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Abstract

Mungbean (Vigna radiata (L.) Wizcek) is an important pulse crop, increasingly used
as a source of protein, fiber, low fat, carbohydrates, minerals, and bioactive com-
pounds in human diets. Mungbean is a dicot plant with trifoliate leaves. The primary
component of many plant functions, including photosynthesis, light interception, and
canopy structure, are leaves. The objectives were to investigate leaf morphologi-
cal attributes, use image analysis to extract leaf morphological traits from photos
from the Iowa Mungbean Diversity (IMD) panel, create a regression model to pre-
dict leaflet area, and undertake association mapping. We collected over 5000 leaf
images of the IMD panel consisting of 484 accessions over 2 years (2020 and 2021)
with two replications per experiment. Leaf traits were extracted using image anal-
ysis, analyzed, and used for association mapping. Morphological diversity included
leaflet type (oval or lobed), leaflet size (small, medium, large), lobed angle (shal-
low, deep), and vein coloration (green, purple). A regression model was developed
to predict each ovate leaflet’s area (adjusted R?> = 0.97; residual standard errors
of < =1.10). The candidate genes Vradi01g07560, Vradi05g01240, Vradi02g05730,
and Vradi03g00440 are associated with multiple traits (length, width, perimeter,
and area) across the leaflets (left, terminal, and right). These are suitable candidate
genes for further investigation in their role in leaf development, growth, and func-
tion. Future studies will be needed to correlate the observed traits discussed here
with yield or important agronomic traits for use as phenotypic or genotypic markers

in marker-aided selection methods for mungbean crop improvement.

Abbreviations: ATP, adenosine 5'-triphosphate; BLUPs, best linear unbiased predictors; GAPIT, Genome Analysis and Prediction Integrated Tool; GWAS,
genome-wide association study; NCBI, National Center for Biotechnology Information; PI, plant introduction; Q-Q, quantile-quantile; QTL, quantitative trait
locus; RGB, red, green, and blue bands; SNP, single nucleotide polymorphism; SVEN, Selection of Variables with Embedded screening using Bayesian
methods; TASSEL, Trait analysis by ASSociation, Evolution, and Linkage.
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1 | INTRODUCTION

Mungbean (Vigna radiata (L.) Wizcek) is an important
pulse crop mostly in tropical areas of the world, with
rapidly growing usage in northern latitude countries (Nair &
Schreinemachers, 2020; Sandhu & Singh, 2021). It is a source
of protein, fiber, low fat, carbohydrates, minerals, and bioac-
tive compounds (Hou et al., 2019; Sandhu & Singh, 2021;
Singh et al., 2021; Tang et al., 2014). Mungbeans are mostly
used for human consumption as mature whole/split seeds to
make soups, sprouts, and pastries with minimal use as live-
stock feed (Nair & Schreinemachers, 2020). In recent years,
mungbean has gained a reputation in the campaign for plant-
based protein intake in lieu of animal protein due to the lower
carbon footprint to combat climate change (Iseki et al., 2018;
Tang et al., 2014; van Vliet et al., 2020). Major breeding
objectives in mungbean are to increase seed yield and pro-
tein. To increase seed yield, direct or indirect selection can
be used (Singh et al., 2021). Direct selection can be done
by testing varieties in the field and measuring the harvested
seed yield. Indirect selection can be done with the use of phe-
nomics approaches, such as reflectance and vegetation indices
(Chiozza et al., 2021; Parmley et al., 2019), canopy coverage
(Howard & Jarquin, 2019; Xavier et al., 2017), and repro-
ductive organs (Riera et al., 2021). Physiologically, yield is
a product of total biomass and its harvest index. Leaves are an
integral part of total biomass. In addition to canopy coverage,
leaves also have distinct shapes and sizes and orientations.
Leaves are central to various plant processes like photosyn-
thesis, light interception, disease and pests warning signals,
soil erosion from leaf residue, crop-weed competition, and
overall canopy structure (Schrader et al., 2021; Stewart &
Dwyer, 1999; Wright et al., 2004, 2005). Variations in leaf
traits such as shape, orientation, anatomy, placement, and
other functional traits contribute to the overall performance
of a leaf (Baldocchi et al., 1985; X. Yu et al., 2020). Pre-
vious studies have found a positive correlation between a
single leaf photosynthetic rate, biomass, and yield in Cas-
sava (Manihot esculenta Crantz) (El-Sharkawy et al., 1990),
cowpea (Vigna unguiculata (L.) Walp) (Digrado et al., 2022),
and soybean (Glycine max) (Boerma & Ashley, 1988). For
example, soybean narrow leaflet type cultivars have more
seeds per pod than their broad leaflet counterpart, which can
lead to a potential yield increase (Dinkins et al., 2002; Jeong
et al., 2011; Sayama et al., 2017). Using gamma radiation to
induce mutations, Tah (2008) studied the effect of multifoli-
ate (>3 leaflets) on seed yield in different mungbean mutant
generations. No direct correlation was determined with seed
yield, although an indirect correlation was established with
yield components such as the number of pods/plant and
branches per plant. Traditionally, leaves have served as the
early warning signs of pathogen infection, nutrient deficiency,
waterlogging, and drought in plants (Isaac et al., 2018).
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Core Ideas

* Mungbean exhibits phenotypic diversity in leaf
morphology traits.

* An interaction regression model to predict ovate
leaflet area was developed.

e Careful attention is needed when using unified
linear mixed models for association mapping of
binary traits.

* Candidate genes showed a lot of overlap for
different trait across the leaflets.

Recent advances in imaging technologies (red, green, and
blue bands, multispectral and hyperspectral sensors) have
allowed early detection of stresses using leaves (Hu et al.,
2020; Nagasubramanian et al., 2019, 2021).

