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Abstract-Neural networks (NNs) are quite attractive in
creating surrogate models for many signal integrity (SD applica-
tions. NN-based surrogate models offer the benefits of reducing
the design cycle time and providing the designer with a quick
prototype that can efficiently analyze the performance of the SI
task. This article, therefore, proposes a new end-to-end learning
approach for surrogate modeling using complex-valued NN,
incorporating higher functionality and better representation. This
approach introduces a deep complex dense network (CDNet),
which is built with complex dense blocks to support complex
operations using complex-valued weights, and a physically consis-
tent layer to enforce passivity and causality constraints. We also
present a robust inverse multiobjective optimization method to
minimize the modeling error and optimize the design space
parameters. The results show that our model outperforms state-
of-the-art deep surrogate models when tasked with fonvard
and inverse learning for a relatively small amount of data.
The effectiveness of the proposed approach is demonstrated
through two SI design applications, where the model is used
to predict broadband S-parameters and obtain optimal design
space parameters given the desired target specifications.

Index Terms-Design space exploration, inverse design,
neural networks (NNs), packaging, passivity, signal integrity (SD,
surrogate modeling.

I. INTRODUCTION

N A high-speed circuit where data are transmitted and
I received at peak data rates, proper signal integrity (SI)
is essential to satisfy the design specifications. Ridding the
high-speed circuits of susceptibilities to SI problems is cru-
cial for the design and development of modern electronic
devices, including high-speed interconnects, printed circuit
boards (PCBs), and packaging components. This has been a
major drive for circuit designers and manufacturers. Designers
subject the circuits to SI analysis to account for mismatch,
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Joss, crosstalk, and reference offset. However, analyzing the SI
behavior of electronic systems is challenging, due to the design
complexity. To address these challenges, engineers frequently
employ both numerical solutions and experimental measure-
ments as a means of assessing the performance of electronic
systems in terms of SI. Nevertheless, these techniques can
prove to be cumbersome and demanding with respect to
computational and time resources. In addition, it may not
always be feasible to derive an analytical expression that
accurately depicts the SI behavior of the system. In these
scenarios, utilizing surrogate models can be a viable option.

A surrogate model is designed to imitate the behavior of
the system of interest. Surrogate models are utilized when
the desired result cannot be readily obtained through direct
measurement or calculation. They act as a substitute, offering
a straightforward, fast, and computationally efficient represen-
tation of the actual model. Surrogate model development has
made extensive use of machine learning (ML) methods, such
as artificial neural networks (ANNs) [1], [2], [3], [4], [5],
support vector regression (SVR) [6], [7], and Gaussian process
regression (GPR) [8], [9], [10]. NNs are quite attractive due to
their universal function approximation capability and they can
be trained to perform different tasks. Designers can analyze the
SI performance of their designs more quickly and improve the
system performance by using NNs for surrogate modeling in
SI applications. NNs can learn complex and nonlinear relation-
ships between the input parameters and the output response.
They can also leverage parallel processing techniques, which
can significantly reduce the computation time.

Surrogate models come in all shapes and sizes, but they
specifically comprise either/both: I) the forward model [6],
[T 1], [12], [13] or/and 2) the inverse model [14], [15],
[16], [17]. Consider a design space X of a parameterized
system and the corresponding output response Y, and the
forward mapping can be represented as

17: X 1+ Y. (1)

The forward model, which could be a fine or coarse model,
is particularly advantageous due to its ability to rapidly eval-
uate the performance of the system for a given set of design
parameters. The use of a forward model enables us to perform
a large number of evaluations in a relatively short amount of
time. This opens up the possibility of design space exploration,
system identification, and sensitivity analysis. In [18], a sum-
mary of some recent advancements in ML-based methods for
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SI and power integrity (PD problems is discussed, providing
several examples such as modeling the output waveform
from a driver circuit with preemphasis, predicting broadband
S-parameters from differential vias, and minimizing the clock
skew for 3-D integrated circuits (ICs) among others. Another
advantage of the forward model is its ability to provide
detailed information about the system's behavior. For example,
we can use the forward model to predict the response of
the system under various variations and conditions such as
process, voltage, and temperature (PVT). This information can
be used to improve the design of the system as well as to
understand its behavior and performance.

Conversely, the inverse model, also known as the inverse
design, is expedient for finding the optimal design parameters
that meet the specified requirements. This is achieved by
obtaining the inverse mapping

gt 1y X @

For example, in [19], an inverse design method of obtaining
the design parameters of a high-speed link that result in
an open eye at the receiver end with maximum eye-height
and eye-width characteristics is demonstrated. Furthermore,
in [20], the inverse design problem of obtaining the sensitive
circuitry design parameters of an active mixer of the RF
front end that results in a maximum gain and minimum
noise figure is addressed. The inverse design enables us to
find optimal design parameters, saving time and resources
compared to a trial-and-error approach. Another advantage of
the inverse design is its ability to perform tradeoff analyses.
Oftentimes, designers have to choose between sets of parame-
ters that have conflicting output specifications. Inverse design
serves to facilitate informed decision-making and to pinpoint
the optimal balance between conflicting demands. Moreover,
it can be used in design space exploration to identify the
most promising regions of the design space that satisfy the
desired specifications and in sensitivity analysis to observe
how the optimal design parameters change when tJle system
is perturbed. Fig. I offers a broad conceptual overview of a
surrogate model.

