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Abstract-Neural networks (NNs) are quite attractive in 

creating surrogate models for many signal integrity (SD applica­ 
tions. NN-based surrogate models offer the benefits of reducing 
the design cycle time and providing the designer with a quick 
prototype that can efficiently analyze the performance of the SI 
task. This article, therefore, proposes a new end-to-end learning 
approach for surrogate modeling using complex-valued NNs, 
incorporating higher functionality and better representation. This 
approach introduces a deep complex dense network (CDNet), 
which is built with complex dense blocks to support complex 
operations using complex-valued weights, and a physically consis­ 
tent layer to enforce passivity and causality constraints. We also 
present a robust inverse multiobjective optimization method to 
minimize the modeling error and optimize the design space 
parameters. The results show that our model outperforms state­ 
of-the-art deep surrogate models when tasked with fonvard 
and inverse learning for a relatively small amount of data. 
The effectiveness of the proposed approach is demonstrated 
through two SI design applications, where the model is used 
to predict broadband S-parameters and obtain optimal design 
space parameters given the desired target specifications. 

Index Terms-Design space exploration, inverse design, 
neural networks (NNs), packaging, passivity, signal integrity (SD, 

surrogate modeling. 

 
I. INTRODUCTION 

N A high-speed circuit where data are transmitted and 

received at peak data rates, proper signal integrity (SI) 

is essential to satisfy the design specifications. Ridding the 

high-speed circuits of susceptibilities to SI problems is cru­ 

cial for the design and development of modern electronic 

devices, including high-speed interconnects, printed circuit 

boards (PCBs), and packaging components. This has been a 

major drive for circuit designers and manufacturers. Designers 

subject the circuits to SI analysis to account for mismatch, 
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Joss, crosstalk, and reference offset. However, analyzing the SI 

behavior of electronic systems is challenging, due to the design 

complexity. To address these challenges, engineers frequently 

employ both numerical solutions and experimental measure­ 

ments as a means of assessing the performance of electronic 

systems in terms of SI. Nevertheless, these techniques can 

prove to be cumbersome and demanding with respect to 

computational and time resources. In addition, it may not 

always be feasible to derive an analytical expression that 

accurately depicts the SI behavior of the system. In these 

scenarios, utilizing surrogate models can be a viable option. 

A surrogate model is designed to imitate the behavior of 

the system of interest. Surrogate models are utilized when 

the desired result cannot be readily obtained through direct 

measurement or calculation. They act as a substitute, offering 

a straightforward, fast, and computationally efficient represen­ 

tation of the actual model. Surrogate model development has 

made extensive use of machine learning (ML) methods, such 

as artificial neural networks (ANNs) [l], [2], [3], [4], [5], 

support vector regression (SVR) [6], [7], and Gaussian process 

regression (GPR) [8], [9], [10]. NNs are quite attractive due to 

their universal function approximation capability and they can 

be trained to perform different tasks. Designers can analyze the 

SI performance of their designs more quickly and improve the 

system performance by using NNs for surrogate modeling in 

SI applications. NNs can learn complex and nonlinear relation­ 

ships between the input parameters and the output response. 

They can also leverage parallel processing techniques, which 

can significantly reduce the computation time. 

Surrogate models come in all shapes and sizes, but they 

specifically comprise either/both: I) the forward model [6], 

[I l], [12], [13] or/and 2) the inverse model [14], [15], 

[16], [17]. Consider a design space X of a parameterized 

system and the corresponding output response Y, and the 

forward mapping can be represented as 

!!7: X 1-+ Y. (1) 

The forward model, which could be a fine or coarse model, 

is particularly advantageous due to its ability to rapidly eval­ 

uate the performance of the system for a given set of design 

parameters. The use of a forward model enables us to perform 

a large number of evaluations in a relatively short amount of 

time. This opens up the possibility of design space exploration, 

system identification, and sensitivity analysis. In [18], a sum­ 

mary of some recent advancements in ML-based methods for 
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SI and power integrity (PD problems is discussed, providing 

several examples such as modeling the output waveform 

from a driver circuit with preemphasis, predicting broadband 

geometrical an material] 
[ pro rtles 

lsuRROGArc! 

return loss. ] 
insertion loss, crosstalk 

S-parameters from differential vias, and minimizing the clock 

skew for 3-D integrated circuits (ICs) among others. Another 

advantage of the forward model is its ability to provide 

detailed information about the system's behavior. For example, 

we can use the forward model to predict the response of 

the system under various variations and conditions such as 

process, voltage, and temperature (PVT). This information can 

be used to improve the design of the system as well as to 

understand its behavior and performance. 
Conversely, the inverse model, also known as the inverse 

design, is expedient for finding the optimal design parameters 

that meet the specified requirements. This is achieved by 

obtaining the inverse mapping 

g-t  : y   X. (2) 

For example, in [19], an inverse design method of obtaining 

the design parameters of a high-speed link that result in 

an open eye at the receiver end with maximum eye-height 

and eye-width characteristics is demonstrated. Furthermore, 

in [20], the inverse design problem of obtaining the sensitive 

circuitry design parameters of an active mixer of the RF 

front end that results in a maximum gain and minimum 

noise figure is addressed. The inverse design enables us to 

find optimal design parameters, saving time and resources 

compared to a trial-and-error approach. Another advantage of 

the inverse design is its ability to perform tradeoff analyses. 

