
Page 1 of 12

10/19/2016

2023-01-0040

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in
MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

The lack of inherent security controls makes traditional Controller
Area Network (CAN) buses vulnerable to Machine-In-The-Middle
(MitM) cybersecurity attacks. Conventional vehicular MitM attacks
involve tampering with the hardware to directly manipulate CAN bus
traffic. We show, however, that MitM attacks can be realized without
direct tampering of any CAN hardware. Our demonstration leverages
how diagnostic applications based on RP1210 are vulnerable to
Machine-In-The-Middle attacks. Test results show SAE J1939
communications, including single frame and multi-framed broadcast
and on-request messages, are susceptible to data manipulation attacks
where a shim DLL is used as a Machine-In-The-Middle. The
demonstration shows these attacks can manipulate data that may
mislead vehicle operators into taking the wrong actions. A solution is
proposed to mitigate these attacks by utilizing machine authentication
codes or authenticated encryption with pre-shared keys between the
communicating parties. Various tradeoffs, such as communication
overhead encryption time and J1939 protocol compliance, are
presented while implementing the mitigation strategy. One of our key
findings is that the data flowing through RP1210-based diagnostic
systems are vulnerable to MitM attacks launched from the host
diagnostics computer. Security models should include controls to
detect and mitigate these data flows. An example of a cryptographic
security control to mitigate the risk of an MitM attack was
implemented and demonstrated by using the SAE J1939 DM18
message. This approach, however, utilizes over twice the bandwidth
as normal communications. Sensitive data should utilize such a
security control.

Introduction

Medium and Heavy Duty (MHD) network communication mostly
takes place over SAE J1939 networks, which are built on Controller
Area Network (CAN) 2.0b compliant networks with extended
arbitration identifiers. These are multi-master serial bus networks
where nodes are physically connected by two twisted pair wires and a
high-speed CAN transceiver. SAE J1939 is the recommended vehicle
bus practice used for diagnostics and communication among vehicle
components on MHD vehicles. Originating in heavy duty truck
industry in United States, J1939 is now widely used in other parts of
the world. J1939 is found wherever a diesel engine may be used for
power. SAE J1939 features both unicast (destination-specific) and
broadcast messages and as well supports transport
fragmentation/reassembly and address claiming. However, most of
the critical operations such as reconfiguration and programming are
protected by a seed-key exchange, which is a challenge-response

system between the electronic control unit (ECU) and the diagnostics
software application.

In MHD vehicles there are often many different ECU suppliers and
each of them may have a different diagnostic application to interface
with the ECU over the in-vehicle network. The diagnostic application
is often running on a Windows-based PC or laptop and the ECU is on
the in-vehicle network, like J1939. This means there must exist a
device to translate the communications on the vehicle network to the
PC/laptop. In the context of MHD vehicles, these are known as
vehicle diagnostic adapters (VDAs).

Early in the electronification of MHDs, each component
manufacturer would specify a unique or proprietary VDA for their
diagnostics. Fleet owners would have to maintain many of these
different adapters based on the configuration of their vehicles. Since
managing and acquiring multiple VDAs was a pain-point for owners
and maintainers, the American Trucking Association’s (ATA)
Technology and Maintenance Council (TMC) initiated
Recommended Practice (RP) number 1210 in the 1990’s. The
RP1210 is titled Windows Communication API, where API stands
for application program interface. The purpose of RP1210 is to
describe a standard API for Windows PC applications to
communicate with the in-vehicle network.

Figure 1: The concept of RP1210 where the diagnostic application can select
between different vendors of the vehicle diagnostic adapter (VDA).

Page 2 of 12

10/19/2016

The RP1210 concept is explained in Figure 1 by showing the ability
for the user of the diagnostic application to select an RP1210
compliant device. The choices for the user to select are kept in an
RP1210.ini file, which is specified in the recommended practice.
These selections point to the individual vendor .ini file to give the
user the specified valid options for each device. Once a vendor and
device are selected, there is a specific device API that accepts and
presents the interface to the diagnostic application. The device driver
connects the RP1210 function prototypes to the vendor specific
mechanisms for communication with their vehicle diagnostic adapter
through the vendor DLL.

It is important to note that the VDA vendors control the firmware on
the VDA device, the update mechanism for the VDA firmware, the
RP1210 drivers, and device drivers on the PC. These conduits for
diagnostic and maintenance communications in MHDs are inherently
trusted by the diagnostics software connected to the electronic control
unit. Therefore, this paper explores the cybersecurity of the software
and communications stack within the diagnostics PC/laptop
computer.

SAE J1939 Protocol

In heavy-duty vehicles, the SAE J1939 protocol establishes standards
defining how connected nodes should communicate on a CAN bus.
J1939 is a 29-bit identifier with a 3-bit priority that decides the
arbitration the message achieves on the bus, 0 being the highest
priority. The next 1-bit is reserved for future use, and the 1-bit post
this bit is a data page that can be used to expand PGN. Followed by
the data page is an 8-bit PDU format the indicates whether the
message is broadcast or point-to-point. The 8-bit PDU-specific field
has two meanings corresponding to the PDU format. If the message is
a broadcast, this field contains the group extension of PDU format if
between 0 and 239. This field shall have destination address if this is
a point-to-point message. The 29-bit identifier ends with 8-bit address
of the source that transmits the message. On classic CAN, the
payload is 8 bytes where SAE J1939 protocol is tunneled.

