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Abstract
In the Arctic waterbodies are abundant and rapid thaw of permafrost is destabilizing the carbon
cycle and changing hydrology. It is particularly important to quantify and accurately scale aquatic
carbon emissions in arctic ecosystems. Recently available high-resolution remote sensing datasets
capture the physical characteristics of arctic landscapes at unprecedented spatial resolution. We
demonstrate how machine learning models can capitalize on these spatial datasets to greatly
improve accuracy when scaling waterbody CO2 and CH4 fluxes across the YK Delta of south-west
AK. We found that waterbody size and contour were strong predictors for aquatic CO2 emissions,
attributing greater than two-thirds of the influence to the scaling model. Small ponds
(<0.001 km2) were hotspots of emissions, contributing fluxes several times their relative area, but
were less than 5% of the total carbon budget. Small to medium lakes (0.001–0.1 km2) contributed
the majority of carbon emissions from waterbodies. Waterbody CH4 emissions were predicted by a
combination of wetland landcover and related drivers, as well as watershed hydrology, and
waterbody surface reflectance related to chromophoric dissolved organic matter. When compared
to our machine learning approach, traditional scaling methods that did not account for relevant
landscape characteristics overestimated waterbody CO2 and CH4 emissions by 26%–79% and
8%–53% respectively. This study demonstrates the importance of an integrated terrestrial-aquatic
approach to improving estimates and uncertainty when scaling C emissions in the arctic.

1. Introduction

Regions of permafrost soils, perennially frozen
ground, store approximately twice as much carbon
as is currently in the entire atmosphere [1, 2]. With
accelerated warming in high latitudes, permafrost
is thawing across the Arctic, leading to increasing
emissions of CO2 and CH4 [3–6] as it is decomposed
directly to CO2 and CH4 or transported through
landscapes to inland waterbodies [4, 7–9]. Glob-
ally, inland waterbodies receive 2–3 Pg-C yr−1 from
terrestrial landscapes, most of which is emitted as
CO2 fluxes to the atmosphere (0.5–2.1 Pg-C yr−1)

[10–14], an amount comparable to the global net
terrestrial carbon sink [15–17]. Inland waterbodies
are also a globally significant source of CH4 (70–
150 Tg-C yr−1), accounting for up to half of all CH4

emissions from natural sources and close to a quarter
of global CH4 emissions [13, 14, 18–23]. Lateral car-
bon transport accounts for ∼20% of terrestrial net
ecosystem productivity in high latitude ecosystems
(compared to 1% for temperate and tropical eco-
systems) due to the abundance of lakes and ponds,
highlighting the importance of CO2 and CH4 fluxes
from inland waters [11, 24–26]. Despite their import-
ance in global carbon cycling, inland waterbody CO2
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and CH4 budgets remain uncertain due to the wide
range in fluxes reported and the uncertainty in water-
body areal estimates, particularly for small lakes and
ponds [12, 16, 27].

Observations of inland aquatic CO2 and CH4

fluxes are highly variable, caused by differing contri-
butions from processes across a hierarchy of scales
from watershed transport, carbon cycling within
waterbodies, to microcosms of microbial productiv-
ity. The drivers of inland aquatic carbon dynamics are
often complex and non-linear. Observations of these
drivers lack the spatial representation necessary for
scaling, e.g. water temperature, dissolved organic car-
bon concentration and lability [28–32]. Traditional
bottom–up scaling estimates of inland waterbody
CO2 and CH4 fluxes applies an average or median
flux to an estimated total water surface area on local,
regional, or global scales [10, 11, 14, 18, 21, 26]. Sev-
eral scaling studies have shown improved estimates
of inland waterbody CH4 emissions by including lake
size and landscape history as categorical drivers [14,
19, 21, 23, 33]. Lake productivity (calibrated from a
remotely sensed analog) has also been used as a linear
predictor of lake dissolved CO2 concentrations [14,
34]. However, a large amount of variation in CO2 and
CH4 waterbody fluxes remains unexplained in scal-
ing studies, resulting in high uncertainty in regional
and global carbon budget estimates [10, 11, 14, 19,
21]. Applying an average flux to waterbodies within a
region or lake size-class could also create a biased car-
bon estimate, for example if smaller high-flux lakes
are more abundant in the observation dataset than
they are in the landscape [22, 35, 36].

