &

Dwyer, 1999; Wright et al., 2004, 2005). Variations in leaf

traits such as shape, orientation, anatomy, placement, and

other functional traits contribute to the overall performance

of a leaf (Baldocchi et al., 1985; X. Yu et al., 2020). Pre-

vious studies have found a positive correlation between a

single leaf photosynthetic rate, biomass, and yield in Cas-

sava (Manihot esculenta Crantz) (El-Sharkawy et al., 1990),

cowpea (Vigna unguiculata (L.) Walp) (Digrado et al., 2022),

and soybean (Glycine max) (Boerma & Ashley, 1988). For

example, soybean narrow leaflet type cultivars have more

seeds per pod than their broad leaflet counterpart, which can

lead to a potential yield increase (Dinkins et al., 2002; Jeong

et al., 2011; Sayama et al., 2017). Using gamma radiation to

induce mutations, Tah (2008) studied the effect of multifoli-

ate (>3 leaflets) on seed yield in different mungbean mutant

generations. No direct correlation was determined with seed

yield, although an indirect correlation was established with

yield components such as the number of pods/plant and

branches per plant. Traditionally, leaves have served as the

early warning signs of pathogen infection, nutrient deficiency,

waterlogging, and drought in plants (Isaac et al., 2018).

Core Ideas
∙ Mungbean exhibits phenotypic diversity in leaf

morphology traits.

∙ An interaction regression model to predict ovate

leaflet area was developed.

∙ Careful attention is needed when using unified

linear mixed models for association mapping of

binary traits.

∙ Candidate genes showed a lot of overlap for

different trait across the leaflets.

Recent advances in imaging technologies (red, green, and

blue bands, multispectral and hyperspectral sensors) have

allowed early detection of stresses using leaves (Hu et al.,

2020; Nagasubramanian et al., 2019, 2021).

Leaf area index (LAI), which has direct correlation with

the total leaf area (Campillo et al., 2010; Raj et al., 2021), has

been used to evaluate the active photosynthetic area, forage

mass, transpiration, and light interception to the lower canopy

and the component’s effect on yield (Board & Harville, 1992;

Campillo et al., 2010; Heath & Gregory, 1938; Ma et al.,

2022; Radost Kalaydjieva & Zlatev, 2015; Raj et al., 2021; L.

Wang et al., 2019; Y.Wang, Jin, et al., 2019;Wolf et al., 1972).

Bakhshandeh et al. (2011) discuss a couple of direct methods

such as tracing, blueprinting, photographing, and image anal-

ysis and their drawbacks such as the use of expensive tools for

simple experiments, time-consuming, and the inability to use

the said tools due to variations in leaf shapes. Various pub-

lished open-source software for plant image analysis can be

found online at https://www.quantitative-plant.org/ database

including but not limited to those for leaf physiognomy such

as LAMINA, Leaf-GP, Bio-Leaf, LEAF GUI, imaGE, leaf

Processor, LeafScan, LeafJ, ImageJ, PlantCV, and phenoVein

(Lobet, 2017; Lobet et al., 2013). Indirect measurements,

such as the nondestructive use of mathematical relationships,

and the use of point cloud technology (Y. Wang et al., 2021)

between leaf area and other leaf dimensions would be more

advantageous (Bakhshandeh et al., 2010, 2011). Researchers

have developed nondestructive predictive models for leaf area

in various crops such as soybean (Bakhshandeh et al., 2010,

2011; Wiersma & Bailey, 1975), common bean (Phaseolus
vulgaris) (Pohlmann et al., 2021), maize (Zea mays) (Raj

et al., 2021; Stewart & Dwyer, 1999), vines (Vitis spp.) (X.
Yu et al., 2020), trees (Y. Wang, Jin, et al., 2019), urdbean

(Vigna mungo) (Mishra et al., 2000), peach (Prunus persica)
(Demirsoy et al., 2004), horticultural crops (Khan et al.,

2016), tomato (Lycopersicon spp.) (Schwarz & Kläring,

2001), sugar beet (Beta vulgaris L.) (Tsialtas & Maslaris,

2005), horse-eye bean (Mucuna pruriens) (Dheebakaran
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& Jagannathan, 2021), and mungbean (Hamid & Agata,

1989). Mungbean models developed about three decades ago

(Hamid & Agata, 1989) used only five genotypes, which

are insufficient to capture the mungbean genetic diversity.

Additionally, the methods are also low throughput.

Broadly speaking, leaves are important plant organs, and

a study to characterize them is needed. The insights from

such work can be useful for breeding programs. Useful leaf

traits can be used as phenotypic markers if linked to yield or

other important agronomic traits in marker-assisted selection

(Collard & Mackill, 2008; Pottorff et al., 2012). A study

of genetic diversity for traits of interest provides additional

usefulness in science. Researchers have used genetic char-

acterization of diversity panels to conduct genome-wide

association studies (GWAS), for example, disease-related

traits such as sudden death syndrome (Zhang et al., 2015),

and iron deficiency chlorosis (Assefa et al., 2020) in soybean,

fusarium wilt, plant height, days to flowering and seed coat

color in mungbean (Sandhu & Singh, 2021), and root-related

traits in soybean (Falk, Jubery, O’Rourke, et al., 2020) and

mungbean (Chiteri et al., 2022). GWAS studies have proved

vital in the detection of the marker-trait association whose

top-level outcome can kickstart further investigation of genes

for transgenic crop improvement or through marker-assisted

selection as reviewed by Tibbs Cortes et al. (2021) and Zhu

et al. (2008). For example, Jun et al. (2014) found that the

soybean’s narrow leaf was highly correlated with the number

of seeds per pod, a yield component trait. A few quantitative

trait loci (QTL) mapping studies for leaflet type/shape have

been done in soybean (Jeong et al., 2011; Jun et al., 2014; L.