In the foregoing, we leverage the benefits to build a surro-
gate model that can be applied to both forward and inverse
modeling. Typically, in early stage prototyping, a designer
comes up with an initial design with several parameters in the
design space. If the design does not satisfy the target specifi-
cations, the designer has to do another iteration and gauge
the output response with the target specifications. Usually,
the designer explores several parameters and laboriously goes
through multiple iterations to satisfy the target specifications.
This is the forward modeling challenge. Inverse modeling,
on the other hand, starts from the target specifications and gen-
erates the circuit parameters that satisfy the target. The main
contributions of this article can be summarized as follows.

I) We propose a new end-to-end learning framework with
complex-valued data targeted at broadband S-parameter
modeling.

2) We propose a deep complex dense network (CDNet)
by introducing complex dense blocks built with fully
connected layers that support complex operations.
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Fig. l. Surrogate model that offers a custom solution.

3) We further propose an inverse multiobjective optimiza-
tion that mininlizes the modeling error while optimizing
the design space parameters that achieve the target
specifications.

We model physically consistent responses by introduc-

ing layers that comply with passivity and causality
conditions.

We provide a systematic comparison with state-of-the-

art deep surrogate models for SI applications.

We demonstrate the effectiveness of the proposed approach
for two SI design applications, where the objective is twofold:

I) to predict broadband S-pararneters for a given set of design
space parameters and 2) to predict the optimal design space
parameters given the desired S-parameters and a target band.
S-parameter signals are inherently complex-valued due to
their amplitude and phase components. Previous approaches
of modeling S-parameters using NNs have a less prudent
data representation by using only the magnitude component
or stacking the real and imaginary parts and handling them
as real-valued data [21). Another approach is to invoke
the Kramers-Kronig relations with the Hilbert transform to
extrapolate the imaginary component from the real component
of the S-parameters [5]. Complex-valued NNs can handle
complex numbers directly, allowing them to preserve the
amplitude and phase information of the S-parameters. This
is crucial in SI applications, where the phase of signals is
significant and can impact system behavior. Complex-valued
NN increases the expressiveness of the NN model by
allowing it to capture interactions between amplitude and
phase components, as opposed to its real-valued counterpart.
This article builds on the work presented in [22] by providing
extensive details of the surrogate methodology.

The rest of this article is organized as follows. Section II
provides the motivation and background on complex-valued
NNs. Section 111 presents the proposed surrogate model for
forward and inverse learning. Section IV explores the appli-
cation of the proposed model to five-layer vias in package.
Section V presents the application to 12-layer vias in package.
Finally, we draw a conclusion in Section V1.

4)

5)

II. COMPLEX BUILDING BLOCKS

In this section, we introduce the building blocks for
complex-valued NNs that support complex operations with
complex-valued weights and activations, as opposed to its real-
valued counterpart. They provide a higher functionality by
incorporating the phase information since learnable weights
do not just change amplitude as in the real-valued case but
can be rotated too in the complex-valued case. We employ
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Fig. 2. Proposed deep ICDNet. In inverse modeling, we backpropagate the gradients of the trained ICDNet to update its input parameters and minimize the
cost function of the measure of performance. 1be set of design parameters that minimizes the cost function is the inverse solution. x: design space parameters.

y: target specifications.

some innovative approaches from existing literature to form
the building blocks needed for a complex-valued NN similar
to its real-valued counterpart. In the following discourse, let
Z = a-+tjb represent a complex-valued input, where j = ,J=T.

A. Complex Dense Block

The complex dense block introduces feedforward connec-
tions from one layer to the next. This encourages feature
reusability and strengthens information r_?_p.agation through
the network [23]. Let weight w = lR(ws) 7<J(w), and the

complex dense operator performs the complex operations

W z=(@*IRw)- b" <Jw)+ j@® <Jw)+ " tw))
(€))

as shown in Fig. 2. In these notations,* denotes the com-
plex dense operator, and IR(-) and <;J(-) denote the real and
imaginary parts of a complex-valued entity, respectively.

B. Complex Activations

As with their real-valued counterparts, complex-valued acti-
vations are used to achieve nonlinearity. Designing a complex
activation is challenging due to the constraints postulated in
Liouville's theorem [24]." We employ fully complex activa-
tions and split activations where the nonlinearity is applied
separately on the real and imaginary parts. Examples include

e - ez
tanh(z) = -e-'-+ o )
ICReLU(z) = ReLU(a) + jReLU(b) %)

ICLeakyReLU(z) = LeakyReLU(a) t jLeakyReLU(b). (6)

Equations (4)-(6) are the complex hyperbolic tangent, split-
complex rectified linear unit (ICReLU), and split-complex
leaky rectified linear unit, respectively.

ILiouville's theorem states that a complex-valued function that is bounded
and analytic everywhere (i.e., a function that is differentiable at every point) is
constant. In other words, a function that is bounded and analytic everywhere
in the complex plane is not a suitable complex activation function [21].