Oftentimes, designers have to choose between sets of parame­ 

ters that have conflicting output specifications. Inverse design 

serves to facilitate informed decision-making and to pinpoint 

the optimal balance between conflicting demands. Moreover, 

it can be used in design space exploration to identify the 

most promising regions of the design space that satisfy the 

desired specifications and in sensitivity analysis to observe 

how the optimal design parameters change when tJ1e system 

is perturbed. Fig. I offers a broad conceptual overview of a 

surrogate model. 

ln the foregoing, we leverage the benefits to build a surro­ 

gate model that can be applied to both forward and inverse 

modeling. Typically, in early stage prototyping, a designer 

comes up with an initial design with several parameters in the 

design space. If the design does not satisfy the target specifi­ 

cations, the designer has to do another iteration and gauge 

the output response with the target specifications. Usually, 

the designer explores several parameters and laboriously goes 

through multiple iterations to satisfy the target specifications. 

This is the forward modeling challenge. Inverse modeling, 

on the other hand, starts from the target specifications and gen­ 

erates the circuit parameters that satisfy the target. The main 

contributions of this article can be summarized as follows. 

I) We propose a new end-to-end learning framework with 

complex-valued data targeted at broadband S-parameter 

modeling. 

2) We propose a deep complex dense network (CDNet) 

by introducing complex dense blocks built with fully 

connected layers that support complex operations. 

i MODE&. l 
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Fig. I.  Surrogate model that offers a custom solution. 

 
 

3) We further propose an inverse multiobjective optimiza­ 

tion that minin1izes the modeling error while optimizing 

the design space parameters that achieve the target 

specifications. 

4) We model physically consistent responses by introduc­ 

ing layers that comply with passivity and causality 

conditions. 

5) We provide a systematic comparison with state-of-the- 

art deep surrogate models for SI applications. 

We demonstrate the effectiveness of the proposed approach 

for two SI design applications, where the objective is twofold: 

I) to predict broadband S-pararneters for a given set of design 

space parameters and 2) to predict the optimal design space 

parameters given the desired S-parameters and a target band. 

S-parameter signals are inherently complex-valued due to 

their amplitude and phase components. Previous approaches 

of modeling S-parameters using NNs have a less prudent 

data representation by using only the magnitude component 

or stacking the real and imaginary parts and handling them 

as real-valued data [21). Another approach is to invoke 

the Kramers-Kronig relations with the Hilbert transform to 

extrapolate the imaginary component from the real component 

of the S-parameters [5]. Complex-valued NNs can handle 

complex numbers directly, allowing them to preserve the 

amplitude and phase information of the S-parameters. This 

is crucial in SI applications, where the phase of signals is 

significant and can impact system behavior. Complex-valued 

NN increases the expressiveness of the NN model by 

allowing it to capture interactions between amplitude and 

phase components, as opposed to its real-valued counterpart. 

This article builds on the work presented in [22] by providing 

extensive details of the surrogate methodology. 

The rest of this article is organized as follows. Section II 

provides the motivation and background on complex-valued 

NNs. Section I11 presents the proposed surrogate model for 

forward and inverse learning. Section IV explores the appli­ 

cation of the proposed model to five-layer vias in package. 

Section V presents the application to 12-layer vias in package. 

Finally, we draw a conclusion in Section Vl. 

 
II. COMPLEX BUILDING BLOCKS 

In this section, we introduce the building blocks for 

complex-valued NNs that support complex operations with 

complex-valued weights and activations, as opposed to its real­ 

valued counterpart. They provide a higher functionality by 

incorporating the phase information since learnable weights 

do not just change amplitude as in the real-valued case but 

can be rotated too in the complex-valued case. We employ 
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Fig. 2. Proposed deep ICDNet. In inverse modeling, we backpropagate the gradients of the trained ICDNet to update its input parameters and minimize the 

cost function of the measure of performance. 1be set of design parameters that minimizes the cost function is the inverse solution. x: design space parameters. 
y: target specifications. 

 

 
some innovative approaches from existing literature to form 

the building blocks needed for a complex-valued NN similar 

to its real-valued counterpart. ln the following discourse, let 

z = a+jb represent a complex-valued input, where j = ,J=T. 

 
A. Complex Dense Block 

The complex dense block introduces feedforward connec­ 

tions from one layer to the next. This encourages feature 

reusability and strengthens information propagation through 
the network [23]. Let weight w = lR(w) + j<;J(w), and the 

 
C. Complex Residual Blocks 

The complex residual blocks enable skip connections, 

which, as the name suggests, skip some of the layers in the 

NN and add the original input back to the output feature map 

obtained by passing the input through one or more complex 

dense layers. This is relevant for preserving contextual infor­ 

mation. Furthermore, skip connections prevent the vanishing 

gradient problem, by directly propagating gradients between 

layers. Consider a complex NN block that provides a mapping 

T (z) from the input layer to the output layer. The residual is 

complex dense operator performs the complex operations 

w* z =(a* lR(w) - b* <;J(w)) + j(a* <;J(w) + b* !Jt(w)) 

(3) 

R(z) = T(z) - z. 

Equation (7) can be rearranged to form 

T(z) = R(z) + z 

(7) 

 

 
(8) 

 

as shown in Fig. 2. ln these notations,* denotes the com­ 

plex dense operator, and lR(-) and <;J(-) denote the real and 

imaginary parts of a complex-valued entity, respectively. 

 
 

B. Complex Activations 

As with their real-valued counterparts, complex-valued acti­ 

vations are used to achieve nonlinearity. Designing a complex 

activation is challenging due to the constraints postulated in 

Liouville's theorem [24].1 We employ fully complex activa­ 

tions and split activations where the nonlinearity is applied 

separately on the real and imaginary parts. Examples include 

e' - e-z 

which first applies an identity mapping to z and then performs 

elementwise complex addition. 