Top–down carbon estimates from inversion stud-
ies rarely consider inland waterbodies. Most often,
inversion studies mask inland water, functionally
attributing a zero flux, or categorize waterbodies as
wetlands (but see Tan et al [37]). In lake-rich regions
this mis-attribution will cause either over or under
estimation of fluxes in wetland or terrestrial envir-
onments to compensate, a source of uncertainty in
the attributed carbon fluxes that is rarely quanti-
fied or discussed. A recent top-down and bottom-up
comparison of CO2 fluxes from the North Slope of
Alaska found that inland waters were likely a signific-
ant source of CO2 during the early cold season, and
attributing a flux to waterbodies in bottom-up estim-
ates was necessary to match airborne observations
[38]. Correctly attributing waterbodies in top-down
inversion analyses requires a gridded waterbody car-
bon flux map for use as a flux prior, which are not
often available or produced in bottom-up studies (but
see Tan and Zhuang [39]).

Advances in remote sensing and computational
abilities have led to steady improvements in inland
waterbody areal estimates in recent years [19, 40, 41],
but accurately mapping small lakes and ponds still

remains a challenge [13, 42]. Delineating open water-
bodies from vegetated wetland is particularly import-
ant because both are critical ecosystems for car-
bon emissions but with differing governing processes
[22]. Vegetated wetlands are often narrow features
bordering waterbodies along shorelines or channel
networks that cannot be detected without high resol-
ution imagery (<30 m) [43–46]. Furthermore, wet-
lands and lakes are often mapped separately (but see
Olefeldt et al [47]), which can lead to double count-
ing. This uncertainty around the waterbody and wet-
land area could explain why bottom-up CH4 budgets
in the Arctic are twice as high as top-down atmo-
spheric inversion estimates [20, 48].

Here we create accurate scaling models of water-
body CO2 and CH4 emissions that reflect the under-
lying processes driving carbon cycling in these eco-
systems and reduce uncertainty and bias in carbon
budget estimates. We use an integrated terrestrial-
aquatic approach by combining high-resolution
remote-sensing imagery of watershed-level and
waterbody drivers from an object-based imagery ana-
lysis. We include waterbody size and contour charac-
teristics and the surrounding landcover, hydrology,
terrain, and landscape heterogeneity as possible vari-
ables affecting carbon fluxes.We train boosted regres-
sion tree models, a type of machine learning, to pre-
dict waterbody CO2 and CH4 diffusive fluxes. While
ebullition is a large component of aquatic methane
fluxes, we do not include it here as ebullitive fluxes
are unlikely to be driven by watershed level processes
and are stochastic in nature, and therefore remain
a unique challenge to scaling. We demonstrate this
scaling technique using the Yukon–Kuskokwim (YK)
Delta of Alaska as our study region. The YK Delta
is subarctic tundra abundant in lakes and wetlands
and underlain by discontinuous permafrost [49].
Atmospheric inversion models of high latitudes have
shown the YK Delta to be a regional hotspot of CO2

and CH4 emissions [50–53]. Despite this, the YK
Delta has been historically understudied with few
ground-based observations of carbon fluxes [54, 55].
We leverage recent datasets of high-density observa-
tions of CO2 and CH4 measurements fromwaterbod-
ies in the YK Delta to train scaling models and map
waterbody CO2 and CH4 emissions [56, 57].

2. Methods

2.1. CH4 and CO2 observations
This study uses a dataset of surface water samples
(n = 364) analyzed for dissolved CO2 (n = 235) and
CH4 (n = 294), collected from various waterbod-
ies in the central-interior of the YK Delta from the
first half of July 2016–2019 [56, 57]. The majority
(>85%) of the samples in these datasets were from
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Figure 1. Schematic diagram of the geospatial analysis and remote sensing imagery used in this study. The thumbnail imagery
examples were created from remote sensing layers used in the study but are not presented at accurate scales. The layers in the grey
box were used to create the landcover map via k-means. The raw bands and derived layers (including landcovers) were averaged
over each set of basins to create landscape-level drivers. An object-based image analysis of the waterbody product from the
landcover map was used to create waterbody size, perimeter, and contour drivers, as well as waterbody reflectance, elevation, and
maximum flow accumulation.

lakes and waterbodies within wetlands. All waterbod-
ies were sampled at the water surface, either from
shore for small waterbodies or from a boat. While all
waterbodies were sampled in triplicate for dissolved
gases with the average reported, the largest few water-
bodies were sampled multiple years and at multiple
locations. The average of all observations was used
for those waterbodies with multiple samples. Vari-
ation in concentrations between waterbodies was far
greater than interannual variability or spatial vari-
ation within waterbodies. The waterbodies in this
region are uniformly shallow (less than 2mdeep) and
flat, and consequently well mixed [32]. As a result, we
do not consider lake depth as driving variable of CO2

and CH4 concentrations. A further description of the
site, dataset, sample processing, and size distribution
of sampled waterbodies can be found in the supple-
ment (figure S1) and Ludwig et al [32].