C. Complex Residual Blocks

The complex residual blocks enable skip connections,
which, as the name suggests, skip some of the layers in the
NN and add the original input back to the output feature map
obtained by passing the input through one or more complex
dense layers. This is relevant for preserving contextual infor-
mation. Furthermore, skip connections prevent the vanishing
gradient problem, by directly propagating gradients between
layers. Consider a complex NN block that provides a mapping
T (z) from the input layer to the output layer. The residual is

R(z) =T(2) - z @
Equation (7) can be rearranged to form
T(z) =R(z) *+z (®)

which first applies an identity mapping to z and then performs
elementwise complex addition.

IlI. PROPOSED SURROGATE MODEL
FOR SI APPLICATIONS

In this section, we present the proposed surrogate model
that employs complex-valued NNs for predicting complex
and physically consistent representations of S-parameters and
performs a multiobjective inverse optimization to achieve the
best design space parameters.

A. Forward Model

S-parameters, known as scattering parameters,
are widely used in the design and characterization of
high-frequency components and systems. In the context of
S-parameters, NNs can be used to learn the mapping from

also

a set of design parameters to the S-parameters of a device.

The proposed model, called deep ICDNet, is shown in Fig. 2.
The ICDNet is constructed using complex dense blocks (see
Section II) with skip connections between them for preserving
contextual information, similar to [25]. Each complex dense
block contains one hidden layer of neurons. We apply dropout
regularization after the skip connections. ICReLU activation
functions and batch normalization layers are used between the
complex dense blocks except for the first complex dense block
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that only has a CLeakyReLU activation. During training, the
end-to-end neural net takes the input design parameters x and
propagates the information through the network to generate y
in the complex domain. We train with a robust £1- and
£2-supervised loss given by

£ =1Ex,y[lIm(y) iy +11 (y) -
+.gm(y)- my)l + 1 lirs(y) -Cy ]

where Y is the frequency response prediction and A > 0 is a
"tuning" parameter that provides a tradeoff between the impor-
tance of minimizing the fitting error and that of penalizing a
large error norm of y. The complex-valued neural net is trained
for 250 epochs with an Adam optimizer [26] and a learning
rate of 2 x 10-4_

<9)

B. Passivity and Causality Enforcement of Complex
S-Parameters in Multipon Networks

Passivity is a fundamental property of linear, time-invariant
systems that describes the relationship between the input and
output signals. An n-port network 1s said to be passive if
it does not generate any energy on its own and can only

dissipate or transfer energy from the input to the output. In the
frequency domain, passivity is equivalent to the property that

the S-parameters satisfy the following inequality within the
frequency band B:
S*(HS() ::: I V fEB (10)

where ('t is the Hermitian transpose operator. To verify (10),
we apply the singular value decomposition (SYD) to S(f)

and obtain its singular values a(f) > az(f) > - > a, ().
Therefore, (10) can be rewritten as
Cli(f)::: 1V f EB. an

There are several techniques used to ensure that S-parameters
are passive in the literature [5], [27], [28], [29]. In this work,
we use the method described in [5] where a minimum-phase
filter is implemented with minimal computational overhead to
enforce the largest singular value of the predicted S-parameter
matrix at each frequency point to be less than or equal to I.
This minimum-phase filter is added as a nonlearnable layer to
the CDNet

The minimum-phase filter doubles as a causality enforcer.
One important property of a minimum-phase filter is that it
has a causal impulse response, which means that the output
of the filter depends only on the past and present values of
the input signal. This property makes minimum-phase filters
suitable for real-time signal processing applications such as
the physically consistent layer for S-parameters where a delay
in the output signal is undesirable. Having all the poles and
zeros of a minimum-phase filter inside the unit circle in the
complex plane is a fundamental requirement for ensuring the
stability and causality of the filter. A detailed procedure is
provided in Algorithm I.

481

Algorithm 1 Passivity Enforcement of S-Parameters

Input: S: Predicted complex S-parameter matrix, n:
Number of ports, B: Frequency band
Output: Sp: Passive S-parameter matrix
t Reshape S into a batched matrix form for an n-port
network.
2 Transform S into S using isomorphism:

- [ ffi{S)(S)]
S = - (S) ffi(S).
3 fori: f;E Bdo

4 Calculate an upper bound for the largest singular
value using:

P(fi) n—1
. +\/ (Q(ﬁ) -

n

. P(f)?
81(f;) = ‘ (j:))

where
11

P;) ="L.,-ISjj(f))I2 and
j=I

Q)= l
[(S*(J5)S5)) o (SU5)S.(I)Iw

Jk=I

s implement minimum-phase filter as:
T(fi) = IB(f;)|e?*W)

where

LE(f) =4 ald)’'
1

for O'1(f;) > 1
for0t (f3) .1

¢(f;) = £'{log LE(f)I}.
I* £'{*} is the Hilbert
transform, operated using a fast
Fourier transform approach. I
6 Enforce passivity as:

Sp(f;) = S(£,)0  "E.(f).

