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Abstract—We exploit cellular signals of opportunity (SOPs)
using 5G uplink (UL) sounding reference signals (SRS) to
develop an indoor positioning system utilizing unmanned aerial
vehicles (UAVs) for emergency services. To facilitate a rigorous
evaluation, we introduce a novel 3rd Generation Partnership
Project (3GPP) compliant system-level analytical framework
that meticulously captures 5G physical layer aspects and large-
scale, and small-scale fading characteristics. This framework
eliminates the need for exhaustive link-level simulations, making
the validation process efficient. As an integral component of our
proposed framework, we derive the Cramér-Rao lower bound
(CRLB) for ranging and positioning errors in the presence of
multipath propagation. This ensures an accurate performance
evaluation, incorporating all 3GPP aspects. For the practical
implementation of the proposed use case, we develop a low-
complexity positioning algorithm: the iterative parallel projection
method (IPPM). We conclude by providing insights from the
evaluation and highlighting how the proposed framework aligns
with the positioning requirements.

Index Terms—Cellular Signals of Opportunity, Public Safety,
CIR-based CRLB, SRS, UTDOA.

I. INTRODUCTION

Indoor localization has gained significant attention recently
due to its diverse applications [1], [2], including critical ones
like locating distressed user equipment (UEs). However, due to
poor signal quality, conventional Global Navigation Satellite
Systems (GNSS) often prove unreliable in indoor settings.
Additionally, relying on cellular base stations (BSs) for indoor
positioning poses challenges, as it is uncertain to establish
communication with an adequate number of BSs indoors. To
address this issue, there has been a promising shift towards
leveraging unmanned aerial vehicles (UAVs), also known as
drones, as first responders [3], a concept often termed Drone
as First Responder (DFR). This offers substantial potential for
public safety applications like search and rescue operations
and firefighting. Acknowledging the critical need for such
applications, our paper focuses on a specific use case: a UAV-
based indoor localization system designed to accurately locate
UEs during emergency events.

A key question arises: ”How to build infrastructure support-
ing a wide range of UEs and UAVs for the emerging public
safety and emergency services?” To promote the development
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of such services, the National Telecommunications and Infor-
mation Administration (NTIA) established the First Responder
Network Authority (FirstNet) in 2012, providing a nationwide
broadband network with a special focus on public safety
agencies and first responders. The Federal Communications
Commission (FCC) designated LTE band 14 (700MHz) for
FirstNet, paving the way for further advancements in pub-
lic safety applications. Given the interest in location-based
services for public safety, we introduce an emergency use
case enabled by 5G, leveraging UAVs. Additionally, efforts
are underway to expand the 5G C-band (3.7 to 4.2 GHz) to
extend coverage, particularly in emergency scenarios. Target
UEs, such as distressed UEs, receive emergency services,
with 5G Next Generation Node B (gNB) mounted UAVs
acting as first responders to locate them. An essential question
emerges: can we enable this emergency use case using existing
5G reference signals used for communication purposes? To
address this, we leverage the existing 5G uplink (UL) sounding
reference signals (SRS), originally meant for channel sounding
and UL frequency-selective scheduling [4], but adaptable for
positioning purposes [5]. This concept is known as leveraging
”Signal Reuse” or ”Cellular Signals of Opportunity (SOPs)”.

Recent efforts have explored UAV-based localization for
emergency applications and navigation using cellular sig-
nals of opportunity (SOPs). These include a novel pseudo-
multilateration method for localization using continuous de-
lay measurements from a single UAV [6], CRLB sensitivity
analysis for precise indoor localization [7], and discussions
on security and privacy aspects in drone-assisted public safety
networks [8]. Leveraging cellular SOPs, studies assessed high-
altitude aircraft navigation [9] and developed frameworks
for sub-meter accuracy in UAV navigation [10]. In [11],
non-terrestrial network (NTN)-based precise positioning is
proposed as a potential alternative to GNSS systems. However,
there has been limited emphasis on leveraging SOPs for
positioning in emergency scenarios, and there is a lack of
an accurate analytical and system-level framework to evaluate
such applications.