Figure 2: SAE J1939 Structure of a CAN ID

Vehicle Diagnostics

Cybersecurity assessments for vehicles have often been scoped
around the driving operation of the vehicle and the system boundary
shows the vehicle on its wheels. This picture is incomplete, because
during the lifecycle of the vehicle system, there will likely be external
connections using service and diagnostic tooling. These are
intermittent connections, yet they are highly trusted. A trusted
maintenance technician is often granted access to connect a vehicle
diagnostic adapter (VDA) to the diagnostic port and exercise the off-
board communications to read and write data. The writing of data can
be as simple as requesting information to perform a complete reflash
of an on-board ECU. Compared to passenger vehicles, commercial
vehicles are more frequently connected to this diagnostic equipment
making the threat larger for commercial vehicles.

Many diagnostic and maintenance operations that update calibrations
of ECUs are protected by a seed-key exchange. These exchanges may

use a 2-byte seed and look for a corresponding 2-byte key to
authenticate the session. However, this only happens at the beginning
of the session and none of the diagnostic traffic flowing through the
RP1210 stack and through the in-vehicle network is further
authenticated. This means it is trivial for a process to co-opt or
highjack the diagnostic session, even after a legitimate seed-key
exchange.

Because the RP1210 stack is situated in the middle of the
communications between the diagnostic application and the ECU
client application, the ability to perform deep packet inspection and
manipulation of all traffic, both to and from the ECU, is possible if
those communication paths are compromised. This paper
demonstrates how to compromise the RP1210 communications and
presents a viable method to mitigate the effects of a compromise.

Vehicle Network Attacks

This section focuses on some of the attacks in the literature that
demonstrate some cybersecurity attacks described in the literature.
This is not an exhaustive review but should suffice to convince the
reader that cyberattacks can be launched against MHD vehicles. An
important feature of these attacks is they assumed connectivity to the
network. In the context of a diagnostics session, a trusted technician
is creating the network connectivity for the attacker who would work
through the RP1210 stack.

Among the various communication protocols found in automotive
networks such as LIN, FlexRay, CAN-FD, Automotive Ethernet etc.
the most widely used is a Controller Area Network (CAN) based
multi-master serial bus as it is a shared bus and hence cheaper. The
CAN bus vehicle bus standard is a message-based protocol, originally
designed to save on copper by multiplexing electrical wiring within
automobiles. Hence, while designing the CAN protocol, security was
considered less. Due to the inherent vulnerabilities of CAN, Ref. [2]
demonstrates how simple it is to disrupt the safety critical features of
running vehicle using simple message injection techniques. These
messages can be well formed and the J1939 network cannot tell the
difference between a legitimate message and one that has been
injected by an attacker.

On a CAN bus, data in transit is not secure as the communication is
unencrypted or authenticated. Even if the attacker lacks the ability to
craft a message, vehicle operations may be vulnerable to replay
attacks that impact vehicle operation. An example is an operator
losing the ability to close a window when at a speed above 200 km/h
[3]. Further, the safety and performance of vehicles platooning is
impacted when replay attacks are executed on unencrypted
corporative adaptive cruise control messages [4]. By hijacking a
unified diagnostic service (UDS) session using a tampered vehicle
announcement message by poisoning the address map, an attacker
gains all privileges of a legitimate UDS session [5]. Attackers may be
able to directly interact with safety-critical features such as autopilot
if the protocol is not authenticated and if the session is unencrypted
[6]. This not only opens doors for identity spoofing, unauthorized
access, and MitM attacks but also facilitates the leaking of sensitive
information. Ref. [7] discusses how safety and security are
intertwined, which makes diagnostics security a safety issue.

The widely used SAE J1939 recommended practice defines the
transport layer in SAE J1939-21 to transmit and receive data
payloads that are greater than 8 bytes (and less than 1785 bytes). To
avoid resource exhaustion, there is usually an upper limit on the

Page 3 of 12

10/19/2016

maximum number of such connections. However, as the transport
connections are unauthenticated, an attacker can establish the
maximum number of parallel connections and make them stay alive
by transmitting a falsified Request to Send (RTS) message and hence
creating a connection exhaustion [8]. As the CAN protocol lacks
sender authentication, by inserting a physical malicious gateway
device in between two ECU’s communication line an active attacker
can add, modify or even delete messages going back and forth [9]. A
vehicle diagnostics session attack using VDA firmware, PC driver
and a middle-person attack were demonstrated, along with secured
diagnostics gateway mitigation [10]. With a minimal modification of
a diagnostic application, a Stuxnet-style MitM stealthy attack to
switch off the passenger airbag was demonstrated [27].

This paper contributes to the body of knowledge related to vehicle
cybersecurity by archiving the technique and mitigation for
conducting a cyberattack by compromising the RP1210
communication used by heavy vehicle diagnostics systems. A similar
approach is feasible by using an SAE J2534-compliant service tool
for passenger cars.

Proposed Defenses

Mitigating a MitM attack is well-researched and known in
Information Technology (IT) networks using technologies like virtual
private networks (VPNs) and transport layer security (TLS), these
approaches are out of scope for this paper, since the focus is on
vehicle diagnostics for MHD vehicles using SAE J1939. This section
describes some of the approaches in the literature to mitigate the
effect of compromising a vehicle connection with a machine-in-the-
middle.