C. Inverse Optimization

The use of optimization in inverse modeling allows us to
adjust the design space parameters, calibrate, and provide the
best solutions for our design. By identifying a set of objectives
and a measure of the performance of the system, we arrive at
optimal solutions for our design. The objective depends on the
design parameters we specify. The goal is to find the parame-
ters that optimize the objective. Often, the design parameters
are constrained in some way, which we must consider and
judiciously optimize to give physically realizable results.

The inverse model relies on the pretrained forward model.
After training the forward model, we freeze the ICDNet
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Algorithm 2 Inverse Optimization

Input: Initialization x<’>E dom(g), g: Trained model
with the set of all network parameters 0, Be:
Target band, A: learning rate

Output: Estimated x
1 for k =0,1,2, ..., until convergence, do

2 > g(x(k),0)
M

s | g™ = D D BN i)’

i:fieB* j=1

=k =k
o | Ax® — _3EEW) 93® 98
po 90 ax®

s | Update: x®+D7« x® 4 A Ax®

weights and set the design parameters as trainable parameters.
We also provide an initial guess of about 100 random sets of
design parameters. By backpropagating over the cost function,
the CDNet iteratively minimizes the cost function. We can
define the cost function as the £;-norm of the difference
between the ideal circuit responses (i.e., the desired
specifications y*) and that delivered by the forward model

[i.e., y(x)]
N A 2
() =3 -1, (L2)
for M frequency responses. Given a target band Be, we can
rewrite the objective in (12) as

C/2(y) = L L(L.Yi,j(x)I- |Yj|/

i:/;EB* J=/

(13)

where J 1s the index for the jth frequency response.
We minimize the objective in (13) parameterized by the
design parameters x and the set of all network parameters 0.
We use gradient descent to learn the optimal design parameters
that give the minimum cost in (13). The optimized design
parameter X is the inverse solution. The outline of the inverse
optimization method is shown in Algorithm 2. Due to the
different nature of NNs, the gradient descent method was a
natural choice for the inverse optimization. Also, the CDNet
architecture is optimized to have smooth gradients due to the
use of complex residual blocks. This leads to having large
convex basins around the optimal solution.

D. Optimization Landscape

An optimization landscape is an N -dimensional represen-
tation of the relationship between an NN's parameters and
its performance, where N is the dimension of the set of
all network parameters 0. We can use this to visualize and
better understand the inverse optimization process of our
CDNet. Typically, an optimization landscape can vary greatly
depending on the architecture of the network and can be
used to identify and diagnose problems with a network's
optimization process.

The principal component
method proposed in [30] addresses the problem of analyzing

analysis (PCA) projections

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 72, NO. I, JANUARY 2024

very high-dimensional opttmtzation landscapes. PCA is a
dimensionality reduction method used to project the high-
dimensional surface of the cost function onto a 2-D plane.
PCA obtains the two most important dimensions that influ-
ence the optimization landscape and projects the optimization
landscape onto these two components.

Consider a set of N-dimensional
{04, 02=== , ON}, which define our NN. The optimiza-
tion landscape can be represented as a scalar function
C/?(01, 02, . , ON), where <ff is the cost function. Our objective
is to project C/?(01, 0i, ... , ON) onto a 2-D plane for visualiza-
tion. The first step is to compute the covariance matrix :E of
the parameters, which is given by

parameters 0

E=d 0 pw)(0; - w)r (14)

where u, is the mean of the parameters.

Next, we perform an eigenvalue decomposition on the
covariance matrix :E, to find the eigenvectors (vj, v2=.=, F7AD
and eigenvalues (A-1,.:l2, .., AN). The PCA method selects the
two eigenvectors with the largest eigenvalues as the principal
components: va and vp. As a final step, we obtain a 2-D
visualization by projecting the high-dimensional optimization
landscape onto these two principal components. The projec-
tions are given by

T
Uy = (O — 1) Vo
T
uy = (0p —p) vg
where ux and uy are the coordinates in the 2-D slice of
the optimization landscape. In the context of building our
inverse surrogate model which is a high-dimensional space,
we leverage this concept to see whether the optimizer has a
hard time obtaining the optimal solutions.

E. Model Comparison

We perform a comparison with three state-of-the-art
methods: 1) a generative model called invertible NN; 2) a
conditional generative adversarial network; and 3) a deep
feedforward NN [with particle swarm optimization (PSO)].

1) Invertible Neural Network: The invertible neural net-
work (INN) is a type of generative model that relies on
flow-based generation [31], [32]. It incorporates normalizing
flows that leverage the change-of-variable law of probabili-
ties to estimate posterior probability distributions. The INN
provides a bijective mapping between the input design space
and the output response. With the change-of-variables law of
probabilities, we can relate the transformation ¥ = f (X) as
[31], [33]

px(x) = prM|Vy 1) (16)

where Px(x) is the probability density of x in the design
space X, py(y) is the probability density of y in the response
space Y, f-'(y) is the inverse function of the transfor-
mation f(X), and !'VyJ-'(y)! is the absolute value of the
determinant of the Jacobian matrix of the inverse function.
More details about the theory and architecture of the INN can
be found in [31] and [32].
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2) Conditional Generative Adversarial Network: We imple-
ment a conditional generative adversarial network (cGAN)
[34], [35], [36] to achieve inverse modeling. The cGAN com-
prises two modules called the generator G and discriminator D
playing an adversarial game against each other. Both modules
are randomly initialized. The training algorithm swaps back
and forth between training a generator module (responsible for
producing new data) and a discriminator module (responsible
for measuring how closely the generator's distribution repre-
sents the training dataset). At convergence, the generator learns
to produce realistic data, while the discriminator is forced
to guess (with probability = 1/2). The cGAN is conditional
because we feed the generator module with the desired targets
(only) rather than latent noise.? The cGAN inherently learns a
loss function during training for the inverse mapping y i
as opposed to hand-tuning the loss function. The penalized
c¢GAN objective can be expressed as [35]

