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ABSTRACT

Software security depends on coordinated vulnerability disclosure
(CVD) from researchers, a process that the community has con-
tinually sought to measure and improve. Yet, CVD practices are
only as effective as the data that informs them. In this paper, we
use DScope, a cloud-based interactive Internet telescope, to build
statistical models of vulnerability lifecycles, bridging the data gap
in over 20 years of CVD research. By analyzing application-layer
Internet scanning traffic over two years, we identify real-world ex-
ploitation timelines for 63 threats. We bring this data together with
six additional datasets to build a complete birth-to-death model of
these vulnerabilities, the most complete analysis of vulnerability
lifecycles to date. Our analysis reaches three key recommendations:
(1) CVD across diverse vendors shows lower effectiveness than pre-
viously thought, (2) intrusion detection systems are underutilized
to provide protection for critical vulnerabilities, and (3) existing
data sources of CVD can be augmented by novel approaches to
Internet measurement. In this way, our vantage point offers new op-
portunities to improve the CVD process, achieving a safer software
ecosystem in practice.

CCS CONCEPTS

• Security and privacy→ Vulnerability management; • Net-
works → Network measurement.
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1 INTRODUCTION

When bugs in software lead to security vulnerabilities, the way in
which these vulnerabilities are handled has a marked impact on
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risk. As a result, coordinated vulnerability disclosure (CVD) has
become essential in ensuring discovered security issues cause lim-
ited harm to deployed systems. Yet, CVD practices have limited
effectiveness unless they are motivated by a valid and represen-
tative understanding of how software vulnerabilities are actually
exploited. In response to this concern, members of the commu-
nity have proposed models [19, 3, 5, 16] for understanding and
evaluating the vulnerability lifecycle. Yet, without representative
measurement of exploited vulnerabilities it is difficult to reason
about the efficacy of CVD and the realism of the model itself.

Formal models are necessary, but not sufficient, for understand-
ing practical CVD. According to one such formal analysis from
Carnegie Mellon’s CERT Division, when empirically studying CVD
"the primary limitation is available observations." [20]. Armed with
this formal model, we are therefore faced with a measurement chal-
lenge: how canwe collect large-scale, representative data on real-world

vulnerability exploitation? While existing techniques are promis-
ing, such as telemetry from antivirus vendors [29] or conventional
Internet telescopes [2], each faces limits in terms representativity
(e.g., in vantage point or vulnerability type) or access to data (e.g.,
restricted commercial datasets). Without representative measure-
ment, the software security community lacks a means to evaluate
CVD and inform improvements to best practices.

In this work, we use DScope [7], a distributed application-layer
Internet telescope we’ve deployed to Amazon Web Services, to
provide a statistical characterization of the lifecycle of high-impact
vulnerabilities targeting networked systems. We collect 3 TB of
exploit and scanning traffic targeted at 5M cloud IP addresses from
March 2021 to March 2023. Using network intrusion detection
system (NIDS) signatures [41], we filter this data to identify exploit

events that target newly-published vulnerabilities across a broad set
of software and vendors. These events, recorded across 63 unique
Common Vulnerabilities and Exposures (CVEs), offer a dataset of
timelines of real-world exploitation of vulnerabilities ranging from
end-of-life router firmware to the notorious Log4Shell vulnerability
reported in December 2021. We cross-reference six existing data
sources to construct complete lifecycles of vulnerabilities from
discovery to remediation. Vulnerabilities are diverse across vendors,
software weaknesses, and disclosure scenarios, and offer a unique
viewpoint through which researchers and practitioners can assess
real risk.

Based onmeasured vulnerability lifecycles, our analysis proceeds
in three stages. First, we evaluate whether existing modeling and
evaluation of CVD generalizes to our dataset (Section 5). We apply
CERT’s recently published model [20] to our collected lifecycles and
compare results with those seen on a single-vendor dataset from
this work. We observe that the heterogeneity of vulnerabilities and
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disclosure scenarios in our setting leads to less skillful disclosure
in general, though CVD still performs more successfully than one
would expect from random chance. These results show the promise
of larger-scale collection in realistic CVD evaluation.