 
Ill. PROPOSED SURROGATE MODEL 

FOR SI APPLICATIONS 

In this section, we present the proposed surrogate model 

that employs complex-valued NNs for predicting complex 

and physically consistent representations of S-parameters and 

performs a multiobjective inverse optimization to achieve the 

best design space parameters. 

 
A. Forward Model 

S-parameters,  also known  as  scattering parameters, 

tanh(z) = --­ 
e' e-z 

ICReLU(z) = ReLU(a) + jReLU(b) 

(4) 

(5) 

are widely used in the design and characterization of 

high-frequency components and systems. In the context of 

S-parameters, NNs can be used to learn the mapping from 

ICLeakyReLU(z) = LeakyReLU(a) + jLeakyReLU(b). (6) 

Equations (4)-(6) are the complex hyperbolic tangent, split­ 

complex rectified linear unit (ICReLU), and split-complex 

leaky rectified linear unit, respectively. 

 
1Liouville's theorem states that a complex-valued function that is bounded 

and analytic everywhere (i.e., a function that is differentiable at every point) is 

constant. In other words, a function that is bounded and analytic everywhere 

in the complex plane is not a suitable complex activation function [21]. 

a set of design parameters to the S-parameters of a device. 

The proposed model, called deep ICDNet, is shown in Fig. 2. 

The ICDNet is constructed using complex dense blocks (see 

Section II) with skip connections between them for preserving 

contextual information, similar to [25]. Each complex dense 

block contains one hidden layer of neurons. We apply dropout 

regularization after the skip connections. ICReLU activation 

functions and batch normalization layers are used between the 

complex dense blocks except for the first complex dense block 



AKINWANDEet al.: SURROGATE MODELING WITH COMPLEX-VALUED NEURAL NETS FOR SI APPLICATIONS 481 

Authorized licensed use limited to: Universityof Illinois. Downloaded on March 22,2024 at 15:57:16 UTC from IEEE Xplore. Restrictions apply. 

 

 

 
 

 

that only has a CLeakyReLU activation. During training, the 

end-to-end neural net takes the input design parameters x and 

propagates the information through the network to generate y 

in the complex domain. We train with a robust £1-  and 

£2-supervised loss given by 

 

£ = lEx,y[llm(y) -ffi(y)II +11 (y) - (Y)II 

Algorithm 1 Passivity Enforcement of S-Parameters 
 

 

Input: S: Predicted complex S-parameter matrix, n: 

Number of ports, B: Frequency band 

Output: Sp: Passive S-parameter matrix 

t Reshape S into a batched matrix form for an n-port 

network. 

2 Transform S into S using isomorphism: 

+.qm(y) - m(y)I1I + 1 llrs(y) -(y)II1] <9) 
 

- [  ffi{S) (S)] 

S =  - (S) ffi(S). 

where y is the frequency response prediction and A > 0 is a 

"tuning" parameter that provides a tradeoff between the impor­ 

tance of minimizing the fitting error and that of penalizing a 

large error norm of y. The complex-valued neural net is trained 

for 250 epochs with an Adam optimizer [26] and a learning 

rate of 2 x 10-4_ 

 
 

B. Passivity and Causality Enforcement of Complex 

3 for i : f; E B do 

4 Calculate an upper bound for the largest singular 

value using: 
 

where 
11 

S-Parameters in Multipon Networks 

Passivity is a fundamental property of linear, time-invariant 

systems that describes the relationship between the input and 
output signals. An n-port network is said to be passive if 

P(f;) = "L"  ., -ISjj(f;)I2 

j=l 

 

Q(J;) = L
11

 

and 

it does not generate any energy on its own and can only 

dissipate or transfer energy from the input to the output. In the 

frequency domain, passivity is equivalent to the property that 

 

j,k=I 

[(S*(J;)S(J;)) o (S(J;)S.(J;))]w 

the S-parameters satisfy the following inequality within the s 

frequency band B: 
implement minimum-phase filter as: 

 

 

S*(f)S(f) :::: I \/ f E B (10) 
where 

where (·t is the Hermitian transpose operator. To verify (10), 

we apply the singular value decomposition (SYD) to S(f) 

and obtain its singular values a1(f) > a2(f) > •• · > a11(f). 

l:E(f;)I ={ a,!J;)' 
1, 

for O' I (f;) > 1 

forO'I (f;) .'.:::,1 

Therefore, (10) can be rewritten as 

 
Cl1(f):::: 1 \/ f EB. 

 

 
(ll) 

¢(f;) = £'{log l:E(f;)I}. 

/*  £'{•} is the Hilbert 

transform, operated using a fast 

There are several techniques used to ensure that S-parameters 

are passive in the literature [5], [27], [28], [29]. In this work, 6 

we use the method described in [5] where a minimum-phase 

filter is implemented with minimal computational overhead to 

Fourier transform approach. *I 
Enforce passivity as: 

Sp(f;) = S(f;)0  "E,(f;). 

enforce the largest singular value of the predicted S-parameter   

matrix at each frequency point to be less than or equal to I. 

This minimum-phase filter is added as a nonlearnable layer to 

the CDNet 

The minimum-phase filter doubles as a causality enforcer. 

One important property of a minimum-phase filter is that it 

has a causal impulse response, which means that the output 

of the filter depends only on the past and present values of 

the input signal. This property makes minimum-phase filters 

suitable for real-time signal processing applications such as 

the physically consistent layer for S-parameters where a delay 

in the output signal is undesirable. Having all the poles and 

zeros of a minimum-phase filter inside the unit circle in the 

complex plane is a fundamental requirement for ensuring the 

stability and causality of the filter. A detailed procedure is 

provided in Algorithm l. 