Our contributions focus on leveraging SOPs for indoor
emergency localization employing UAVs. We present a 3GPP-
compliant analytical framework for evaluating such applica-
tions, incorporating physical layer aspects and large/small-
scale fading parameters, thereby eliminating the need for
extensive link-level simulations. Additionally, we adopt a low-
complexity algorithm, the iterative parallel projection method
(IPPM) [12], [13], by reformulating it for time-difference-of-
arrival (TDOA) based positioning for real-time implementa-



Fig. 1: System model for the UAV-based emergency responding
scenario, where the target UE requiring emergency service is being
localized using 5G.

tion. Insights from our evaluation underscore the feasibility
and accuracy of our proposed framework for realizing UAV-
based emergency localization.

II. SYSTEM MODEL

The system model, depicted in Fig.1, features UAVs de-
ployed outdoors to serve as anchors and UEs requiring
emergency service indoors as target nodes. Our goal is to
position anchors strategically to ensure each target node can
communicate effectively with a sufficient number of anchors
for accurate localization. To evaluate positioning performance,
we adopt the dual stripe model [14], commonly used for
analyzing cellular networks, especially in high-frequency and
millimeter-wave (mmWave) communications scenarios. This
model divides the environment into line-of-sight (LOS) and
non-LOS (NLOS) regions, or ”stripes,”. LOS or NLOS stripe
selection depends on the scenario, with LOS applied when
both anchor and target UE are within the same building and
NLOS otherwise. As our use case involves outdoor UAV
deployment and indoor target UEs (excluding those on the
roof), the NLOS stripe is predominantly used, while LOS
propagation is assumed for rooftop UEs, detailed in Section V.
The building model, as illustrated in Fig. 2, provides an
example of how the evaluation model appears. In this model,
each apartment, measuring 10m×10m, is separated by wall
stripes. Target UEs (black squares) are uniformly distributed
inside the apartments, while anchors (red diamonds) are
placed outside. To account for the signal-to-noise ratio (SNR)
between target UE and anchor links, large-scale parameters
are incorporated [14]. For the anchor-to-target UE channel,
we integrate clustered-delay-line (CDL) channel models [15],
CDL-A for NLOS scenarios, and CDL-D for LOS scenarios.

It is important to understand the localization process pre-
sented in Fig.1. Initially, target UEs connect to a serving gNB
(e.g., Anchor UAV1). Uplink TDOA (UTDOA) positioning
begins with the UE requesting its position from the Location

Fig. 2: Top view of an apartment unit illustrating UAVs/anchors being
deployed outside the building and target UEs residing inside or on
the rooftop of the building.

Management Function (LMF). The LMF then sends a posi-
tioning information request via the New Radio Positioning
Protocol Annex (NRPPa) to the serving gNB. Next, the serv-
ing gNB determines the UL SRS configuration and initiates
SRS transmission from the UE. NRPPa subsequently sends a
measurement request to both the serving gNB and neighboring
gNBs for UL time-of-arrival (TOA) measurements. These
measurements are relayed to the LMF via NRPPa, enabling
the LMF to calculate the precise location of the UE. For a
more detailed procedure, readers are directed to [16].

III. PEB ANALYSIS

In this section, we present the CRLB of ranging and posi-
tioning for the 5G UL SRS transmission and reception, which
is the main technical contribution of the paper. We will first
derive the CRLB of TOA (or range) between anchors and one
target UE, without loss of generality. Then we will derive the
CRLB of the position estimate of the target UEs using TDOA-
based localization. It is important to distinguish our approach
from CRLB-based analyses in existing literature [17], [18]. In
our scenario, the channels between the UAVs and target UEs
are predominantly NLOS. While a closed-form expression of
the CRLB of TOA exists for LOS channels [17], deriving
the CRLB for NLOS channels is not straightforward. The
standard method involves incorporating a gamma-distributed
NLOS bias [18], but it lacks a clear connection to specific
radio propagation conditions and the physical layer structure
of the transmitted signal. It makes this method not suitable for
scenarios where the large-scale and small-scale fading compo-
nents are considered, along with the SRS signal generation and
configuration aspects. As specified in [19], the SRS signal is
generated using the Zadoff-Chu sequence as a base sequence,
with the following representation:

rα,δu,v(n) = ejαnr̄u,v(n), 0 ≤ n ≤ MZC , (1)

r̄u,v(n) = xq

(
n mod NZC

)
,

xq(m) = e
−j

πqm(m+1)
NZC ,



where α defines the cyclic shift, δ denotes the comb structure,
r̄u,v(n) represents the base sequence, u ∈ {0, 1, . . . , 29} de-
notes the group number, v ∈ {0, 1} signifies the base sequence
number within the group, MZC indicates the length of the
sequence, q = ⌊q̄ + 1

