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ARTICLE INFO ABSTRACT

Keywords: Stomatal conductance (g;) is a key leaf-level function controlling water, carbon, and energy exchange between
Stomatal conductance vegetation and the surrounding environment. Conventionally, semi-empirical models have been used to model
Ecohydrology

gs, but these models require re-parameterization as ecosystems undergo phenological changes over the growing
season. In contrast, machine learning (ML) models offer a potential path to overcome this problem but are less
interpretable than process-based models. This study explores ML as an approach to develop flexible and robust
models of g for a range of plant functional types (PFTs), including C3 crops, C3 grasses, shrubs, and tree species
across different continents. An explainable machine-learning approach (eXML) was used here to provide novel
interpretations and insights into the ML model formulations and relative predictor importance. We contrast the
performance of three ML architectures: extreme gradient boosting, random forests, and neural networks. Models
were developed and examined using many combinations of environmental and physiological predictors. The
results demonstrated that ML models significantly outperform conventional semi-empirical models in predicting
gs responses to the environment, while not requiring re-parameterization as is required in the semi-empirical
paradigm. Particular focus is placed on models formulated around predictor sets that are: (a) relevant to g
estimation in modern terrestrial biophysical simulation models, and (b) composed of variables describing
environmental and physiological drivers that can be remotely sensed non-invasively. “Generalized” models
developed using data from all four PFTs demonstrated strong predictive performance using only three predictor
variables, capturing 63-80 % of the variability in stomatal conductance across all ML architectures. Four pre-
dictor variables resulted in models capturing 79-83 % of g variability, and models developed using all five
predictor variables examined here were able to capture as much as 87 % of g variability across all PFTs. Un-
certainty in gs predictions was quantified using quantile regression. Shapley additive explanations was applied to
unravel instance-based positive and negative contributions of environmental and physiological predictors to gs
modeling, while illustrating that the models are consistent with the underlying ecophysiology. This work
demonstrates the power of ML to introduce a new paradigm in the simulation of highly dynamic ecophysiological
processes critical to environmental prediction.

Explainable machine learning
Plant functional types
Uncertainty

1. Introduction

Plants control the energy and water budget of the vegetated land
surface by balancing the need for photosynthetic carbon dioxide (CO2)
uptake while limiting the water lost during transpiration through pores
located on leaf surfaces known as stomata (Buckley and Mott, 2013;
Miner et al., 2017; Bonan, 2019). As the ecophysiological control on
plant water use, stomata play a central role in regulating leaf and plant
water status and transport, photosynthesis, and drought sensitivity

(Hetherington and Woodward, 2003; Damour et al., 2010; Buckley,
2017; Liao et al., 2022). Stomatal activity is often measured and quan-
tified in models as stomatal conductance (gs) and provides a central link
between simulated processes of energy balance and photosynthesis
(Drewry et al., 2010a; Buckley, 2017; Vialet-Chabrand and Lawson,
2019).

Stomatal responses to the local environment (e.g., incident radiation,
relative humidity, temperature, and CO, concentration) have been
widely studied (Jarvis, 1976; Ball et al., 1987; Leuning, 1990; Leuning
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et al., 1995; Loranty et al., 2010). This has led to the development of
semi-empirical formulations to estimate g5 as a function of environ-
mental conditions at the leaf surface. Specifically, the Ball-Berry model
(Ball et al., 1987; Collatz et al., 1991) relates gs to leaf surface relative
humidity, CO; concentration, and photosynthetic activity. The Leuning
model (Leuning, 1990) relates gs to vapor pressure deficit, CO, con-
centration, and photosynthetic activity. These g; models are widely
utilized in land surface models that require gs estimation to resolve
energy balance and biochemical processes related to the
land-atmosphere exchange of carbon, water, and energy (Drewry et al.,
2010a, 2010b; De Kauwe et al., 2015; Franks et al., 2018; Saunders
et al., 2021; Chitsaz et al., 2023). A key consideration when using either
of these semi-empirical formulations is the fixed parameters that need to
be determined prior to applying the model. A challenge has been the
need to modify / re-estimate model parameter values as vegetation
phenological, physiological, and biochemical status change over the
course of a growing season. Often these models are parameterized from
leaf gas exchange measurements (Kim and Leith, 2003; Ko and Piccinni,
2009; Saunders et al., 2021; Garen et al., 2022) which are often time
prohibitive to make with regular frequency. This points to the need for
new approaches to estimate g that rely on non-parametric methods.

Machine learning (ML) frameworks have recently emerged as
powerful non-parametric prediction tools across a wide range of scien-
tific and engineering fields (Reichstein et al., 2019; Sarker, 2016; Hsieh,
2022). ML offers a potential path to overcome this parameterization
issue in g; modeling, as well as providing a flexible approach to explore
the value of information spanning the leaf/canopy environment,
biochemical activity, and other variables that can be derived from
modern remote sensing and field observing systems. However, ML
models do require retraining if the distribution of input data changes
over time or the relationship between predictors and response changes
over time, a phenomenon known as model drift (Vela et al., 2022).

The development of ML models requires care as these approaches can
be plagued by over-fitting to limited data (Schmidt et al., 2019). How-
ever, this issue can be mitigated by tuning hyperparameters and per-
forming robust cross-validation during the training process on extensive
datasets that capture the underlying range of variability of the predicted
variables (Vincent and Jidesh, 2023; Tabe-Bordbar et al., 2018). ML
models are less transparent and interpretable in comparison to mecha-
nistic or process-based models (Lundberg and Lee, 2017). Explainable
ML (eXML) methods have received significant attention in advancing
reliability, interpretability and providing insights into opaque ML
modeling frameworks (Lundberg et al., 2020; Newman and Furbank,
2021).

Of the few studies that have utilized ML for g5 estimation most of
these studies have restricted focus either to a single plant species or a
specific geographic/climatic region (Ellsaler et al., 2020; Vitrack-Ta-
mam et al., 2020; Houshmandfar et al., 2021). EllsaBer et al. (2020)
utilized meteorological and drone-recorded data to predict g5 using
multiple ML models. Their study discovered that predicting stomatal
conductance from remotely sensed data was less successful and needed
further study. Houshmandfar et al. (2021) compared the performance of
a Jarvis-type model with ML models for predicting g; in wheat. This
study suggested that the ML models they produced exhibit high pre-
diction accuracy when trained on larger datasets but have limited
capability to extrapolate to unseen regions of data. Saunders et al.
(2021) developed ML models for g5 using environmental predictors for
36 tree species from 5 forest biomes across 6 continents and suggested
that future work evaluate the ability of ML to predict gs across con-
trasting climate regimes and vegetation types. Here we develop a range
of ML models of g for multiple plant functional types (PFTs) to evaluate
the extent to which ML can provide non-parametric models capable of
accurately simulating g; within and across PFTs.