C. Inverse Optimization 

The use of optimization in inverse modeling allows us to 

adjust the design space parameters, calibrate, and provide the 

best solutions for our design. By identifying a set of objectives 

and a measure of the performance of the system, we arrive at 

optimal solutions for our design. The objective depends on the 

design parameters we specify. The goal is to find the parame­ 

ters that optimize the objective. Often, the design parameters 

are constrained in some way, which we must consider and 

judiciously optimize to give physically realizable results. 

The inverse model relies on the pretrained forward model. 

After training the forward  model, we freeze the  ICDNet 
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M 

 
 

 

Algorithm 2 Inverse Optimization 

Input: Initialization x<0> E dom(g), g: Trained model 

with the set of all network parameters 0, B•: 

Target band, A: learning rate 

Output: Estimated x 
1 for k = 0, 1, 2, ... , until convergence, do 

very high-dimensional opttmtzation landscapes. PCA is a 

dimensionality reduction method used to project the high­ 

dimensional surface of the cost function onto a 2-D plane. 

PCA obtains the two most important dimensions that influ­ 

ence the optimization landscape and projects the optimization 

landscape onto these two components. 

2 _y(k=) 

 
3 

 
 
 

4 
 

s 

g(x(k), 0) Consider  a  set  of  N -dimensional  parameters  0 

{01, 02,••• , 0N}, which  define  our  NN. The  optimiza­ 

tion landscape can be represented as a scalar function 

C/?(01, 02, ••. , 0N), where <,ff is the cost function. Our objective 

is to project C/?(01, 0i, ... , 0N) onto a 2-D plane for visualiza­ 

tion. The first step is to compute the covariance matrix :E of 

the parameters, which is given by 

:E = -1 
N . 

(0; - µ,)(0; - µ,)T (14) 

weights and set the design parameters as trainable parameters. 

We also provide an initial guess of about I00 random sets of 

design parameters. By backpropagating over the cost function, 

the CDNet iteratively minimizes the cost function. We can 

define the cost function as the £2-norm of the difference 

between the ideal circuit responses (i.e., the desired 

specifications y*) and that delivered by the forward model 

[i.e., y(x)] 

 (L2) 

for M frequency responses. Given a target band B•, we can 

rewrite the objective in (12) as 

C/?(y) = L L(I.Yi,j(x)I - IY jl/ (13) 

i:/;EB* J=I 

where J 1s the index for the jth frequency response. 

We minimize the objective in (13) parameterized by the 

design parameters x and the set of all network parameters 0. 

We use gradient descent to learn the optimal design parameters 

that give the minimum cost in (13). The optimized design 

parameter x is the inverse solution. The outline of the inverse 

optimization method is shown in Algorithm 2. Due to the 

different nature of NNs, the gradient descent method was a 

natural choice for the inverse optimization. Also, the CDNet 

architecture is optimized to have smooth gradients due to the 

use of complex residual blocks. This leads to having large 

convex basins around the optimal solution. 

 
D. Optimization Landscape 

An optimization landscape is an N -dimensional represen­ 

tation of the relationship between an NN's parameters and 

its performance, where N is the dimension of the set of 

all network parameters 0. We can use this to visualize and 

better understand the inverse optimization process of our 

CDNet. Typically, an optimization landscape can vary greatly 

depending on the architecture of the network and can be 

used to identify and diagnose problems with a network's 

optimization process. 

The principal component analysis (PCA) projections 

method proposed in [30] addresses the problem of analyzing 

where µ, is the mean of the parameters. 

Next, we perform an eigenvalue decomposition on the 

covariance matrix :E, to find the eigenvectors (v1, v2,•.• ,VN) 

and eigenvalues (A-1, .:l2, ..• , AN). The PCA method selects the 

two eigenvectors with the largest eigenvalues as the principal 

components: Va and vp. As a final step, we obtain a 2-D 

visualization by projecting the high-dimensional optimization 

landscape onto these two principal components. The projec­ 

tions are given by 
 

where Ux and Uy are the coordinates in the 2-D slice of 

the optimization landscape. In the context of building our 

inverse surrogate model which is a high-dimensional space, 

we leverage this concept to see whether the optimizer has a 

hard time obtaining the optimal solutions. 

 
E. Model Comparison 

We perform a comparison with three state-of-the-art 

methods: I) a generative model called invertible NN; 2) a 

conditional generative adversarial network; and 3) a deep 

feedforward NN [with particle swarm optimization (PSO)]. 

1) Invertible Neural Network: The invertible neural net­ 

work (INN) is a type of generative model that relies on 

flow-based generation [31], [32]. It incorporates normalizing 

flows that leverage the change-of-variable law of probabili­ 

ties to estimate posterior probability distributions. The INN 

provides a bijective mapping between the input design space 

and the output response. With the change-of-variables law of 

probabilities, we can relate the transformation Y = f (X) as 

[3l], [33] 

       (16) 

where Px(x) is the probability density of x in the design 
space X, py(y) is the probability density of y in the response 

space Y, f-1(y) is the inverse function of the transfor­ 

mation f(X), and !VyJ-1(y)! is the absolute value of the 

determinant of the Jacobian matrix of the inverse function. 

More details about the theory and architecture of the INN can 

be found in [3 l] and [32]. 
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I trace thickness 0 L_..   