2.2. Geospatial waterbody and sub-basin analyses
We use remote sensing imagery to: (1) identify
waterbodies and quantify waterbody contour char-
acteristics, (2) quantify watershed characteristics that
might be related to landscape-level drivers, hydro-
logy, or indirectly affect waterbody CO2 or CH4

biogeochemistry, and (3) scale results to map diffus-
ive fluxes of CO2 and CH4 (figure 1).

2.2.1. Remote sensing imagery
We use Google Earth Engine to select imagery in
the YK Delta from 2016 through 2019 to coincide
with the timing of the samples in the dissolved CO2

and CH4 observation dataset. We used a compos-
ite of cloud-free level-2A Sentinel-2 multispectral
images (red, green, blue, near-infrared (NIR), and
short-wave infrared (SWIR) bands) from July 2019
(within 1 week of water sample collection timing).
Level-2A are surface reflectance Sentinel-2 products,
with cloud removal, orthorectification, and sen2cor
atmospheric corrections applied using the Sentinel-
2 Toolbox. We use Sentinel-1 C-band short-aperture
radar (SAR) images, pre-processed using the Sentinel
toolbox [58, 59]. We created four SAR images; mean
composites of July and December, VV and VH backs-
catter (10 m resolution). We use elevation from the
mosaiced ArcticDEM (2 m resolution), after filling
and detrending the digital elevation model (DEM)
using System for Automated Geoscientific Analyses
(SAGA) [60]. From these remote sensing layers, we
derive further layers such as slope and flow accu-
mulation (from the DEM before detrending), the
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normalized difference vegetation index (NDVI), and
normalized difference water index [61, 62].

2.2.2. Landcover map
We use a 5 by 10 m resolution landcover map created
for the region (https://doi.org/10.3334/ORNLDAAC/
2178) [63]. For detailed methods, see Ludwig et al
[32]. We used Google Earth Engine’s ‘entropy’ func-
tion to create a spatial texture layer from the landcover
map. Higher entropy values occur at borders and
transitions between landcover types, and we interpret
the average entropy in an area as a metric of land-
scape heterogeneity. We used Google Earth Engine’s
‘fastDistanceTransform’ function to create a gridded
layer of distance to nearest water for the study region,
using the landcover category identified as ‘surface
water’ and excluding waterbodies >10 km across.
While the surface water landcover was highly accur-
ate (balanced accuracy >0.95; Ludwig et al [32]),
the validation procedure was not stratified by water-
body size.We compared the size distribution ofwater-
bodies used here to a higher resolution, independent
waterbody product validated by size against ground
truth points in an overlapping region of the YK
Delta (Mullen et al [64]). The mapped waterbodies
were remarkably similar despite differences in sea-
sonality and interannual variation in the underlying
remote sensing imagery used in the two maps (figure
S2). Most notably, the waterbody product used here
did not under-sample small ponds despite approach-
ing the limit of detection. Therefore, we chose to
includewaterbodies<0.001 km2 though they become
pixelated, as omitting them would lead to an under-
estimate of carbon emissions.

2.2.3. Waterbody object-based image classification and
shape analysis
We used an object-based imagery analysis of the sur-
face water classification from the landcover map to
identify and then quantify aspects of waterbodies in
the region. We used the ‘reduceConnectedCompon-
ents’ algorithm in Google Earth Engine, threshold-
ing to exclude waterbodies larger than 10 km in
width (due to lack of in situ data), to calculate the
area, perimeter, and ratio of area:perimeter of each
uniquely identified waterbody. We specified a max-
imum neighborhood of 1024 pixels in any dimension
using eight-way connectedness with a scale of 10 m.
We created gridded layers of the average red, green,
blue, NIR, and SWIR reflectance from each water-
body by reducing the Sentinel-2 composite imagery
in section 2.2.1 over the waterbody objects. We sim-
ilarly created an average waterbody elevation layer,
using the detrended DEM, which reflects each water-
body’s relative landscape position on (higher eleva-
tion) or between (lower elevation) peat plateaus. In
QGIS (QuantumGeographic Information System,we

used the ‘catchment area’ algorithm to create a flow
accumulation layer from the DEM, and then reduced
this over the waterbody objects to create a maximum
flow accumulation per waterbody gridded product. A
higher flow accumulation within a waterbody indic-
ates more pixels ‘pouring’ into it, which correlates
with a larger watershed. All layers were reprojected to
10m resolution while reduced to averages over water-
body objects.