Gas exchange datasets are widely used in eco-hydrology to model
leaf-level functions and their response to environmental and physio-
logical changes. These datasets serve as the foundation for scaling leaf-
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level functions from leaf to canopy scale in land surface models (Yang
etal., 2020; Ely et al., 2021). However, the collection of these datasets is
weather-dependent, time-consuming and requires specific training, lo-
gistics and equipment (Ellsworth et al., 2012; Weerasinghe et al., 2014;
Ely et al., 2021). Because of these constraints, such measurements tend
to be clustered in time and space in areas where data collection cam-
paigns have been focused. This may introduce uncertainty in models
developed using these datasets, and accounting for these uncertainties
will improve model extensibility.

In this paper we explored the use of three different ML architectures
for model development: random forests (RF), extreme gradient boosting
(XGBoost), and multilayer perceptron neural networks (MLPNN). Each
of these architectures has inherent features that make them unique from
each other. RF and XGBoost are tree-based ensemble algorithms with
fundamentally distinct architectures. RF is an evolution of the bagging
technique that combines multiple decision trees that each contribute to
the predictions, that has been successfully applied to a wide range of
problems over its history (Breiman, 2001; Fawagreh et al., 2014; Tyralis
et al.,, 2019). RF is an efficient ensemble learning model that ensures
high predictive precision, immediacy, and flexibility in improving pre-
dictions compared to other supervised approaches like decision trees
(Aria et al., 2021; Dinh et al., 2023; Gaur et al., 2023). RF is also known
to be robust to outliers and missing data (Tang and Ishwaran, 2017).
XGBoost is a boosting strategy based on sequential learning in which
each decision tree is built in turn so that each tree improves relative to
the previous instance (Chen and Guestrin, 2016). XGBoost has gained
popularity due to its scalability, ability to deal with noisy data, and
ability to handle sparse data (Chen and Guestrin, 2016; Sahoo et al.,
2021; Narbeav et al., 2023). MLPNN contains embedded hierarchical
architectures to obtain higher-level features from input datasets through
representation learning (Ivakhnenko and Lapa, 1965; Schmidhuber,
2015). MLPNN has been demonstrated to robustly predict, learn, and
classify non-linear data, making it an ideal candidate for modeling plant
physiological responses to environment (Gaur et al., 2020; Isabona et al.,
2022).

The previous studies applying ML to g utilized meteorological,
remote sensing, and phenological predictors to predict gs, however,
consideration of plant physiology (e.g., biochemical aspects like net
assimilation) have not been taken into account. The datasets used here
to develop and test ML models of gs (including environmental and
physiological variables) span four PFTs from data points collected across
different continents. In order to understand the importance of model
complexity (number of predictors used to develop a model) in predictive
performance and trade-offs between specific predictors, we systemati-
cally develop models using each single predictor, and all possible com-
binations of predictor variables. Particular focus is placed on ML models
that utilize the same predictor variables as the conventional semi-
empirical Ball-Berry and Leuning models (i.e., Ball-Berry and Leuning
proxies), as well as predictor sets that can leverage modern remote
sensing capabilities towards non-invasive and continuous assessments of
stomatal conductance. We have applied a robust cross-validation
scheme to overcome the issues associated with the overfitting of ML
models.

To our knowledge no previous study has leveraged explainability
metrics to provide insights into the relative importance of environ-
mental and physiological predictors, and the unique synergistic com-
binations of predictors that emerge for modeling this process. Here we
use these techniques to not only explain the outcomes of ML models
(global explanations) but also to provide underlying reasoning on how
particular predictions were made (instance-based explanations), which
explains the order of importance of different environmental and physi-
ological predictors in predicting gs using a popular exML tool SHapley
Additive exPlanations (SHAP). This study also advances the use of ML
for gs prediction by quantifying the predictive uncertainty of these
models.
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Fig. 1. Methodology schematic spanning data acquisition and screening, ML model fitting with robust cross-validation for a wide range of models defined by unique
predictor variable sets, and the application of analytical techniques to provide explanatory power for each of the ML models.

2. Methodology

Stomatal conductance is a central variable in many models of
terrestrial ecohydrology and land surface biophysics. The two most
popular semi-empirical models, those of Ball-Berry (Ball et al., 1987;
Leuning, 1990; Leuning et al., 1995), calculate g5 as a function of net
photosynthesis, carbon dioxide concentration at the leaf surface, and
either relative humidity or vapor pressure deficit at the leaf surface
(Anderegg et al., 2017). The parameters of these semi-empirical models
are often determined through data fitting and require
re-parameterization to be accurate as vegetation phenology and physi-
ology change over the course of a growing season (Saunders et al., 2021;
Chen et al., 2020). The focus of this study was to examine the ability of
ML to non-parametrically simulate this critical biophysical process for
multiple distinct PFTs, and to assess the ability ML models to have
generalized predictive capabilities across multiple PFTs. To this end, we
use three machine learning architectures for model development to
understand if there are unique advantages to using a specific ML ar-
chitecture for this ecophysiological process. The sub-sections below
provide details on the data used in this study, methodologies for ML
development and evaluation, and interpretation of model results. A
schematic of the over-arching methodology for this study is presented in
Fig. 1, including data screening and pre-processing, how the full set of
ML models evaluated in this study are formulated, model training and
cross-validation, and the evaluation of explainability indicators.

2.1. Datasets and predictor variables

Here we use existing global datasets of stomatal conductance along
with contemporaneous measurements of environmental and physio-
logical variables as the basis for developing ML models of gs. The
datasets are found in Anderegg et al. (2018) and Lin et al. (2015).
Anderegg et al. (2018) synthesized usable data from peer-reviewed
literature for approximately 34 species spanning wide geographical
and taxonomic coverage of global forest biomes collected with gas ex-
change instruments. These datasets have been utilized by Saunders et al.
(2021) examine the utility of ML for predicting g5 using meteorological
forcings. Lin et al. (2015) gathered leaf-level gas exchange datasets
spanning a wide range of PFTs and biomes including 314 species from 56
experimental sites around the globe (17 sites from Australasia, 15 sites
from Europe, 14 sites from North America, 6 sites from Asia, 3 sites from
South America and 1 site from Africa). These measurements include
instantaneous measurements under ambient conditions using gas

exchange instruments. Most of these measurements are made on upper
canopy leaves during the growing season.

The predictor variables used here include leaf temperature (Ty, [°C]),
incident photosynthetically active radiation (PAR;, [umol m 2 s’l]), net
photosynthetic rate (A, [mol m 2 5*1]), and ambient environmental
conditions at the leaf surface including carbon dioxide concentration (Cg
[ppm]), relative humidity (hs [%]) and vapor pressure deficit (VPD
[kPa]). Integrating these datasets allows us to examine model perfor-
mance across four PFTs: C3 crops, C3 grasses, shrubs, and trees, The tree
dataset was obtained from Anderegg et al. (2018), while the datasets for
C3 crops, C3 grasses, and shrubs were obtained from Lin et al. (2015).
These datasets span collection campaigns across several continents, but
a spatial bias can be seen to exist as some locations had intensive data
collection activities while other locations were not well sampled. Based
on data availability for all predictors, the number of measurements for
C3 crops, C3 grasses, shrubs, and trees is 818, 768, 630, and 2614,
respectively. This suggests that based on the relative number of mea-
surements, the dataset used in this study is biased towards tree PFT. We
develop ML models here that utilize each PFT individually, as well as
models that utilize all data collectively, as well as performing statistical
analysis of uncertainty on the modeling predictions. Relative humidity
measurements are available only for the tree species and so hy is utilized
for gs prediction for only this PFT.