Using application layer encryption of the SAE J1939 diagnostic
traffic between the vehicle diagnostic application and the in-vehicle
secure gateway diagnostic attacks were mitigated in [12]. To reduce
the risk of leakage of pre-shared keys and to support forward secrecy,
keys are dynamically generated using elliptic curve Diffie-Hellman
(ECDH) key exchange, which was used for encryption. Existing
shortcomings in the SAE J1939 specifications gave rise to several
new attacks, e.g., impersonation, denial of service (DoS), distributed
DoS, etc. with potential safety critical effects while still conforming
to the SAE J1939 standard specification. Ref. [13] recommends
mitigation mechanisms by including message authentication. By
combining the timing analysis with a packet manipulation detection
system, Ref. [14] captures the state of the vehicle, detects messages
with irregular timing intervals, and takes advantage of the
dependencies between different ECUs to restrict attackers.

While cyber-attacks can be detected upon detection rules or by
statistical analysis of timing regularities, [15] proposes a Feistel
Cipher Block based MitM defense by encrypting diagnostic
communication with pre-shared key. By using a bit-banged
Controller Area Network (CAN) filter, attacks can be detected before
the message finishes transmitting and calculating the cyclic
redundancy check specified in the CAN protocol [16]. Once an attack
is discovered, the defender induces a CAN protocol error to
invalidate the malicious message from the network and it never
reaches the intended application.

Often existing or older electronic control modules have constrained
processors in processing power, memory size, and especially with
respect to cybersecurity features. An inadequate entropy source used
for cryptographic purposes opens doors for reverse engineering. For

instance, a poor TRNG used in a seed/key authentication reduces the
brute force attack space and hence the brute force time to
compromise a session authentication. Ref. [17] articulates how to
overcome the lack of a hardware-based true random number
generator by creating an entropy source by combining several sources
of entropy such as analog to digital (AD) channels, ECU
configurations and other sources of randomness. However, the
entropy property of the seed/key exchange is irrelevant to the MitM
attack because the attacker can let the legitimate service tool perform
the authentication then hijack the communications.

Paper Organization

The rest of the paper is organized as follows. The attack
demonstration section discusses the attack model, experimental setup
used and incisive categorization of attacks to prove that the attack is
possible on all J1939-based communication. Mitigation
demonstration walks through the mitigation developed also indicating
effectiveness of following the principles of security by design as
recommended in ISO/SAE 21434 [18]. The final section concludes
the paper with an overview of the results achieved and future
direction of the research in terms of attacks and defenses.

Attacking Vehicle Diagnostic Adapter Drivers

The Technology and Maintenance Council (TMC) recommended
practice RP120 is used for analyzing and reprogramming Electronic
Control Units (ECUs) in heavy duty vehicles. Using Microsoft
Windows operating system, RP1210 defines standard APIs for
communication between ECUs and a PC thus enabling
interoperability with various hardware interfaces. An abbreviated
overview of the standard RP1210 function prototypes are tabulated in
Table 1.

Table 1. Function prototypes exposed froma n RP1210 compliant API.
Function Name Description
LoadLibrary Open the VDA API’s library.
RP1210_ClientConnect Connect to the vehicle data bus.
RP1210_SendCommand Send commands to the VDA
RP1210_SendMessage Send a message on the network.
RP1210_ReadMessage Read a message from the network.

Vehicle diagnostic adapter hardware often supports network
protocols such as CAN, J1587, J1708, J1939, J1850, ISO15765 to
communicate to the ECU. These protocols each have their own
specification within RP1210. In other words, a CAN message has a
different structure than a J1939 message in RP1210. The data
communication between an RP1210 device and PC can be via COM
serial port, LPT parallel port, PCMCIA card device, USB device,
TCP/IP, Bluetooth, WiFi, or any other low-level communication
mechanism between the embedded device on the VDA and the
PC/laptop.

Unlike the Linux operating system, Windows has no clearly defined
interfaces for applications to interact with the Kernel. Instead,
Windows provides several user space dynamic link libraries (DLLs)
for applications to interact with the Kernel. When an RP1210
diagnostic adapter driver is installed, an RP1210 API DLL file with a
unique name is created. An authorized diagnostic software
application can use this unique RP1210 API DLL name to select the
RP1210 hardware to use. Thus, this specific vendor RP1210 API

Page 4 of 12

10/19/2016

DLL provides a link between protocol specific API and RP1210 API
functions as shown in Figure 3.

Figure 3: Communication stack within the PC/laptop.

The RP1210 document is publicly available and contains enough
information for a programmer to utilize and create function
prototypes available to a normal diagnostics application. Therefore, a
so-called shim windows application can be developed to interact with
an RP1210 based diagnostic application via standardized APIs. After
listing the Windows installation folders, the unique name of the
authorized RP1210 API DLL is understood. An attacker can rename
a malicious shim windows application DLL developed to the unique
name of the authorized RP1210 API DLL, while the existing
authorized is renamed with a unique name that will be used in the
malicious windows application. For example, there is a VDA drive
for Vendor A installed with a DLL named VENDOR_A_32.DLL.
This file is renamed to ORIG_VENDOR_A_32.DLL and a new
program (DLL) is installed with the original name of
VENDOR_A_32.DLL. Since the RP1210 ini file is not updated, the
user has no indication that the newly created file is potentially
malicious.