2⌋+v.(−1)⌊2q̄⌋, q̄ = NZC .
u+1
31 , and NZC

denotes the largest prime number such that NZC < MZC .
We denote Nb = {1, 2, . . . , B} be a set of anchor nodes

that are assigned to the target UE for SRS reception. We call
an SRS occasion the time interval (e.g. one slot) in which a
set of anchors Nb receive all SRSs from one target UE and
each anchor coherently combines the associated Nsrs SRS
symbols. Within one SRS occasion, the time domain received
signal can be represented in matrix form as

rk = FHXkΓFLh
k + vk, k = 0, · · · , Nsrs − 1, (2)

where k represents the OFDM symbol in an SRS occasion,
rk denotes the time domain received SRS signal of length
N , vk ∼ CN (0, σ2I) represents additive-white-Gaussian-
noise (AWGN), Xk is the transmitted SRS in UL, hk =[
hk
0 · · ·hk

L−1

]T
is the observed channel impulse response

(CIR) between anchor and target UE, FL is a Discrete Fourier
Transform (DFT) matrix of size N×L, while FH is an inverse
DFT (IDFT) matrix of size N×N . Note that each delay tap of
hk translates to a phase ramp in the frequency domain which
is captured in

Γ = diag
(
e−j2π∆fτd(−N

2
) . . . e−j2π∆fτd(

N
2
−1)

)
.

For the whole SRS occasion, we can expand the matrix
form in Equation (2) to jointly represent all the SRS symbols
to be combined coherently as

R = FHXGFLH+ V, (3)

where

R =

 r0

...
rNsrs−1

 ,H =

 h0

...
hNsrs−1

 ,V =

 v0

...
vNsrs−1

 .

X = BD
(
X0 · · ·XNsrs−1

)
,G = BD

(
Γ · · ·Γ

)
,

F = BD
(
F · · ·F

)
,FL = BD

(
FL · · ·FL

)
,

where BD
(
A0 · · ·An−1

)
=

A
0 · · · 0

...
. . .

...
0 · · · An−1

.

We now present the CRLB of TOA estimation between the
target UE and anchor as follows.

Theorem 1 (CRLB of TOA for one SRS Occasion). The
variance of the TOA estimate between the target UE and
anchor for one SRS occasion can be upper-bounded as:

var(τ̂d) ≥ I−1
e,θτ̂

, (4)

where vector parameter θτ comprises τd and H to facilitate
the joint estimation of TOA and channel state information
(CSI) and Ie,θτ̂ is the effective Fisher information matrix
(EFIM) representing TOA information. Denoting the TOA

estimate as τ̂d, we can derive EFIM and subsequently the
CRLB for the variance of τ̂d as

var(τ̂d) ≥ I−1
e,θτ̂

,

Ie,θτ̂ =

Nsrs−1∑
k=1

2

σ2
hkHFH

LXkHDΞkDXkFLh
k, (5)

Ξk =

(
I −XkFL

(
FH

LXkHXFL

)−1
FH

LXkH
)
,

where 2
σ2 denotes the variance of noise samples and D =

diag
(
2π∆fτd(−N

2 ), . . . , 2π∆fτd(
N
2 − 1)

)
.

Proof: See Appendix A.
Note that the expression in (5) represents a generalized

version of the derivation detailed in [20].
Having obtained the CRLB for the variance of the TOA

error, and denoting FIM for the measurements between anchor
b and the target UE by Ie,θb

τ̂
, we proceed to calculate the

resultant FIM for TOA measurements from the set of anchors
Nb assigned to target UE as follows

Iθτ̂ =


Ie,θ1

τ̂
· · · 0

...
. . .

...
0 · · · Ie,θB

τ̂

 (6)

Assuming anchor b = 1 serves as a reference anchor, the
TDOA measurements are obtained as

τ̃d,b = τ̂d,b − τ̂d,1, ∀b ∈ Nb\1. (7)

Denoting the vector parameter for TDOA estimation as
θτ̃ , the FIM for TDOA measurements derived from TOA
measurements is expressed as

Iθτ̃ =

(
J τ̂→τ̃I

−1
θτ̂

JT
τ̂→τ̃

)−1

, (8)

where J τ̂→τ̃ is defined as J τ̂→τ̃ =

−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

.