Fig. 2 shows the histograms of all predictor variables and g; data used
in this study (i.e., from across all PFTs). Notably, these data were all
collected under a narrow range of Cs between 330 and 450 ppm, which is
likely to minimize the importance of this environmental condition in our
modeling results. Other predictor variables show a wider range of
variability, spanning values typical of many field conditions. The dis-
tribution of PARy, is left skewed toward saturating light conditions, but a
wide range of incident light levels is represented in the full dataset used
here. Fig. S1 presents similar plots for each of the individual PFTs. It is
important to note that the models developed here are trained and vali-
dated around the data used in this study and are not necessarily valid for
so-called “unseen” conditions (i.e., conditions outside the ranges used
for model development).

Our focus in this study is to evaluate the performance of ML models
formulated with the variables used in the two primary semi-mechanistic
formulations described above, and to understand how model perfor-
mance could be improved using additional predictors related to energy
balance, a process tightly coupled to stomatal conductance (Drewry
et al., 2010a, 2010b). To this end, we included PAR;, as a variable
describing energy available for biochemical processes and Ty as a



S. Gaur and D.T. Drewry

— 600 -
400-3) T b)
500
390
g - §400 1
g 3300
370 o
© : L= 200
580 : 100 ]-
350 s
c, 350 400
CS
e T
40
>
s [$]
O 30 &
~ =
- o
20 : s
10 e
=
L
TL
1000
a0 i) )
_ 800
w30 -
(72}
o S 600
€ 7]
= 20 2
£ lg 400
<10
< 200
0 i
0
A 0 20 40
n An

Agricultural and Forest Meteorology 350 (2024) 109955

2000
2000 () d)
"0 1500
S <3
S 3 1000
£ 1000 o
2 4
NG L
(1 4
- 500 500
a
0 A
PAR. 0 1000 2000
" PAR
n
600
8fg) = )
+ 500
o &
T : 400
g :
5’4 %300
o [
> w200
2 |
— 100
0 =t
VPD 0 2 4 6 8
VPD
1500 :
1500l ¥ E )
. =
i 1000
1000 §
E S
° o
: :
£ 0 500
d '
2 H
0 E 0
0 500 10001500
9 g,

Fig. 2. The range of environmental and physiological variables, across all datasets (PFTs), used to develop and validate ML models in this study. This includes surface
CO, concentration (a,b), downwelling PAR (c,d), leaf temperature (e,f), vapor pressure deficit (g,h), net photosynthesis (i,j) and stomatal conductance (k,j).

variable central to the leaf energy balance and that can be obtained
through remote sensing (Chen and Liu, 2020; Sobejano-Paz et al., 2023).

2.2. Model formulation and uncertainty estimation

Fig. 1 presents the different combinations of predictors used to
construct each of the 19 ML model formulations developed and evalu-
ated here. Model-1 refers to the collection of model formulations that
utilize only one environmental or physiological variable as a predictor
(five in total: Model 1.1 to Model 1.5).

Model-2 refers to all model formulations that use combinations of
two environmental variables (six in total: Model 2.1 (Ty, VPD), Model
2.2 (Ti, PAR;y), Model 2.3 (Ty, Cs), Model 2.4 (PAR;,, VPD), Model 2.5
(PAR;jy, Cs), and Model 2.6 (Cs, VPD). Model-3 refers to the set of models
that utilize three predictor variables: Model 3.1 (T, VPD, PAR;;,), Model
3.2 (Cs, VPD, PAR;,,), Model 3.3 (T, Cs, PAR;,), Model-3.4 (T, VPD, Cy),
Model-3.5 (hs, Cs, Ap) and Model-3.6 (VPD, Cg, Ay). Model-4 refers to the

model formulation that does not require a measurement of biochemical
activity (Cs, VPD, Ty, and PAR;,) and Model-5 refers to the model that
uses all five predictor variables.

The nineteen unique combinations of forcing variables specified
above are used for each of the three ML model architectures examined
here, resulting in 57 models developed for each PFT. Additionally, we
develop these 57 models for the aggregate dataset containing data from
all PFTs. This results in a total of 228 ML models evaluated here.

We will focus our analysis on a few of these formulations as they have
particular significance:

e Ball-Berry Proxy (Model-3.5): this model utilizes the same set of
predictors as used in the semi-empirical Ball-Berry model, and so
will be contrasted directly with results of that semi-empirical
formulation.
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Leuning Proxy (Model-3.6): this model utilizes the same set of pre-

dictors as used in the semi-empirical Leuning model, and so will be

contrasted directly with results of that semi-empirical formulation.

e Non-invasive RS (Model 3.1): represents a potential non-invasive /
non-contact remote sensing and environmental basis for predicting
8s-

e Model using all environmental predictors (Model 4): this model
utilizes the complete set of environmental predictors.

e Model using all predictors (Model 5): this model utilizes all envi-

ronmental and physiological predictor variables for g estimation.

The performance of the Ball-Berry Proxy is compared directly to
predictions made with the semi-empirical Ball-Barry model for the tree
PFT only, as that is the only PFT with associated hs values in the dataset.
This reduces the number of models evaluated in this study to 219.
Likewise, the performance of the Leuning Proxy models is compared
with semi-empirical Leuning models for all PFTs. The parameters of the
Ball-Berry models, i.e., slope (m) and intercept (b), were optimized
through a grid search to minimize the mean absolute error between the
measured and predicted gs. Likewise, the parameters of the Leuning
model, slope (m*) and intercept (b*), are also optimized for all data as
well as for individual PFTs. All the models described here are developed
for each individual PFT and ML architecture combination. In the process
of model development, these models are trained individually for each
PFT. In addition, we develop a set of global ML models (terminology
applies to this study only) by training them on the data from all four
PFTs employing the best-performing ML architecture as determined
from the individual PFT model testing. The best-performing ML archi-
tecture is chosen based on the performance metrics discussed in Section
2.4.

Uncertainty in the predictions can arise from uncertainties in mea-
surement data, parameter values, and model structures (Solomatine and
Shrestha, 2009; McMillen et al. 2018). Quantile regression (QR) is a
popular method that accounts for uncertainty due to all of the afore-
mentioned sources (Solomatine and Shrestha, 2009; Weerts et al., 2011;
Rahmati et al., 2019; Gaur et al., 2021) regardless of the other methods
that estimate uncertainty due to individual sources. Monte Carlo
methods analyze uncertainty due to model parameters and Bayesian
methods assess uncertainty due to input data (Solomatine and Shrestha,
2009). QR has gained popularity in estimating prediction uncertainty for
ML models due to its versatility in incorporating multiple sources of
uncertainty (Rahmati et al., 2019; Kasraei et al., 2021). In this study, QR
is used to estimate the combined predictive uncertainty in gs predictions
due to predictors, parameters, and the structure of ML models.