Leaf area index (LAI), which has direct correlation with
the total leaf area (Campillo et al., 2010; Raj et al., 2021), has
been used to evaluate the active photosynthetic area, forage
mass, transpiration, and light interception to the lower canopy
and the component’s effect on yield (Board & Harville, 1992;
Campillo et al., 2010; Heath & Gregory, 1938; Ma et al.,
2022; Radost Kalaydjieva & Zlatev, 2015; Raj et al., 2021; L.
Wangetal., 2019; Y. Wang, Jin, et al., 2019; Wolfet al., 1972).
Bakhshandeh et al. (2011) discuss a couple of direct methods
such as tracing, blueprinting, photographing, and image anal-
ysis and their drawbacks such as the use of expensive tools for
simple experiments, time-consuming, and the inability to use
the said tools due to variations in leaf shapes. Various pub-
lished open-source software for plant image analysis can be
found online at https://www.quantitative-plant.org/ database
including but not limited to those for leaf physiognomy such
as LAMINA, Leaf-GP, Bio-Leaf, LEAF GUI, imaGE, leaf
Processor, LeafScan, Leaf], ImageJ, PlantCV, and phenoVein
(Lobet, 2017; Lobet et al., 2013). Indirect measurements,
such as the nondestructive use of mathematical relationships,
and the use of point cloud technology (Y. Wang et al., 2021)
between leaf area and other leaf dimensions would be more
advantageous (Bakhshandeh et al., 2010, 2011). Researchers
have developed nondestructive predictive models for leaf area
in various crops such as soybean (Bakhshandeh et al., 2010,
2011; Wiersma & Bailey, 1975), common bean (Phaseolus
vulgaris) (Pohlmann et al., 2021), maize (Zea mays) (Raj
et al., 2021; Stewart & Dwyer, 1999), vines (Vitis spp.) (X.
Yu et al., 2020), trees (Y. Wang, Jin, et al., 2019), urdbean
(Vigna mungo) (Mishra et al., 2000), peach (Prunus persica)
(Demirsoy et al., 2004), horticultural crops (Khan et al.,
2016), tomato (Lycopersicon spp.) (Schwarz & Kliring,
2001), sugar beet (Beta vulgaris L.) (Tsialtas & Maslaris,
2005), horse-eye bean (Mucuna pruriens) (Dheebakaran
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& Jagannathan, 2021), and mungbean (Hamid & Agata,
1989). Mungbean models developed about three decades ago
(Hamid & Agata, 1989) used only five genotypes, which
are insufficient to capture the mungbean genetic diversity.
Additionally, the methods are also low throughput.

Broadly speaking, leaves are important plant organs, and
a study to characterize them is needed. The insights from
such work can be useful for breeding programs. Useful leaf
traits can be used as phenotypic markers if linked to yield or
other important agronomic traits in marker-assisted selection
(Collard & Mackill, 2008; Pottorff et al., 2012). A study
of genetic diversity for traits of interest provides additional
usefulness in science. Researchers have used genetic char-
acterization of diversity panels to conduct genome-wide
association studies (GWAS), for example, disease-related
traits such as sudden death syndrome (Zhang et al., 2015),
and iron deficiency chlorosis (Assefa et al., 2020) in soybean,
fusarium wilt, plant height, days to flowering and seed coat
color in mungbean (Sandhu & Singh, 2021), and root-related
traits in soybean (Falk, Jubery, O’Rourke, et al., 2020) and
mungbean (Chiteri et al., 2022). GWAS studies have proved
vital in the detection of the marker-trait association whose
top-level outcome can kickstart further investigation of genes
for transgenic crop improvement or through marker-assisted
selection as reviewed by Tibbs Cortes et al. (2021) and Zhu
et al. (2008). For example, Jun et al. (2014) found that the
soybean’s narrow leaf was highly correlated with the number
of seeds per pod, a yield component trait. A few quantitative
trait loci (QTL) mapping studies for leaflet type/shape have
been done in soybean (Jeong et al., 2011; Jun et al., 2014; L.
Wang, Cheng, et al., 2019), cowpea (Pottorff et al., 2012), and
mungbean (Jiao et al., 2016). C. Fang et al. (2017) conducted
a GWAS of soybean leaflet area, length, width, and shape.

The objectives of this study, therefore, included (a) phe-
notypic characterization, (b) development of a leaf area
prediction model, and (c) conducting genome-wide associa-
tion mapping of important leaf traits of the lowa Mungbean
Diversity (IMD) panel. In this study, we use high throughput
image analysis to extract the length, width, perimeter, apex
and base angles, and the area of each leaflet to develop a pre-
dictive model within the IMD panel. We then conducted a
comprehensive GWAS for length (L), width (W), perimeter
(P), apex and base angles, and the area (LA) of mungbean
leaflets.

2 | MATERIALS AND METHODS

2.1 | Planting and experimental design

The IMD panel (Sandhu & Singh, 2021) was planted on the
Iowa state Agricultural Engineering and Agronomy (AEA)
fields (latitude: 42.02°, longitude: —93.78°) in Boone, Iowa.
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In 2020, planting was done on June 5 at the Burkey and Bruner
farms, while in 2021, planting was done on June 3 at the AEA
and Bruner farms. The farms can be viewed here using the
ISU Lands app. Each accession was planted in 7 ft single-row
plots consisting of 50 plants. A 2” and 30” spacing was used
between plants in a plot and between plots, respectively. A ran-
domized complete block design was used with two replicates
at each location. Standard agronomic practices were used in
the management of the crop.

2.2 | Leaf collection, image capture, and trait
extraction

Leaves were collected from one replication per location for
the two years giving us four data points. Leaf collections were
done during the vegetative growth and took between 3 and 5
days at each location, weather permitting and the availabil-
ity of labor. Leaves were collected on the following dates in
2020: Burkey 2-5 September, Bruner 7, 13—15 September,
and 2021: AEA 27-28 July, 9—11 August, Bruner 11-13, 16—
17 August. The third trifoliate leaf from the top (most recent
bud) on the plant was plucked destructively as the leaf below
was already senescing in some plants and already dropped
in others. The third leaf represented the mature leaf on the
plant. Three trifoliate were collected randomly per plot, put in
a Ziploc, and temporarily stored in a cooler box. The cooler
box was later transported to the imaging station.

We used a high throughput imaging station to capture
the leaf images described by Falk, Jubery, Mirnezami, et al.
(2020), Falk, Jubery, O’Rourke, et al. (2020), and Chiteri
et al. (2022). The station consists of a utility cart, a cam-
era, a light mounting platform, and a file storage system. The
18-megapixel Canon Rebel T5i digital SLR camera (Canon
USA, Inc., Melville, NY) was used. Barcodes enabled the
automated renaming of the images using the Smartshooter
software (Hart, n.d.). Each trifoliate was imaged separately,
making a total of three images per plot, amounting to 5736
images for the 2 years (492 accessions *3 images *2 locations
for 2020 and 484 accessions *3 images *2 locations for 2021).
Images were routinely transferred to a local server for long-
term storage pending analysis. An effort was made to make
sure the leaflets were not touching each other to make it easier
for the trait extraction. The leaf images were annotated using
the bean_annotater tool at https://bitbucket.org/baskargroup/
leaf _annotator/src/master/ by drawing a straight line from the
proximal-most to the distal-most point of the laminar (length)
and between any touching leaflets. Image analysis was used
to extract traits from the images. The traits extracted (Table 1)
were guided by what is provided in the manual of leaf archi-
tecture (Ash et al., 1999) and other articles reviewed (Digrado
etal., 2022; Y. Wang, Jin, et al., 2019; X. Yu et al., 2020) and
as diagrammed in Figure 1. The trait extraction pipeline is
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TABLE 1 Description of the leaf traits used in the study

Trait Description Unit
Length The distance from proximal-most to distal-most point of the lamina cm

Width The distance across the laminar that lies perpendicular to the axis of greatest length cm
Perimeter The distance around the margin of the laminar cm

Area Laminar size cm?