By performing this file renaming, an attacker successfully redirected
the authorized communication channel and inserted a malicious shim
windows application in the middle as shown in Figure 4. The
malicious application is now capable of transparently intercepting,
manipulating, and resizing an authorized RP1210 message. If the
RP1210 network client is CAN, then the ID, length and data can be
changed. Similarly, if the RP1210 network client is J1939, then the
priority, parameter group number (PGN), destination address DA),
source address (SA), length, and data can all be manipulated. The
stealthy malicious shim application now has all the privileges of an
authorized diagnostic application.

Figure 4: Inserted shim DLL able to affect RP1210 communications.

To establish an authorized diagnostic session, the RP1210 based
diagnostic application may process a secret key. Even though the
secret key is unknown to the malicious shim application, it can
closely monitor the communication channel and hijack the session
when session authentication is completed. The opportunities of
tampering using such an inserted shim are immense, but this paper is
focused on demonstrating that tampering is possible on J1939
communication that undermines security.

Security Experiment Setup

A shim DLL was written in Visual Studio 2022 as a console
application. The partial source code is available in the appendix. The
design of the shim is to open an RP1210 connection with a legitimate
vendor DLL and expose the needed function prototype for the
diagnostic software. The first instance of this shim dll is to simply
pass the data faithfully from one function call to another. For
example, the shim would implement and expose
RP1210_ReadMessage() to interface with the legitimate vendor’s
DLL function for RP1210_SendMessage(). Similarly, the shim DLL
would implement and expose RP1210_SendMessage() to interface
with the legitimate vendor’s DLL function for
RP1210_READMessage(). In this manner, the shim DLL is a simple
passthrough application. Logging and exfiltrating functions are trivial
to implement in such a shim. Covertly building a library of logged
data would be useful for reverse engineering a component’s
diagnostic protocol or vehicle utilization.

All attacks were conducted on a bench-setup consisting of a 500-kbps
baud rated CAN bus connecting an ECU and RP1210 adapter via a
Deutsch 9-pin connector as specified in J1939-13. The VDA was
connected using USB for the setup. RP1210 drivers and an RP1210
diagnostic application from manufacturer X were installed on the
diagnostics PC. Normal connectivity to the ECU was verified on the
diagnostic tool before inserting the shim DLL. After inserting the
passthrough shim DLL in passthrough mode, normal connectivity
was still observed. A photograph of the test setup is shown in Figure
5.

Page 5 of 12

10/19/2016

Figure 5: Annotated photograph of the test bench with a single ECU.

Attack demonstration on SAE J1939 messages

Many messages in J1939 are 8 bytes long, which is the limit of CAN
2.0b. However, the transport protocol defined in SAE J1939-21
enables J1939 to handle messages with a length of 9 to1785 bytes
using multiple frames. Construction and deconstruction of long
messages in J1939 can be implemented in the RP1210 device driver
or in VDA firmware and is typically done in the RP1210 device
driver. J1939 and RP1210 support destination-specific transfers using
connection management messages. Destination-specific transfers
achieve handshaking using Request to Send (RTS) and Clear to Send
(CTS) messages. An RP1210 Vehicle Datalink Adapter (VDA)
should de-packetize/packetize and not send the individual Transport
Protocol (TP) packets to the application if nIsAppPacketizing in
RP1210_ClientConnect() is set to FALSE. However, if this is set to
TRUE the VDA shall not de-packetize/packetize the TP packets. For
this demonstration we had it set to FALSE. The requirements and
services required to enable an ECU on a network segment to
intercommunicate with devices on a different network segment are
described in the SAE J1939-31work layer. The PGN data field
parameter placement notations and conventions known as Suspect
Parameter Number (SPNs) are specified in SAE J1939-71 Vehicle
Application Layer. The details of messages (PGNs), data parameters
(SPNs), transmission rates, and other related information are
published in the digital annex (SAE J1939-DA).

Figure 6: Taxonomy of J1939 messages used to span examples for
implementation.

The SAE J1939 vehicle protocol can be divided into three categories
based on occurrence characteristics, as shown in Figure 6. Periodic
messages are repeatedly transmitted by the transmitting node at a
cycle time interval. Request/Respond messages are messages that
appear only upon request. The SAE J1939-DA specifies if a J1939
message is periodic, a request/response, or an on-event message. If
the PGN is periodic then the cycle time is as well-defined here. The
last category of messages that we evaluated was on event messages
which are by default absent on an in-vehicle network and appear only
upon a certain event occurrence. Each of these three categories can be
further divided based on the message length. Messages that fit in 8
bytes of data are single frame as these only require one frame to

complete the information exchange. Any length of the message that is
greater than 8 bytes is called a multi-frame message.

Attacking J1939 Messages

The passthrough version of the shim DLL was updated to look for
specific messages coming from the legitimate Vendor X DLL and
passed to the application. These messages were manipulated to falsify
what the ECU was reporting. The next couple of sections describe
these message manipulations.

Periodic, Single Frame Message

Among the various periodic messages that we saw that was getting
transmitted, we choose to tamper a single frame Vehicle Distance
(VD) PGN 65248, and it reports critical information of accumulated
distance travelled by the vehicle during its operation. As the ECU we
had was a test ECU, the value reported by the ECU under normal
operating condition was 0. In the developed malicious shim
application, we wrote an algorithm to filter PGN 65248 and modify
SPN 245 with a false value of 526,385,100 km. The sequence
diagram reflecting the CAN trace log is shown in Figure 7. proves
that our attack was successful and further the accumulated distance
displayed on the diagnostic tool reflected the manipulated change.