QR estimates uncertainty between training datasets (ML predictors
and response) and measured data. Parameters obtained from well-
calibrated QR models are used to predict uncertainty over the vali-
dated datasets. A QR function is used to calculate the residuals (differ-
ence between measured and predicted data) over the user-defined
quantiles (5 %, 50 %, 75 %, and 95 % in this study) where the model is
individually calibrated for each quantile (Rahmati et al., 2019). QR
utilizes normal quantile transformation to convert the data into the
Gaussian domain. The details of the QR methods can be obtained from
Koenkar and Hallock (2001), Koenkar (2005), Weerts et al. (2011), and
Gaur et al. (2021).

2.3. Semi-empirical stomatal conductance models

The Ball-Berry (Ball et al., 1987; Ball, 1988) and Leuning et al.
(1995) models estimate stomatal conductance as functions of leaf sur-
face environmental conditions and net photosynthesis. These two
models are widely utilized in ecophysiological and land surface models
spanning scales of a single leaf, homogeneous plant canopy to that of the
globe. Here we define these models that we use to evaluate and contrast
ML proxies that we develop below.

The Ball-Berry (Ball et al., 1987) model defines g5 as a function of net
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photosynthesis, CO; at the leaf surface, a proportionality constant, and a
linear offset.

hS

C. +b (@)

8s = mA,

The parameters m and b are also called Ball-Berry slope and offset,
respectively.

Leuning et al. (1995) provided an alternative to the Ball-Berry model
to address two issues: (i) the Ball-Berry model does not simulate g5 and
A, accurately when Cg approaches the CO5 compensation point (I') and
(ii) stomata respond to VPD rather than hg. This resulted in the Leuning
model for gy

. A, .
g =m——————+b 2
<1+L7V0>(Cy—1")

The parameters m* and b* are the Leuning slope and offset. Dy is an
empirically determined parameter.

2.4. ML model development

ML models are flexible in nature due to their ability to automatically
learn relationships between predictors and response variables (de Hond
et al., 2022). This gives ML models the potential to more efficiently
utilize information in predictor variables, as well as find value in pre-
dictor variables not used in conventional biophysical formulations. Here
we train each of the model formulations described in Section 2.2 using
three ML architectures: Random Forests, XGBoost and Neural Networks.

Each ML architecture contains two kinds of parameters, a set that is
determined during model training (model parameters) and a set that
controls the architecture and the learning processes (hyperparameters)
(Vincent and Jidesh, 2023). Accurate hyperparameter values are crucial
for model performance and are the first stage of model development,
determined prior to model training (Kuhn and Johnson, 2013; Yang and
Chui, 2021). This process is called hyperparameter tuning (HPT) and is
often performed by grid search or other optimization strategies (Bergstra
et al., 2012; Fuadah et al., 2022). In the case of MLP the hyper-
parameters are the number of hidden layers, the learning rate and the
number of neurons. These parameters essentially define the structure of
the NN. Likewise, with XGBoost and RF, the number of boosting itera-
tions and n-estimator (number of trees in a forest) are hyperparameters
associated with the structure. Following the specification of this struc-
ture, the training process is performed to determine the weights of the
final model. Hyperparameter values may be unique to each dataset, and
so HPT is performed uniquely for each architecture and PFT here. Table
S1 lists the hyperparameters of different ML architectures used in this
study together with the information on their physical significance and
fitted ranges obtained after hyperparameter tuning for each PFT.

Another important factor in the development of rigorous ML models
is cross-validation (CV) (King et al., 2021), which determines how well a
ML architecture will perform on unseen data from the same distribution
(Tabe-Bordbar et al., 2018; Brodeur et al., 2020). The fundamental idea
behind CV is to divide the dataset into training and validation fractions.
Following training the validation fraction is used to quantify model error
on the fraction of data not used in training processes. This is often
performed iteratively so that this process can be performed on many
random breaks of the dataset. CV attempts to minimize common issues
associated with ML such as over-fitting and poor generalizability (
Tabe-Bordbar et al., 2018; Brodeur et al., 2020).

As presented in schematic in Fig. S2, in the ML development work
presented here we use an iterative model development and testing
framework based around a robust CV procedure. We use an iterative
approach (n = 500) to randomly split the data into training (60 %) and
validation (40 %) fractions. As per previous literature, the training data
fraction can range from 60 to 95 % depending on factors such as the size
of the underlying dataset (Deo and Sahin, 2015; Vu et al., 2016; Hou
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Fig. 3. (a) Range of values of Ball-Berry slope and offset parameters explored using grid search to find the optimal parameter values (minimized MSE) for the tree
PFT (optimal combination is the white dot), (b) Performance of Ball-Berry model for the tree PFT and (c) the performance of ML Ball-Berry proxy for the tree PFT.

et al., 2017; Wang et al., 2018). Here we used a 60 / 40 split (training /
validation) so as to ensure that a sufficient amount of data is left out for
model validation. For each model developed we performed 500 random
data splits to ensure that no bias from a biased data split impacted model
performance. A unique optimum set of hyperparameters for each of the
n data splits is determined by grid search HPT with a nested k-fold CV
technique (Step-2 in Fig. S2). In k-fold CV the entire dataset is divided
into k disjoint sets, the model trained on k-1 folds and validated on the
remaining fold of data. The procedure is repeated k times, and overall
accuracy is calculated as the average of accuracies across each fold
(Yang and Chui, 2021). A 10-fold cross-validation is used in this study.

Once the n ML best performing hyperparameter sets have been
specified using HPT, a model is trained for each of these hyperparameter
sets using the training fraction corresponding to that unique data split.
Following this training step, the trained model is used to predict g5 for
the unique left out validation fraction. Mean square error (MSE) is used
as the loss function to train ML models. The model’s performance over
training and validation fractions is then computed by averaging the
performance over the n sets (Step-5 in Fig. S2). Two-performance met-
rics, the coefficient of determination (Rz) and root mean square error
(RMSE), are used to quantify the performance of each ML architecture
here.

At the last step, each ML model is trained independently using the n

ML hyperparameters over the entire original training fraction (60 %).
The left-out validation fraction (40 %) is used to perform the final
validation of the trained model. The final model performances over
training and validation fractions are determined by averaging the per-
formance for the n sets.

2.5. Interpretations of ML models outcomes

ML models offer a path for improving the utilization of information
in predictor variables for improved predictive accuracy but are chal-
lenging with respect to interpretation and developing insights into sys-
tem dynamics as compared to mechanistic models (Schmidt et al.,
2020). To overcome these problems, a popular eXML algorithm, SHap-
ley Additive exPlanations (SHAP), was developed by Lundberg and Lee
(2017) to interpret ML model outputs. The idea of SHAP originated from
the Shapley value of game theory (Shapley, 1953), which defines the
average marginal contribution of a player across all the coalitions to
which the player belongs (Biecek and Burzykowski, 2020). In ML the
SHAP value represents the contribution of individual predictor variables
to the final outcome of the model. Apart from other eXML techniques,
SHAP provides global as well as local explanations (Lundberg and Lee,
2017).