Apex angle The angle from the apical termination of the midvein to the pair of points where a line Degrees (°)

perpendicular to the midvein and 0.75 X length from the base intersects the margin
Base angle The angle from the leaflet base to the pair of points where a line perpendicular to the Degrees (°)

midvein and 0.25 X length from the base intersects the margin

Note. Traits were prefixed with a letter indicating the leaflet, that is, 1_(left), t_(terminal), r_(right).

Apex angle

DL e <

FIGURE 1

Representation of how traits were measured for each leaflet. The red line represents the length (L), and the blue line represents the

width (W). The blue and orange lines are perpendicular to the redline. The perimeter is not shown in the diagram.

easily scalable with small modifications to real-time settings
where the images could be captured nondestructively in their
natural setting.

2.3 | Phenotypic description and statistical
analysis

The diversity panel leaves visual phenotypic traits were noted
during the growing seasons. The accessions had oval tri-
foliate in most cases. Only the genotypes in the 2020 and

2021 growing seasons were kept for the study, and those with
fewer than three measurements for each attribute per plot
were filtered away. The average of the three measurements
per trait for the remaining 462 genotypes was used to cal-
culate best linear unbiased predictors (BLUPs). BLUPs and
estimates of broad-sense heritability were calculated using
the R “inti” package (Lozano-Isla, 2021) developed for the
analysis of multi-environment trials using the linear mixed
model:

Y;; =p+(1]loc_year), + (1|line); +e;;,
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where Y, is the phenotypic value of the j™ genotype in the i*"
environment, 4 is the overall mean, (1lloc_year); is the random
effect due to the i environment, (1/line) ; is the random effect
due to the j genotype, and e;; is the random error following
N(0, 6,%). Broad-sense heritability was estimated using the
formula below as described previously (Cullis et al., 2006;
Piepho & Mohring, 2007):

) vBLUP
Hl=1-=
26§

>

where H é, is the broad-sense heritability, 82 is the variance,
g is the genotypes, and vBLUP is the average standard error
of the BLUPs. Variance components, blups distribution, and
trait correlations were also estimated. Trait correlations were
performed and visualized using the hierarchical clustering by
setting parameter “hc.order = TRUE” in the ggcorrplot pack-
age. All statistical analyses were performed in the R statistical
computing environment (R Core Team, 2021).

2.4 | Modeling the leaf area

Several simple and multiple empirical regression models were
developed to estimate the leaflet and trifoliate area of the 458
ovate-shaped mungbean accessions. No model was developed
for the lobed leaves as they were only four genotypes. Simple
models included using a single variable such as length, width,
and perimeter traits, while multiple models included a combi-
nation of length and width. The parameters length, width, and
perimeter are simple to measure on a small scale hence have
frequently been used in the estimation of leaf area in other
crops such as soybean (Bakhshandeh et al., 2011; Wiersma
& Bailey, 1975), cowpea (Digrado et al., 2022), mungbean
(Hamid & Agata, 1989), vines (X. Yu et al., 2020), and
other crops (cereal and legumes) as tabulated by Bakhshandeh
et al. (2010). For each model, the models, r-square (R?) and
adjusted r-square (adj. R?), and the residual standard errors
were extracted, recorded (Table S1), and plotted, respectively.
Regression was performed for each leaflet and the trifoliate
area.

2.5 | Genome wide association study and
candidate gene identification

Association mapping was conducted for each trait (length,
width, perimeter, area, apex, and base angles) per leaflet using
BLUPs and a leaflet type trait (normal or lobed). Several
methods for association were compared. The single-locus uni-
fied mixed linear model (MLM) (J. Yu et al., 2006) was
implemented in both Trait analysis by ASSociation, Evolu-
tion, and Linkage (TASSEL) (Bradbury et al., 2007) and
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Genome Analysis and Prediction Integrated Tool (GAPIT)
(J. Wang & Zhang, 2021). Multilocus models FarmCPU (Liu
et al., 2016) and Bayesian methods were implemented in
GAPIT and Selection of Variables with Embedded screen-
ing using Bayesian methods (SVEN) (Li et al.,, 2022),
respectively. The population structure (first four principal
components [PC]) and kinship (K matrix) were calculated
from the single nucleotide polymorphism (SNP) data in TAS-
SEL and fed as model covariates in GAPIT for association
analysis. For the binary trait, leaf type, an additional gen-
eralized linear model (GLM) with a binomial family was
fit using the GWASTools package (Gogarten et al., 2012).
Additionally, we randomly sampled five times within the
ovate genotypes and then included the four lobed geno-
types. The lobed leaf, in this case considered minor allele
frequency, was maintained at 2%. Note that 26550 SNP
markers generated using genotype by sequencing technology
(Sandhu & Singh, 2021) were used in the study after filter-
ing out those minor allele frequencies of >0.01 and retaining
those with <15% missing data. Candidate gene search was
performed by using the National Center for Biotechnology
Information (NCBI) genome viewer and Legume Informa-
tion System (LIS) GBrowse (https://www.legumeinfo.org/)
tools to locate the significant SNP on the mungbean genome
(Annotation release 101) (Kang et al., 2014) alongside the
annotation deposited with the NCBI (Crop Genomics Lab,
n.d.; Sayers et al., 2022). Gene ontology was inferred using
UniProtKB (UniProt Consortium, 2021).

3 | RESULTS

3.1 | Phenotypic description, trait
correlations, descriptive statistics, and analysis
of variance

Mungbean leaves exhibit diverse phenotypic diversity as
recorded during the growing seasons (Figure 2). The promi-
nent phenotypes noted include leaflet type (A: ovate or lobed),
leaflet size (B: small, medium, large), lobed angle (C: shallow,
deep), and vein coloration (D: green, purple).

The statistical analysis focused on the quantitative traits
length, width, perimeter, area, apex, and base angles for each
genotype whose overall BLUPs were normally distributed fol-
lowing the removal of the outliers (Bernal-Vasquez et al.,
2016). As shown in Figure 3 (Trait Distribution), phenotypes
were grouped according to the units of measurements, that is,
in cm (A), cm? (B), and angles (C). In subpanel A, although
the perimeter showed the highest values (~4X) than length
and width, they were all normally distributed. The area (sub-
panel B) showed a constant variation in all the leaflets. The
base angle (subpanel C) for the terminal leaflet was relatively
higher than both the left and right leaflet base angles. The
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Leaflet type

Oval_PI363324

CHITERI ET AL.