While real-world data on vulnerabilities allows us to evaluate
CVD through CERT’s model, we can also use it to evaluate the
efficacy of the model itself (Section 6). We compare the skill implied
by the model to the actual exposure seen by deployed systems. For
instance, while a discrete measure of success proposed by prior
work concludes that CVD is effective only 56% of the time, when
looking at the host level exploit traffic is prevented 95% of the time
by existing IDS-based mitigations. Our comparative results show
that an exposure-based model of CVD implies higher efficacy than
previously thought.

Finally (Section 7), we validate that our findings achieve a useful
and general evaluation of CVD. Towards this, we begin by compar-
ing aggregate results from our studywith the lifecycles of individual,
highly prevalent CVEs in the dataset (including the high-impact
Log4Shell vulnerability that occurred during our collection). Our
validation through these case studies confirms that overall CVD
trends largely apply to the most pervasive and important vulnera-
bilities.

We also compare our results with reporting of known exploited
vulnerabilities (KEV) from the US Cybersecurity and Infrastructure
Security Agency. While CISA’s KEV benefits from a wealth of man-
ual reports from industry and researchers, we find that, in 50% of
cases, a cloud-based telescope measures exploitation of vulnerabil-
ities over 30 days before they are incorporated into the KEV. This
suggests that Internet telescopes can provide crucial situational
awareness to these exploit surveillance efforts, and improve prioriti-
zation of vulnerabilities by industry and government. We anticipate
that application-layer data from interactive Internet telescopes will
prove valuable when used to automatically inform additions to
vulnerability repositories such as KEV.

From our work, we come to several recommendations regard-
ing the coordinated disclosure process: (1) Exploitation of critical
vulnerabilities can follow very closely after announcement, so auto-
mated unsupervised patching of critical software may be necessary
to avoid exploitation1. (2) NIDS vendors should be more closely in-
volved in coordinated disclosure of vulnerabilities when they could
conceivably generate detection and prevention rules. Because NIDS
rules can be incorporated into production systemsmore quickly and
confidently than software updates, pushing these rules concurrent
with (or before) vulnerability announcement can improve security
outcomes. (3) Interactive telescopes should be used in the vulner-
ability discovery process, especially in detecting the application
of known exploit payloads to novel domains. We conclude with
a discussion of how security researchers can improve disclosure,
and how security and measurement venues can set expectations
towards this.

Coordinated disclosure allows vendors to proactively improve
their product’s security in response to good faith research. Yet, our
work shows that understanding of CVD is incomplete without data-
driven measurement of effectiveness. We anticipate that our work

1This is especially true when updates are low-risk, such as IDS rules.

will motivate new best practices in the reporting, management, and
remediation of emergent threats to deployed systems.

2 BACKGROUND

When software bugs lead to security vulnerabilities, the way in
which these vulnerabilities are discovered, corrected, and published
can have a dramatic impact on risk to deployed systems [42]. As
such, developers and security researchers follow principles for co-
ordinated vulnerability disclosure (CVD) to reduce the risk of vul-
nerabilities being actively exploited. While works have modeled
this process, such modeling is inherently incomplete without em-
pirical measurement of real-world performance. We briefly discuss
background on coordinated disclosure, existing models, and how
current data availability limits empirical understanding of CVD
performance.

2.1 Coordinated Vulnerability Disclosure

As security researchers discover vulnerabilities in software, these
vulnerabilities must be managed in a way that minimizes harm.
When disclosure fails, real-world systems are put at risk: for in-
stance, public discussion towards mitigating the recent Log4Shell
vulnerability led to in-the-wild exploitation long before end users
received formal notification or fixes were made available [17]. To
mitigate these impacts, the community has converged on the Coor-
dinated Vulnerability Disclosure (CVD) process [13]. CVD aims to
ensure that researchers and vendors share information and mitiga-
tions with end-users in a synchronized way, reducing the effective
window of vulnerability to attacks.

In the ideal case, coordinated disclosure can result in the com-
plete deployment of mitigations before public knowledge of a vul-
nerability. This would ensure that a vulnerability is not a risk in
practice. For instance, commercial software vendors can auto-install
patches before publishing vulnerabilities, a practice followed by
major operating system vendors [40, 14, 30]. However, this is not
always possible, such as if installations are controlled by users
who would not consent to automated updates. The growth of open-
source development also poses challenges: when software is de-
veloped in public and teams do not adapt to the sensitive nature
of vulnerability disclosure, adversaries can discover and exploit
vulnerabilities by monitoring development. These challenges ne-
cessitate diligence from practitioners, and characterizing past CVD
successes and failures can inform best practices.