Wang, Cheng, et al., 2019), cowpea (Pottorff et al., 2012), and

mungbean (Jiao et al., 2016). C. Fang et al. (2017) conducted

a GWAS of soybean leaflet area, length, width, and shape.

The objectives of this study, therefore, included (a) phe-

notypic characterization, (b) development of a leaf area

prediction model, and (c) conducting genome-wide associa-

tion mapping of important leaf traits of the Iowa Mungbean

Diversity (IMD) panel. In this study, we use high throughput

image analysis to extract the length, width, perimeter, apex

and base angles, and the area of each leaflet to develop a pre-

dictive model within the IMD panel. We then conducted a

comprehensive GWAS for length (L), width (W), perimeter

(P), apex and base angles, and the area (LA) of mungbean

leaflets.

2 MATERIALS AND METHODS

2.1 Planting and experimental design

The IMD panel (Sandhu & Singh, 2021) was planted on the

Iowa state Agricultural Engineering and Agronomy (AEA)

fields (latitude: 42.02o, longitude: −93.78o) in Boone, Iowa.

In 2020, planting was done on June 5 at the Burkey and Bruner

farms, while in 2021, planting was done on June 3 at the AEA

and Bruner farms. The farms can be viewed here using the

ISU Lands app. Each accession was planted in 7 ft single-row

plots consisting of 50 plants. A 2″ and 30″ spacing was used

between plants in a plot and between plots, respectively. A ran-

domized complete block design was used with two replicates

at each location. Standard agronomic practices were used in

the management of the crop.

2.2 Leaf collection, image capture, and trait
extraction

Leaves were collected from one replication per location for

the two years giving us four data points. Leaf collections were

done during the vegetative growth and took between 3 and 5

days at each location, weather permitting and the availabil-

ity of labor. Leaves were collected on the following dates in

2020: Burkey 2–5 September, Bruner 7, 13–15 September,

and 2021: AEA 27–28 July, 9–11 August, Bruner 11–13, 16–

17 August. The third trifoliate leaf from the top (most recent

bud) on the plant was plucked destructively as the leaf below

was already senescing in some plants and already dropped

in others. The third leaf represented the mature leaf on the

plant. Three trifoliate were collected randomly per plot, put in

a Ziploc, and temporarily stored in a cooler box. The cooler

box was later transported to the imaging station.

We used a high throughput imaging station to capture

the leaf images described by Falk, Jubery, Mirnezami, et al.

(2020), Falk, Jubery, O’Rourke, et al. (2020), and Chiteri

et al. (2022). The station consists of a utility cart, a cam-

era, a light mounting platform, and a file storage system. The

18-megapixel Canon Rebel T5i digital SLR camera (Canon

USA, Inc., Melville, NY) was used. Barcodes enabled the

automated renaming of the images using the Smartshooter

software (Hart, n.d.). Each trifoliate was imaged separately,

making a total of three images per plot, amounting to 5736

images for the 2 years (492 accessions *3 images *2 locations

for 2020 and 484 accessions *3 images *2 locations for 2021).

Images were routinely transferred to a local server for long-

term storage pending analysis. An effort was made to make

sure the leaflets were not touching each other to make it easier

for the trait extraction. The leaf images were annotated using

the bean_annotater tool at https://bitbucket.org/baskargroup/

leaf_annotator/src/master/ by drawing a straight line from the

proximal-most to the distal-most point of the laminar (length)

and between any touching leaflets. Image analysis was used

to extract traits from the images. The traits extracted (Table 1)

were guided by what is provided in the manual of leaf archi-

tecture (Ash et al., 1999) and other articles reviewed (Digrado

et al., 2022; Y. Wang, Jin, et al., 2019; X. Yu et al., 2020) and

as diagrammed in Figure 1. The trait extraction pipeline is
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TABLE 1 Description of the leaf traits used in the study

Trait Description Unit
Length The distance from proximal-most to distal-most point of the lamina cm

Width The distance across the laminar that lies perpendicular to the axis of greatest length cm

Perimeter The distance around the margin of the laminar cm

Area Laminar size cm2

Apex angle The angle from the apical termination of the midvein to the pair of points where a line

perpendicular to the midvein and 0.75 × length from the base intersects the margin

Degrees (o)

Base angle The angle from the leaflet base to the pair of points where a line perpendicular to the

midvein and 0.25 × length from the base intersects the margin

Degrees (o)

Note. Traits were prefixed with a letter indicating the leaflet, that is, l_(left), t_(terminal), r_(right).

F IGURE 1 Representation of how traits were measured for each leaflet. The red line represents the length (L), and the blue line represents the

width (W). The blue and orange lines are perpendicular to the redline. The perimeter is not shown in the diagram.

easily scalable with small modifications to real-time settings

where the images could be captured nondestructively in their

natural setting.

2.3 Phenotypic description and statistical
analysis

The diversity panel leaves visual phenotypic traits were noted

during the growing seasons. The accessions had oval tri-

foliate in most cases. Only the genotypes in the 2020 and

2021 growing seasons were kept for the study, and those with

fewer than three measurements for each attribute per plot

were filtered away. The average of the three measurements

per trait for the remaining 462 genotypes was used to cal-

culate best linear unbiased predictors (BLUPs). BLUPs and

estimates of broad-sense heritability were calculated using

the R “inti” package (Lozano-Isla, 2021) developed for the

analysis of multi-environment trials using the linear mixed

model:

𝑌𝑖𝑗 =μ+ (1|loc_year)𝑖 + (1|line)𝑗 + 𝑒𝑖𝑗 ,
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where Yij is the phenotypic value of the jth genotype in the ith
environment, μ is the overall mean, (1|loc_year)i is the random

effect due to the ith environment, (1|line)j is the random effect

due to the jth genotype, and eij is the random error following

N(0, σe2). Broad-sense heritability was estimated using the

formula below as described previously (Cullis et al., 2006;

Piepho & Möhring, 2007):

𝐻2
𝐶
= 1 −

𝑣BLUP
2δ2

𝑔

,

where 𝐻2
𝐶
, is the broad-sense heritability, δ2 is the variance,

g is the genotypes, and 𝑣BLUP is the average standard error

of the BLUPs. Variance components, blups distribution, and

trait correlations were also estimated. Trait correlations were

performed and visualized using the hierarchical clustering by

setting parameter “hc.order = TRUE” in the ggcorrplot pack-

age. All statistical analyses were performed in the R statistical

computing environment (R Core Team, 2021).