Lobed PI1362327
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Leaflet size

Small_PI363898

Medium_PI364207

o

Large PI363701
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=)
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[}
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Shallow_PI1377261

Deep PI377261

Vein coloration

Oval _purple P1377223

Lobed purple PI425487

FIGURE 2 Phenotypic traits observed within the mungbean diversity panel as A (leaflet type), B (leaflet size), C (lobed angle), and D (vein

coloration)

same pattern was observed at the apex angle. In Figure 3 (Trait
Correlation), all traits showed varying levels of correlations.
By employing hierarchical clustering, length, width, perime-
ter, and area showed strong positive correlations between
them (0.78-0.98), and apex and base angle showed moderate
to high positive correlation (0.58-0.92), while the two groups
showed varying levels of both negative and positive correla-
tions between them (—0.08 to 0.57). The width between the
leaflets showed a strong positive correlation (0.93-0.98) than
the lengths between the leaflets (0.82—-0.84).

Traits exhibited variation in the standard deviations (SD)
(Table 2) within a leaflet but retained a similar pattern
between leaflets. Area had the largest SD, followed by apex

and base angle, and perimeter, while length and width had the
smallest SD. For the coefficients of variation (CV), the apex
and base had the lowest (<5%), while the area had the highest
at 13%. Width (7%) had a higher coefficient of variation than
length (4%). The results are similar among the leaflets. Broad
sense heritability (H2.cullis) ranged between 51% and 72%
with length having a lower range (51%—-53%), while width had
arange of 70%—72%.

Variance components of the phenotypic variations of the
traits are as tabulated (Table 3). Similar patterns with slight
deviation were seen in the percentages of the total vari-
ance explained by each component. For the left leaflet, line
and loc_year (Environment) accounted for 2%—40% of the
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FIGURE 3 Boxplots showing the distribution of the phenotypes (G) grouped by units of measurements (cm) (A), cm? (B), angles (C), and

correlations between the phenotypes

variation for area, perimeter, length, width, apex, and base
traits. Line contributed just 12% of the variation for length,
while loc_year contributed the least for apex (2%) and base
(5%) trait variations. For the terminal leaflets, the line and
loc_year effects accounted for 1%—37% of the trait’s variabil-
ity. Line contributed 18% of the variation for length, while
loc_year contributed the least for apex (2%) and base (1%)
variance. For the right leaflet, the line and loc_year effects
accounted for 1%-43% of the trait’s variation. Line con-
tributed 14% of the length, while loc_year accounted for only
1% in apex and 3% in base variations.

3.2 | Modeling the leaf area

Several regression models were fitted for predicting the leaflet
area. Length, width, and perimeter showed high correlations
(Figure 3) with the area and were used to build the models.
Each model’s residual distribution, residual standard error,
and R*/adjusted R> were examined (Figure 4, Tables S1). For
each leaflet area (Figure 4A), the multiple regression model,
including the interaction between the length and width param-
eters, had an adjusted R? of 0.97 and low residual standard
errors. Simple regression models using length as the only pre-
dictor variable performed dismally with R” of between 0.76,
0.70, and 0.76 and large standard errors (2.92, 3.21, 2.97) for
the left, terminal, and right leaflets, respectively. Models with
width as the only predictor had an R” of 0.95, only 2% less
than the interaction models with moderate residual standard

errors (1.41, 1.5, 1.31). Figure 4B shows that width was a
better predictor of the trifoliate area than length.

Figure S1 shows the normal distribution of residuals indi-
cating homoscedasticity of the variance and quantile-quantile
(Q-Q) plots for both the top (interactions) and width models.

3.3 | Genome wide association and candidate
gene identification

Single locus (MLM) and multiple-locus (FarmCPU and
SVEN) models for association mapping detected varying
numbers of significant markers (Figure 5, Table S2). Across
leaflet and traits, GAPIT_FarmCPU had the greatest num-
ber of significant SNPs, followed by TaSSEL, SVEN, and
GAPIT_MLM, respectively (Figure 5A). The multilocus
models detected more significant associations than the sin-
gle locus models (Table S2). Markers 1_12063422 and
11_5315338 did overlap between TaSSEL and GAPIT_MLM
(Figure 5B), while markers 1_12063422, 2_22658605,
and 7_8776168 overlapped between GAPIT_FarmCPU and
SVEN (Figure 5C). The overlapped markers showed sig-
nificant associations with the different traits as discussed
below. Multilocus models have a high power to detect asso-
ciation provided (J. Wang & Zhang, 2021; S.-B. Wang et al.,
2016). For most traits in this study, more than three signif-
icant markers were detected, but only the top three (smallest
p-values) from the multilocus GAPIT_FarmCPU were picked
for candidate gene analysis (Table 4).
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TABLE 2

broad-sense heritability (H2.cullis) of the leaflet traits

Trait Statistic

Area Mean
Median
Min
Max

SD

CV (%)
H2.cullis
Mean
Median
Min
Max

SD

CV (%)
H2.cullis

Perimeter

Mean
Median
Min
Max

SD

CV (%)
H2.cullis

Length

Width Mean
Median
Min
Max

SD

CV (%)
H2.cullis
Mean
Median
Min
Max

SD

CV (%)
H2.cullis
Mean
Median
Min
Max

SD

CV (%)
H2.cullis

Apex

Base

OPEN
ACCESS

Summary statistics, coefficients of variation (CV), and

Leaflet

Left Terminal Right
48.48 46.97 49.39
47.99 46.42 48.99
34.78 33.97 35.86
71.77 71.01 68.69
6.11 6.12 6.17
0.13 0.13 0.12
0.69 0.7 0.69
34.1 33.84 34.59
34.06 33.81 34.56
29.07 28.53 29.24
41.34 40.72 40.49
1.93 1.96 1.95
0.06 0.06 0.06
0.64 0.64 0.64
8.35 8.53 8.4
8.34 8.54 8.39
7.35 7.33 6.95
9.52 9.63 9.79
0.37 0.38 0.39
0.04 0.04 0.05
0.51 0.53 0.52
7.32 8.05 7.37
7.32 8.04 7.36
6.05 6.4 6.11
9.09 10.16 8.91
0.5 0.6 0.51
0.07 0.07 0.07
0.7 0.72 0.7
85.22 88.13 84.5
85.4 88.46 84.67
61.56 56.14 66.52
94.61 97.31 94.78
3.55 4.34 3.03
0.04 0.05 0.04
0.64 0.66 0.64
98.7 108.02 97.98
98.83 108.2 98.13
74.51 90.93 77.11
105.91 114.33 107.26
3.06 2.66 2.63
0.03 0.02 0.03
0.7 0.66 0.69

Abbreviations: CV, coefficient of variation; Max, maximum; Min, minimum.

CHITERI ET AL.