A SHAP value represents the expected marginal contribution of each
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predictor which is calculated by the weighted average of a predictor’s
contribution (Lundberg and Lee, 2017). A detailed explanation of SHAP
can be found in Lundberg and Lee (2017). Local explanation represents
the contribution of each predictor for individual instances, whereas
global explanations summarize the contribution of an individual pre-
dictor on the model as a whole, i.e., the aggregate of all instances
(Lundberg et al., 2020). The global contribution is calculated by taking
the mean of absolute SHAP values for individual instances.

Local interpretation focuses on the unique characteristics of each
individual instance and offers justifications that may help in better
comprehension of the predictor contribution which is disregarded by
global interpretation techniques.

Here we use beeswarm plots to summarize SHAP values and in-
teractions. Beeswarm plots illustrate the local explanations by depicting
the magnitude, prevalence, and direction of the prediction’s effect on
model output (gs predictions in our case) (Lundberg et al., 2020). Each
dot in the beeswarm plot corresponds to a single data point evaluated by
the model. When multiple points fall around the same position the SHAP
plot appears denser (i.e., bulges in points in that region).

The SHAP dependence plot depicts how the value of a predictor in-
fluences the prediction for each datapoint in the dataset. These plots also
account for the interaction effect of the main predictor with another. The
x-axis of the dependence plot reflects the value of the main predictor, the
y-axis represents the SHAP values of the respective main predictor, and
the color variation represents the value of another interacting predictor.

3. Results and discussion
3.1. Stomatal conductance prediction using conventional approaches

Two widely utilized semi-empirical models of g, the Ball-Berry (Ball
etal., 1987; Ball, 1988) and Leuning (1990) model, have been used here
as the reference models for g; predictions. Fig. 3(a) illustrates the range
of Ball-Berry parameters explored in the grid search optimization. The
Ball-Berry parameter values used are obtained by minimizing the mean
square error (MSE) using grid search optimization. The Ball-Berry slope
is the coefficient of the linear regression fit between gs and A hs/Cs (Eq.
(1)) and represents the strength of the relationship between stomatal
conductance and photosynthetic activity in the context of leaf-level
humidity and CO2 concentration (Ball, 1988; Miner et al., 2017). The
Ball-Berry intercept represents the cuticular and residual g5 and is
defined as the intercept of the linear regression fit between g5 and
Aphg/Cs (Ball, 1988; Collatz et al., 1991). The specific values of m and b
used here were found by determining the optimal values across the
ranges of 5-20 and 0-2 respectively, based on known variability in these
parameters for the PFTs used in this study (Leuning, 2002; Dewar, 2002
Miner et al., 2017; Saunders et al., 2021). The numerical resolution of 1
x 0.1 (m x b) was used for this grid search exercise.

The optimum values of m and b were determined to be 12 and
0 respectively and are represented by a white dot in Fig. 3a. Fig. 3b
presents the performance of the Ball-Berry model for trees. The R? and
RMSE values are found to be 0.45 and 85 mmol m 2 s™! for the
Ball-Berry model. Likewise, a white dot in Fig. 4a indicates the optimum
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Training and validation performance of the best-performing “generalized” model for each level of model complexity for data across all PFTs for in terms of R? and

RMSE (mmol m~2s™1).

ML XGBoost RF NN
Models P Py >
R RMSE R RMSE R RMSE
T, Va T, Va T: Va T: Va T, Va T, Va

M5 0.94 0.87 98 105 0.92 0.84 105 112 0.90 0.81 204 255
f(A,, VPD, Cs, PAR;,, T1)

M4 0.92 0.83 115 125 0.90 0.79 121 131 0.88 0.79 198 205
f(VPD, Cs, PAR;y, T1)

M3.1 0.86 0.72 189 194 0.84 0.69 201 221 0.80 0.70 220 245
f(VPD, PAR;,, Tp)

M3.2 0.88 0.73 192 201 0.86 0.71 199 210 0.82 0.68 221 241
f(VPD, Cs, PARip)

M3.3 0.85 0.70 178 185 0.86 0.73 181 189 0.81 0.69 191 202
f(Cs, PAR;p, T1)

M3.4 0.80 0.67 165 171 0.82 0.64 171 179 0.79 0.63 195 201
f(VPD, Cs, T1)

M3.5 Insufficient data
f(An, hs, C5)

M3.6 0.91 0.80 129 139 0.89 0.76 132 149 0.86 0.71 141 155
f(An, VPD, Cy)

M2.1 0.58 0.55 589 614 0.55 0.51 612 624 0.49 0.47 617 629
f(VPD, Ty)

M2.2 0.45 0.43 614 625 0.45 0.42 625 631 0.39 0.37 645 645
f(PARyy, Tr)

M2.3 0.54 0.51 594 598 0.52 0.49 602 687 0.42 0.40 607 695
f(Cs, T1)

M2.4 0.59 0.55 602 689 0.49 0.46 610 701 0.41 0.38 615 725
f(VPD, PAR;,)

M2.5 0.42 0.39 621 635 0.40 0.38 630 645 0.41 0.39 645 655
f(Cs, PAR;pn)

M2.6 0.49 0.38 635 699 0.39 0.35 641 701 0.40 0.38 650 745
£(VPD, Cy)

Ml.1 0.21 0.19 1245 1289 0.19 0.17 1251 1291 0.18 0.17 1260 1298
f(Tw)

M1.2 0.24 0.21 1212 1254 0.21 0.19 1231 1265 0.19 0.18 1240 1271
f(VPD)

M1.3 0.20 0.18 1245 1265 0.19 0.17 1251 1271 0.17 0.16 1261 1275
f(PAR;;)

M1.4 0.19 0.15 1210 1235 0.18 0.14 1215 1241 0.19 0.16 1221 1251
£(Cs)

M1.5 0.35 0.32 1121 1148 0.32 0.29 1126 1154 0.31 0.29 1128 1159
f(An)

values of m* and b*, which were determined to be 22 and 0.1, respec-
tively. Fig. 4b presents the performance of the Leuning model by
combining the data from all PFTs. The R? and RMSE values were found
to be 0.57 and 165 mmol m~2 5! for the Leuning model. Likewise, the
optimum values of m* and b* have also been determined for individual
PFT. Fig. S3 presents the performance of Leuning model for individual
PFTs.

3.2. Stomatal response predictions using ML models and uncertainty
estimation

We use the ML development framework illustrated in Fig. 1 to
examine the ability of ML to predict g;. For each ML experiment the data
is split using a 60/40 (training/validation) random percentage split,
performed 500 times to avoid statistical artifacts that may be present in
any single random split of the data. Table 1 presents the performance of
generalized ML models, developed using data from all PFTs, obtained by
averaging the 500 unique sets of models obtained from Step-5 of Fig. S2.

Predictive performance increases as the number of predictors in-
creases from one to five.