.C=1Ex,y[log D(xIY)] + 1Ey[log(1 - D(G(y)ly))]

+ AlEx[lIx - Glll].  (7)

In (17), the discriminator maximizes the expression, while
the generator minimizes the second term. The third term is
a supervised loss that makes the generated result i = G(y) to
bevery close to the ground truth x, and J., is a hyperparameter.

3) Deep Feedforward Neural Network With PSO: The
architecture of a typical deep feedforward neural network
(DNN) consists of the input layer, the dense (hidden) layer(s),
and the output layer. To be able to learn complex representa-
tions of data, each neuron in a layer connects to every neuron
in its previous layer. A neuron takes in a weighted sum of
inputs that passes through a nonlinear activation function to
produce the output. In this work, for the forward design, the
input layer consists of the design parameters that we want to
map to the output response, i.e., we form a mapping

y=he(...(h2(h1(x)))...) = fo(x)

where A, denotes the ith layer, x is the design space tuple, y is
the output response, JO represents all the composition of the
hidden layers, and 0 is a set of all network parameters. The
hyperparameters of the DNN, such as the number of layers,
learning rate, choice of optimizer, and training epochs, are
chosen to be comparable to that of the CDNet. For the inverse
design, we opt for the widely used PSO with its stopping
criterion being when the swarm best objective change is less
than 1 x 10-8,

(18)

IV. APPLICATION I: MODELING FIVE-LAYER
THROUGH-HOLE VIAS IN PACKAGE

To demonstrate the effectiveness of the proposed method,
we consider modeling five-layer through-hole vias in package.
The vias are drilled through a five-layer PCB and conformally
plated with copper. They are arranged in the ground-signal-
signal-ground (GSSG) configuration, connecting a differential
microstrip line on the top layer to the differential striplines

2Similar to [35], we also experimented with dropout networks (with
probability = 1/2) to achieve stochasticity rather than using latent noise,
but this only provided minor stochasticity in the outputs.

via drill

I trace thickness 0

(b)

Fig. 3. Geometry of the five-layer through-hole vias. (a) Top view. (b) Front
view.

TABLE [

DESIGN PARAMETERS OF FIVE-LAYER
THROUGH-HOLE VIAS IN PACKAGE

Parameter Unit Min  Max
Trace spacing (first layer) tsl mil 3.5 20
Trace thickness (first layer) ttl mil 0.6 1.55
Trace width (first layer) twi mil 2.5 12
Trace spacing (third layer) ts3 mil 3.5 20
Trace thickness (third layer) tt3 mil 0.6 1.55
Trace width (third layer) tw3 mil 2.5 12
Anti-pad diameter da mil 22 28
Drill diameter dad mil 8 10
Pad diameter dp mil 16 20

on the third metal layer. These vias are crucial for provid-
ing electrical connectivity between the different layers in a
semiconductor package, but their intricate design can make it
computationally expensive to accurately model their electrical
behavior. Therefore, we employ ML-based surrogate modeling
to characterize the vias. The design parameters of the via are
shown in Fig. 3(a) and the stack-up of the PCB layers is shown
in Fig. 3(b). The ranges for the design parameters are given
in Table I. The target characteristics investigated are the Sl
and the S;; responses.

The objective here is to build a fast surrogate model
that enables the designers to: 1) simulate their designs to
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ensure that they are withjn a defined threshold of the target
specifications of S11 and Sp| and 2) obtain the via design
parameters that correspond to a given specification of the
S11 and S21 in the target band. We perform a parametric
sweep of the five-layer via design space, with the frequency
responses being swept from 0.02 to 20 GHz with steps of
19.98 MHz for each combination of the design parameters.
Consequently, each tuple in the design space has the
corresponding S11 and S21 responses with 1001 frequency
points. Using Latin hypercube sampling (LHS), we determjne
1000 samples to be analyzed and solved with Ansys
HFSS [37], and we extract their S-parameters. Next, the
dataset is divided into train and test sets.