Figure 7: Sequence diagram that reflect log files showing the manipulation of
SPN 245, total vehicle distance. The legitimate message has all zeros as the
ECM used was brand new.

Periodic, Multi-Frame Messages

Per SAE J1939-73, the diagnostic condition of the controller
application (CA) is conveyed to other nodes on the network via PGN
65226 – Diagnostic Message 1 (DM1) with diagnostic indicator lamp
status and a series of SPNs and failure mode indicators (FMIs). A
DM1 message is always transmitted, regardless of the presence or
absence of diagnostic trouble codes (DTCs), every second. The test
ECU shown in Figure 5 indicated there were 5 DTCs that had the
following decimal values: 17039451, 17039460, 16973934,
17039771 and 16974996. Because there was more than 1 DTC, the
DM1 message was packed into a multi-frame message using the SAE
J1939 Transport Protocol.

Page 6 of 12

10/19/2016

The malicious shim application was able to modify the DTCs to
3450536027, 4024303716, 3148480622, 3721134491 and
4278256641, as shown in Figure 8. Thus, the diagnostic condition of
the ECU is falsified and displayed in the diagnostic tool.

Figure 8: Demonstration of manipulating multi-frame messages in J1939 with
the DM1 message as an example.

We can henceforth conclude that both single frame and multi-frame
periodic messages are vulnerable to RP1210 based MitM attacks with
the shim DLL.

Request/Respond Messages

PGN 65253, engine hours and revolutions were chosen for
tampering. This is a single frame, on-request message. The
accumulated time of operation of engine and accumulated number of
revolutions of engine crankshaft during the operation are reported in
this PGN via SPN 247 and 249. As we were using a new test bench
ECU, SPN 249 reported a value of 0. Using our malicious shim
application, we detected when the response PGN was transmitted by
the ECU. Post detection, we modified with false value of
4211081000 revolutions, as shown in Figure 9.

Figure 9: Example of manipulating an on-request message for engine
revolutions. The legitimate message has all zeros as the ECM used was brand
new.

Vehicle identification number is a 17-byte character string assigned
by a manufacturer and transmitted in J1939 in ASCII which has
length greater than a single frame can accommodate. In the test ECU,
we had the vehicle identification number set to the printed number
zero in ASCII, 0x30 with a length of 17 bytes. Using the malicious
shim application, the vehicle identification number was changed to an
ASCII text that read “HACKEDBYSHARIKA|0,” as shown in
Figure 10. Hence, we conclude our attack evaluation of
request/respond messages that the MitM affects both single and
multi-framed request/respond messages.

Page 7 of 12

10/19/2016

Figure 10: Sequence diagram that reflect log files manipulating a VIN, which
is a requested multi-frame message.

On-Event Messages

Per SAE J1939, every controller application (CA) is mandated to
claim their source address upon powerup and if there is any change to
CA’s source address or name. This message can be considered as an
on-event message as a transmitting node transmits this out when it
goes through the power up initialization event. The ECU that we had
in our experimental set-up had a manufacturer code of 0x55. We
detected an address claim response message from the Engine Control
Module (ECM) and replaced the manufacturer code as 0x15, as
shown in Figure 11. This stealthy manipulation may make the
software show a different manufacturer of the ECU than it really is.

Figure 11. Sequence diagram that reflects log files to change the data in the
Address Claim in the NAME field defined in SAE J1939-81.

For brevity, event driven multi-frame messages are omitted.
However, these messages are common on events driven by diagnostic
applications, since a user requesting a parameter or uploading
firmware would be event driven. Even with the absence of this
example, sufficient evidence is presented to realize that any type of
J1939 message flowing through the RP1210 stack can be
manipulated. This, of course, means an attacker has many options to
exercise a nefarious plot.

Cyber Defense for Diagnostic Interfaces

An ECU software product lifecycle starts at requirement and
architectural design, followed by implementation and unit testing.
Various subcomponents are integrated, and a system validation test is
performed to release a software product. The cost of fixing software
related vulnerabilities found during initial stages of the software
product lifecycle is less compared to the vulnerabilities found during
later stages of a product lifecycle [16]. ISO/SAE 21434 recommends
cybersecurity engineering by design achieved through establishing
cybersecurity policies, culture, management, confirmation,
supporting processes, and ensuring cybersecurity lifecycle
development and processes. Following these guidelines, we did not
produce a single patch solution to the attacks that we discovered,
instead we produced a more concrete mitigation mechanism that can
protect all J1939 messages.

Page 8 of 12

10/19/2016

The latest ISO 14229 [22] specification released has considered
cybersecurity by design aspects and has enhanced built-in security
features into the Unified Diagnostic Service (UDS) protocol. UDS
supports secure transmission service over service identifier (SID)
84$. As classic CAN is limited to 8 bytes, it is often inadequate to
support encrypted communication as encrypting messages often
demands a higher data throughput. Emerging CAN-Flexible Data
[23] (CAN-FD) with security trailer is the most appropriate
mitigation to the attacks demonstrated. SAE J1939-22 defines
safety/security trailer to be appended to PGN data that is fit into a
container parameter group (C-PG). With a Message Authentication
Code (MAC) appended on the transmitted J1939 messages a
receiving node can ensure integrity of the data that is received. As a
pre-shared secret key is associated with a MAC it would not be
possible for the MitM attacker in the shim to match the MAC and
make the manipulated frame look legitimate. Additionally, SAE
J1939-22 offers multi-PGN packing which further improves the data
throughput efficiency. We anticipate that secure on-board
communications with optional encryption would get formalized in
CAN FD Network Security standard which is currently work in
progress [24] for SAE J1939 networks.