2.2 Theory of Evaluating CVD

While many have produced models for the CVD process [3, 16, 5],
in this work we use the model proposed by Householder et al. of
CERT [19, 20]. The CERT model represents the status of a given
vulnerability as the result of six events that take place in some given
order:

• Vendor Awareness (𝑉 ). The vendor is made aware of the vul-
nerability, either through internal study, from disclosure/publication
by another party.

• Fix Ready (𝐹 ). A fix (e.g., software update) is available that
corrects or mitigates the vulnerability.

• Public Awareness (𝑃 ). There is publicly available information
about the existence of the vulnerability.
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Table 1: Empirical studies of CVE lifecycles. Models used in each paper are converted to those used in this work [19, 20]. Our study combines

datasets to characterize the relationships between more CVE lifecycle events and characterizes attack traffic lifecycles on the largest sample of

CVEs to date.

Cite Attack
Traffic # CVEs Vantage Point Dates Events

𝑉 𝐹 𝑃 𝐷 𝑋 𝐴

[3] Arbaugh et al. ✔ 3 Common Vulnerabilities 1996-1999
[16] Frei et al. 27 k Commodity CVEs 1996-2008
[5] Bilge & Dumitraş ✔ 18 Antivirus Signatures 2008-2011
[51] Zhang et al. 9 Cloud OS CVEs 2012
[24] Li & Paxson 3.1 k Open Source CVEs 2005-2016
[1] Alexopoulos et al. 12 k Open Source CVEs 2011-2020

[19, 20] Householder et al. (CERT) 2.7 k Microsoft CVEs 2017-2020 a

73 k Commodity CVEs 2015-2019
This Work ✔ 63 DScope-observed CVEs [7] 2021-2023 b c

a Only considers earliest attack event. b Heuristically determined. c Deployments modeled based on automated IDS rule deployment.

• Fix Deployed (𝐷). The fix is adopted in production.
• Exploit Public (𝑋 ). Information on how to exploit the vulner-
ability is publicly known, such as through the publication of
a proof-of-concept.

• Attacks (𝐴). Real-world systems with the vulnerability are
attacked using the exploit.

Ideally, these events would occur in the order similar to that
defined above; vendors would be made aware and develop defenses,
the public would be notified and fully deploy countermeasures
(though in some cases it may be possible to deploy countermeasures
without public awareness), and exploits would be known after
systems are fully patched. CERT’s model formalizes this ideal in the
form of event ordering desiderata: for any two events with respect to
a vulnerability, it is desired that one event predate the other (Table 3).
The work models CVE lifecycles as a random Markov process with
uniformly distributed transitions. This Markov process establishes
a certain baseline probability of each desideratum being satisfied
by chance (noted as 𝑓𝑑 ). If a desideratum is satisfied more often
than expected by chance, it is said to be "skillful". The CERT model

quantifies this skill as 𝑎𝑑 =
𝑓 𝑜𝑏𝑠
𝑑

−𝑓𝑑
1−𝑓𝑑 , where 𝑓 𝑜𝑏𝑠

𝑑
is the observed

frequency of desideratum satisfaction. This definition implies a
skill of 0 when achieving the baseline frequency, a skill of 1 when
achieving a desideratum 100% of the time, and linearly interpolated
as 𝑓𝑜𝑏𝑠 varies in between. This provides a statistical metric for CVD
effectiveness that allows for quantitative comparison across time,
vantage points, and types of vulnerabilities.

2.3 Prior Empirical Analyses of CVD

To reach practical insights on improving coordinated disclosure, the-
oretical frameworks must be supported by real-world data. Mitre
maintains arguably the most comprehensive listing of security-
critical vulnerabilities through their Common Vulnerabilities and
Exposures (CVE) program [15], replacing older data sources [9, 23].
Identifiers in this program are also referenced by NIST’s National
Vulnerability Database (NVD) [32], which provides additional in-
terpretation on the impact of discovered issues. NVD also contains
references to relevant sources on the discovery and disclosure pro-
cess. CISA additionally maintains a catalog of Known Exploited

Vulnerabilities (KEV) [22]. Commercial vendors also maintain data
on attacks, though contractual and business intelligence concerns
complicate use of this data for open research.