2.2.4. Sub-basin analyses
We split the study region into non-nested contigu-
ous sub-basins that are distinct hydrologic units. We
used the ‘channel network’ SAGA algorithm in QGIS
inputting the filled-DEMand flow accumulationmap
as the channel initialization to construct these sub-
basins. We created three sets of sub-basins using dif-
ferent channel thresholds: (1) >1 × 105 m2 cre-
ated 16 036 small sub-basins with an average area of
0.15 km2, (2) > 1 × 106 m2 created 1988 medium
sub-basins with an average area of 1.2 km2, and
(3) > 1 × 107 m2 created 278 large sub-basins with
an average area of 8.5 km2. These sizes were chosen
to span the range of watershed sizes from the water-
bodies in the observation dataset [32]. For each set of
sub-basins, we masked out waterbodies and then cal-
culated the sub-basin average values for the remote
sensing imagery and derived indices described in
section 2.2.1, the sub-basin average entropy (which
we term ‘landscape heterogeneity’), and average dis-
tance to nearest waterbody. We also calculated the
percent cover of each landcover type within each of
the three sets of sub-basins. Finally, each set of these
sub-basin metrics were assigned to the waterbodies
located within those sub-basins, to create images of
pseudo-watershed level drivers. We used this sub-
basin approach to enable all the potential drivers to
be organized as a stack of images, which is efficient to
operate over for predicting and scaling. The alternat-
ive approach, using actual watersheds delineated for
each waterbody such as in Ludwig et al [32], would
be computationally prohibitive. We identified 17 071
distinct waterbodies used in this study, and even if
watersheds for all 17 071 could be derived efficiently,
the nested nature of most of the watersheds would
prevent operating over watershed-level variables as
images. Not all waterbodies will exhibit similar con-
nectivity to the sub-basins used to aggregate remote-
sensing imagery. While flow accumulation is related
to connectivity, better metrics, particularly of lateral
or sub-surface flow, could improve predictability in
future scaling models. We further expect connectivity
between waterbodies and sub-basins to vary season-
ally: for example, different landcover variables might
be retained when using late season flux observa-
tions and imagery where deeper thaw depths change
the hydrologic regime. Future scaling studies using
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seasonally representative datasets will likely need to
take this seasonality into account.

2.3. Statistical modeling and scaling
We use boosted regression tree models to predict and
scale waterbody CO2 and CH4 fluxes. Recent studies
have used machine learning to accurately model and
predict aquatic carbon cycling [31, 32, 65]. Machine
learning methods are particularly useful when using
surface reflectance over inland waters, where atmo-
spheric corrections can sometimes cause artifacts that
lead to nonsensical results in approaches that pre-
dict using band ratios, band linear combinations, or
other empirical or analytical models [66–68]. For
example, gradient boosting models, such as used
here, were effective in predicting Chl-a using Sen-
tinel 2 and 3 imagery of inland waters [69, 70].
We use a similar approach to Ludwig et al [32],
using the gradient boosting machine (‘gbm’) pack-
age in R v.3.6.1 [71]. Both CO2 and CH4 values were
log-transformed to achieve normality. Our poten-
tial drivers include all waterbody-specific variables
(section 2.2.3), sub-basin averages and percent land-
cover areas (section 2.2.4). We sampled this stack of
image layers at every waterbody observation point to
create a tabular dataset of drivers for model train-
ing. We used ‘gbm.step’ as described in Elith et al
[71] to tune the number of trees and drop vari-
ables to avoid overfitting, using ten-fold cross valida-
tion, with a bag-fraction of 0.65. We tested the learn-
ing rate (lr = 0.005) and tree complexity (tc = 2)
manually to optimize. We used percent deviance
improvement over null model from cross-fold valid-
ation to determine model predictability, and regres-
sion between observations and fitted values of dis-
solved gases to determine model fit (‘lm’ function
in R). We repeated this analysis with ten random
seeds for bag-fraction to quantify data uncertainty in
model training. We calculated the relative influence
of each predictor variable, which were scaled to sum
to 100 [71, 72]. We used partial dependence plots
(the mean and standard deviation of the ten model
runs with different random seeds) to investigate the
average predicted response across all observations for
a given predictor variable [72]. All partial depend-
ence plots were centered on zero µM predicted CO2

or CH4.
We used the ‘predict’ function in the ‘raster’

package in R to apply our boosted regression tree
scaling models to the study region using the stack
of imagery described in sections 2.2.3 and 2.2.4.
These predictions were then back-transformed to
convert into µM, with a prediction-based back-
transformation bias correction applied [73]. Dis-
solved gas concentrations were converted to diffus-
ive fluxes (mg C m−2 d−1) using the relationship in

equation (1) [74, 75], where Caq is the surface dis-
solved gas concentration, Catm is the atmospheric
concentration, F is the diffusive flux, and k is the gas
transfer velocity,