TABLE 3 Variance components of the model used in the analysis

Length Width Apex Base

Perimeter

Area

%

Variance
13.24
1.67

%

Variance
19.69
1.23

%

Variance

0.36
0.14
0.52
1.02

0.5

%

Variance
0.27

%

Variance

5.76
2.58

%

Variance
54.24
36.18

Source

Leaflet
Left

40

34

35

14
51

12

49

30
13
57

31

Line

1.11
0.91
2.29
0.28
0.43
0.83

21

loc_year
Residual
Totals

55

18.42
33.33

64

37.57
58.49
28.65
1.25

40

10.85
19.19
5.95
5.47

11.1

48

83.5

173.92
53.57

37

10.66
0.17

36

35
19
46

18
28

26

29

Line

Terminal

0.28
0.67
1.45
0.37
0.15
0.52
1.04

24
49

28

50.77

loc_year

63

18.12
28.95

10

63

50.41

54

78.25 43

Residual
Totals

80.31

1.54
0.3

22.52
5.9

182.59
55.36
41.65

85.6

39

34

14.35
0.51

36
14
50

14
43

30
15
56

30
23

Line

Right

0.86

0.93
0.94
2.17

2.93

11.2

loc_year
Residual

Totals

58

15.02
25.88

65

27.23
42.09

43

47

100

20.03

182.61

Note. The % column indicates the partition of total variance by the source.
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A
y=44.90-7.83*L-3.62*W+1.56*L*W
y=3.77*L+9.39*W-51.76
y=3.08P-56.48

y=0.89(L*W)-5.84

left leaflet

y=7.04(L+W)-61.93
y=11.69*W-37.06

y=14.25%L-70.62

0.77 0.95 0.96 0.97

y=69.85-10.08*L-6.78*W+1.71*L*W
y=3.73*L+7.94*W-48.76
y=0.76(L*W)L-5.26

y=6.35(L+W)-58.46

terminal leaflet

y=3.03*P-55.42
y=9.80*W-31.80

y=13.46%L-68.08

0.72 0.94 0.95 0.96 0.97

y=33.44-6.53*L-1.47*W+1.32*L*W

y=3.36*L+9.59*W-49.49

model
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y=41.56*L -
y=39.71*L -
y=39.35*L -
Trait, panel B
W length
width
y=34.29*W - 105.99 left4.75

y=33.98*W - 105.27 right,4.47

5] y=0.86(L*W)-4.31
E
=2 ¥=6.92(L+W)-59.78
g
2 =3.07%P-56.65
) y=3. -56.1 y=28.57*W - 84.82 terminal 5.29
y=11.72*W-36.91
y=13.64*L-65.31
0.76 0.95 0.96 0.97 0.70 0.74 0.75 091 0.93
R"2/adj.R"2 R72/adj.R"2
FIGURE 4 Regression models to predict individual leaflet area (A) and the trifoliate area (B) using both simple and multiple explanatory

variables. The appended numerals/text to the extreme right of each bar shows the residual standard errors (A and B) and leaflet (in B).

The description of the significant markers and candidate
genes is presented in Table 4. Figures 6, 7, and Figure S2 are
the manhattan and corresponding Q-Q plots showing the dis-
tribution of significant markers across the genome for traits
associated with each leaflet. For Figure S2.1, except for the
apex angle, the rest of the traits were significantly associated
with at least two or more SNP markers for the left leaflet. In
Figure S2.2, each trait for the right leaflet had more than three
significant SNP markers. Similarly, in Figure S2.3, all the
traits were associated with more than three significant SNP
markers for the terminal leaflet. For the leaflet type (ovate
or lobed) trait, there were more than three associated signif-
icant markers with a strong signal with marker 2_5935179
on chromosome 2. All the Q-Q plots showed slight variations
from the theoretical normal distribution quantiles. Significant
markers associated with leaflet type from the five randomly
run analysis have significant SNPs mostly on chromosomes
two, six, and eleven (Figure S3). Only the first random sam-
pling had a significant SNP 3_11482658 on chromosome
three.

From Table 4, some SNP markers were significantly asso-
ciated with multiple traits. For example, marker 1_12063422
was associated with 1_length, I_width, 1_perimeter, t_length,

and t_width. Marker 7_8776168 was associated with
1_width, 1_area, r_width, r_area, t_width, t_area, t_base, and
t_width. Marker 7_35888986 was associated with 1_width,
I_perimeter, 1_area, and r_perimeter. Marker 5_1309071 was
associated with 1_perimeter, r_length, r_width, r_perimeter,
r_area, t_perimeter, and t_area. Marker 4_9008678 was
associated with 1 _width, 1 _area, and r_width. Marker
25935179 was associated with 1_apex and leaflet type.
Marker 8_35030148 was associated with t_apex, r_apex, and
leaflet type. Marker 2_5972317 was associated with r_base
and t_apex. Marker 3_725105 was associated with 1_width,
I_area, r_area, r_width, t_perimeter, and t_area. The prefixes
I_, t_, and r_ represent the left, terminal, and right leaflet. No
significant marker was detected for leaf type using the GLM
logistic model (Figure 7).

Fifty-eight percent of the candidate genes ontology were
classified as molecular function, 28% as a biological process,
0% for the cellular component, and 13% had no classifica-
tion. Forty-three percent of the significant SNPs were found in
exon genomic regions, while 32% were in the introns and 22%
in intergenic regions. The candidate genes identified (Table 4)
are involved in various biological functions such as adeno-
sine 5’-triphosphate (ATP) hydrolysis, protein refolding,
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TABLE 4

CHITERI ET AL.

Description of identified significant marker-trait associations from the GAPIT_FarmCPU model and the candidate genes associated

with them inferred from the mungbean genome Vradiata_var6 at National Center for Biotechnology Information (NCBI) Annotation release 101

(Sayers et al., 2022)

Trait

1_area

SNP
7_8776168
7_35888986

3_725105

837443730

7_34341979
4_14868161

1_base

1_length 2 715797

9_13987520

1.12063422

Effect
-1.58
1.46

-1.15

—-3.00

-1.95
2.96

-0.10

—-0.10

-0.11

Phenotypic
variance
explained %

7.16
1.10

1.02

14.37
8.12

0.10

1.61

6.29

Gene name
None
LOC106766374

LOC106757286

LOC106771767

LOC106758408

LOC106756073

LOC106773903

LOC106771372

Protein name(s) or gene

description

(3S,6E)-Nerolidol
synthase 1

LRR receptor-like
serine/threonine-
protein kinase
ERL2

Exocyst complex
component SEC8

U-box
domain-containing
protein 15

Gene ontology (ID)

Binding to a
magnesium (Mg)
ion (GO:0000287)
Terpene synthase
activity
(G0:0010333)

Kinase activity
(G0O:0016301)

Golgi to plasma

membrane transport

(G0O:0006893)
Protein targeting to
membrane
(G0O:0006612)
Vesicle docking
involved in
exocytosis
(G0O:0006904)
Vesicle tethering
involved in
exocytosis
(G0:0090522)

Ubiquitin-protein
transferase activity
(GO:0004842) Cell
surface receptor
signaling pathway
(G0O:0007166)

Purple acid phosphatase Acid phosphatase

Ninja-family protein 3

Chaperone protein
ClpB3, chloroplastic

activity
(G0:0003993)

Signal transduction
(GO:0007165)

Binding to ATP,
adenosine
5'-triphosphate,
(GO:0005524) ATP
hydrolysis activity
(G0O:0016887)
protein refolding
(G0O:0042026)
response to
heat(GO:0009408)

Genomic

Function context

Molecular Exon

function

Molecular Exon

function

Biological Intron

process

Molecular Intron
function
Biological

process

Molecular Exon

function

Biological Exon

function

Molecular  Intron
function
molecular
function
Biological
process
Biological
process

(Continues)
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TABLE 4 (Continued)

Trait SNP
1_perimeter 1_12063422

9_5297387
5_1309071

1_width 7_8776168

1_12063422

3_725105

r_apex 413612585

11_9260625

1_7899716

Effect
-0.66

0.63
1.48

—0.11
-0.14

—-0.10

243

—0.66

-0.75

Phenotypic
variance
explained %

2.92

491
15.48

4.82
6.64

1.02

0.22

15.20

1.03

Gene name
LOC106771372

LOC106761475

None
LOC106771372

LOC106757286

LOC106759207

LOC106776733

LOC106770568

The Plant Phenome Journal ..