After obtaining the FIM for TDOA, assuming 3D posi-
tion estimation, we first define a position parameter θp =
[x, y, z]T , comprising the coordinates of the target UE. Ad-
ditionally, we denote the coordinates of anchor b by pb =
[xb, yb, zb]

T , and represent the true range between anchor b
and target UE as db = ||θp − pb||. Then, the FIM for θp,
denoted by I θ̃p

, can be obtained as

I θ̃p
= J τ̃→θIθτ̃J

T
τ̃→θ, (9)

where J τ̃→θ is the Jacobian transformation from TDOA
measurements to the position parameter, and it is defined as

J τ̃→θ =


J2

J3

...
JB


T

,with Jb =


x−xb
db
− x−x1

d1
y−yb
db
− y−y1

d1
z−zb
db
− z−z1

d1


T

, ∀b ∈ Nb\1.

The variance of the position estimate, also known as posi-
tion error bound (PEB) is then given by

var(θp) ≥ trace(I−1

θ̃p
). (10)



Algorithm 1: IPPM for TDOA-Based Localization

Data: Initial estimate θ̂0, Convergence threshold ϵ,
Maximum requisite consecutive iterations l

Result: Final estimate θ̂

R0 ← 1
B−1

∑B
b=2

(
r̂b −

(
||θ̂0 −Ab|| − ||θ̂0 −A1||

))2

k ← 1
while True do

θ̂k ←
1

B−1

∑B
b=2

(
Ab +

(
r̂b + ||θ̂k−1 −A1||

)
θ̂k−1−Ab

||θ̂k−1−Ab||

)
Rk ← 1

B−1

∑B
b=2

(
r̂b−

(
||θ̂k−Ab||− ||θ̂k−A1||

))2

if |Rk −Rk−1| < ϵ then
w ← w + 1
if w ≥ l then

θ̂ ← θ̂k

break

else
w ← 0

k ← k + 1

IV. LOW COMPLEXITY POSITIONING ALGORITHM

In this section, we focus on a low-complexity localization
algorithm known in the literature as IPPM. We consider a
network of B anchors assigned to a target UE to obtain
range measurements. The IPPM introduced in [12], is designed
for TOA-based localization. As given in [12], the position
estimate at the k-th iteration, denoted by θ̂k, is updated using
the position estimate from the previous iteration, denoted
by θ̂k−1. The recursive loop terminates when the difference
between consecutive TOA residual error values is less than a
specified threshold, denoted by ϵ, which is typically set to a
very small value (e.g., on the order of 0.001).

To adapt IPPM for TDOA-based localization, Algorithm 1
outlines the necessary reformulations. This involves changing
the TOA residual error to the TDOA residual error (see
Step (2)). Assuming anchor b = 1 functions as a reference
anchor, the weights for the parallel projections of θ̂k−1 are
determined by TDOA measurements and estimated range
measurements for the reference anchor. Similar to IPPM for
TOA-based localization, Algorithm 1 terminates its recursive
loop when the difference between consecutive TDOA residual
error values falls below ϵ. Importantly, IPPM offers low com-
putational complexity compared to conventional algorithms
like non-linear least squares (NLS) and recursive weighted
least squares (RWLS) [21] because it avoids matrix inversions.
Remarkably, IPPM achieves performance comparable to NLS
while offering this computational advantage which we discuss
in the next section.

V. RESULTS AND DISCUSSIONS

In this section, we embark on a comprehensive evaluation
of positioning performance. To provide context, we categorize
target UEs into two distinct types in our evaluation: outdoor

(a) fc = 700MHz. (b) fc = 3.8GHz.

Fig. 3: Indoor UE Scenario: CDF of Horizontal Positioning Error.

target UEs and indoor target UEs. Outdoor UEs are the UEs
positioned on the roof with an open top, for which we assume
LOS links with anchors, characterized by an absence of wall
crossings and penetration losses. Conversely, indoor UEs are
always assumed to be in NLOS with anchors, involving wall
crossings, and penetration losses that are modeled using the
dual stripe path loss model [14]. The intricacies of shadow
fading are also considered based on LOS/NLOS links. To
incorporate small-scale fading, we opt for the CDL-D channel
model for outdoor UEs and CDL-A for indoor UEs. Fur-
thermore, our analysis considering fc = 2GHz with 20MHz
illustrates that CDL-A results in high TOA error (∼38ns at
SNR = 5dB), compared to the TOA error (∼15ns at SNR
= 5dB) observed in the CDL-D channel model. Regarding
the positioning method, we use UTDOA-based localization,
as it is commonly preferred in the field due to its advantages
in not requiring strict synchronization between anchors and
target UEs and exhibiting increased robustness against NLOS
effects.