A. Forward Model

The goal of the forward model is to train the deep CDNet to
learn the forward mapping between the design space X of the
five-layer vias and their output response y (i.e., S11 and S21).
We use six complex dense blocks to trajn the CDNet, each
containing one hidden layer of 256 neurons. We apply 40%
dropout regularization after the skjp connections. During train-
ing, the end-to-end neural net takes in input x with the
nine design parameters from the five-layer vias and prop-
agates the information through the network to generate y
(i.e., S11and S21)-

B. Inverse Optimization

To obtain our inverse surrogate model, we invoke the
objective function in (13) and accurately define the ideal Sq1
and S21 responses. The purpose of vias is, generally, to act
as an interconnect in a vertical direction, as a transmission
bne does in a horizontal direction, carrying signals from
one layer to another with minimum possible Joss. Therefore,
in designjng our five-layer vias, the ideal goal is to allow
signals in the target band to pass through with no reflections

(i.e.,, ISIIT = 0 and IS2tl = [). Given a target band Be, the
objective in (12) becomes

CCly) = L lYi,l(x)12+(lYi,2(x)I- 1)2

i.fiEB*

(19)

where Y i, 1 and .Y;,z are the S;; and S21 responses, respectively,
delivered by the forward model at the frequency point f.
Thjs cost function, parameterized by the design parameters X
and the set of all network parameters O, is then minimized to
obtajn the optimal design parameters x*, whkh is the inverse
solution.

C. Results

We present the results from both the forward model training
and the inverse optimjzation. We perform inference for the
forward model by tabng random samples from the test set.
Fig. 4 shows the results obtained from the forward modeling.
We compare the real, imaginary, and magnitude components
of S11 and S21 obtained from the forward model with those
obtained from the electromagnetic (EM) simulator. We find
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Fig. 4. Forward modeling predictions showing S11 and S2+ for the five-layer
vias in package with the trained complex-valued NN model (indicated with
solid lines), compared with the EM simulation (indicated with dashed lines)
for (a) and (b) two random design tuples in the test set. The real, imaginary,
and magnitude components of the frequency responses are shown in red, blue,
and cyan, respectively.
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Fig. 5. Inverse optimization results for the five-layer vias in package showing
the minimized objective function and function queries.

a close correlation between the output responses from the
forward model and the EM simulator.

Next, we display the inverse optimjzation results in
Figs. 5 and 6. Given an arbitrary target band B* =
[0.02, 20] GHz, we optimize to find the design parameters
of the five-layer vias in package that best achieve this tar-
get within the given constraints of the design parameters
(see Table I for their respective ranges). Fig. 6 shows that
the algorithm was able to deliver a broadband return loss
better than 10 dB and an insertion loss better than 0.6 dB
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Fig. 6.  Inverse optimization results for the five-layer vias in package.

The optimization yielded an inverse solution of {19.81,0.65,7.37, 5.44, 1.20,
7.59, 24.00, 10.00, 16.00) mil for the design parameters of the five-layer vias
in package. For this solution, the model predicts the frequency responses in
the solid red and cyan lines, while the EM simulation of the inverse solution
gives the frequency responses in the dashed blue and yellow lines.

Fig. 7. Contours showing the area around the extremum of a 2-D slice
of a very high-dimensional optimization landscape for the surrogate model of
the five-layer vias. The large convex basins simplify the optimizer's task of
finding the optimal solution (i.e., the red star).

for a prediction of {19.81,0.65,7.37,5.44, 1.20, 7.59, 24.00,

10.00,16.00} mil corresponding to the design parameters

{ts1, t,1, twl,ts3,4,3,tw3, d, dd, dp} of the five-layer vias in
package. We emphasize that this solution is not in the test

set but was obtained by running the multiobjective inverse
optimization. Aside from the evident advantages of preserving
amplitude and phase information and achieving physical con-
sistency of complex S-parameters as a fast surrogate model,
our proposed method with its inverse optimization (using
gradient descent) leverages the differentiable capabiljty of
NNs and the smooth gradients of the NN surrogate model.
This leads to having large convex basins around the optjmal
solution, as shown in Fig. 7.

With respect to the passivity enforcement of S-parameters,
we achieve physical consistency in the CDNet predictions.
Fig. 8 gives the largest singular values cr1 of the predicted
S-parameter matrices for all tuples in the test set. The CDNet

---- Pel$S1VilV thrtih<>1d

- Passivity threshold

06l n % 0.6 1 1'Cro ——=— =
f{GHz) H{GHz)
{al {b)

Fig. 8. Achieving physical consistency by enforcing constraints on largest
singular values of NN predicted S-parameters. (a) CDNet predictions without
passivity enforcement. (b) CDNet predictions with passivity enforcement.

TABLE II
MODEL COMPARISON FOR THE FrvE-LAYER VIAS

Metric Ours INN cGAN DNN + PSO
Dmllensl(mallty of 9 9 9 9
—design parameters
Frequency points 1001 1001 1001 1001
Number of Train 900 900 900 900
samples Test 100 100 100 100
Forward inference ou U.155 3.65Y 0.161
em,r'(dB) s21 ofm. 0.m 0.021
Inverse inference 0.004 0.055 0.055 0.050
Training time 1.4 min 5.9 mmn 39.7s 57.2s
Forwargr;.rllff'erence 17 ms 16 ms 12 ms
Inverse inference
time* 0.4' 15ms Ims 1.2's
Forward method Dectenninis. tic Probabilistic Dctemrinistic
Inverse method Iterative Probabilistic Probabilistic Iterative
Model size 6.53x 105 656 x 105 6.59x 105 6.54x 108

—(network parameters)
« For 100 samples.
I All programming is performed with PyTorcb [38] on @ Wmdows desktop with Intel® Core™
i?-10700 CPU @ 2.90 GHz and 32 GB RAM.

predictions without passivity enforcement have all cri(f) > 1
with a range of [0.867, 1.703], indicating that passivity
is violated, whereas the CDNet predictions with passivity
enforcement have all cri(f) ::, 1 with a range of [0.587,1],
indicating that passivity is achieved.