Given the data throughput limitation of classic CAN and SAE J1939
unencrypted communication, we propose the below mitigation
mechanism. As the security aspect that is compromised is integrity
and confidentiality we geared towards an authenticated encryption-
based solution. The basic idea, shown in Figure 12, is in addition to
the legitimate message, and ECU will transmit a security validation
message that the receiver can use to verify if the legitimate message
is tampered with or not. If the verification fails, the receiver shall
simply discard the received frame. In our model's simplest form, the
security message could contain a MAC that is generated by the
freshest or latest message transmitted out. The security message is
expected to alter regarding data changes in legitimate message. With
the addition of security message there is an impact on data
throughput, but this is trade-off that our model and several existing
models accept.

Figure 12. Mitigating undetected message manipulation.

In our demonstration, we performed encryption and authentication
using AES-128 in GCM mode. However, the major challenge of
securing SAE J1939 messages is maintaining the standard's
compatibility. Given the diversified nature of security use cases and
considering the goal of holistically applying security, we elaborate
the security message by adding extra header information indicating
security properties for flexibility of use. Inspired by ISO 14229
secured data transmission, we added a header within data security
parameter along with the message, cipher, or the authentication tag.
On exploring SAE J1939 specifications, we found that the data
security parameter group PGN 54272, Diagnostic Message 18
(DM18) fits our use case. Per SAE J1939-73, DM18 is used to send
security entities of a given type and length where entities are data
procedures to ensure data security. The DM18 message is detailed in
Table 2. SAE J1939-73 defines security entity type of values 0 – 3
and rest as reserved. We used this reserved space to indicate the

message type as encrypted or signed and if a pre-shared or shared key
is used.

Within the data security parameter, we defined a byte for algorithm
identification. In our demonstration we used a value of 0x13 to
indicate AES-128 in GCM mode. The field of signature length is
used if we are signing the message if not can be left at 0. To prevent
the message from replay attacks we added a replay counter; however,
for our demonstration we are not using this field. The message/cipher
field shall contain the message in plain text if signed or the cipher if
encrypted.

A sequence diagram and a network trace showing an example of
using DM18 as an additional security message for vehicle
identification message PGN 65260 are shown in Figure 14 and Figure
15 in the Appendix. In this example, we are encrypting and adding a
tag and hence we used a value of 0x0B for security entity type. Even
though transmitting a tag would mitigate the attack sufficiently at
lowest overhead, we have given options to encrypt, and to transmit
freshness value as other mitigation options.

Table 2. Data Security Message (DM18) updates for defense.

Byte Pos. Bits Definition (Existing in
the SAE J1939-73)

Updates to existing
definition

1 8-
1(LSB) Security Entity Length

– Length of the data
security parameter

2

8-
5(MSB
)

2 4-1

Security Entity Type –
Indicating type of
usage

0000 – Data is long
seed

0001 – Data is long
key

0010 – Data is a
session key

0011 – Data is a
certificate

0100 – 1111 -
Reserved

1000 – Data is encrypted
with pre-shared key
1001 – Data is signed
with pre-shared key
1011 – Data is encrypted
and signed with pre-
shared key
1100 – Data is encrypted
with dynamically derived
key
1101 – Data is signed
with dynamically derived
key
1111 – Data is encrypted
and signed with
dynamically derived key

3 8-1

Data Security
Parameter

Signature/Encryption
Calculation – Contains an
algorithm identifier

4-5 8-1
Signature Length –
Length of signature
portion of the message

6-7 8-1

Anti-replay Counter –
Incrementing counter to
prevent replay attack

8- n* 8-1 Message/Cipher
n+1 – m**
n+
Signature
Length

8-1 Signature

n * = Message/Cipher Length
m** = n+ Signature Length

To holistically apply security to all J1939 messages we built a SAE
J1939 security sublayer on both controller side and diagnostics side.
On the ECU side, the SAE J1939 sublayer would take the raw data

Page 9 of 12

10/19/2016

that the application wants to transmit out and apply the needed
security and transmit secure message out. The transmitter shall
indicate the cryptographic operations performed to meet the security
requirement in the header. While on the receiver side the SAE J1939
security sublayer would look up the header and apply the needed
cryptographic actions to extract the plain text and pass it on to the
diagnostic application. When security is implemented as a security
sublayer, there is no change that needs to be made on the controller
application or diagnostic application and hence is the most efficient
way to do security. This approach eliminates the need to change any
designs for RP1210 as it treats both the J1939 network and the
RP1210 stack as untrusted entities, as shown in Figure 13.

Figure 13. Proposed security architecture where external layers are untrusted.

The J1939 Security Sublayers on each side of the communication
stack are controlled by the same vendor. The diagnostics application
is written for the specific controller application from the same
company. This means there is an ability to pre-share keys or manage
security controls without the need for cooperation from third parties.