Other data sources focus on systematic reproduction of vulnera-
bilities [31]. For instance, services such as Packet Storm [35] and
Exploit-DB [33] provide proofs-of-concept for reproducing exploits
against vulnerabilities. These data sources are largely of interest to
software vendors who patch vulnerable software or deploy other
mitigations, for instance through the publication of signatures for
intrusion detection systems (IDS). Exploit databases can be a valu-
able source of information for adversaries to discover and deploy
exploits against vulnerabilities using tools such as Metasploit [28].

2.3.1 Measuring CVE Lifecycles. Based on available data, a vari-
ety of works (Table 1) have characterized the CVE lifecycle (the
time-series progression of events that affect the status of the vul-
nerability). These works use sources of CVE metadata [32, 22, 15],
combined with additional observations that allow measuring other
events in the lifecycle, to characterize a subset of events. For in-
stance, version history for open source projects can allow intro-
duction and remediation of vulnerabilities to be characterized [24].
Such features can also be used to predict the actual risk posed by
the vulnerabilities [10], or how long future vulnerabilities may
take to discover [1]. Data sources can be augmented by correspon-
dence [43] and surveys of practitioners [49] to understand how
vulnerabilities are introduced and discovered.

Our work is informed by prior characterizations of the CVE
lifecycle. One seminal work in this space by Arbaugh et al. [3]
examined the lifecycle of three prevalent vulnerabilities through
manual analysis of specific vulnerabilities. Bilge and Dumitraş [5]
achieved larger-scale analysis by using antivirus software analytics,
offering a more complete characterization of vulnerability exploita-
tion.

Householder et al. [20] applied the CERT model to empirical life-
cycle analysis on bugs in Microsoft products and commodity CVEs.
Within these sets of bugs, a subset of CVE events can be extracted,
and the relative orderings of these events can be used to estimate
CVD skill. Bugs in Microsoft products are especially compelling
for analysis, as Microsoft maintains detailed information on the
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Table 2: Data Sources. Each source is used to analyze traffic and

establish dates for CVE lifecycle events (noted in parentheses).

Dataset Usage

DScope [7] Application-layer exploit traffic (𝐴)
Cisco/Talos [34] Snort Commercial IDS ruleset
Cisco/Talos [45] Snort IDS rule availability history (𝐹 ,𝐷)
Cisco/Talos [48] Talos vulnerability report history (𝑉 )1
NVD [32] CVE publication dates and severities (𝑃 )
CISA [22] Known Exploited Vulnerabilities (𝐴)2
Suciu et al. [44] CVE exploit dates & exploitation (𝑋 )
1 Talos-disclosed CVEs only 2 Comparative analysis (Section 7)

history of vulnerabilities, discovery, and known exploitation [47].
However, results from a single vendor may not generalize to the
broader software ecosystem.

While these prior works have made promising contributions
towards understanding the CVE lifecycle, each faces limitations
due to available data, either in terms of number and representativity
of vulnerabilities examined, or in terms of the events in the CVE
lifecycle that can be determined for analysis. At the same time,
questions remain that have not been answerable using existing
datasets:

(1) How vulnerable are deployed systems to zero-day CVEs in

practice? While current works have measured timelines to
exploitation for a limited set of vulnerabilities, it is not clear
how this translates to actual exposure for deployed services
in a realistic setting.

(2) How does adversarial exploitation vary over time after public

disclosure? Current studies are limited to coarse public data
on vulnerabilities and cannot characterize the behavior of
adversaries (and therefore risk) in the days, months, and
years following announcement of vulnerabilities.

(3) How do delays in deployment of fixes affect vulnerable sys-

tems? The community is lacking a joint measurement study
of exploitation and remediation. Considering these in the
context of each other could yield new insights about how
CVD can be improved.

Open Problems. While existing measurement studies have made
actionable observations into the disclosure process, a measurement
methodology that is broad (e.g., across IP address ranges) and rep-
resentative (across a range of vulnerabilities from many vendors)
can yield these more generalizable insights towards improving best
practices in coordinated disclosure. Leveraging such a vantage point
to characterize vulnerability disclosure is a key focus of this work.

3 METHODOLOGY

We aim to understand how the disclosure, publication, and reme-
diation of vulnerabilities interact with adversarial behavior. To
achieve this, we collect application-layer Internet scanning traffic,
determine the subset of traffic that targets newfound CVEs, and
incorporate additional data on those CVEs to establish the lifecycle
of each. We then analyze aggregate trends across vulnerabilities,
evaluating the efficacy of both CVD and formal models of it. Finally,

we validate our findings on specific vulnerabilities and existing data
sources.