The results from Table II and Fig. 9 compare the per-
formance of the proposed model and state-of-the-art models
across several metrics. The metric to assess the numerical
accuracy of the forward models is chosen as the mean absolute
error (MAE) in decibels, between the actual response y and
the predicted response )/, taken over all the frequency points
in the response, given by

1

D..= -120logio1 Y1l - 20log;ol.9dlI-
rool

(20)

We find that the CDNet has a combined lower forward
inference error by a factor of up to 23 and a lower inverse
inference error by a factor of up to 13. It is important to
note that this does not generally imply that the INN is a
worse model; although its hyperparameters were optimized
and its model size is comparable to the other models, its poor
performance in this working example can be attributed to a
relatively small training set. Being a generative model that
learns the underlying probability distribution of the data gener-
ating process, the INN naturally excels where the training data
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Fig. 9. Comparison of frequency responses simulated from a random test
set design tuple obtained from the proposed CDNet model and state-of-the-art
models such as INN, cGAN, and DNN for the five-layer vias in package.
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Fig. 10. Geometry of the 12-layer through-hole vias. (a) Top view. (b) Front
view.

are abundant In terms of run times, the trained ICDNet takes

~17 ms to generate 100 different broadband S-parameters
compared with ~13 h with the EM simulator, for the same
number of samples.

V. APPLICATION II: MODELING 12-LAYER
THROUGH-HOLE VIAS IN PACKAGE

The second application we consider is modeling 12-Iayer
through-hole vias in package. The vias are drilled through

TABLE ill
DESIGN PARAMETERS OF 12-LAYER THROUGH-HOLE VIAS IN PACKAGE

Parameter Unit Min Max
Loss tangent (second core) tan Oc2 0.001 0.05
Relative permittivity (second core) Er,c2 2 5
Loss tangent (founh core) tanOc4 0.001 0.05
Relative permittivity (fourth core) Er,c4 2 5
Loss tangent (sixth core) tanoc6 0.001 0.05
Relative permittivity (sixth core) <r1,c6 2 5
Loss tangent (first prepeg layer) tanop1 0.001  0.05
Relative permittivity (first prepeg layer) t:r,pl 2 5
Loss tangent (third prepeg layer) tanop3 0.001 0.05
Relative permittivity (third prepeg layer) fr,p3 2 5
Loss tangent (fifth prepeg layer) tan ops 0.001 0.05
Relative permittivity (fifth prepeg layer) fr,ps 2 5
Loss tangent (solder mask layer) tan 0.0 0.001 0.05
Relative permittivity (solder mask layer) Er,.s0 2 5
Copper thickness (first layer) ta,1 mil 0.5 1.55
Copper thickness (second layer) ta,2 mil 0.5 1.55
Copper thickness (third layer) ta,3 mil 0.5 1.55
Copper thickness (fourth layer) ta,4 mil 0.5 1.55
Copper thickness (fifth layer) ta,5 mil 0.5 1.55
Copper thickness (sixth layer) tcub mil 0.5 1.55
Core thickness (second layer) tc2 mil 2 7
Core thickness (fourth layer) tc4 mil 2 7
Core thickness (sixth layer) tc6 mil 2 7
Prepeg thickness (first layer) tpl mil 2 7
Prepeg thickness (third layer) 3 mil 2 7
Prepeg thickness (fifth layer) tvs mil 2 7
Solder mask thickness t.0 mil 2 7
GND via angle (left) 01 degree -55 55
GND via spacing (left) Sg.l mil 10 50
GND via angle (right) Oor degree -55 55
GND via spacing (right) Sg.r mil 10 50
Trace spacing (input ports) Stin mil 2.5 10
Trace spacing (output ports) St,oot mil 2.5 10
Trace transition (input ports) h;,, mil 10 30
Trace transition (output ports) ho., mil 10 30
Trace width (input ports) wWu, mil 2.5 10
Trace width (output ports) Wool mil 2.5 JO
Anti-pad diameter do mil 14 32
Drill diameter dd mil 4 12
Pad diameter dv mil 8 20
Via-plating thickness tp mil 0.6 6
Via spacing S, mil 14 50

a 12-layer PCB and conformally plated with copper. They
are arranged in the GSSG configuration, transitioning from
differential striplines on the fourth metal layer to differential
striplines on the ninth metal layer. These vias are critical for
ensuring that signals are transmitted accurately and efficiently,
power is delivered effectively, heat is dissipated efficiently, and
the package is able to support high-frequency operations. The
design parameters of the via are shown in Fig. 10(a) and the
stack-up of the PCB layers is shown in Fig. 10(b). The ranges
for the design parameters are provided in Table III. There
are a total of 42 design parameters comprising the material
and geometrical properties. In practice, we only have a set of
materials to choose from, but to demonstrate the scalability
of the proposed surrogate model, we include the material
properties as tunable design parameters and show that the
model can still provide an approximate and faster response
compared to the EM simulator. The target characteristics
predicted are the S11 and the S21 responses.