 

2) Conditional Generative Adversarial Network: We imple­ 

ment a conditional generative adversarial network (cGAN) 

[34], [35], [36] to achieve inverse modeling. The cGAN com­ 

prises two modules called the generator G and discriminator D 

playing an adversarial game against each other. Both modules 

are randomly initialized. The training algorithm swaps back 

and forth between training a generator module (responsible for 

producing new data) and a discriminator module (responsible 

for measuring how closely the generator's distribution repre­ 

sents the training dataset). At convergence, the generator learns 

to produce realistic data, while the discriminator is forced 

to guess (with probability = I /2). The cGAN is conditional 

because we feed the generator module with the desired targets 

(only) rather than latent noise.2 The cGAN inherently learns a 

loss function during training for the inverse mapping y i 
as opposed to hand-tuning the loss function. The penalized 

cGAN objective can be expressed as [35] 

.C = lEx,y[log D(x IY)] + lEy[Iog(l - D(G(y)ly))] 

+ AlEx[llx - G(y)II1]. (17) 

In (17), the discriminator maximizes the expression, while 

the generator minimizes the second term. The third term is 

a supervised loss that makes the generated result i = G(y) to 

bevery close to the ground truth x, and J., is a hyperparameter. 

3) Deep Feedforward Neural Network With PSO: The 

architecture of a typical deep feedforward neural network 

(DNN) consists of the input layer, the dense (hidden) layer(s), 

and the output layer. To be able to learn complex representa­ 

tions of data, each neuron in a layer connects to every neuron 

in its previous layer. A neuron takes in a weighted sum of 

inputs that passes through a nonlinear activation function to 

produce the output. In this work, for the forward design, the 

input layer consists of the design parameters that we want to 

map to the output response, i.e., we form a mapping 
 

where h; denotes the ith layer, x is the design space tuple, y is 

the output response, Jo represents all the composition of the 

hidden layers, and 0 is a set of all network parameters. The 

hyperparameters of the DNN, such as the number of layers, 

learning rate, choice of optimizer, and training epochs, are 

chosen to be comparable to that of the CDNet. For the inverse 

design, we opt for the widely used PSO with its stopping 

criterion being when the swarm best objective change is less 

than 1 x 10-8
. 

 
IV. APPLICATION I: MODELING FIVE-LAYER 

THROUGH-HOLE VIAS IN PACKAGE 

To demonstrate the effectiveness of the proposed method, 

we consider modeling five-layer through-hole vias in package. 

The vias are drilled through a five-layer PCB and conformally 

plated with copper. They are arranged in the ground-signal­ 

signal-ground (GSSG) configuration, connecting a differential 

microstrip line on the top layer to the differential striplines 

 
2Similar to [35], we also experimented with dropout networks (with 

probability = I/2) to achieve stochasticity rather than using latent noise, 
but this only provided minor stochasticity in the outputs. 

 

 
00 

(a) 
 

(b) 

Fig. 3. Geometry of the five-layer through-hole vias. (a) Top view. (b) Front 

view. 

 
TABLE I 

DESIGN PARAMETERS OF FIVE-LAYER 

THROUGH-HOLE VIAS IN PACKAGE 
 

Parameter  Unit Min Max 

Trace spacing (first layer) tsl mil 3.5 20 

Trace thickness (first layer) tt1 mil 0.6 1.55 

Trace width (first layer) tw1 mil 2.5 12 

Trace spacing (third layer) ts3 mil 3.5 20 

Trace thickness (third layer) tt3 mil 0.6 1.55 

Trace width (third layer) tw3 mil 2.5 12 

Anti-pad diameter da mil 22 28 

Drill diameter dd mil 8 10 

 Pad diameter dp   mil   16   20   

 

on the third metal layer. These vias are crucial for provid­ 

ing electrical connectivity between the different layers in a 

semiconductor package, but their intricate design can make it 

computationally expensive to accurately model their electrical 

behavior. Therefore, we employ ML-based surrogate modeling 

to characterize the vias. The design parameters of the via are 

shown in Fig. 3(a) and the stack-up of the PCB layers is shown 

in Fig. 3(b). The ranges for the design parameters are given 

in Table I. The target characteristics investigated are the SI1 

and the S21 responses. 

The objective here is to build a fast surrogate model 

that enables the designers to: 1) simulate their designs to 
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ensure that they are withjn a defined threshold of the target 
specifications of S11 and S21 and 2) obtain the via design 

parameters that correspond to a given specification of the 

S11 and S21 in the target band. We perform a parametric 

sweep of the five-layer via design space, with the frequency 

responses being swept from 0.02 to 20 GHz with steps of 

19.98 MHz for each combination of the design parameters. 

Consequently, each tuple in the design space has the 

corresponding S11 and S21 responses with 1001 frequency 

points. Using Latin hypercube sampling (LHS), we determjne 

1000 samples to be analyzed and solved with Ansys 

HFSS [37], and we extract their S-parameters. Next, the 

dataset is divided into train and test sets. 
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A. Forward Model vi 

The goal of the forward model is to train the deep CDNet to 

learn the forward mapping between the design space x of the 

five-layer vias and their output response y (i.e., S11 and S21). 