2.4 Modeling the leaf area

Several simple andmultiple empirical regressionmodels were

developed to estimate the leaflet and trifoliate area of the 458

ovate-shaped mungbean accessions. No model was developed

for the lobed leaves as they were only four genotypes. Simple

models included using a single variable such as length, width,

and perimeter traits, while multiple models included a combi-

nation of length and width. The parameters length, width, and

perimeter are simple to measure on a small scale hence have

frequently been used in the estimation of leaf area in other

crops such as soybean (Bakhshandeh et al., 2011; Wiersma

& Bailey, 1975), cowpea (Digrado et al., 2022), mungbean

(Hamid & Agata, 1989), vines (X. Yu et al., 2020), and

other crops (cereal and legumes) as tabulated by Bakhshandeh

et al. (2010). For each model, the models, r-square (R2) and

adjusted r-square (adj. R2), and the residual standard errors

were extracted, recorded (Table S1), and plotted, respectively.

Regression was performed for each leaflet and the trifoliate

area.

2.5 Genome wide association study and
candidate gene identification

Association mapping was conducted for each trait (length,

width, perimeter, area, apex, and base angles) per leaflet using

BLUPs and a leaflet type trait (normal or lobed). Several

methods for association were compared. The single-locus uni-

fied mixed linear model (MLM) (J. Yu et al., 2006) was

implemented in both Trait analysis by ASSociation, Evolu-

tion, and Linkage (TASSEL) (Bradbury et al., 2007) and

Genome Analysis and Prediction Integrated Tool (GAPIT)

(J. Wang & Zhang, 2021). Multilocus models FarmCPU (Liu

et al., 2016) and Bayesian methods were implemented in

GAPIT and Selection of Variables with Embedded screen-

ing using Bayesian methods (SVEN) (Li et al., 2022),

respectively. The population structure (first four principal

components [PC]) and kinship (K matrix) were calculated

from the single nucleotide polymorphism (SNP) data in TAS-

SEL and fed as model covariates in GAPIT for association

analysis. For the binary trait, leaf type, an additional gen-

eralized linear model (GLM) with a binomial family was

fit using the GWASTools package (Gogarten et al., 2012).

Additionally, we randomly sampled five times within the

ovate genotypes and then included the four lobed geno-

types. The lobed leaf, in this case considered minor allele

frequency, was maintained at 2%. Note that 26550 SNP

markers generated using genotype by sequencing technology

(Sandhu & Singh, 2021) were used in the study after filter-

ing out those minor allele frequencies of >0.01 and retaining

those with <15% missing data. Candidate gene search was

performed by using the National Center for Biotechnology

Information (NCBI) genome viewer and Legume Informa-

tion System (LIS) GBrowse (https://www.legumeinfo.org/)

tools to locate the significant SNP on the mungbean genome

(Annotation release 101) (Kang et al., 2014) alongside the

annotation deposited with the NCBI (Crop Genomics Lab,

n.d.; Sayers et al., 2022). Gene ontology was inferred using

UniProtKB (UniProt Consortium, 2021).

3 RESULTS

3.1 Phenotypic description, trait
correlations, descriptive statistics, and analysis
of variance

Mungbean leaves exhibit diverse phenotypic diversity as

recorded during the growing seasons (Figure 2). The promi-

nent phenotypes noted include leaflet type (A: ovate or lobed),

leaflet size (B: small, medium, large), lobed angle (C: shallow,

deep), and vein coloration (D: green, purple).

The statistical analysis focused on the quantitative traits

length, width, perimeter, area, apex, and base angles for each

genotype whose overall BLUPs were normally distributed fol-

lowing the removal of the outliers (Bernal-Vasquez et al.,

2016). As shown in Figure 3 (Trait Distribution), phenotypes

were grouped according to the units of measurements, that is,

in cm (A), cm2 (B), and angles (C). In subpanel A, although

the perimeter showed the highest values (∼4X) than length

and width, they were all normally distributed. The area (sub-

panel B) showed a constant variation in all the leaflets. The

base angle (subpanel C) for the terminal leaflet was relatively

higher than both the left and right leaflet base angles. The
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F IGURE 2 Phenotypic traits observed within the mungbean diversity panel as A (leaflet type), B (leaflet size), C (lobed angle), and D (vein

coloration)

same pattern was observed at the apex angle. In Figure 3 (Trait

Correlation), all traits showed varying levels of correlations.

By employing hierarchical clustering, length, width, perime-

ter, and area showed strong positive correlations between

them (0.78–0.98), and apex and base angle showed moderate

to high positive correlation (0.58–0.92), while the two groups

showed varying levels of both negative and positive correla-

tions between them (−0.08 to 0.57). The width between the

leaflets showed a strong positive correlation (0.93–0.98) than

the lengths between the leaflets (0.82–0.84).

Traits exhibited variation in the standard deviations (SD)

(Table 2) within a leaflet but retained a similar pattern

between leaflets. Area had the largest SD, followed by apex

and base angle, and perimeter, while length and width had the

smallest SD. For the coefficients of variation (CV), the apex

and base had the lowest (<5%), while the area had the highest

at 13%. Width (7%) had a higher coefficient of variation than

length (4%). The results are similar among the leaflets. Broad

sense heritability (H2.cullis) ranged between 51% and 72%

with length having a lower range (51%–53%), while width had

a range of 70%–72%.