Before delving into the evaluation of positioning error, it
is crucial to emphasize the assumptions made in the CRLB
analysis presented in Section III. Specifically, we assumed
the following: 1) Perfect synchronization among anchors and
between anchors and UEs is assumed. 2) SRS intended
for communication is typically transmitted over narrowband,
which is hopped over time to collect wideband SRS. This
practice is necessitated by the limited transmit power at the
UE, and more often than not, the UE is scheduled over
a narrowband. 3) As narrowband SRSs are collected over
time, we assume channel coherence throughout SRS collection
while estimating TOA. Having said that, as a natural extension
of this effort, our future work includes incorporating non-
coherent combining strategies for multiple SRS transmissions,
especially when the combining interval extends beyond the
channel coherence time.

We now delve into the assessment of positioning perfor-
mance. For our investigation, we deploy a network consisting
of 20 anchors and 100 target UEs. The indoor scenario
involves the uniform distribution of target UEs within the



(a) fc = 700MHz. (b) fc = 700MHz.

Fig. 4: Outdoor UE Scenario: CDF of Horizontal and Vertical
Positioning Error.

TABLE I: Evaluation Parameters

Parameter Simulation Assumptions
Carrier frequency (fc) 700MHz (FirstNet Band 14); 3.8GHz (5G

C-Band)
Subcarrier spacing 15KHz; 30KHz
SRS bandwidth 10, 20, and 40MHz (fc = 700MHz), 40

and 100MHz (fc = 3.8GHz)
SRS structure and re-
source allocation

Comb-4 and 4 SRS symbols without in-
terference

Large Scale Fading Dual-stripe model
Shadow Fading Log-Normal distribution (standard devia-

tion: 4dB/7dB for LOS/NLOS)
Small Scale Fading CDL-D (for LOS/outdoor UEs); CDL-A

(for NLOS/indoor UEs)
Maximum transmit power 23dBm
Thermal noise power -174dBm/Hz
Anchor assignment 4 anchors based on SNR
Key performance indica-
tors

TOA error, and Horizontal and Vertical
positioning error

building, while the outdoor scenario assumes UEs are dis-
tributed on the roof, as illustrated in Fig. 2. Additional
evaluation assumptions are as given in Table I. To create
a simulated environment, we position the anchors on an
outer ellipse surrounding the building as depicted in Fig. 2.
After assigning anchors to each target UE based on SNR,
we conduct CRLB analysis, as discussed in Section III, to
compute TOA error values for each UE for each assigned
anchor, as given in Equation (5). Subsequently, we calculate
position error for each UE using TDOA-based localization, as
given in Equation (10).

Fig. 3a and. 3b present the CDF of horizontal positioning
error obtained using CRLB (see Section III) for indoor tar-
get UEs for fc 700MHz and 3.8GHz respectively. Increased
bandwidth contributes to enhanced positioning accuracy. The
positioning error results demonstrate the feasibility of meet-
ing stringent positioning requirements for public safety at
700MHz and 3.8GHz (with 100MHz bandwidth), as detailed
in [22]. These results emphasize the critical significance of the
700MHz band and the capabilities of 3.8GHz in the context of
public safety applications. Moreover, our preliminary results,

Fig. 5: Comparing CRLB, IPPM, and NLS for 700MHz with band-
width 10 and 20MHz considering indoor target UEs.

indicating z-axis errors on the order of tens of meters, suggest
that considering z-axis resolution for indoor UEs may not
be meaningful. This is attributed to the penalties imposed by
the NLOS channel model and substantial indoor penetration
losses. Note that, z-axis accuracy is expected to be improved
by utilizing more relevant models for large-scale and small-
scale parameters designed for specific use cases.