Protein name(s) or gene

description

Chaperone protein
ClpB3, chloroplastic

Probable purine
permease 4

Chaperone protein
ClpB3, chloroplastic

LRR receptor-like
serine/threonine-
protein kinase
ERL2

K(+) Efflux antiporter 2,
chloroplastic

Uncharacterized
LOC106776733

Histone H1

Gene ontology (ID)

Binding to ATP,
adenosine
5'-triphosphate,
(GO:0005524) ATP
hydrolysis activity
(G0O:0016887)
protein refolding
(G0:0042026)
response to heat
(G0:0009408)

Purine nucleobase
transmembrane
transporter activity
(GO:0005345)
purine nucleobase
transmembrane
transporter activity
(GO:0015211)

Binding to ATP,
adenosine
5'-triphosphate,
(GO:0005524) ATP
hydrolysis activity
(GO:0016887)
protein refolding
(G0:0042026)
response to heat
(GO:0009408)

Kinase activity
(GO:0016301)

Solute:proton
antiporter activity
(G0:0015299)
Potassioum ion
transport
(GO:0006813)

DNA binding
(GO:0003677)
Methyltransferase
activity
(GO:0008168)
Nucleosome
activity
(GO:0006334)
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Genomic

Function context

Molecular  Intron
function
molecular
function
Biological
process
Biological
process

Molecular Exon
function

Molecular Intron
function
molecular
function
Biological
process
Biological
process

Molecular Exon
function

Molecular  Intron
function
Biological

function

Exon

Molecular Intron
function
Molecular
function
Biological
function

(Continues)
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TABLE 4 (Continued)

Trait SNP

r_area 7 8776168
5_1309071
9 5297387

r_base 414619663
5_31881752
7_34341979

r_length  5_1309071
7_46898515
8_2849639

r_perimeter 5_1309071

1_11948708
2_22658605

r_width 7_8776168

1_11948708

Effect
—1.65
5.17

1.76
-2.02

-0.53

—1.23

0.24

—0.08

0.12

2.14

0.51
—-0.38

-0.13
0.17

Phenotypic

variance

explained % Gene name

4.10 None

18.89 LOC106761475

4.02 LOC106773154

32.93 LOC106758101

1.29 LOC106760602

3.32 LOC106768523

37.21 LOC106761475
LOC106768103
LOC106772399

8.35 LOC106761475

2.84 None

1.30 LOC106756079

3.74 None

4.06 None

CHITERI ET AL.

Protein name(s) or gene
description

Probable purine
permease 4

Golgin candidate 3

Uncharacterized
LOC106758101

Putative leucine-rich
repeat receptor-like
protein kinase
At2g19210

Uncharacterized
LOC106768523

Probable purine
permease 4

Conserved oligomeric

Golgi complex subunit

3

Probable protein
phosphatase 2C 43

Probable purine
permease 4

Uncharacterized
LOC106756079

Gene ontology (ID) Function

Purine nucleobase Molecular

transmembrane function
transporter activity
(GO:0005345)

Purine nucleobase
transmembrane

transporter activity

(GO:0015211)
None

None

ATP binding Molecular
(GO:0005524)
Protein kinase
activity
(G0O:0004672)

Metal ion binding
(GO:0046872)

Purine nucleobase

function

Molecular
function

Molecular
transmembrane function
transporter activity
(GO:0005345)

Purine nucleobase
transmembrane

transporter activity

(GO:0015211)

Intracellular protein
transport
(GO:0006886)

Metal ion binding
(G0O:0046872)
protein
serine/threonine

Molecular
function

Molecular
function

function
phosphatase activity
(GO:0004722)

Purine nucleobase Molecular

transmembrane function
transporter activity
(GO:0005345)

Purine nucleobase
transmembrane

transporter activity

(G0:0015211)

None

Molecular

Genomic
context

Exon

Intron

Intron

Intron

Exon

Exon

Exon

Intron

Exon

Exon

(Continues)
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TABLE 4 (Continued)

Trait SNP

5_1309071

1_1881396

t_apex

11_5315338

25972317

7_8776168
3_725105

t_area

5_1309071

t_base 6_36720161

7_8776168
3_3913253

Effect
0.35

—1.01

2.92

—4.64

-1.78
—1.55

4.62

—-0.67

-0.57
—-0.61

Phenotypic
variance
explained %

13.25

0.94

0.52

4.62

5.26
0.96

19.49

2.21

3.59
1.17

Protein name(s) or gene

Gene name description
LOC106761475 Probable purine
permease 4

LOC106771167 Senescence-associated
carboxylesterase 101

Gene ontology (ID)

Purine nucleobase
transmembrane
transporter activity
(GO:0005345)
Purine nucleobase
transmembrane
transporter activity
(GO:0015211)

Carboxylic ester
hydrolase activity
(GO:0052689)
Defense response
(GO:0006952)
Lipid metabolic
process
(GO:0006629)

LOC106776418 Tyrosine—tRNA ligase 1, ATP binding

cytoplasmic

(G0O:0005524)
Tyrosine-tRNA
ligase activity
(G0:0004831)
tRNA
aminoacylation for
protein translation
(GO:0006418)

LOC106756136 Beta-galactosidase 8-likeBeta-galactosidase

None

LOC106757286 LRR receptor-like
serine/threonine-
protein kinase
ERL2

LOC106761475 Probable purine
permease 4

LOC106764717 Ribonuclease P protein
subunit p25-like

protein

None

LOC106757880 Uncharacterized
LOC106757880

activity
(GO:0004565)
Carbohydrate
binding
(G0O:0030246)
Carbohydrate
metabolic process
(G0O:0005975)

Kinase activity
(G0O:0016301)

Purine nucleobase
transmembrane
transporter activity
(GO:0005345)
Purine nucleobase
transmembrane

transporter activity

(G0:0015211)

Nucleic acid binding
(GO:0003676)

None
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Genomic

Function context

Molecular Exon
function

Molecular Exon
function
Biological
process
Biological
process

Molecular Intron
function
molecular
function
Biological
process

Molecular Intron
function
Biological
process
Biological
process

Molecular Exon

function

Molecular Exon

function

Intron

(Continues)
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TABLE 4 (Continued)
Trait SNP
t_length  2_715797

6_6660262
1_12063422

t_perimeter 5_1309071

7_8894464

3_725105

t_width 7_8776168

1_12063422

3_725171

leaftype 25935179

6_34277393

835030148

Effect
-0.11

—0.09
-0.14
1.70

-0.47

—0.46

-0.15
—-0.18

0.11

-0.21

0.10

0.09

Phenotypic
variance
explained %

3.08

1.38
3.77
14.09

2.18

0.76

3.36
3.89

0.66

0.18

10.80

0.64

Abbreviation: SNP, single nucleotide polymorphism.