Figs. 3c and 4c present the performance of the ML proxies for the
Ball-Berry (for the tree PFT only) and Leuning models (across all PFTs)
using XGBoost. The R? values of 0.88 and 0.91 and RMSE values of 38
mmol m~2 s~} and 60 mmol m 2 s™! are obtained from the Ball-Berry
and Leuning proxies, respectively. For both conventional gs models, the
ML proxies (ML models that use the same predictor sets) performed

significantly better.

Fig. 5 presents the performance of the final ML models (obtained
from Step 6 in Fig. S2) during validation using the best performing ML
architecture XGBoost. There is a clear trend of improving model per-
formance when a greater number of predictor variables is used.

The 1-predictor models (Model-1) vary in predictive performance for
all PFTs from R? = 0.15 to 0.32. The best single predictor is A,, which
performed almost 50 % better than any other single predictor model.
The range of predictive performance of 2-predictor models increases
dramatically from R? = 0.38 to 0.55. It is notable that some environ-
mental parameters that performed poorly in single-predictor models,
such as PAR;, (R2 = 0.18) and Cg (R2 = 0.15) demonstrated much
stronger performance when combined in 2-predictor models (Model-2.5
[PARjp, Cs] R% = 0.39). The performance of 2-predictor models (Model
2.2 [Ty, PAR;y] R? = 0.51, Model-2.3 [Ty, Cs] R* = 0.43 and Model-2.6
[Cs, VPD] R?= 0.38) show the synergistic effect of two predictors when
combined with well-performing environmental predictors from single
predictor models, like VPD (R2 =0.22) and Ty, (R2 = 0.19). These syn-
ergistic impacts are primarily driven by the unique contributions of
different predictors to plant ecophysiological responses. The two-
predictor model formulated by VPD and Ty (R? = 0.55) demonstrates
the combination of two strong environmental predictors and is one of
the best performing 2-predictor models. Another strong 2-predictor
model (Model-2 [PAR;,, VPD], R? = 0.55) shows the synergy between
two environmental predictors PAR;, and VPD. The performance
improved dramatically again with the inclusion of a third predictor,



S. Gaur and D.T. Drewry

1r
0.9+
0.8+
0.7
0.6
~ (T, VPD)
14 # f(PAR,,VPD)
05 W (T, PAR;,)
® (T, C)
04+ A f(PAR,,, Cs)
*=f(Cs,VPD)
A f(A)
0.3
f(vPD)
02 W
3 f(PAR,,)
of(C)
o1 ! |||
Model-1 Model-2

Leuning proxy 3§ f(A,, VPD, C;)

Non-invasive Model . f(VPD, T, PAR;,)

Agricultural and Forest Meteorology 350 (2024) 109955

All PFTs

Model using
all environmental f(A. T, VPD, PAR,, C5)
predictors

Modelusing
f(T, VPD, PAR,, C;) all predictors

M f(VPD, PAR,,, Cs)
A f(VPD,T, C5)
® f(1,, PAR,,, C5)

Overlapped

Model-3 Model-4 Model-5
Models

Fig. 5. Validation performance of ML model formulations. Each point represents the average performance of a single ML model developed for data aggregated over

all PFTs.

with R? values from 0.74 to 0.87. The Leuning Proxy model in particular
[A,, VPD, C], demonstrated an R? performance of 0.87. Adding addi-
tional predictors beyond three resulted in nominal performance in-
creases relative to three-predictor models, indicating that carefully
chosen three-predictor models may be described as parsimonious,
achieving near-optimal performance while minimizing model
complexity. We also highlight an additional 3-variable model, the “non-
invasive” model with a predictor set composed of environmental vari-
ables and leaf temperature which can be assessed remotely [PAR;y, Ty,
VPD]. This model has an R? performance of 0.82.

A closer look at the performance of 1- to 3-predictor models reveals
the importance of combining T;, and VPD on g, prediction performance.
Individually these two predictors account for approximately 20 % of the
variability in g in single-predictor models. When combined they result
in the strongest 2-predictor formulation, accounting for almost 60 % of
gs variability. Their combination in the 3-predictor “non-invasive”
formulation described above accounts for greater than 80 % of the
variability in gs;, making a strong case for the inclusion of these two
variables in ML-based models of stomatal conductance. The perfor-
mance of multiple predictor models is dependent on the unique infor-
mation each predictor provides to plant ecophysiological responses.

The model with all four environmental variables outperformed all
other models completely driven by environmental predictors with an R2
of 0.89. The inclusion of all five predictors resulted in a nominal increase
in performance, capturing 92 % of the variability in g.

Table 1 presents the performance of ML models developed using data
combined across all four PFTs, i.e., “generalized” models. The perfor-
mance of ML models differs in Table 1 and Fig. 5. This is because Table 1
presents the average performance over n-iterations for training and
validation, whereas Fig. 5 presents the average performance of n ML
hyperparameters over the original dataset during validation. Fig. 6
presents the validation performance of four of the models described in
Section 2.2 above (Leuning, non-invasive, all environmental predictors

and all predictors) obtained by Step-6 of Fig. S2, i.e., the average per-
formance of models obtained using n-sets of optimum hyperparameters.
Likewise, the predictive performance of the g5 models has been evalu-
ated for the individual PFTs. In Tables S2-S5 we present the average
validation performance of models developed specifically for each PFT.
In general, similar model performance is seen for each individual PFT as
is the case for the all-PFT model.

Fig. S4 presents the validation performance of the single-PFT g
models. For single PFT models (Fig. S4), one-predictor and three-pre-
dictor models exhibit similar performance to the ‘generalized’ (all PFT
combined) models, whereas the performance of two-predictor models
varies across the different PFTs. We see similar trends in performance
improvement as the number of predictors is increased, with the syner-
gistic effects of specific predictor combinations resulting in significant
performance improvements as two and three predictors are combined in
ML model formulations. As with the all-PFT generalized models of Fig. 5,
performance increases found as model complexity increases beyond
three predictors are nominal and likely do not merit the associated in-
creases in model complexity and additional data requirements.

To quantify uncertainty on the measured and predicted gs responses,
a QR model is calibrated on the g predictions and measurements for the
training fraction, and calibrated parameters are subsequently used to
check the performance of a QR model on the validation fraction. Fig. S5
presents the performance of calibrated QR models for the Leuning proxy,
non-invasive model, model with all environmental predictors, and
model with all predictors over the validation fraction. The performance
of models over the validation fraction by fitting QR from the parameters
obtained from calibration. Fig. S5 a, c, e, g present the scatter plot be-
tween NQT error and NQT g along with regression lines at 5 %, 25 % 75
% 95 % quantiles. Fig. S5 b, d, f, h show the coverage of measured g
within the 90 % and 50 % confidence intervals obtained by predicted g;.
It is evident from Fig. 5 that most of the data lies within 90 % and 50 %
confidence intervals, which suggests an acceptable amount of
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Fig. 6. Model validation performance across all PFTs for: (a) the ML Leuning proxy, (b) the non-invasive RS-based model, (c) the model using all environmental

predictors, and (d) the model using all predictors.

uncertainty in the gs predictions for all four models, given the breadth of
data used in model development.