Variance components of the phenotypic variations of the

traits are as tabulated (Table 3). Similar patterns with slight

deviation were seen in the percentages of the total vari-

ance explained by each component. For the left leaflet, line

and loc_year (Environment) accounted for 2%–40% of the
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F IGURE 3 Boxplots showing the distribution of the phenotypes (G) grouped by units of measurements (cm) (A), cm2 (B), angles (C), and

correlations between the phenotypes

variation for area, perimeter, length, width, apex, and base

traits. Line contributed just 12% of the variation for length,

while loc_year contributed the least for apex (2%) and base

(5%) trait variations. For the terminal leaflets, the line and

loc_year effects accounted for 1%–37% of the trait’s variabil-

ity. Line contributed 18% of the variation for length, while

loc_year contributed the least for apex (2%) and base (1%)

variance. For the right leaflet, the line and loc_year effects

accounted for 1%–43% of the trait’s variation. Line con-

tributed 14% of the length, while loc_year accounted for only

1% in apex and 3% in base variations.

3.2 Modeling the leaf area

Several regressionmodels were fitted for predicting the leaflet

area. Length, width, and perimeter showed high correlations

(Figure 3) with the area and were used to build the models.

Each model’s residual distribution, residual standard error,

and R2/adjusted R2 were examined (Figure 4, Tables S1). For

each leaflet area (Figure 4A), the multiple regression model,

including the interaction between the length and width param-

eters, had an adjusted R2 of 0.97 and low residual standard

errors. Simple regression models using length as the only pre-

dictor variable performed dismally with R2 of between 0.76,

0.70, and 0.76 and large standard errors (2.92, 3.21, 2.97) for

the left, terminal, and right leaflets, respectively. Models with

width as the only predictor had an R2 of 0.95, only 2% less

than the interaction models with moderate residual standard

errors (1.41, 1.5, 1.31). Figure 4B shows that width was a

better predictor of the trifoliate area than length.

Figure S1 shows the normal distribution of residuals indi-

cating homoscedasticity of the variance and quantile-quantile

(Q-Q) plots for both the top (interactions) and width models.

3.3 Genome wide association and candidate
gene identification

Single locus (MLM) and multiple-locus (FarmCPU and

SVEN) models for association mapping detected varying

numbers of significant markers (Figure 5, Table S2). Across

leaflet and traits, GAPIT_FarmCPU had the greatest num-

ber of significant SNPs, followed by TaSSEL, SVEN, and

GAPIT_MLM, respectively (Figure 5A). The multilocus

models detected more significant associations than the sin-

gle locus models (Table S2). Markers 1_12063422 and

11_5315338 did overlap between TaSSEL and GAPIT_MLM

(Figure 5B), while markers 1_12063422, 2_22658605,

and 7_8776168 overlapped between GAPIT_FarmCPU and

SVEN (Figure 5C). The overlapped markers showed sig-

nificant associations with the different traits as discussed

below. Multilocus models have a high power to detect asso-

ciation provided (J. Wang & Zhang, 2021; S.-B. Wang et al.,

2016). For most traits in this study, more than three signif-

icant markers were detected, but only the top three (smallest

p-values) from the multilocus GAPIT_FarmCPUwere picked

for candidate gene analysis (Table 4).
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8 of 22 CHITERI ET AL.

TABLE 2 Summary statistics, coefficients of variation (CV), and

broad-sense heritability (H2.cullis) of the leaflet traits

Trait Statistic Leaflet
Left Terminal Right

Area Mean 48.48 46.97 49.39

Median 47.99 46.42 48.99

Min 34.78 33.97 35.86

Max 71.77 71.01 68.69

SD 6.11 6.12 6.17

CV (%) 0.13 0.13 0.12

H2.cullis 0.69 0.7 0.69

Perimeter Mean 34.1 33.84 34.59

Median 34.06 33.81 34.56

Min 29.07 28.53 29.24

Max 41.34 40.72 40.49

SD 1.93 1.96 1.95

CV (%) 0.06 0.06 0.06

H2.cullis 0.64 0.64 0.64

Length Mean 8.35 8.53 8.4

Median 8.34 8.54 8.39

Min 7.35 7.33 6.95

Max 9.52 9.63 9.79

SD 0.37 0.38 0.39

CV (%) 0.04 0.04 0.05

H2.cullis 0.51 0.53 0.52

Width Mean 7.32 8.05 7.37

Median 7.32 8.04 7.36

Min 6.05 6.4 6.11

Max 9.09 10.16 8.91

SD 0.5 0.6 0.51

CV (%) 0.07 0.07 0.07

H2.cullis 0.7 0.72 0.7

Apex Mean 85.22 88.13 84.5

Median 85.4 88.46 84.67

Min 61.56 56.14 66.52

Max 94.61 97.31 94.78

SD 3.55 4.34 3.03

CV (%) 0.04 0.05 0.04

H2.cullis 0.64 0.66 0.64

Base Mean 98.7 108.02 97.98

Median 98.83 108.2 98.13

Min 74.51 90.93 77.11

Max 105.91 114.33 107.26

SD 3.06 2.66 2.63

CV (%) 0.03 0.02 0.03

H2.cullis 0.7 0.66 0.69

Abbreviations: CV, coefficient of variation; Max, maximum; Min, minimum.
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CHITERI ET AL. 9 of 22

F IGURE 4 Regression models to predict individual leaflet area (A) and the trifoliate area (B) using both simple and multiple explanatory

variables. The appended numerals/text to the extreme right of each bar shows the residual standard errors (A and B) and leaflet (in B).

The description of the significant markers and candidate

genes is presented in Table 4. Figures 6, 7, and Figure S2 are

the manhattan and corresponding Q-Q plots showing the dis-

tribution of significant markers across the genome for traits

associated with each leaflet. For Figure S2.1, except for the

apex angle, the rest of the traits were significantly associated

with at least two or more SNP markers for the left leaflet. In

Figure S2.2, each trait for the right leaflet had more than three

significant SNP markers. Similarly, in Figure S2.3, all the

traits were associated with more than three significant SNP

markers for the terminal leaflet. For the leaflet type (ovate

or lobed) trait, there were more than three associated signif-

icant markers with a strong signal with marker 2_5935179

on chromosome 2. All the Q-Q plots showed slight variations

from the theoretical normal distribution quantiles. Significant

markers associated with leaflet type from the five randomly

run analysis have significant SNPs mostly on chromosomes

two, six, and eleven (Figure S3). Only the first random sam-

pling had a significant SNP 3_11482658 on chromosome

three.