Conclusion

Based on automotive cybersecurity statistics, there is a dramatic
increase in the number of automotive cybersecurity incidents. Among
the attack vectors used, about 8% were through the diagnostic port
where diagnostic tools are connected. Many efforts have been made
on attacking CAN and SAE J1939, but most needed access to the
CAN bus, so it was difficult to make the attack stealthy if the attacker
is an outsider. However, if a computer used by a trusted maintenance
technician is use for the attack, physical access to the CAN bus
achieved with the trusted maintenance actions. This work
demonstrated how to insert a shim DLL to launch Machine-in-the-
Middle (MitM) attacks on communications between the service tool
and diagnostics software. Since the attacks can read and write in both
directions, the attacker, through the MitM has remote access to the
CAN bus. It was shown that MitM attacks are possible on different
types of SAE J1939 messages. Also, we demonstrated the importance
of holistic mitigation approaches by using a security sublayer
architected in the design phase of a software lifecycle.

Figure 14: Sequence diagram that reflect log files showing the utility of DM18
to send secure messages over SAE J1939.

Page 10 of 12

10/19/2016

References

1. Burakova, Y. and Hass, B., Millar, L. and Weimerskirch,
A., “Truck Hacking: An Experimental Analysis of the SAE J1939
Standard”, 10th USENIX Workshop on Offensive Technologies
2016.
2. Becker, S., “A Heavy Vehicle Network Security
Evaluation”, Master’s Thesis. December 2, 2016, University of
Michigan.
3. Hoppe, T. and Dittman, J., “Sniffing/replay attacks on CAN
buses: A simulated attack on the electric window lift classified using
an adapted CERT taxonomy,” In Workshop on Embedded Systems
Security (WESS), 2007.
4. Merco R., Biron, Z. A. and Pisu, P., "Replay Attack
Detection in a Platoon of Connected Vehicles with Cooperative
Adaptive Cruise Control," 2018 Annual American Control
Conference (ACC), 2018, pp. 5582-5587,
https://doi.org/10.23919/ACC.2018.8431538
5. Matsubayashi M., et al., "Attacks Against UDS on DoIP by
Exploiting Diagnostic Communications and Their Countermeasures,"
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), pp.
1-6, 2021, https://doi.org/10.1109/VTC2021-
Spring51267.2021.9448963
6. Koubâa, A., et al., “Micro Air Vehicle Link (MAVlink) in
a Nutshell: A Survey,” IEEE Access 2019; 7:87658–80
https://doi.org/10.1109/ACCESS.2019.2924410
7. Piètre-Cambacédès, L. and Bouissou, M. “Cross-
fertilization between safety and security engineering,” Reliability
Engineering & System Safety, vol. 110, p. 110–126, 02 2013,
https://doi.org/10.1016/j.ress.2012.09.011
8. Mukherjee, S., Shirazi, H., Ray, I., Daily, J. and Gamble,
R., “Practical DoS attacks on embedded networks in commercial
vehicles,” 2016 International Conference on Information Systems
Security (ICISS 2016), pp. 23–42, 2016,
https://link.springer.com/content/pdf/10.1007/978-3-319-49806-5.pdf
9. Gazdag, A., Ferenczi C., Buttyán L., “Development of a
Man-in-the-Middle Attack Device for the CAN Bus”, Proceedings of
the 1st Conference on Information Technology and Data Science
Debrecen, Hungary, November 6–8, 2020,
http://www.hit.bme.hu/~buttyan/publications/GazdagFB2020citds.pdf
10. Daily, J., Nnaji, D. and Ettlinger, B., “Demo: Securing
Heavy Vehicle Diagnostics”, Workshop on Automotive and
Autonomous Vehicle Security (AutoSec) 2021 25 February 2021,
https://doi.org/10.14722/autosec.2021.23020
11. Buttyán, L., “Hacking cars in the style of Stuxnet – CrySyS
Blog.” https://blog.crysys.hu/2015/10/hacking-cars-in-the-style-of-
stuxnet/ last accessed 14 Dec. 2022.
12. Daily, J. and Kulkarni, P., “Secure Heavy Vehicle
Diagnostics”, In Proceedings of the Ground Vehicle Systems
Engineering and Technology Symposium (GVSETS), NDIA, Novi,
MI, Aug. 13-15, 2020.
13. Murvay, P. -S. and Groza, B., "Security Shortcomings and
Countermeasures for the SAE J1939 Commercial Vehicle Bus
Protocol," in IEEE Transactions on Vehicular Technology, vol. 67,
no. 5, pp. 4325-4339, May 2018,
https://doi.org/10.1109/TVT.2018.2795384
14. Rogers, M., Weigand, P., Happa, J. and Rasmussen, K.,
"Detecting CAN Attacks on J1939 and NMEA 2000 Networks," in
IEEE Transactions on Dependable and Secure Computing, 2022,
https://doi.org/10.1109/TDSC.2022.3182481
15. Dadam, S. R., Zhu, D., Kumar, V., Ravi, V., & Palukuru,
V. S. S., “Onboard Cybersecurity Diagnostic System for Connected
Vehicles,” SAE Technical Paper Series, 2021-01-1249,
https://doi.org/10.4271/2021-01-1249