3.1 Application-layer traffic & DScope

Our work leverages large-scale collection of Internet scanning traf-
fic. Historically, data sources such as darknet telescopes [8, 36],
honeypots [50], or volunteer collection networks [46] would be
used to collect similar data. However, these techniques face limits
in interactivity (e.g., darknet telescopes do not receive application-
layer traffic) or representativity (e.g., honeypots deployed to single
IPs will see limited traffic, or volunteer networks may be limited to
low-value targets).

To allow for broad interactive collection of Internet scanning
traffic, we previously developed DScope [7], a cloud-based Internet
measurement apparatus that is designed to be both representa-
tive across traffic phenomena and interactive to collect meaningful
application-layer data. DScope works by continually allocating
new cloud instances on Amazon Web Services (approximately 300
at any given time). Because of the pseudorandom nature of cloud
IPv4 address allocation, the IPs of these servers change constantly,
with around 30,000 unique IPv4 addresses receiving data each day
(DScope collects IPv4 scanning traffic only). These servers are
spread across availability zones and regions globally. Once started,
each cloud instance accepts TCP connections on all ports. Instances
establish TCP sessions but do not send any application-layer re-
sponse, emulating an unresponsive application-layer service. Each
instance runs for a fixed duration, which previous work [7] sug-
gests is optimally around 10 minutes, before terminating and being
replaced by a new random IP address. In this way, DScope col-
lects the equivalent of client banner data (as opposed to server-side
banner data collected by crawlers). While we extensively consider
the ethical implications of this approach in the original work, we
include brief summaries of these in Appendix A.

Our previous work established DScope’s representativity by
comparing collected traffic with that of Merit’s ORION [27], a
conventional Internet telescope. We demonstrated that the vast
majority of traffic seen by conventional telescopes is randomly dis-
tributed throughout the cloud IPv4 space, and thatDScope therefore
achieves representative collection of this traffic. We further iden-
tified that a substantial amount of scanning avoids conventional
telescopes or targets cloud instances, and that the interactivity
of DScope also elicits follow-on traffic from other IP addresses.
We concluded that cloud-based telescopes offer a representative
vantage point of scanning traffic on the Internet, though specific
settings could receive more traffic due to service targeting.

We analyze pcap data collected by DScope over the course of 2
years fromMarch, 2021 toMarch, 2023. This dataset contains 3 TB of
application-layer traffic received by 5M unique cloud IP addresses.
Because cloud IP addresses are reused between tenants [25, 38],
many of the measured IPs are also previously associated with high-
value targets, improving coverage.

Identifying exploit traffic. From the collected traffic, we use Snort [41]
to evaluate Cisco-published intrusion detection signatures. We se-
lected Snort and Cisco’s ruleset for several reasons: (1) the ruleset
has many signatures (>48 k) across varied applications; (2) signa-
tures have known provenance and publication times [45]; and (3)
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rules have diverse disclosure scenarios, with some vulnerabilities
shared with Cisco before public announcements and others after
(this allows measuring the relative effectiveness of coordinated
disclosure), including crawlable data on this process [48].

We filter signatures to those matching CVEs published during
the study period. We additionally modify all rules so they are port-
insensitive. This is necessary because Cisco-published IDS rules
are often constrained in specified ports, such that attacks targeted
at non-standard ports would not be detected. For each TCP session,
we retain only the earliest-published matching IDS signature (of
those discussed above). Signatures are evaluated post-facto on the
entire dataset, allowing retrospective identification of exploit traffic
that occurred before public release of signatures or vulnerability
reports.

3.2 CVE Root Cause Analysis

In some cases, IDS rules may be unsound, triggering on traffic that
does not actually target the vulnerability. For instance, some exam-
ined IDS rules triggered on any access to an API endpoint; some
traffic would hit this endpoint attempting to brute force credentials.
For IDS signatures that matched traffic before they were published,
we manually analyzed received traffic to determine if it represented
a targeted exploit. CVEs for which IDS rules had false positives (e.g.,
due to overly general rules) were removed from consideration. The
resulting dataset contains 146 k instances of exploit traffic spanning
63 unique CVEs. A complete listing of CVEs analyzed in this work
is available in Appendix E.