From Table 4, some SNP markers were significantly asso-

ciated with multiple traits. For example, marker 1_12063422

was associated with l_length, l_width, l_perimeter, t_length,

and t_width. Marker 7_8776168 was associated with

l_width, l_area, r_width, r_area, t_width, t_area, t_base, and

t_width. Marker 7_35888986 was associated with l_width,

l_perimeter, l_area, and r_perimeter. Marker 5_1309071 was

associated with l_perimeter, r_length, r_width, r_perimeter,

r_area, t_perimeter, and t_area. Marker 4_9008678 was

associated with l_width, l_area, and r_width. Marker

2_5935179 was associated with l_apex and leaflet type.

Marker 8_35030148 was associated with t_apex, r_apex, and

leaflet type. Marker 2_5972317 was associated with r_base

and t_apex. Marker 3_725105 was associated with l_width,

l_area, r_area, r_width, t_perimeter, and t_area. The prefixes

l_, t_, and r_ represent the left, terminal, and right leaflet. No

significant marker was detected for leaf type using the GLM

logistic model (Figure 7).

Fifty-eight percent of the candidate genes ontology were

classified as molecular function, 28% as a biological process,

0% for the cellular component, and 13% had no classifica-

tion. Forty-three percent of the significant SNPswere found in

exon genomic regions, while 32% were in the introns and 22%

in intergenic regions. The candidate genes identified (Table 4)

are involved in various biological functions such as adeno-

sine 5′-triphosphate (ATP) hydrolysis, protein refolding,
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10 of 22 CHITERI ET AL.

TABLE 4 Description of identified significant marker-trait associations from the GAPIT_FarmCPU model and the candidate genes associated

with them inferred from the mungbean genome Vradiata_var6 at National Center for Biotechnology Information (NCBI) Annotation release 101

(Sayers et al., 2022)

Trait SNP Effect

Phenotypic
variance
explained % Gene name

Protein name(s) or gene
description Gene ontology (ID) Function

Genomic
context

l_area 7_8776168 −1.58 7.16 None

7_35888986 1.46 1.10 LOC106766374 (3S,6E)-Nerolidol

synthase 1

Binding to a

magnesium (Mg)

ion (GO:0000287)

Terpene synthase

activity

(GO:0010333)

Molecular

function

Exon

3_725105 −1.15 1.02 LOC106757286 LRR receptor-like

serine/threonine-

protein kinase

ERL2

Kinase activity

(GO:0016301)

Molecular

function

Exon

8_37443730 −3.00 LOC106771767 Exocyst complex

component SEC8

Golgi to plasma

membrane transport

(GO:0006893)

Protein targeting to

membrane

(GO:0006612)

Vesicle docking

involved in

exocytosis

(GO:0006904)

Vesicle tethering

involved in

exocytosis

(GO:0090522)

Biological

process

Intron

l_base 7_34341979 −1.95 14.37

4_14868161 2.96 8.12 LOC106758408 U-box

domain-containing

protein 15

Ubiquitin-protein

transferase activity

(GO:0004842) Cell

surface receptor

signaling pathway

(GO:0007166)

Molecular

function

Biological

process

Intron

l_length 2_715797 −0.10 0.10 LOC106756073 Purple acid phosphatase Acid phosphatase

activity

(GO:0003993)

Molecular

function

Exon

9_13987520 −0.10 1.61 LOC106773903 Ninja-family protein 3 Signal transduction

(GO:0007165)

Biological

function

Exon

1_12063422 −0.11 6.29 LOC106771372 Chaperone protein

ClpB3, chloroplastic

Binding to ATP,

adenosine

5′-triphosphate,

(GO:0005524) ATP

hydrolysis activity

(GO:0016887)

protein refolding

(GO:0042026)

response to

heat(GO:0009408)

Molecular

function

molecular

function

Biological

process

Biological

process

Intron

(Continues)

 25782703, 2023, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ppj2.20062 by Iow

a State U
niversity Library, W

iley O
nline Library on [11/03/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



CHITERI ET AL. 11 of 22

TABLE 4 (Continued)

Trait SNP Effect

Phenotypic
variance
explained % Gene name

Protein name(s) or gene
description Gene ontology (ID) Function

Genomic
context

l_perimeter 1_12063422 −0.66 2.92 LOC106771372 Chaperone protein

ClpB3, chloroplastic

Binding to ATP,

adenosine

5′-triphosphate,

(GO:0005524) ATP

hydrolysis activity

(GO:0016887)

protein refolding

(GO:0042026)

response to heat

(GO:0009408)

Molecular

function

molecular

function

Biological

process

Biological

process

Intron

9_5297387 0.63 4.91

5_1309071 1.48 15.48 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

l_width 7_8776168 −0.11 4.82 None

1_12063422 −0.14 6.64 LOC106771372 Chaperone protein

ClpB3, chloroplastic

Binding to ATP,

adenosine

5′-triphosphate,

(GO:0005524) ATP

hydrolysis activity

(GO:0016887)

protein refolding

(GO:0042026)

response to heat

(GO:0009408)

Molecular

function

molecular

function

Biological

process

Biological

process

Intron

3_725105 −0.10 1.02 LOC106757286 LRR receptor-like

serine/threonine-

protein kinase

ERL2

Kinase activity

(GO:0016301)

Molecular

function

Exon

r_apex 4_13612585 2.43 0.22 LOC106759207 K(+) Efflux antiporter 2,

chloroplastic

Solute:proton

antiporter activity

(GO:0015299)

Potassioum ion

transport

(GO:0006813)

Molecular

function

Biological

function

Intron

11_9260625 −0.66 15.20 LOC106776733 Uncharacterized

LOC106776733

Exon

1_7899716 −0.75 1.03 LOC106770568 Histone H1 DNA binding

(GO:0003677)

Methyltransferase

activity

(GO:0008168)

Nucleosome

activity

(GO:0006334)

Molecular

function

Molecular

function

Biological

function

Intron

(Continues)
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12 of 22 CHITERI ET AL.