We use six complex dense blocks to trajn the CDNet, each 

containing one hidden layer of 256 neurons. We apply 40% 

dropout regularization after the skjp connections. During train­ 

ing, the end-to-end neural net takes in input x with the 

nine design parameters from the five-layer vias and prop­ 
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f(GHz) f(GHz) 
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- Re(S11,pr,c1;c,,c1) JS11,pro!ef,ctodl /m(S11.•®•I) 

- /m(Su,predicredl - -  Re(S11,actual) IS11,actua1I 

agates the information through the network to generate y 

(i.e., S11 and S21)- 

 
B. Inverse Optimization 

To obtain our inverse surrogate model, we invoke the 

objective function in (13) and accurately define the ideal S11 

and S21 responses. The purpose of vias is, generally, to act 

as an interconnect in a vertical direction, as a transmission 

bne does in a horizontal direction, carrying signals from 

one layer to another with minimum possible Joss. Therefore, 

in designjng our five-layer vias, the ideal goal is to allow 

signals in the target band to pass through with no reflections 

(i.e., IS11I =  0 and IS2tl =  I). Given a target band B•, the 
objective in (12) becomes 

Fig. 4. Forward modeling predictions showing S11 and S21 for the five-layer 

vias in package with the trained complex-valued NN model (indicated with 

solid lines), compared with the EM simulation (indicated with dashed lines) 

for (a) and (b) two random design tuples in the test set. The real, imaginary, 

and magnitude components of the frequency responses are shown in red, blue, 

and cyan, respectively. 
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where Yi,1 and .Y;,2 are the S11 and S21 responses, respectively, 

delivered by the forward model at the frequency point f;. 

0.082  

2 4 6 

Function queries 

 

8 10 

Thjs cost function, parameterized by the design parameters x 

and the set of all network parameters 0, is then minimized to 

obtajn the optimal design parameters x*, whkh is the inverse 

solution. 

 
C. Results 

We present the results from both the forward model training 

and the inverse optimjzation. We perform inference for the 

forward model by tabng random samples from the test set. 

Fig. 4 shows the results obtained from the forward modeling. 

We compare the real, imaginary, and magnitude components 

of S11 and S21 obtained from the forward model with those 

obtained from the electromagnetic (EM) simulator. We find 

Fig. 5. Inverse optimization results for the five-layer vias in package showing 

the minimized objective function and function queries. 

 

 

 

a close correlation between the output responses from the 

forward model and the EM simulator. 

Next, we display the inverse optimjzation results in 

Figs. 5 and 6. Given an arbitrary  target band B*  = 
[0.02, 20] GHz, we optimize to find the design parameters 

of the five-layer vias in package that best achieve this tar­ 

get within the given constraints of the design parameters 

(see Table I for their respective ranges). Fig. 6 shows that 

the algorithm was able to deliver a broadband return loss 

better than 10 dB and an insertion loss better than 0.6 dB 

10 20 

2 
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Fig. 8. Achieving physical consistency by enforcing constraints on largest 
singular values of NN predicted S-parameters. (a) CDNet predictions without 
passivity enforcement. (b) CDNet predictions with passivity enforcement. 

Fig. 6. Inverse optimization results for the five-layer vias in package. 
The optimization yielded an inverse solution of {19.81, 0.65,7.37, 5.44, 1.20, 
7.59, 24.00, 10.00, 16.00) mil for the design parameters of the five-layer vias 
in package. For this solution, the model predicts the frequency responses in 

the solid red and cyan lines, while the EM simulation of the inverse solution 
gives the frequency responses in the dashed blue and yellow lines. 

TABLE II 

MODEL COMPARISON FOR THE FrvE-LAYER VIAS 

   

Metric Ours INN cGAN DNN + PSO 

Dimensionality of 

design parameters 

Frequency points 

9 

1001 

9 

1001 

9 

1001 

9 

1001 

Number of Train 900 900 900 900  
samples Test 100 100 100 100 

error 

 

 
time' 

 
time* 

Model size 

(network parameters) 

• For 100 samples. 

6.53X 105 6.56 X 105 6.59 X 105 6.54 X 10$ 

I All programming is performed with PyTorcb [38] on a Wmdows desktop with Intel® Core™ 
i?-10700 CPU @ 2.90 GHz and 32 GB RAM. 

predictions without passivity enforcement have all cr1(f) > 1 

with a range of [0.867, 1.703], indicating that passivity 

is violated, whereas the CDNet predictions with passivity 

enforcement have all cr1(f)  ::, 1 with a range of [0.587, l], 
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Forward inference   Su 0.133  

em,r'(dB) S21 otm. 
3.639  

o.m  0.161  
0.021 

Inverse inference 
0.004

 
0.055 0.055 0.050 

Training time 1.4 min 5.9 min 39.7 s 57.2 s 

Forward inference 
17 ms

 
16 ms  12 ms 

Inverse inference 
0.4' 15ms 1ms 1.2 s 

Forward method Dctcnninis.tic Probabilistic  Dctemrinistic 

Inverse method Iterative Probabilistic Probabilistic Iterative 

 

 

 

 

 

 

 

 
 

Fig. 7.  Contours showing the area around the extremum of a 2-D slice 
of a very high-dimensional optimization landscape for the surrogate model of 
the five-layer vias. The large convex basins simplify the optimizer's task of 
finding the optimal solution (i.e., the red star). 

 

for a prediction of {19.81, 0.65, 7.37, 5.44, 1.20, 7.59, 24.00, 

10.00, 16.00} mil corresponding to the design parameters 

{ts1, t,1, tw1,ts3,t,3,tw3, d0, dd, dp} of the five-layer vias in 

package. We emphasize that this solution is not in the test 

set but was obtained by running the multiobjective inverse 

optimization. Aside from the evident advantages of preserving 

amplitude and phase information and achieving physical con­ 

sistency of complex S-parameters as a fast surrogate model, 

our proposed method with its inverse optimization (using 

gradient descent) leverages the differentiable capabiljty of 

NNs and the smooth gradients of the NN surrogate model. 

This leads to having large convex basins around the optjmal 

solution, as shown in Fig. 7. 