Identifying CVE disclosure events. We use the NVD/CVE data-
bases to determine events related to the discovery and mitigation
of vulnerabilities. As observed in prior works [24, 44], the dates
of publication on NVD do not necessarily align with actual pub-
lic disclosure or knowledge of vulnerabilities. We cross-reference
analysis of CVE availability by Suciu et al. [44] to determine best
estimates of public knowledge.

Limitations. The vantage point provided by DScope enables us
to analyze application-layer behavior of exploit scanners on the
Internet. While this provides an opportunity for new analysis, there
are important limitations to consider:

(1) Types of vulnerabilities. Because we use DScope-collected
TCP banner information (sent by clients on initial connec-
tion), vulnerabilities are limited to those remotely exploitable
via TCP. While studied exploits have high severity (median
9.8 CVSS score and 92nd percentile expected exploitabil-
ity [44]), this does incur incomplete coverage of security
vulnerabilities generally. We argue that this is an acceptable
compromise towards achieving an otherwise representative
dataset.

(2) Target Coverage. DScope is deployed to AWS IPv4 addresses.
While the growth of cloud deployments [6] makes these ad-
dresses a high-yield target for exploitation [2], DScope may
miss traffic targeted at other types of hosts, such as residen-
tial IPs. This may, for instance, preference CVEs on software
that is more actively maintained, rather than unmaintained
software (e.g., residential router firmware). While we com-
pare with a parallel vantage point in Section 7.2, we note
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Figure 1: Observed CVEs by public availability [44]. DScope contin-

ually observes new emergent threats, a trend we expect to continue

in the future.

that an ensemble of relevant vantage points will prove most
useful in providing representative evaluation.

4 GENERAL TRENDS

Key to our goal of characterizing CVD is a representative vantage
point, both in terms overall traffic phenomena and the collection of
vulnerabilities studied. We begin by validating our data collection
to ensure this representativity.

Our filtered dataset contains traffic targeting 63 unique CVEs. In
total, 146 k exploit events are analyzed across these CVEs (application-
layer payloads targeting a CVE). Because of the distributed nature
of DScope, collected traffic was widespread across receiving IP
addresses: 105 k unique telescope IP addresses received analyzed
traffic during the study period (out of 5M total telescope IPs). Note
that DScope collects traffic on each unique IP address for only
10min before allocating a new address, so the fact that most IPs
did not receive analyzed traffic is unsurprising. Of the 15M IPv4
addresses that contacted DScope during the study, traffic targeting
new CVEs was sourced from just 3.6 k. This implies that the vast
majority of scanning traffic is likely targeting longstanding vulner-
abilities or weaknesses not related to specific software bugs (e.g.,
credential stuffing).

Looking at the distribution of observed CVEs by publication
date (Figure 1), DScope receives a steady stream of traffic targeting
new vulnerabilities over time. Note that, because this distribution
is of CVE publication dates, there is unsurprisingly a drop-off near
the end of the study, as CVEs published during this period will
have some delay before traffic is seen. We therefore anticipate that
the analyses and dataset produced in this paper will be useful for
analyzing the evolution of CVD effectiveness over time as more
years of data are collected.

Observed CVEs (Appendix E) spanned 40 different software
vendors, implying that the trends observed in our analysis should
generalize to different organizations.While observed vulnerabilities
are scoped by our collection technique to those exploitable over
the network, we nonetheless see a diversity of vulnerability type,
with 25 CWEs (Common Weakness Enumeration) [26] represented
in the data.

Finding 1 - Observed CVEs skew towards higher-impact vulnerabili-

ties. Owing to our vantage point (cloud-based interactive Internet
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Figure 2: CDF of CVE impact for studied CVEs vs. all CVEs from

2021-2023. KEV CVEs are discussed in Section 7. Studied CVEs skew

towards higher impact.
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Figure 3: Timeline of CVE exploit events during study. The spike
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impact the rest of our results.
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Figure 4: CVE exploit events relative to publication date.

telescope), data is scoped to CVEs that are network-exploitable. This
leads to a bias in the data towards high-impact vulnerabilities (Fig-
ure 2), though lower-impact vulnerabilities are also represented.
We argue that the effect of this on our results is at worst neutral or
even positive, as high-impact CVEs have the highest potential for
immediate opportunistic exploitation by adversaries, and these vul-
nerabilities are therefore the most important to study and defend.