Gene name
LOC106756073

None
None
LOC106761475

LOC106766793

LOC106757286

None

LOC106771372

LOC106757286

LOC106775932

LOC106764925

LOC106769596

CHITERI ET AL.

Protein name(s) or gene Genomic
description Gene ontology (ID) Function context
Purple acid phosphatase Acid phosphatase Molecular  Exon
activity function
(G0:0003993)
Probable purine Purine nucleobase Molecular  Exon
permease 4 transmembrane function
transporter activity
(GO:0005345)
Purine nucleobase
transmembrane
transporter activity
(GO:0015211)
Chaperonin 60 subunit ATP binding Molecular  Intron
alpha 2, chloroplastic ~ (G0O:0005524) ATP  function
hydrolysis Molecular
(GO:0016887) function
Protein refolding Biological
(GO:0042026) process
LRR receptor-like Kinase activity Molecular Exon
serine/threonine- (GO:0016301) function
protein kinase
ERL2
Chaperone protein Binding to ATP, Molecular  Intron
ClpB3, chloroplastic adenosine function
5'-triphosphate, molecular
(GO:0005524) ATP  function
hydrolysis activity ~ Biological
(G0O:0016887) process
Protein refolding Biological
(GO:0042026) process
Response to
heat(GO:0009408)
LRR receptor-like Kinase activity Molecular  Exon
serine/threonine- (G0:0016301) function
protein kinase
ERL2
Protein Metal binding Exon
indeterminate-domain
9
Pre-mRNA-processing mRNA cis splicing, Exon
protein 40A via spliceosome
(G0:0045292)
Uncharacterized ATP binding Molecular  Intron
LOC106769596 (G0O:0005524) function
Kinase activity
(G0:0016301)
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Venn diagram showing the number of significant single nucleotide polymorphism (SNP) markers associated with all traits grouped

by the statistical method and package use. Both single and multi-locus methods used are shown in (A). (B and C) Markers associated with single and

multi-locus models
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Manhattan and corresponding quantile-quantile (Q-Q) plots showing results of GAPIT_FarmCPU linear mixed model (LMM)

genome-wide association studies (GWAS) for traits associated with the leaflet type (oval or lobed). The blue line indicates the Bonferroni

genome-wide correction set with “cut_off/x” = 0.05.

response to heat, cofactors, transport, exocytosis, cell surface
receptor signaling pathways, and regulation of transcription,
RNA processing and methylation, kinase activity, and cell
cycle. Of interest were those significant SNPs overlapping
between traits and also among leaflets. Marker 1_12063422
found within the intron of LOC106771372/VradiOlg07560
described as chaperone protein ClpB3, chloroplastic is impor-

tant for ATP hydrolysis, protein refolding, and response to
heat. Marker 7_8776168 was not associated with any locus.
Marker 7_35888986 within the exon of LOC106766374
described as (3S,6E)-nerolidol synthase 1 is involved in bind-
ing to a magnesium (Mg) ion. Marker 5_1309071 within
the exon of LOC106761475/Vradi05g01240 is described as
probable purine permease 4 is involved in purine nucleobase
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Manhattan and corresponding quantile-quantile (Q-Q) plot of showing results of the logistic regression general linear model

(GLM) for leaflet type implemented in GWAS Tools. The blue line indicates the Bonferroni genome-wide correction set with “cut_off/x” = 0.05.

transmembrane transporter activity. Marker 4_9008678 was
not associated with any locus. Marker 2_5935179 within the
exon of LOC106775932/Vradi02g05730 described as protein
indeterminate-domain 9 is important in metal binding. Marker
835030148 is found in the intron of an uncharacterized
LOC106769596/Vradi08g15000. Marker 2_5972317 within
the intron of LOC106756136 described as beta-galactosidase
8-like is involved in beta-galactosidase activity, carbohydrate-
binding, and metabolic processes. Marker 3_725105 within
the exon of LOC106757286/Vradi03g00440 is described as
LRR receptor-like serine/threonine-protein kinase ERL2 is
involved in kinase activity.

4 | DISCUSSION

In the present study, we characterized the phenotypic diver-
sity, developed a linear model to predict leaf area, and
conducted a genome-wide association mapping for mungbean
leaflet traits within the IMD panel. The major phenotypes
observed in the field include the ovate or lobed leaflets, vary-
ing leaf sizes (small, medium, and large), shallow or deep
lobed angle, and green or purple vein coloration (Figure 2).
These characteristics have been documented before and pro-
vided a useful resource to classify and characterize the IMD
panel (Poehlman & Milton, 1991). In this panel, the oval,
medium-size leaflet type, deep lobed angle, and green vein
coloration are the predominant traits. The shallow lobed angle
is a characteristic of the F1 progeny of the cross between ovate
and lobed leaflet type accessions as studied using QTL map-
ping by Jiao et al. (2016), showing dominant expression of
lobed angled over ovate and the low-level outcrossing in the
panel as a characteristic of mungbean (H. Chen, Wang, et al.,
2016).

The left and right leaflets are mirrors of each other. How-
ever, the correlation of length (0.82-0.84) between leaflets
was lower than the width (0.93-0.98) between leaflets. These

results coincide with other studies that used the original Gielis
equation (Shi et al., 2018) and simplified Gielis equation (Su
et al., 2019), which showed that leaf width manifested less
variation than the length. The relatively stable broad sense
heritability (51%—-70%) for all traits reflects a significant con-
tribution of the line effect to the total variance. Line and
loc_year components contributed more to the total pheno-
typic variation. In the case of length, line contributed less than
loc_year toward the variance. loc_year explained low varia-
tions (1%—5%) in the apex and base angle traits. A significant
amount of the phenotypic variation was compounded in the
residuals, which could be due to the lack of replicates as only
one sample was collected per block per location per year.