With respect to the passivity enforcement of S-parameters, 

we achieve physical consistency in the CDNet predictions. 

Fig. 8 gives the largest singular values cr1 of the predicted 

S-parameter matrices for all tuples in the test set. The CDNet 

 
indicating that passivity is achieved. 

The results from Table II and Fig. 9 compare the per­ 

formance of the proposed model and state-of-the-art models 

across several metrics. The metric to assess the numerical 

accuracy of the forward models is chosen as the mean absolute 

error (MAE) in decibels, between the actual response y and 

the predicted response y, taken over all the frequency points 

in the response, given by 

l r 

D.. = -l20log101Yil - 20log10l.9dl- (20) 

r i=l 

We find that the CDNet has a combined lower forward 

inference error by a factor of up to 23 and a lower inverse 

inference error by a factor of up to 13. It is important to 

note that this does not generally imply that the INN is a 

worse model; although its hyperparameters were optimized 

and its model size is comparable to the other models, its poor 

performance in this working example can be attributed to a 

relatively small training set. Being a generative model that 

learns the underlying probability distribution of the data gener­ 

ating process, the INN naturally excels where the training data 
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TABLE ill 

DESIGN PARAMETERS OF 12-LAYER THROUGH-HOLE VlAS IN PACKAGE 
 

 Parameter Unit Min Max  
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Fig. 9. Comparison of frequency responses simulated from a random test 

set design tuple obtained from the proposed CDNet model and state-of-the-art 

models such as INN, cGAN, and DNN for the five-layer vias in package. 
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solder mask thickness 
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0 0 
(a) 

 Via spacing s,, mil 14    50   

 

 

a 12-layer PCB and conformally plated with copper. They 

are arranged in the GSSG configuration, transitioning from 

differential striplines on the fourth metal layer to differential 

striplines on the ninth metal layer. These vias are critical for 

ensuring that signals are transmitted accurately and efficiently, 

   power is delivered effectively, heat is dissipated efficiently, and 
 

 

 

 

 
(b) 

core thickness the package is able to support high-frequency operations. The 

design parameters of the via are shown in Fig. I0(a) and the 

stack-up of the PCB layers is shown in Fig. lO(b). The ranges 

for the design parameters are provided in Table III. There 

are a total of 42 design parameters comprising the material 

and geometrical properties. ln practice, we only have a set of 

Fig. 10. Geometry of the 12-layer through-hole vias. (a) Top view. (b) Front 

view. 

 

are abundant In terms of run times, the trained ICDNet takes 

~17 ms to generate 100 different broadband S-parameters 

compared with ~13 h with the EM simulator, for the same 

number of samples. 

 
V. APPLICATION II: MODELING 12-LAYER 

THROUGH-HOLE VIAS IN PACKAGE 

The second application we consider is modeling 12-Iayer 

through-hole vias in package. The vias are drilled through 

materials to choose from, but to demonstrate the scalability 

of the proposed surrogate model, we include the material 

properties as tunable design parameters and show that the 

model can still provide an approximate and faster response 

compared to the EM simulator. The target characteristics 

predicted are the S11 and the S21 responses. 

Corresponding)y to Section IV, the objective here is to 

build a fast surrogate model, comprising a forward model 

that churns out the frequency responses given the design 

parameters and an inverse model that optimizes the design 

parameters for a desired response. We determine 2000 samples 

using LHS and perform a parametric sweep of the 12-layer 
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INN 
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Loss tangent (second core) tan Oc2  0.001 0.05 

Relative permittivity (second core) Er,c2  2 5 

Loss tangent (founh core) tanOc4  0.001 0.05 

Relative permittivity (fourth core) Er,c4  2 5 

Loss tangent (sixth core) tanoc6  0.001 0.05 

Relative permittivity (sixth core) <-r,c6  2 5 
Loss tangent (first prepeg layer) tanop1  0.001 0.05 

Relative permittivity (first prepeg layer) t:r1pl  2 5 
Loss tangent (third prepeg layer) tanop3  0.001 0.05 

Relative permittivity (third prepeg layer) fr,p3  2 5 

Loss tangent (fifth prepeg layer) tan ops  0.001 0.05 

Relative permittivity (fifth prepeg layer) fr,p5  2 5 

Loss tangent (solder mask layer) tan o.o  0.001 0.05 

Relative permittivity (solder mask layer) Er,.sO  2 5 

Copper thickness (first layer) ta,1 mil 0.5 1.55 

Copper thickness (second layer) ta,2 mil 0.5 1.55 
Copper thickness (third layer) ta,3 mil 0.5 1.55 

Copper thickness (fourth layer) ta,4 mil 0.5 1.55 
Copper thickness (fifth layer) ta,5 mil 0.5 1.55 
Copper thickness (sixth layer) tcu6 mil 0.5 1.55 
Core thickness (second layer) tc2 mil 2 7 
Core thickness (fourth layer) tc4 mil 2 7 
Core thickness (sixth layer) tc6 mil 2 7 
Prepeg thickness (first layer) tpl mil 2 7 
Prepeg thickness (third layer) tp3 mil 2 7 
Prepeg thickness (fifth layer) tvs mil 2 7 

Solder mask thickness t,o mil 2 7 
GND via angle (left) 01 degree -55 55 

GND via spacing (left) Sg,l mil 10 50 

GND via angle (right) 0r degree -55 55 
GND via spacing (right) Sg,r mil 10 50 

Trace spacing (input ports) St,in mil 2.5 10 

Trace spacing (output ports) St,oot mil 2.5 10 
Trace transition (input ports) h;,, mil 10 30 