We now proceed to assess the positioning performance of
outdoor UEs, building upon the previously outlined simulation
assumptions. In this evaluation, the target UEs are located
on the roof and anchors are positioned not only around the
building but also in the zenith. As outdoor UEs predominantly
experience LOS propagation, we omit outdoor-to-indoor pene-
tration losses. Employing the CDL-D channel model for small-
scale fading, Fig.4a and Fig.4b present the CDF of horizontal
and vertical positioning error for outdoor target UEs at fc =
700MHz, respectively. Due to reduced losses and subsequent
minimized ranging errors, the results demonstrate compliance
with positioning requirements for both horizontal and vertical
positioning requirements. Furthermore, our findings suggest
the feasibility of meeting positioning requirements, even in
the 3.8 GHz band, particularly with a 100 MHz bandwidth.

In our final assessment, we focus on the performance eval-
uation of the low-complexity algorithm detailed in Section IV
specifically for indoor UEs. This evaluation focuses on the
700MHz band with 10 and 20MHz bandwidths, employing the
CDL-A channel model. The large-scale parameters and SRS
configuration align with the previously described setup. To
evaluate the efficacy of IPPM, we conduct a comparative anal-
ysis with the widely recognized NLS algorithm, as outlined
in [21]. Fig.5 presents a comparative analysis, showcasing
that although IPPM does not achieve CRLB, it demonstrates
comparable performance to NLS with a significant advantage
in terms of computational complexity.

VI. CONCLUDING REMARKS

In this paper, we have presented a UAV-based indoor local-
ization system designed for emergency response, leveraging



cellular SOPs within the realm of 5G. To provide a detailed
understanding of how our proposed use case integrates into the
5G landscape, we introduced a novel analytical framework
for a comprehensive system-level analysis. Our framework
includes rigorous CRLB analysis, integrating physical layer,
large-scale, and small-scale fading models recommended by
3GPP. Notably, our framework accurately abstracts system-
level aspects, eliminating the need for time-consuming link-
level simulations. Our evaluation results provide several
important insights including the critical importance of the
700MHz band for public safety applications, the capabilities
of the 3.8GHz band, especially with a 100MHz bandwidth,
and the nuanced impact of the physical layer, large-scale,
and small-scale parameters. Furthermore, we proposed a low-
complexity algorithm, demonstrating comparable performance
to well-known methods such as NLS, while offering signifi-
cant advantages in terms of computational complexity.

APPENDIX

A. Proof-sketch of Theorem 1

This section presents a proof sketch instead of a detailed
proof due to space limitations. A comprehensive proof will be
provided in the extended version of this paper. The following
steps outline the derivation of the CRLB for TOA estimation
across multiple SRS symbols.
1) Joint Likelihood Function. For the received signal model
given in Equation (3), we can express the likelihood function
as p

(
R|τd,H

)
=

∏Nsrs−1
k=1 p

(
rk|τd,hk

)
, where p

(
rk|τd,hk

)
is the likelihood function of the signal received in k-th SRS
OFDM symbol.
2) Define Resultant FIM. Formulate the FIM, denoted
by Iθτ̂ , for joint estimation of TOA and CSI θτ̂ =[
τd Re

(
HT

)
Im

(
HT

)
]T as

Nprs−1∑
k=0

E

((
∂ log p

(
rk|τd,hk

)
∂θτ̂

)(
∂ log p

(
rk|τd,hk

)
∂θτ̂

)T)
(11)

3) Calculate FIM Entries and EFIM. As the resultant FIM,
shown in (11), is the summation of the FIM associated with
individual SRS symbols, we compute the entries of FIM,
denoted by Iθτ̂ , for one SRS symbol. We then express Iθτ̂

in the form Iθτ̂ =

[
A B
BH C

]
and effective FIM (EFIM) for

τd is calculated as [17] Ie,θτ̂ =
(
A − BC−1BH

)
. Obtained

EFIM is given as

Ie,θτ̂ =
2

σ2
hHFH

LXHDΞDXFLh, (12)

Ξ =

(
I −XFL

(
FH

LXHXFL

)−1
FH

LXH

)
.

4) Obtain Resultant EFIM. Denoting the EFIM Ie,θτ̂ as Ik
e,θτ̂ ,

substitute Ik
e,θτ̂ into Equation (11), where index k is to account

for multiple SRS symbol transmissions. The final expression
as given in the Equation (5) can be obtained by algebraic
manipulation.
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