Corresponding)y to Section IV, the objective here is to
build a fast surrogate model, comprising a forward model
that churns out the frequency responses given the design
parameters and an inverse model that optimizes the design
parameters for a desired response. We determine 2000 samples
using LHS and perform a parametric sweep of the 12-layer
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Fig. 11. Fotward modeling predictions showing S11 and S21 for the 12-layer
vias in package with the trained complex-valued NN model (indicated with
solid lines), compared with the EM simulation (indicated with dashed lines)
for (a) and (b) two random design tuples in the test set. The real, imaginary,
and magnitude components of the frequency responses are shown in red, blue,
and cyan, respectively.

via design space. We extract their S-parameters with Ansys
HFSS [37] from de to 30 GHz with steps of 30 MHz, giving
1001 frequency points. Subsequently, we split the dataset
into train and test sets. The simulation setups for the forward
model and inverse optimization are similar to the setups
described in Sections IV-A and IV-B.

A. Results

We show the outcomes of forward learning and inverse
optimization. We perform inference for the forward model by
taking random samples from the test set. Fig. 11 shows the
results obtained from the forward modeling. We compare the
real, imaginary, and magnitude components of the S11 and S21
obtained from the forward model with those obtained from
the EM simulator. We find that there is a close correlation
between the output responses from the forward model and the
EM simulator.

Next, we display the inverse optimization results in
Figs. 12 and 13. Given an arbitrary target band Be =
[0,30] GHz, we optimize the design parameters of the
12-layer vias in package that best achieves this target within
the given constraints of the design parameters (see Table III
for their respective bounds). Fig. 13 shows that the algorithm
was able to deliver a broadband return loss better than 15 dB
and an insertion loss better than 4 dB for an inverse solution i
of the 12-layer vias in package.
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Fig. 12. Inverse optimization results for the 12-layer vias in package showing
the minimized objective function and function queries.
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Fig. 13. Inverse optimization results for the 12-layer vias in package. The
optimization yielded an inverse solution i for the design parameters of the
12-layer vias in package. For this solution, the model predicts the frequency
responses in the solid red and cyan lines, while the EM simulation of the
inverse solution results in the frequency responses in the dashed blue and
yellow lines.
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Fig. 14. Comparison of frequency responses simulated from a random test
set design tuple obtained from the proposed CDNet model and state-of-the-art
models such as INN, cGAN, and DNN for the 12-layer vias in package.

Regarding physical consistency of the CDNet predictions
by enforcing passivity constraints on S-parameters, the CDNet
predictions with passivity enforcement have all crq(f) ::: 1 in
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TABLE 1V
MODEL COMPARISON FOR THE 12-LAYER VIAS

Metric Oun INN ¢GAN DNN+ PSO
lIi)in‘lensionality of ) 0 0 0
esign paramelers
—_ Frequency points TOOT TOOT TOOT TOOT
Number Of Train 1900 1900 1900 1900
samples Test 100 T00 100 100
“TForward inference o771 1.097 5.460 1177
error'(dB) "821 0.208 1.004 .
Inverse infc.rencc error 0.0J8 0.074 0.035 0.150
Training time 3.3 min .6 min 38.3s Z.2min
Forward inference time 22 ms 0.2s 20 ms
Inverse inference. time 04s 13 ms 2 ms 24s
Forward method Deterministic  Frobabilistic Detemtinistjc
Inverse method Iterative Probabilistic  Probabulistic Iterative
(networs pevmersy )38 10°  1.59x 105 1.63x 10°  1.60x 10°

+ For 100 samples. . . .
t All programming is performed with PyTorcb [381 on a Windows desktop with Intel® Core™

i7-10700 cru @ 2.90 GHz and 32 GB RAM.

the test set with a range of [0.611, 1]. However, without
passivity enforcement, we find that the range of o-¢(f) is
[0.768, 1.636], indicating that passivity is violated.

The performance of the proposed model and state-of-the-
art models is compared in Fig. 14 and Table IV using several
metrics. The results indicate that the ICDNet outperforms the
others with a forward inference error reduction by a factor of
up to 5 and an inverse inference error reduction by a factor of
up to 4. In addition, the ICDNet requires significantly less time
to generate 100 broadband S-parameters, taking approximately
17 ms compared to the EM simulator's 13 h.

VI. CONCLUSION

We present both forward and inverse modeling of SI
applications by using complex-valued NNs. The forward
model takes the input parameters of the actual model,
propagates the information through a series of building blocks
with complex operations, and generates the physically con-
sistent complex-valued output response. However, in inverse
modeling, we propose a well-defined objective as a measure of
performance of the SI application and optimize this objective
using gradient descent to obtain the optimal input parameters.
This surrogate model has the capability of reducing design
cycle time and it gives the designer a quick prototype.
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