TABLE 4 (Continued)

Trait SNP Effect

Phenotypic
variance
explained % Gene name

Protein name(s) or gene
description Gene ontology (ID) Function

Genomic
context

r_area 7_8776168 −1.65 4.10 None

5_1309071 5.17 18.89 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

9_5297387 1.76 4.02 LOC106773154 Golgin candidate 3 None Intron

r_base 4_14619663 −2.02 32.93 LOC106758101 Uncharacterized

LOC106758101

None Intron

5_31881752 −0.53 1.29 LOC106760602 Putative leucine-rich

repeat receptor-like

protein kinase

At2g19210

ATP binding

(GO:0005524)

Protein kinase

activity

(GO:0004672)

Molecular

function

Intron

7_34341979 −1.23 3.32 LOC106768523 Uncharacterized

LOC106768523

Metal ion binding

(GO:0046872)

Molecular

function

Exon

r_length 5_1309071 0.24 37.21 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

7_46898515 −0.08 LOC106768103 Conserved oligomeric

Golgi complex subunit

3

Intracellular protein

transport

(GO:0006886)

Molecular

function

Exon

8_2849639 0.12 LOC106772399 Probable protein

phosphatase 2C 43

Metal ion binding

(GO:0046872)

protein

serine/threonine

phosphatase activity

(GO:0004722)

Molecular

function

Molecular

function

Intron

r_perimeter 5_1309071 2.14 8.35 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

1_11948708 0.51 2.84 None

2_22658605 −0.38 1.30 LOC106756079 Uncharacterized

LOC106756079

None Exon

r_width 7_8776168 −0.13 3.74 None

1_11948708 0.17 4.06 None

(Continues)
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TABLE 4 (Continued)

Trait SNP Effect

Phenotypic
variance
explained % Gene name

Protein name(s) or gene
description Gene ontology (ID) Function

Genomic
context

5_1309071 0.35 13.25 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

t_apex 1_1881396 −1.01 0.94 LOC106771167 Senescence-associated

carboxylesterase 101

Carboxylic ester

hydrolase activity

(GO:0052689)

Defense response

(GO:0006952)

Lipid metabolic

process

(GO:0006629)

Molecular

function

Biological

process

Biological

process

Exon

11_5315338 2.92 0.52 LOC106776418 Tyrosine–tRNA ligase 1,

cytoplasmic

ATP binding

(GO:0005524)

Tyrosine-tRNA

ligase activity

(GO:0004831)

tRNA

aminoacylation for

protein translation

(GO:0006418)

Molecular

function

molecular

function

Biological

process

Intron

2_5972317 −4.64 4.62 LOC106756136 Beta-galactosidase 8-likeBeta-galactosidase

activity

(GO:0004565)

Carbohydrate

binding

(GO:0030246)

Carbohydrate

metabolic process

(GO:0005975)

Molecular

function

Biological

process

Biological

process

Intron

t_area 7_8776168 −1.78 5.26 None

3_725105 −1.55 0.96 LOC106757286 LRR receptor-like

serine/threonine-

protein kinase

ERL2

Kinase activity

(GO:0016301)

Molecular

function

Exon

5_1309071 4.62 19.49 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

t_base 6_36720161 −0.67 2.21 LOC106764717 Ribonuclease P protein

subunit p25-like

protein

Nucleic acid binding

(GO:0003676)

Intron

7_8776168 −0.57 3.59 None

3_3913253 −0.61 1.17 LOC106757880 Uncharacterized

LOC106757880

None

(Continues)
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14 of 22 CHITERI ET AL.

TABLE 4 (Continued)

Trait SNP Effect

Phenotypic
variance
explained % Gene name

Protein name(s) or gene
description Gene ontology (ID) Function

Genomic
context

t_length 2_715797 −0.11 3.08 LOC106756073 Purple acid phosphatase Acid phosphatase

activity

(GO:0003993)

Molecular

function

Exon

6_6660262 −0.09 1.38 None

1_12063422 −0.14 3.77 None

t_perimeter 5_1309071 1.70 14.09 LOC106761475 Probable purine

permease 4

Purine nucleobase

transmembrane

transporter activity

(GO:0005345)

Purine nucleobase

transmembrane

transporter activity

(GO:0015211)

Molecular

function

Exon

7_8894464 −0.47 2.18 LOC106766793 Chaperonin 60 subunit

alpha 2, chloroplastic

ATP binding

(GO:0005524) ATP

hydrolysis

(GO:0016887)

Protein refolding

(GO:0042026)

Molecular

function

Molecular

function

Biological

process

Intron

3_725105 −0.46 0.76 LOC106757286 LRR receptor-like

serine/threonine-

protein kinase

ERL2

Kinase activity

(GO:0016301)

Molecular

function

Exon

t_width 7_8776168 −0.15 3.36 None

1_12063422 −0.18 3.89 LOC106771372 Chaperone protein

ClpB3, chloroplastic

Binding to ATP,

adenosine

5′-triphosphate,

(GO:0005524) ATP

hydrolysis activity

(GO:0016887)

Protein refolding

(GO:0042026)

Response to

heat(GO:0009408)

Molecular

function

molecular

function

Biological

process

Biological

process

Intron

3_725171 0.11 0.66 LOC106757286 LRR receptor-like

serine/threonine-

protein kinase

ERL2

Kinase activity

(GO:0016301)