16. Campo, M., Mukherjee, S., and Daily, J., "Real-Time
Network Defense of SAE J1939 Address Claim Attacks," SAE Int. J.
Commer. Veh. 14(3):319-328, 2021.
17. Thompson, M., "UDS Security Access for Constrained
ECUs," SAE Technical Paper 2022-01-0132, 2022,
https://doi.org/10.4271/2022-01-0132
18. ISO/SAE 21434: Road Vehicles – Cybersecurity
Engineering”, ISO/SAE International Standard, First edition 2021-08
https://www.sae.org/standards/content/iso/sae21434/
19. RP1210D, Technology and Maintenance Council
Engineering Recommended Practice, Revision 4.06, 2022.
20. “Introduction to RP1210A (RP1210B),” Kvaser,
https://www.kvaser.com/about-can/can-standards/rp1210/, last
accessed 27 Jan 2023.
21. Gardiner, B., “Commercial Transportation: Truck Hacking
Slides”, NMFTA CTSRP Documents, pp.1–90, September 2021,
https://biz.nmfta.org/documents/ctsrp/Actionable_Mitigations_Optio
ns_v9_DIST.pdf, last accessed 27 Jan 2023
22. Technical Committee ISO/TC 22/SC 31, “ISO 14229-1:
20220, Road Vehicles – Unified Diagnostic Services (UDS) - Part 1:
Application Layer”, ISO standard edition-3, 2020-02,
https://www.iso.org/standard/72439.html
23. SAE J1939-22: CAN FD Data Link Layer, SAE
International, https://doi.org/10.4271/J1939-22_202209, 2022
24. J1939-91C: CAN FD Network Security, SAE International,
unpublished work in progress, 2022
25. J1939-71: Vehicle Application Layer, SAE International,
https://doi.org/10.4271/J1939/71_202208, 2022
26. “Global Automotive Cybersecurity Report 2023,”
Upstream Security, 11 Aug. 2022, https://upstream.auto/resources/.
last accessed 27 Jan 2023.

Contact Information

Sharika Kumar, sharkia.kumar@cummins.com
Jeremy Daily, jeremy.daily@colostate.edu

Acknowledgments

The authors would like to acknowledge DG Technologies for
supplying sample source code for RP1210 and sharing their expertise,
especially Angela Adelsberger.

Definitions/Abbreviations

AD Analog to Digital

ATA American Trucking Association

CAN Controller Area Network

CAN-FD Flexible Data Rate CAN

CRC Cyclic Redundancy Check

CTS Clear to Send

DA Destination Address

DLL Dynamic Link Library

https://doi.org/10.23919/ACC.2018.8431538
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448963
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448963
https://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.1016/j.ress.2012.09.011
https://link.springer.com/content/pdf/10.1007/978-3-319-49806-5.pdf
http://www.hit.bme.hu/%7Ebuttyan/publications/GazdagFB2020citds.pdf
https://doi.org/10.14722/autosec.2021.23020
https://blog.crysys.hu/2015/10/hacking-cars-in-the-style-of-stuxnet/
https://blog.crysys.hu/2015/10/hacking-cars-in-the-style-of-stuxnet/
https://doi.org/10.1109/TVT.2018.2795384
https://doi.org/10.1109/TDSC.2022.3182481
https://doi.org/10.4271/2021-01-1249
https://doi.org/10.4271/2022-01-0132
https://www.sae.org/standards/content/iso/sae21434/
https://www.kvaser.com/about-can/can-standards/rp1210/
https://biz.nmfta.org/documents/ctsrp/Actionable_Mitigations_Options_v9_DIST.pdf
https://biz.nmfta.org/documents/ctsrp/Actionable_Mitigations_Options_v9_DIST.pdf
https://www.iso.org/standard/72439.html
https://doi.org/10.4271/J1939-22_202209
https://doi.org/10.4271/J1939/71_202208
https://upstream.auto/resources/
mailto:sharkia.kumar@cummins.com

Page 11 of 12

10/19/2016

DOS Denial of Service

ECDH Elliptic Curve Diffie-Hellman

ECM Electronic Control Module

ECU Electronic Control Unit

ISO International Organization for Standardization

IT Information Technology

MHD Medium and Heavy-Duty

MitM Machine-in-the-Middle

OBD Off-board Diagnostics

PC Personal Computer

PGN parameter group number

PDU Protocol Data Unit

RP Recommended Practice

RTS Request to Send

SA Source Address

TLS Transport Layer Security

TMC Technology Maintenance Council

TRNG True Random Number Generator

UDS Unified Diagnostics Services

VDA Vehicle Diagnostics Adapter

VIN Vehicle Identification Number

VPN Virtual Private Network

Page 12 of 12

10/19/2016

Appendix

The following code snippet demonstrates how to compose C code to modify an RP1210_ReadMessage command from the shim DLL. This example
reads the buffer using the known legitimate DLL and manipulates the buffer after it has been read. The manipulation only takes place on the PGN of
0x00FEE1, which is vehicle distance. The status return is the same as it was from the legitimate API.

short FUNCTION_MODIFIER RP1210_ReadMessage(short nClientID,
 char far *buf,
 short nBufferSize,
 short nBlockOnRead)
{
 int writeSize;
 if(xx_DLL.functions.readMessage){
 status = xx_DLL.functions.readMessage(nClientID,
 buf,
 nBufferSize,
 nBlockOnRead);
 }
 else {
 status = -1;
 }
 if (status > 0){
 size_t i = 0
 //Total Vehicle Distance -- byte manipulations
 if ((buf[4] == 0xE1) && (buf[5] == 0xFE) && (buf[6] == 0x00)) {
 buf[9] = 0xCC;
 buf[10] = 0xBB;
 buf[11] = 0xAA;
 }
 return(status);
}

Figure 15: Network trace showing the utility of DM18 to send secure messages over SAE J1939.