Trace transition (output ports) ho., mil 10 30 

Trace width (input ports) Wu, mil 2.5 10 

Trace width (output ports) Woo1 mil 2.5 JO 
Anti-pad diameter do mil 14 32 

Drill diameter dd mil 4 12 

Pad diameter dv mil 8 20 
Via-plating thickness tp mil 0.6 6 
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Fig. 12. Inverse optimization results for the 12-layer vias in package showing 
0 the minimized objective function and function queries. 
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Fig. 11. Fotward modeling predictions showing S11 and S21 for the 12-layer 

vias in package with the trained complex-valued NN model (indicated with 

solid lines), compared with the EM simulation (indicated with dashed lines) 

for (a) and (b) two random design tuples in the test set. The real, imaginary, 

and magnitude components of the frequency responses are shown in red, blue, 

and cyan, respectively. 
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via design space. We extract their S-parameters with Ansys 

HFSS [37] from de to 30 GHz with steps of 30 MHz, giving 

1001 frequency points. Subsequently, we split the dataset 

into train and test sets. The simulation setups for the forward 

model and inverse optimization are similar to the setups 

described in Sections IV-A and IV-B. 

Fig. 13. Inverse optimization results for the 12-layer vias in package. The 

optimization yielded an inverse solution i for the design parameters of the 

12-layer vias in package. For this solution, the model predicts the frequency 

responses in the solid red and cyan lines, while the EM simulation of the 

inverse solution results in the frequency responses in the dashed blue and 

yellow lines. 
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A. Results 

We show the outcomes of forward learning and inverse 

optimization. We perform inference for the forward model by 

taking random samples from the test set. Fig. 11 shows the 

results obtained from the forward modeling. We compare the 

real, imaginary, and magnitude components of the S11 and S21 

obtained from the forward model with those obtained from 

the EM simulator. We find that there is a close correlation 

between the output responses from the forward model and the 

EM simulator. 

Next, we display the inverse optimization results in 

Figs. 12 and 13. Given an arbitrary target band B• = 
[0, 30] GHz, we optimize the design parameters of the 
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12-layer vias in package that best achieves this target within 

the given constraints of the design parameters (see Table III 

for their respective bounds). Fig. 13 shows that the algorithm 

was able to deliver a broadband return loss better than 15 dB 

and an insertion loss better than 4 dB for an inverse solution i 
of the 12-layer vias in package. 

Fig. 14. Comparison of frequency responses simulated from a random test 

set design tuple obtained from the proposed CDNet model and state-of-the-art 

models such as INN, cGAN, and DNN for the 12-layer vias in package. 

 
Regarding physical consistency of the CDNet predictions 
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predictions with passivity enforcement have all cr1(f) ::: l in 

or ------------------- --.J 
0 

0 

 

 

 

 

 

 
DNN 

INN 

- CDNet 

-•-  actual 

-- 
..•. INN 
- 

cGAN 

...... 
DNN 

··- 
- CDNet 

-•·  actual 

f GHz 

i 



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 72, NO. I, JANUARY 2024 488 

Authorized licensed use limited to: University of Illinois. Downloaded on March 22,2024 at 15:57:16 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

TABLE IV [6) T. Lu, J. Sun, K. Wu, and Z. Yang, "High-speed channel modeling with 

machine learning methods for signal integrity analysis," IEEE Trans. 
Electromagn. Compat., vol. 60, no. 6, pp. 1957-1964, Dec. 2018. 

[7) R. Trinchero and F. G. Canavero, "Modeling of eye diagram height 

in high-speed links via support vector machine," in Proc. IEEE 22nd 
Workshop Signal Power Imegrity (SP/), May 2018, pp. 1-4. 
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[IO) M. A. Dolatsara and M. Swaminathan, "Determining worst-case eye 

height in low BER channels using Bayesian optimization," in Proc. IEEE 
I Ith Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2020, pp. 1-4. 

[I I J Q.-J. Zhang and L. Zhang, "Neural network techniques for high-speed 

electronic component modeling," in Proc. Im. Mierow. Workshop Ser. 
Signal Integrity High-Speed Interconnects, Feb. 2009, pp. 69-72. 

t All programming is performed with PyTorcb [381 on a Windows desktop with Intel® Core™ [12) H. Ma, E.-P. Li, J. Schutt-Aine, and A. C. Cangellaris, "Deep learn­ 
i7-10700 CPU @ 2.90 GHz and 32 GB RAM. 

 

 

 
the test set with a range of [0.611, 1]. However, without 

passivity enforcement, we find that the range of o-1(f) is 

[0.768, 1.636], indicating that passivity is violated. 

The performance of the proposed model and state-of-the­ 

art models is compared in Fig. 14 and Table IV using several 

metrics. The results indicate that the ICDNet outperforms the 

others with a forward inference error reduction by a factor of 

up to 5 and an inverse inference error reduction by a factor of 

up to 4. In addition, the ICDNet requires significantly less time 

to generate 100 broadband S-parameters, taking approximately 

17 ms compared to the EM simulator's 13 h. 

 
VI. CONCLUSION 

We present both forward and inverse modeling of SI 

applications by using complex-valued NNs. The forward 

model takes the input parameters of the actual model, 

propagates the information through a series of building blocks 

with complex operations, and generates the physically con­ 

sistent complex-valued output response. However, in inverse 

modeling, we propose a well-defined objective as a measure of 

performance of the SI application and optimize this objective 

using gradient descent to obtain the optimal input parameters. 

This surrogate model has the capability of reducing design 

cycle time and it gives the designer a quick prototype. 
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