Molecular

function

Exon

leaftype 2_5935179 −0.21 0.18 LOC106775932 Protein

indeterminate-domain

9

Metal binding Exon

6_34277393 0.10 10.80 LOC106764925 Pre-mRNA-processing

protein 40A

mRNA cis splicing,

via spliceosome

(GO:0045292)

Exon

8_35030148 0.09 0.64 LOC106769596 Uncharacterized

LOC106769596

ATP binding

(GO:0005524)

Kinase activity

(GO:0016301)

Molecular

function

Intron

Abbreviation: SNP, single nucleotide polymorphism.
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F IGURE 5 Venn diagram showing the number of significant single nucleotide polymorphism (SNP) markers associated with all traits grouped

by the statistical method and package use. Both single and multi-locus methods used are shown in (A). (B and C) Markers associated with single and

multi-locus models

F IGURE 6 Manhattan and corresponding quantile-quantile (Q-Q) plots showing results of GAPIT_FarmCPU linear mixed model (LMM)

genome-wide association studies (GWAS) for traits associated with the leaflet type (oval or lobed). The blue line indicates the Bonferroni

genome-wide correction set with “cut_off/∝” = 0.05.

response to heat, cofactors, transport, exocytosis, cell surface

receptor signaling pathways, and regulation of transcription,

RNA processing and methylation, kinase activity, and cell

cycle. Of interest were those significant SNPs overlapping

between traits and also among leaflets. Marker 1_12063422

found within the intron of LOC106771372/Vradi01g07560
described as chaperone protein ClpB3, chloroplastic is impor-

tant for ATP hydrolysis, protein refolding, and response to

heat. Marker 7_8776168 was not associated with any locus.

Marker 7_35888986 within the exon of LOC106766374

described as (3S,6E)-nerolidol synthase 1 is involved in bind-

ing to a magnesium (Mg) ion. Marker 5_1309071 within

the exon of LOC106761475/Vradi05g01240 is described as

probable purine permease 4 is involved in purine nucleobase
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F IGURE 7 Manhattan and corresponding quantile-quantile (Q-Q) plot of showing results of the logistic regression general linear model

(GLM) for leaflet type implemented in GWAS Tools. The blue line indicates the Bonferroni genome-wide correction set with “cut_off/∝” = 0.05.

transmembrane transporter activity. Marker 4_9008678 was

not associated with any locus. Marker 2_5935179 within the

exon of LOC106775932/Vradi02g05730 described as protein
indeterminate-domain 9 is important inmetal binding.Marker

8_35030148 is found in the intron of an uncharacterized

LOC106769596/Vradi08g15000. Marker 2_5972317 within

the intron of LOC106756136 described as beta-galactosidase

8-like is involved in beta-galactosidase activity, carbohydrate-

binding, and metabolic processes. Marker 3_725105 within

the exon of LOC106757286/Vradi03g00440 is described as

LRR receptor-like serine/threonine-protein kinase ERL2 is

involved in kinase activity.

4 DISCUSSION

In the present study, we characterized the phenotypic diver-

sity, developed a linear model to predict leaf area, and

conducted a genome-wide association mapping for mungbean

leaflet traits within the IMD panel. The major phenotypes

observed in the field include the ovate or lobed leaflets, vary-

ing leaf sizes (small, medium, and large), shallow or deep

lobed angle, and green or purple vein coloration (Figure 2).

These characteristics have been documented before and pro-

vided a useful resource to classify and characterize the IMD

panel (Poehlman & Milton, 1991). In this panel, the oval,

medium-size leaflet type, deep lobed angle, and green vein

coloration are the predominant traits. The shallow lobed angle

is a characteristic of the F1 progeny of the cross between ovate

and lobed leaflet type accessions as studied using QTL map-

ping by Jiao et al. (2016), showing dominant expression of

lobed angled over ovate and the low-level outcrossing in the

panel as a characteristic of mungbean (H. Chen, Wang, et al.,

2016).

The left and right leaflets are mirrors of each other. How-

ever, the correlation of length (0.82–0.84) between leaflets

was lower than the width (0.93–0.98) between leaflets. These

results coincide with other studies that used the original Gielis

equation (Shi et al., 2018) and simplified Gielis equation (Su

et al., 2019), which showed that leaf width manifested less

variation than the length. The relatively stable broad sense

heritability (51%–70%) for all traits reflects a significant con-

tribution of the line effect to the total variance. Line and

loc_year components contributed more to the total pheno-

typic variation. In the case of length, line contributed less than

loc_year toward the variance. loc_year explained low varia-

tions (1%–5%) in the apex and base angle traits. A significant

amount of the phenotypic variation was compounded in the

residuals, which could be due to the lack of replicates as only

one sample was collected per block per location per year.

We developed amultiple regressionmodel for the 458 ovate

genotypes in our panel. The model LA = b0 + b1L + b2W +
b3L×Wwas the best at predicting the area of each leaflet with

an adjusted R2 of 0.97 and < = 1.10 residual standard errors

(Figure 4A, LA is the Leaf Area, b0 is the intercept, b1, b2,
and b3 are regression coefficients). Our study presents find-

ings that researchers can confidently use as a nondestructive

robust leaf area prediction model in mungbean in instances

when they still need to use low-throughput tools like caliphers

or rulers. In other disciplines such as pathology and ento-

mology where destructive sampling of many samples is still

needed to estimate the level of injury or disease incidence, the

high-throughput nature of our methods will be time saving.

Koyama and Smith (2022) even propose to scale a model to

predict the total area of shoots in five species and diverse plant

taxa. Leaf area has been used to predict shoot biomass in Ara-

bidopsis (Weraduwage et al., 2015), an important parameter

in the calculation of LAI, and a critical variable in processes

such as transpiration, photosynthesis, and light interception

(Bakhshandeh et al., 2011; El-Sharkawy et al., 1990; H. Fang

et al., 2019). Simple or multiple linear and quadratic regres-

sion equations have been developed for use nondestructively

in other crops such as sunflower (Helianthus annuus L.,

cv. Melody) (Rouphael et al., 2007), black gram (V. mungo
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L. Hepper) (Mishra et al., 2000), soybean (Pandey & Singh,

2011; Wiersma & Bailey, 1975), common bean (Pohlmann

et al., 2021), horticultural crops (Khan et al., 2016), 15 vines

(X. Yu et al., 2020), and maize (Stewart & Dwyer, 1999).