We developed a multiple regression model for the 458 ovate
genotypes in our panel. The model LA = by + b;L + b,W +
b;L X W was the best at predicting the area of each leaflet with
an adjusted R? of 0.97 and < = 1.10 residual standard errors
(Figure 4A, LA is the Leaf Area, b, is the intercept, b;, b,,
and b; are regression coefficients). Our study presents find-
ings that researchers can confidently use as a nondestructive
robust leaf area prediction model in mungbean in instances
when they still need to use low-throughput tools like caliphers
or rulers. In other disciplines such as pathology and ento-
mology where destructive sampling of many samples is still
needed to estimate the level of injury or disease incidence, the
high-throughput nature of our methods will be time saving.
Koyama and Smith (2022) even propose to scale a model to
predict the total area of shoots in five species and diverse plant
taxa. Leaf area has been used to predict shoot biomass in Ara-
bidopsis (Weraduwage et al., 2015), an important parameter
in the calculation of LAI, and a critical variable in processes
such as transpiration, photosynthesis, and light interception
(Bakhshandeh et al., 2011; El-Sharkawy et al., 1990; H. Fang
et al., 2019). Simple or multiple linear and quadratic regres-
sion equations have been developed for use nondestructively
in other crops such as sunflower (Helianthus annuus L.,
cv. Melody) (Rouphael et al., 2007), black gram (V. mungo
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L. Hepper) (Mishra et al., 2000), soybean (Pandey & Singh,
2011; Wiersma & Bailey, 1975), common bean (Pohlmann
et al., 2021), horticultural crops (Khan et al., 2016), 15 vines
(X. Yu et al., 2020), and maize (Stewart & Dwyer, 1999).
Using 3125 leaves from 780 taxa, Schrader et al. (2021) devel-
oped a nondestructive method to estimate leaf size using a
correction factor when only the length, width, and shape are
available. In mungbeans, Hamid and Agata (1989) used the
model y = b, + b;L X W to estimate the terminal leaflet area
for each of the five varieties; however, they argued against
using a universal model for all the leaflets, considering the sig-
nificant variation from one genotype and location to another.
However, over the past three decades, we have moved to an
omics age where larger panels are common; therefore, there is
a need for a robust model to predict leaflet area and avoid any
further use of destructive methods in the plots (Y. Yang et al.,
2021). Our results using >450 genotypes compared to their
five genotypes came up with a similar observation that both
L and W had a high correlation with the leaf area, which is
expected. Therefore, this study complements similar work in
other crops, while our image extraction methods can be scaled
and used even for nondestructively collected images giving
additional advantage to existing methods.

We used our imaging methods to conduct a comprehensive
GWAS conducted on mungbean leaf traits, which is currently
lacking in published works. Our study reports more than 50
significant SNPs (Figures 6 and 7, Figure S3 and Table 4)
associated with the various leaflet traits. The novelty of our
work is reporting SNP markers that overlapped between traits,
leaflets, and different association mapping methods utilized
for a comprehensive investigation. C. Fang et al. (2017) con-
ducted a similar study on soybean leaflet area, width, length,
and shape. Our study reflects the case of pleiotropy of genes
and the polygenic nature of leaf traits (Sayama et al., 2017).
As pointed out in the results, the major overlapping genes
included VradiOlg07560, Vradi05g01240, Vradi02g05730,
VradiO8g15000, and Vradi03g00440, which were associated
with similar traits in different leaflets. The genes are involved
in various plant processes such as response to heat, trans-
port activity, metal binding, kinase activity, and metabolic
process (Kosentka et al., 2017; Lin et al., 2017; Seddigh &
Darabi, 2014). GWAS/QTL studies have been conducted in
various crops for leaf traits such as leaf area, rachis length, and
total dry weight in oil palm (Eleaeisguineensis) (Babu et al.,
2019), shape, length, width, area, and specific leaf weight in
soybean (Jeong et al., 2011; Jun et al., 2014; Sayama et al.,
2017; L. Wang, Cheng, et al., 2019). More genetic studies
on soybean leaf-associated traits can be found at https://www.
soybase.org/. The significant marker 3_11482658 detected in
the random sampling was ~6,000,000 bases away to be further
considered in this study.

Additionally, QTL mapping studies for different leaflet
shapes have been previously conducted in several other
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legumes, including soybean (narrow vs. broad) (Jeong et al.,
2011), cowpea (sub-globose vs. hastate) (Pottorff et al., 2012),
and mungbean (ovate vs. lobed) (Jiao et al., 2016). Although
FarmCPU did detect various signals with a strong associa-
tion on chromosome 2 (Figure 6) for leaflet type, we believe
this to be a spurious result. This was confirmed by the GLM
logistic regression model, which did not detect any signifi-
cant results (Figure 7). A previous QTL mapping study in
mungbean by Jiao et al. (2016) narrowed down the classi-
cal lobed leaflets margin (Ima) locus to chromosome three,
which has a syntenic region on chromosome one in common
bean. Within the /ma locus, the gene Vradi03g04470, encod-
ing an A20/AN1 zinc finger domain transcription factor, was
the probable LMA gene. There could be two reasons for the
two outcomes. First, the unbalanced case-control data cause
a violation of the constant residual variance assumption with
linear mixed models (J. Chen, Somta, et al., 2016; Dai et al.,
2021). Out of the 458 genotypes used for association mapping,
only four genotypes were lobed, while the rest were ovate.
Second, it could be an indication of the weakness of using
unified linear mixed models instead of logistic mixed models
for binary traits unless certain conditions are met (H. Chen,
Wang, et al., 2016; Dai et al., 2021; Hayeck et al., 2015; Jiang
et al., 2015; Shenstone et al., 2018; J. Yang et al., 2014). The
relationship between leaf-associated traits and yield, as previ-
ously emphasized, can be used effectively exploited by plant
breeders to meet their objective of increasing yield by using
them either as phenotypic markers or direct targets of selec-
tion (Baldocchi et al., 1985; Heath & Gregory, 1938; Board
& Harville, 1992; Jeong et al., 2011; Jun & Kang, 2012; Jun
et al., 2014; Ma et al., 2022; Sayama et al., 2017; L. Wang,
Cheng, et al., 2019).

S | CONCLUSIONS

Mungbean leaves in the Iowa diversity panel exhibited a
range of phenotypic variations during the growing seasons.
The linear regression model developed in this study can be
used to nondestructively predict the area of the ovate leaflets.
Using GWAS, the genes LOC106771372/VradiOlg07560,
LOC106761475/Vradi05g01240, LOC106775932/
Vradi02g05730, LOC106756136, and LOC106757286/
Vradi03g00440 are associated with multiple traits (length,
width, perimeter, and area) across the leaflets (left, terminal,
and right) would be suitable potential candidates for further
investigation in their role in leaf development, growth,
and function. This study also serves as a caution against
employing unified linear mixed models for association
mapping of binary variables or phenotypes as shown with
leaflet type and instead favor logistic regression models. To
employ the observed features discussed here as phenotypic
or genotypic markers in marker-aided selection techniques
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for mungbean crop development, further research will be
required.
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