F= k
(
Caq −Catm

)
. (1)

Gas transfer velocity values were obtained from
paired observations of chamber-based diffusive fluxes
and dissolved surface water concentrations from
waterbodies in the YK Delta (n= 55 for CO2, n= 65
for CH4 [56, 57]). Gas transfer velocities were calcu-
lated separately for CO2 and CH4 and normalized to
k600 using Schmidt numbers [75]. High outliers of
k600 were deemed to be contaminated by ebullitive
fluxes and removed [33]. Since there was no detect-
able relationship to lake size or wind speed we used
the mean, 25th, and 75th percentiles of gas transfer
velocity from the observations in the region.

3. Results and discussion

3.1. Model performance
Our models were able to accurately fit and pre-
dict dissolved CO2 and CH4 observations using only
remotely sensed drivers. Model fit for dissolved CO2

and CH4 was not significantly different from a slope
of one based on 95% confidence intervals, with
high coefficients of determination (CO2; r2 = 0.76,
RMSE = 175 µM, CH4; r2 = 0.75, RMSE = 4.8 µM,
figure 2). The average of residuals from both the
model predictions (figures 2(a) and (b)) and the
back-transformed results (figures 2(c) and (d)) were
zero (p-value ≫ 0.05 in one-sample t-tests). Both
scaling models performed equally well across water-
body sizes, with no relationship betweenmodel resid-
uals and waterbody area (figure S3). Models that
also consider biogeochemical andmechanistic drivers
(e.g. dissolved oxygen, dissolved organic carbon),
which cannot be detected by remote sensing, outper-
form our scaling models (e.g. Ludwig et al [32]: CO2;
r2 = 0.94, CH4; r2 = 0.88).

We measured the predictive strength of our
models using ten-fold cross-validation using per-
cent reduction in deviance as the metric of suc-
cess. Our CO2 model had the best predictability with
63% reduction in predictive deviance, while our CH4

model had 39%reduction in predictive deviance. This
is only slightly reduced predictive ability compared
to the models used to describe dissolved CO2 and
CH4 in unburned watersheds in the YK Delta (79%
and 52% respectively) that incorporated numerous
biogeochemical but non-scalable drivers, and is better
predictability than the equivalent models for burned
watersheds (61% and 36% respectively) [32].
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Figure 2.Modeled and observed dissolved gas concentrations for CH4 (a) and (c) and CO2 (b) and (d). Model goodness-of-fit is
shown with log-transformed data (a) and (b) and un-transformed and back-transformed data with bias corrections (c) and (d).
Solid lines and shading depict the fitted slope and 95% CI from linear regressions, with the one-to-one lines as dashed lines.

3.2. Spatial drivers of dissolved CO2 and CH4
Dissolved CO2 was primarily driven by variables
related to waterbody contour, with waterbody peri-
meter, area, and the ratio of area:perimeter account-
ing for more than two-thirds of the total explanat-
ory power of the model (figure 3(a)). In contrast, the
influence of waterbody contour drivers on dissolved
CH4 was similar to watershed landcover and water-
shed hydrology drivers (figure 3(b)). For both CO2

and CH4, smaller waterbodies and those with more
complex contours (smaller area:perimeter) exhibited
higher dissolved gas concentrations (figures 5(a), (b),
S4(a) and S6(d)), consistent with patterns observed
globally and in the Arctic [13, 19, 21]. Higher car-
bon emissions from waterbodies with complex con-
tours could be caused by more relative abundance of
lake-edge landcovers: the transitions betweenwetland
and aquatic ecosystems have long been recognized as
biogeochemical hotspots [76].