3.3. Global and local explanations of ML models

The SHAP technique is applied to four of the models of particular
significance described in the Section 2.2: the Leuning proxy (Model-3.6),
non-invasive model (Model-3.1), the model utilizing all environmental
predictors (Model-4) and the model utilizing all sets of predictors
(Model-5). Fig. 7 presents the SHAP summary plots that concisely
illustrate the magnitude, prevalence,and direction of the predictor’s
effect. The plots in Fig. 7a, c, e, g are standard bar charts that show the
average magnitude of SHAP values for each predictor. The global feature
importance plot in Fig. 7a illustrates the importance of features in the
order of A, > VPD > Cs as evidenced by their average SHAP values for
the Leuning proxy. This order of importance remains the same when two
additional predictors (PAR;, and Ty) are added (Fig. 7g). This could be
due to relative individual performance of predictors PAR;, (R? = 0.18)
and Ty, (R? = 0.19) in comparison to other predictors such as A, ®R? =
0.32) in predicting g; as illustrated from the performance of Model-1 in
Fig. 5.

The plots in Fig. 7b, d, f, h are beeswarm plots as described in Section
2.4. The color variation from blue to red represents an increase in the
magnitude of the predictor. For example, in Fig. 7b as A, increases it

10

results in higher predicted values of g, and vice versa. Likewise, lower
magnitudes of VPD and C; contribute to higher predicted values of g (i.
e., positive impact on model output as evident from Fig. 7b), and vice
versa. In Fig. 7b we also see the distribution of effect magnitudes, with
low A, values clustered around low predicted g; magnitudes, but
increasing A, values having a larger increasing influence on predicted g
magnitudes (extended long right tail of SHAP for A, in Fig. 7b). The
extended long tail shows the relative importance of a predictor. For
example, lower magnitudes of VPD have larger positive impacts on g,
relative to lower magnitudes of C,. Similarly, in Fig. 7d, larger values of
PAR;, are more important to the model than higher values of Ty.

The long tails also show that the predictors with low global impor-
tance can be important for specific situations (Lundberg et al., 2020).
For example, in Fig. 7f Ty, and the VPD have lower impacts on model
predictions than the other variables, which is apparent in the beeswarm
clustering around SHAP values of zero in Fig. 7f. But both of these
variables have tails in either direction of these clusters that indicate that
they can be influential on g; model predictions in some circumstances.

The long tails for g; model outcomes are mostly toward the right
(greater positive impact on g predicted values), as circumstances such
as A, or PAR;, going to zero will cause stomatal closure. This results in
the predictors examined here having the greatest influences on increases
in gg predictions. In the case of VPD and Cg lower values of these pre-
dictors positively impact the magnitude of predicted g;. However, the
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f, h).

extended right tail for VPD suggests that the lower values of VPD are
more important to the model than the lower values of Cg, which is in part
due to the narrow range of Cg values (approximately 330-450 ppm)
evaluated here, relative to the significantly wider range of ambient VPD
evaluated in these datasets (see Fig. 2).

The order of the global feature importance for the non-invasive
model and the model using all environmental variables are PAR;, >
VPD > T and VPD > PAR;, > Cs > Ty, respectively. This is illustrated in
Fig. 7c and e. The local explanation of the non-invasive model (Fig. 7d)
show that higher values of PAR;, and Ty, positively impact gs predictions
and vice versa. Nevertheless, the higher values of PAR;, are more
important to the model than the higher values of Ty.

The model using all predictors shows the global feature importance
of A;, > VPD > Cg > PAR;, > Ty. The higher importance of A, VPD, and
C; reaffirms the intuition of conventional semi-empirical models and
physiological processes (Ball, 1988; Leuning et al., 1995). The local
explanations in Fig. 7h indicate that greater magnitudes of A, and Ty,
have a positive influence on gs predictions and vice versa. In the case of
VPD and Cs, lower magnitudes have more positive impacts on gs pre-
dictions and vice versa. This could be due to the left-skewed distribution

11

of PARj;, (Fig. 2), where most of the measurements have been captured
under light-saturating conditions.

The results obtained from SHAP also highlight the importance of
certain predictors or the combination of predictors (Fig. 7) which is a
novel aspect introduced by this study. Fig. 7b and h suggest A, is the
most important predictor when all predictors or a combination of
environmental predictors are used to predict g;. Likewise, VPD is found
to be the most important predictor when a certain combination of
environmental predictors or all environmental predictors are used
(Fig. 7d, f). This points to the utility of a combination of A;, and VPD for
predicting gs which is in line with the findings of Leuning et al. (1995)
and Medlyn et al. (2011). A lower VPD can ameliorate transpiration and
assimilation of CO5 and thus, increase g5 (Ding et al., 2022). In the case
of all environmental predictors or a set of them VPD and PAR;, are the
two most important predictors in combination (Fig. 7d, ). Both VPD and
PAR;j, play an important role in plant water and energy relations, as
atmospheric demand is characterized by VPD whereas PARin is a source
of energy for plant assimilation. However, the combination of VPD and
C; is more important when both environmental and physiological pre-
dictors are considered.



S. Gaur and D.T. Drewry

Agricultural and Forest Meteorology 350 (2024) 109955

) (A, C)
) 1 . ]
144 15 €) o4 ~ e 18
c 08
< ooy o
bt »
§ 06| - ' 3 o2 '
g 04| o § 01 » < o
%0 >
§ 02} 0s § o} . i os
| 0
o} 01}
W 0 . i . ° . °
02
02 30 o 0 40
C
f(A,, VPD) '
s f) 15 g %8 40 15
7 . o °
e < & 04} % gcu e
§ o
5& 3 ! R ° & ) '
o | . ° o
4% %; o _§ 02} 20 < é 02} «
3 > s
0s os
2 B 3 0 hd 3 0
- & 73
0.5~ v ? 05 ~ O 02! - . ° 02 - 0
20 40 0 2 0 0 5 10 0 5 10
A, A, VPO VPO
f(vPD, C,)
) ' -
) o8 “0 j) os 15 K) 0s (] )} 15
L] ’ "
g 04} ' 40 5 06} 5 ')
} N } v§ 1
9 ) g 04} . .| 'y
3 oz o < 3 2 3 o
> 30 02
; 0s 3 ) § 0s
5 ° 0 é o) 2
° ° 1 o,
02 — — " - . ° 02 ) 0 480"
0 s 10 s 10 40 v
VPO VPO C

Fig. 8. SHAP dependence plots for models using two predictors of the Leuning Proxy at a time: (a, b, ¢, d) models developed from [A,, Cs]; (e, f, g, h) models
developed from [A,, VPD], (i, j, k, 1) [VPD, C]. Each panel is a 2-D scatter plot between the predictor and that predictors’s SHAP value, with coloration to show the

interaction with the other predictor variable, as well as g;.