Using 3125 leaves from 780 taxa, Schrader et al. (2021) devel-

oped a nondestructive method to estimate leaf size using a

correction factor when only the length, width, and shape are

available. In mungbeans, Hamid and Agata (1989) used the

model y = b0 + b1L ×W to estimate the terminal leaflet area

for each of the five varieties; however, they argued against

using a universal model for all the leaflets, considering the sig-

nificant variation from one genotype and location to another.

However, over the past three decades, we have moved to an

omics age where larger panels are common; therefore, there is

a need for a robust model to predict leaflet area and avoid any

further use of destructive methods in the plots (Y. Yang et al.,

2021). Our results using >450 genotypes compared to their

five genotypes came up with a similar observation that both

L and W had a high correlation with the leaf area, which is

expected. Therefore, this study complements similar work in

other crops, while our image extraction methods can be scaled

and used even for nondestructively collected images giving

additional advantage to existing methods.

We used our imaging methods to conduct a comprehensive

GWAS conducted on mungbean leaf traits, which is currently

lacking in published works. Our study reports more than 50

significant SNPs (Figures 6 and 7, Figure S3 and Table 4)

associated with the various leaflet traits. The novelty of our

work is reporting SNPmarkers that overlapped between traits,

leaflets, and different association mapping methods utilized

for a comprehensive investigation. C. Fang et al. (2017) con-

ducted a similar study on soybean leaflet area, width, length,

and shape. Our study reflects the case of pleiotropy of genes

and the polygenic nature of leaf traits (Sayama et al., 2017).

As pointed out in the results, the major overlapping genes

included Vradi01g07560, Vradi05g01240, Vradi02g05730,
Vradi08g15000, and Vradi03g00440, which were associated

with similar traits in different leaflets. The genes are involved

in various plant processes such as response to heat, trans-

port activity, metal binding, kinase activity, and metabolic

process (Kosentka et al., 2017; Lin et al., 2017; Seddigh &

Darabi, 2014). GWAS/QTL studies have been conducted in

various crops for leaf traits such as leaf area, rachis length, and

total dry weight in oil palm (Eleaeisguineensis) (Babu et al.,

2019), shape, length, width, area, and specific leaf weight in

soybean (Jeong et al., 2011; Jun et al., 2014; Sayama et al.,

2017; L. Wang, Cheng, et al., 2019). More genetic studies

on soybean leaf-associated traits can be found at https://www.

soybase.org/. The significant marker 3_11482658 detected in

the random samplingwas∼6,000,000 bases away to be further

considered in this study.

Additionally, QTL mapping studies for different leaflet

shapes have been previously conducted in several other

legumes, including soybean (narrow vs. broad) (Jeong et al.,

2011), cowpea (sub-globose vs. hastate) (Pottorff et al., 2012),

and mungbean (ovate vs. lobed) (Jiao et al., 2016). Although

FarmCPU did detect various signals with a strong associa-

tion on chromosome 2 (Figure 6) for leaflet type, we believe

this to be a spurious result. This was confirmed by the GLM

logistic regression model, which did not detect any signifi-

cant results (Figure 7). A previous QTL mapping study in

mungbean by Jiao et al. (2016) narrowed down the classi-

cal lobed leaflets margin (lma) locus to chromosome three,

which has a syntenic region on chromosome one in common

bean. Within the lma locus, the gene Vradi03g04470, encod-
ing an A20/AN1 zinc finger domain transcription factor, was

the probable LMA gene. There could be two reasons for the

two outcomes. First, the unbalanced case-control data cause

a violation of the constant residual variance assumption with

linear mixed models (J. Chen, Somta, et al., 2016; Dai et al.,

2021). Out of the 458 genotypes used for associationmapping,

only four genotypes were lobed, while the rest were ovate.

Second, it could be an indication of the weakness of using

unified linear mixed models instead of logistic mixed models

for binary traits unless certain conditions are met (H. Chen,

Wang, et al., 2016; Dai et al., 2021; Hayeck et al., 2015; Jiang

et al., 2015; Shenstone et al., 2018; J. Yang et al., 2014). The

relationship between leaf-associated traits and yield, as previ-

ously emphasized, can be used effectively exploited by plant

breeders to meet their objective of increasing yield by using

them either as phenotypic markers or direct targets of selec-

tion (Baldocchi et al., 1985; Heath & Gregory, 1938; Board

& Harville, 1992; Jeong et al., 2011; Jun & Kang, 2012; Jun

et al., 2014; Ma et al., 2022; Sayama et al., 2017; L. Wang,

Cheng, et al., 2019).

5 CONCLUSIONS

Mungbean leaves in the Iowa diversity panel exhibited a

range of phenotypic variations during the growing seasons.

The linear regression model developed in this study can be

used to nondestructively predict the area of the ovate leaflets.

Using GWAS, the genes LOC106771372/Vradi01g07560,
LOC106761475/Vradi05g01240, LOC106775932/

Vradi02g05730, LOC106756136, and LOC106757286/

Vradi03g00440 are associated with multiple traits (length,

width, perimeter, and area) across the leaflets (left, terminal,

and right) would be suitable potential candidates for further

investigation in their role in leaf development, growth,

and function. This study also serves as a caution against

employing unified linear mixed models for association

mapping of binary variables or phenotypes as shown with

leaflet type and instead favor logistic regression models. To

employ the observed features discussed here as phenotypic

or genotypic markers in marker-aided selection techniques
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for mungbean crop development, further research will be

required.
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