Wetland landcover was themost important driver
of dissolved CH4 (figure 3(b)), with a threshold effect
where more CH4 was predicted as wetland percent
area rose above 15% (figures S4(f) and (j)). Basin
averaged NDVI, SWIR reflectance, and SAR backs-
catter were also significant drivers of dissolved CH4

in waterbodies and likely also depict the import-
ance of wetlands on downstream CH4. Wetland areas
were distinctly visible in NDVI, SWIR, and SAR

imagery, identifiable as the greenest areas (NDVI
effect), while SAR backscatter and SWIR reflectance
are commonly used in wetland mapping due to rela-
tionships to soil water content and canopy structure
[59, 77–80]. Basin averaged NDVI, SAR, and SWIR
correlated with basin wetland percent area in the
study region (Pearson’s r = 0.81, 0.56,−0.58 respect-
ively). Wetlands are often a significant, if not the
dominant, source of natural CH4 emissions in eco-
systems. Our results show wetlands also impact CH4

concentrations in nearby and downstreamwaterbod-
ies (figure 3(b)). This downstream effect could be
caused by groundwater flow transporting dissolved
CH4 from where it was produced in a wetland to an
open waterbody [81]. Wetland-related drivers were
also significant but less important for predicting CO2

(figure 3(a)). Wetlands may encourage conditions
towards CH4 and CO2 production downstream in
the watershed through longer water residence times,
depletion of oxygen, and increased dissolved organic
carbon inputs [82]. Regardless of the mechanism,
cohesive high-resolutionmapping ofwaterbodies and
wetlands is important for scaling CH4 emissions.

Basin hydrology plays an important role for both
dissolved CO2 and CH4. Predicted CH4 concentra-
tions peak when surface waters are present in ∼10%
of the surrounding basin, but decline if there is either
less or more surface water present (figure S4(c)).
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Figure 3. Relative influence of variables in boosted regression tree models predicting CO2 (a) and CH4 (b) concentrations in
waterbodies in the YK Delta of Alaska. Error bars indicate standard deviation of relative influence from ten boosted regression
tree model runs with different random seeds. Relative influences are scaled to 100%, with similar variables combined (e.g.
watershed SAR backscatter from VV, VH, July, and December composites). The full listing of variable relative influence can be
found in tables S1 and S2 in the supporting information.

Predicted CO2 strictly declined with increasing sur-
face water area in the surrounding basin (figure
S6(e)). Predicted CH4 and CO2 concentrations both
increased as a function of increasing basin-average
distance to nearest water (figures S4(g) and S6(l)).
Flow accumulation had an overall negative effect
on CH4 concentrations (figure S4(h)). Surface water
area, distribution, and flow accumulation relate to
water residence times in the surrounding landscape,
and could indicate basins with longer water residence
times can promote higher waterbody CH4, possibly
through increased interaction with soil pore water,
more oxygen depletion, or more leaching of carbon
substrates [83, 84].

Waterbody surface reflectance in blue, red, and
NIR bands contributed significantly to predicting dis-
solved CO2 and CH4 (figure 3). Combinations of
these bands from Landsat surface reflectance have
been used to remotely sense chromophoric dissolved
organic matter (CDOM) in rivers and inland waters
in other environments [85–87]. Previous results from
the YKDelta have indicated that CDOM is an import-
ant driver of both dissolved CO2 and CH4 [32]. Small
waterbodies (<0.01 km2) may have land-adjacency
effects in surface reflectance that are complicating sig-
nals from waterbody color. It is possible for these
smaller waterbodies that the role of surface reflect-
ance instead indicates increasing edge-effects through
land-adjacency, which is a demonstrated driver of
both CO2 and CH4. To test how small-waterbody
reflectance values, land-adjacency, and size metrics
affect our scaling models, we re-ran them using the
same hyper-parameters, drivers, and random-seeds
while replacing waterbody reflectance, size, contour,

and perimeter variables with NA’s for those water-
bodies under 0.01 km2 in area. There was a slight
decrease in predictive performance (percent deviance
explained decreased by 3% and 2% for CH4 and
CO2). We regressed the predicted results from our
original models against those with small lake data
withheld, with little discernable difference (slopes of
1, intercepts of 0, and r2 of 0.97 and 0.99). The remote
sensing-based models in this study could be captur-
ing both CDOM and edge-effects (for the smallest
waterbodies) indirectly through waterbody surface
reflectance.