The findings obtained from SHAP suggest the relative importance of
Leuning predictors, A, VPD, and Cs and their combinations in different
models. Hence, the interaction in the different combinations of Leuning
predictors is analyzed further through SHAP in the next section.

3.4. Model explanation by individual predictors and corresponding
interactions

A SHAP dependence analysis is performed first by examining models
based on all combinations of two predictors from the set of three
Leuning predictors (Fig. 8). Likewise, Fig. 9 presents a SHAP dependence
analysis for the Leuning proxy. These plots show how the SHAP value for
a predictor varies as a function of the value of the predictor as a scatter
plot, with coloration showing how these dynamics vary with the value of
an additional predictor, or the predictand (gs).

In Fig. 8a,b,e,f g5 increases with A;, with the slope of the relationship
increasing as A, increases. This follows from well-understood stomatal
responses under well-watered growth circumstances, where an increase
in gs enables plants to boost CO, uptake and hence enhance photosyn-
thesis (Kusumi et al., 2012; Purcell et al., 2018). This relationship is
maintained, and made somewhat stronger with less deviations and
scatter, when an additional (third) predictor is added to the full Leuning
proxy model (Fig. 9a—c). The coloration in Fig. 9b suggests a strong
interaction between A; and Cg,which appears to control the relationship
between A; and g; as the slope of the A, — SHAP value for A, curve in-
creases as Cg values decrease.

Plants control the degree of stomatal opening as a compromise be-
tween sustaining high photosynthesis rates and a low water loss rate.
When plants are subjected to greater Cg levels, their stomata contract to
avoid water loss, resulting in a decrease in g5 (Xu et al., 2016).

As with Cg, VPD also shows strong interactions with A, as evident
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from the slope of Figs. 8e, g, and 9a, d. However, the extended longer
right tail in the beeswarm plot (Fig. 7b) makes VPD a stronger predictor
of gs than Cg. This is also supported by the higher SHAP values of A,
when interacting with VPD (Fig. 8e), as compared to interacting with Cg
(Fig. 8a).

The role of VPD is consistent across the 2-predictor models (Fig. 8g—j)
and the Leuning proxy (Fig. 9d,e,f), with the largest SHAP magnitudes
resulting in a positive influence on gs prediction occurring when VPD is
low. At values between 2 and 3 [kPa] the impact of VPD is to reduce g,
with low magnitude associated SHAP values. These low magnitudes of
the negative SHAP values associated with high VPD are clearly due to
correlated changes in other predictors, such as decreases in A, (Figs. 8g
and 9d) and increases in Cg (Figs. 8i and 9e). Increases in VPD cause a
corresponding rise in the rate of transpiration through the stomatal pore,
forcing stomatal closure to prevent excessive water loss (Urban et al.,
2017; Plantin and Blatt, 2018).

It is notable that the addition of a third predictor to the 2-predictor
models results in a reduction in the range of SHAP values associated
with each predictor, relative to the ranges of the 2-predictor models.

The strong interaction between the Leuning predictors [A;,, VPD, Cs]
discussed above explains relative importance of the predictors in the
model using all predictors, i.e., A, > VPD > Cs > PAR;j, > Ti, In the
model using all predictors, net assimilation is the most important, and
the strong interaction of A, and Cg causes Cs to climb in importance
relative to importance in the environment-only model.

4. Conclusions
Plant responses to meteorological or physiological variables are not

inherently linear (Cai et al., 2019; Saunders et al., 2021). Semi-empirical
models center on the observed linear variation between gs and A,.
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However, the relationship is not always linear at low photosynthetic flux
density (PPFD), and gs values measured at low PPFD can deviate
significantly from gs values measured at high PPFD (Collatz et al., 1991;
Leuning et al., 1995; Ball, 1988; Barnard and Bauerle, 2013). To over-
come this problem, we utilized an optimization technique to estimate
the parameters of semi-empirical g; models. ML proxies for conventional
semi-empirical models outperformed the original semi-empirical models
even after optimizing the parameters for the semi-empirical models
(Figs. 3, 4 and S3). These findings suggest that ML may provide a
powerful alternative for g prediction due to its non-parametric nature
and capability to capture non-linear responses (Saunders et al., 2021;
Gaur et al., 2020).

Earlier studies suggested the conventional semi-empirical models for
gs performed well when applied to single species at a specific site and
subjected to reparameterization over different seasons, crop growth
stages, and treatments (Liu et al., 2009; Miner and Bauerle, 2017; Wei
etal., 2018; Qi et al., 2023). However, these models did not perform well
when applied to different species as per the findings of Li et al. (2019)
and Saunders et al. (2021). The relatively poor performance of the
Ball-Berry and Leuning models in this study may be due in part to being
applied to diverse collections of species at the PFT level, and for con-
ditions that vary widely. This is not necessarily consistent with how they
were originally formulated to be applied. That said these models are
often applied in modern land surface models at the PFT level (Bonan
et al., 2014; Jefferson et al., 2017), and the performance of these models
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that we have found in this study may be more demonstrative of the
large-scale modeling context.

The Leuning ML proxy produces near-optimal predictive perfor-
mance while constraining model complexity through the use of only
three predictors, providing an example of a parsimonious formulation to
model gs.

We conducted a thorough evaluation of predictor sets and found
several that provide excellent predictive skill while potentially being
suitable for specific observational or simulation contexts, such as a
predictor set that utilizes leaf temperature (which can be remotely
sensed) and two environmental variables ([Ty, PAR;,, VPD]). Due to
their non-parametric nature, these ML models overcome the parame-
terization / re-parameterization issues associated with standard semi-
empirical models, and so offer a path forward for robust, flexible plant
physiological modeling.

Evaluating the different sets of predictors provided an opportunity to
develop some useful models utilizing non-conventional sets of predictors
to predict g5 based on the synergy between two or more predictors. We
note here the importance of considering potential multicollinearity be-
tween predictors when developing predictor sets for ML model formu-
lations (Belsley et al., 1980). For example, foliar gas exchange
experiments use transpiration rate to calculate g, and so transpiration
rate should not be used as a predictor to model g;.

By evaluating ML models for g5 across multiple PFTs, we demon-
strated the flexibility of ML in modeling g5 responses across climate
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regions and different PFTs. The performance of ML models during
validation (Figs. 5 and S3) suggests that model overfitting issues can be
overcome to a considerable extent by performing robust cross-validation
of ML models. This study also addressed the predictive uncertainty
associated with gg prediction (Fig. S5). Although, the uncertainty anal-
ysis cannot remove the uncertainty but certainly provides an idea about
the credibility of modeling predictions in case of limited data
availability.

While this study focuses on the application of machine learning to
predict g, the general methodology for model development and robust
CV can be used as a standard framework for developing and exploring
non-parametric ML models of various environmental phenomena.

The findings of the study suggest that considering plant physiological
function as a potential predictor to model g is important and can
improve the performance of ML models. Finally, we note that the
application of eXML (SHAP) here demonstrated the consistency of ML
models with our understanding of vegetation ecophysiological function,
providing confidence in and understanding of the operation of these ML
models.
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