3.3. Lake size effects
Using the boosted regression tree models developed
from observations of dissolved CO2 and CH4 and
remotely sensed drivers (figure 1), we createdmaps of
waterbody CO2 and CH4 fluxes for our study region
in the YK Delta (figure 4). The effect of waterbody
size on CH4 and especially CO2 fluxes can be seen
clearly in the mapped predictions (figures 5(a) and
(b)). The smallest waterbodies account for the highest
fluxes of both CO2 and CH4, and fluxes decline pre-
cipitously with increasing waterbody size for CO2.
The smallest waterbodies (<0.001 km2) have dispro-
portionately high fluxes and comprise 38% of the
17 071 uniquely identified waterbodies in the region,
but account for only 1% of the overall surface area
of water (table 1). Because of this, the smallest water-
bodies do not contribute significantly to the total
CO2 and CH4 fluxes (figures 5(c) and (d)), account-
ing for only 3% and 2.8% of the total fluxes of CO2

and CH4 in the region respectively (table 1). In con-
trast, Holgerson and Raymond [13] estimated very
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Figure 4.Maps of predicted CO2 and CH4 in the study region in the Yukon-Kuskokwim Delta, AK. Large waterbodies (>10 km
width) and rivers, which were not sampled in the observation dataset and are depicted in black in the maps. Non-water is
represented with a grey hillshade image created from the DEM.

small ponds (<0.001 km2) account for ∼15.1% and
40.6% of global CO2 and CH4 emissions from lentic
inland waters. Holgerson and Raymond [13] estim-
ated the distribution of very small ponds by extrapol-
ating the Pareto distribution, a log-abundance log-
size regression relationship [88], yielding a much
greater area of very small ponds relative to total
water area. While our waterbody mapping could be
missing sub-pixel very small ponds (<0.00005 km2),
our lake distribution are similar to higher resolu-
tion products from the same region [42, 64]. Muster
et al [42] found that waterbody distributions in per-
mafrost lowland regions were not representable by a
power-law relationship. Consequentially, the Pareto
distribution would overestimate very small pond
abundance. Small lakes (0.001–0.1 km2) are the most
abundant in the study area, have high CO2 and CH4

emissions relative to their area, and contribute the
majority of total CO2 and CH4 emissions (table 1).
Medium and large lakes are the least abundant, and
while they are still significant contributors to CH4

emissions, they have a small or negative contribu-
tion to CO2 emissions (table 1). Our results sug-
gest that very small ponds in the Arctic need to be
explicitly mapped using high-resolution techniques
to avoid underestimating aquatic C emissions from
their exclusion, or overestimating aquatic C emissions
from inaccurate areal estimates.

3.4. Scaling CO2 and CH4
Carbon emissions from inland waterbodies remains
one of the least certain portions of the global C
cycle. We compared the total fluxes when scaled
using our boosted regression models to two sim-
pler, more traditional approaches. The simplest scal-
ing method multiplies the average areal flux rate
by the total waterbody surface area [10, 11, 18].

The other approach applies the average observed
flux in a waterbody size-class to the total area of
water in that size-class [13, 14, 21, 26, 33]. With
the simplest approach, CO2 total fluxes are overes-
timated by 79% and CH4 total fluxes are overestim-
ated by 53% (figure 6) compared to our approach.
When scaling using the average flux by size-class,
CO2 and CH4 fluxes were overestimated in the three
smallest size-classes of waterbodies (figure 6). The
largest lakes (>1 km2) were underestimated for CO2

and CH4 in the size-class average scaling, as well as
the mid-sized lakes (0.1–1 km2) for CO2 (figure 6).
Overall the scaling approach using the average flux
by lake size-class overestimated the diffusive water-
body fluxes of CO2 and CH4 from the region by
26% and 8% respectively. This bias in simpler scal-
ing results is likely due to a lack of spatial repres-
entativeness in the observation dataset, a common
problem in arctic flux datasets. Synthesis studies in
particular will lack spatially representative flux obser-
vations. For example, Kuhn et al [21] attribute the rel-
atively poor fit of their aquatic CH4 model compared
to their terrestrial models’ performance to spatial
under-sampling.

Recent efforts to improve arctic CH4 estimates
include the Boreal-Arctic Wetland and Lake meth-
ane Dataset (BAWLD), a circumpolar database of
wetland landcover jointly mapped with lake size and
abundance [22, 47]. The BAWLD database solves
issues of double-counting and the representativeness
of empirical flux observations and is well disposed for
large-scale modeling of circumpolar CH4 emissions.
However, the random forest models used in BAWLD
has the lowest predictive power when mapping small
lakes (<0.1 km2), and did not differentiate waterbody
sizes below 0.1 km2. Our results are complimentary
to the BAWLD approach and demonstrate how high-
resolution remote sensing, machine learning models,
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b

Figure 5. Box plots of predicted fluxes of CO2 (a) and CH4 (b) as a function of waterbody size. The lower and upper hinges
correspond to the first and third quartiles, the whiskers extend to 1.5 times the interquartile range, with outliers indicated as
points. Cumulative CO2 (c) and CH4 (d) fluxes as a function of waterbody size, with cumulative waterbody area as a secondary
y-axis. Note the log10 scale x-axis. Shading indicates the predicted flux using the 75th and 25th percentile of k600 from
observations in the region.

Table 1.Waterbody distribution and area by size-class. CO2 and CH4 emissions are the predicted dissolved concentrations from our
scaling models, converted to diffusive fluxes using the mean gas transfer velocity (k in equation (1)) from observations, multiplied by
each waterbody’s surface area, and summed over all the waterbodies within each size-class. The range in parentheses for CO2 and CH4

emissions is calculated using the 25th and 75th percentile of gas transfer velocities to calculate fluxes.

Waterbody size-class
Abundance within
study region

Area within study
region (km2)

CO2 emissions
(kg C d−1)

CH4 emissions
(kg C d−1)

< 0.001 km2 6425 2.57 447.4 (284 to 853) 29.15 (14.52 to 60.14)
0.001–0.01 km2 7268 27.66 4042 (2569 to 7707) 215.1 (107.2 to 443.8)
0.01–0.1 km2 3037 81.65 8321 (5289 to 15 864) 424.5 (211.5 to 875.8)
0.1–1.0 km2 317 68.62 2722 (1730 to 5189) 347.5 (173.1 to 716.9)
1.0–10 km2 24 63.51 −481.1 (−305 to−917) 248.2 (123.6 to 512)
Total 17 071 244 15 051 (9567 to 28 696) 1264 (630 to 2609)

and extensive field observations can be leveraged to
explicitly and accurately map open-water diffusive C
fluxes at the regional scale.

Our models do not account for temporal vari-
ation in fluxes, but rather provide a snapshot map
of peak growing season fluxes. Typically, water-
body scaling studies extrapolate an average flux to
a seasonal or annual budget estimate. Recent syn-
theses have improved carbon budget estimates by
accounting for ice-free days and large fluxes from

ice-off events [19]. Studies of specific lakes have docu-
mented diurnal patterns in dissolved CO2 and CH4 in
surface waters, though sampling regimes rarely cap-
ture this temporal variation [89]. Similarly, variable
gas evasion from wind and convection affecting tur-
bulence is an important source of temporal variability
in lake fluxes [89–91]. While our models improve the
spatial accuracy of waterbody fluxes, we recommend
considering seasonal and diurnal variation in dis-
solved gas concentrations and gas transfer velocities
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Figure 6. Total carbon emissions from each waterbody size-class using different scaling methods: this study, using an integrated
terrestrial-aquatic approach (green), using the average flux by size-class (purple), and the overall average flux (orange). Scaled
CO2 total fluxes are in the top panel (a) and scaled CH4 total fluxes are in the bottom panel (b). Carbon fluxes from the smaller
water bodies are overestimated and largest lakes are underestimated by the simpler scaling methods. Error bars depict the range
flux totals derived using the 25th–75th percentile of k600 from observations in the region.

and seasonal variability in water body size when using
our flux maps.

4. Conclusion and implications

Inland aquatic carbon emissions remain one of the
most uncertain components of the global carbon
budget. We can reduce this uncertainty using scal-
ing models driven by watershed and waterbody pro-
cesses. Aquatic CO2 emissions can be predicted well
using lake size and contour as continuous variables,
which could be applied to larger regions with suitably
high-resolution waterbody maps. Very small ponds
in the Arctic need to be explicitly mapped using
high-resolution techniques to avoid biasing aquatic
carbon emissions from their exclusion or inaccur-
ately extrapolated areal estimates. Waterbody size

metrics are insufficient for scaling CH4 emissions,
which were primarily driven by wetland landcover
and wetland-related variables within watersheds. Our
terrestrial-aquatic integrated approach using water-
shed landcovers and hydrology-related remote sens-
ing drivers improved our ability to scale bothCO2 and
CH4 waterbody emissions. Concurrent wetland land-
cover and waterbody mapping is necessary to avoid
double-counting open water areas and for integrat-
ing terrestrial effects on aquatic emissions. As the
Arctic warms with climate change, new waterbod-
ies will form from thawing permafrost while oth-
ers will drain and be replaced by wetlands. Our res-
ults imply the increased abundance of small ponds
and replacement of large lakes with wetlands would
lead to higher emissions of CO2 and CH4 for the YK
Delta.
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