Finding 2 - IDS-based CVE measurement is not limited to IDS vendor

disclosures. One possible concern with using IDS data vendor for

CVE detection is that vulnerability lifecycles could be impacted
by that vendor’s disclosure process. Indeed, Cisco performs inde-
pendent security research and discloses vulnerabilities in addition
to releasing IDS rules. However, the distribution of CVEs in our
dataset shows this is not the case: Only 5 of 63 CVEs were orig-
inally disclosed by Cisco. We identified 19 CVE assignees across
studied CVEs. Assignees ranged from open source repositories and
representatives of bug bounty programs (e.g., GitHub, HackerOne),
to software vendors (e.g., Apache, Atlassian) and security analysis
organizations (e.g., Fortinet, Tenable). We conclude that our dataset
is representative across sources of disclosed vulnerabilities.

While the distribution of these CVEs by announcement date is
roughly uniform across the study window (Figure 1), we see an
increase in raw number of exploit payloads over time (Figure 3).
Normalizing traffic relative to CVE publication date (Figure 4) we
see an explanation: while there is a spike in traffic targeted at a
given CVE immediately after publication, there is still sustained
traffic for months or years after fixes have been released. As a result,
our dataset contains an increasing rate of matching traffic over time.

Takeaways. From our overall analysis of collected data, we con-
clude that DScope’s vantage point collects a representative sample
of cloud-targeted CVE traffic suitable for analyzing coordinated
disclosure. Collected data is diverse across targeted system, im-
pact, vendor, and disclosure process, and CVEs are distributed over
the course of the study. With the representativity of our collected
data established, we next continue by evaluating the efficacy CVD
strategies and models.

5 MEASURING CVD EFFECTIVENESS

Based on DScope’s dataset, we can measure performance with re-
spect to the CVE lifecycle. For this, we use a framework discussed
by Householder and Spring [20] (Section 2.2). Recall that this frame-
work defines 6 events in the CVE lifecycle: vendor awareness (𝑉 ),
fix ready (𝐹 ), public awareness (𝑃 ), fix deployed (𝐷), exploit public
(𝑋 ), and attacks (𝐴). Householder and Spring define several desir-
able orderings of these events (desiderata, Table 3) based on an
analysis of the risks posed by each. For instance, it is clearly desir-
able for Vendor awareness to predate attacks by an adversary. By
analyzing our collected data, we can evaluate these desiderata on a
representative sample of critical vulnerabilities.

To evaluate desiderata, we proceed by establishing definitive
timestamps for various CVE events. This can be done using collected
data, third-party datasets, or heuristic combinations thereof:

(1) (𝑉 ) Vendor Awareness is the earliest of public awareness, fix
availability, or known disclosure dates (e.g., from Cisco).

(2) (𝐹 ) Fix Available is based on IDS rule availability. Future
work could incorporate data on software patches, though
this data is not readily available (See Section 8.2).

(3) (𝐷) Fix Deployed is based on the assumption of immediate
installation of IDS rule updates.2

(4) (𝑃) Public Knowledge is based on an academic dataset of
crawled CVE information sites [44].

2Non-commercial users receive IDS rules on a 30-day delay. Given the rapid onset of
both attacks and fix deployments after vulnerability publication, these delayed rule
updates drastically reduce the effectiveness of IDS.
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Table 3: CVE timeline desiderata as presented by Householder and

Spring [20] and as restricted by our collection methodology. Cells

represent desirability (d), undesirability (u), requirements (r) and

impossibility (-) of the row event preceding the column event. For

instance, the top-right corner shows𝑉 ≺ 𝐴 as desirable. Differences

between the two models are caused by inherent orderings in our

collection methodology (e.g.,𝑉 ≺ 𝑃 because our model assumes that

public knowledge implies vendor knowledge).

≺ V F D P X A

V - r r d d d
F - - r d d d
D - - - d d d
P u u u - d d
X u u u u - d
A u u u u u -
(a) Householder & Spring [20]

≺ V F D P X A

V - r r r r d
F - - r d d d
D - - - d d d
P - u u - r d
X - u u - - d
A u u u u u -

(b) This work

Table 4: Satisfaction rate of desiderata on studied CVEs (based on

the first time an attack is seen globally). Baseline satisfaction rate is

that shown in prior work [20]. The skillmetric (Section 2.2) provides

a metric for CVD efficacy.

Desideratum Satisfied Baseline Skill

𝑉 ≺ 𝐴 0.90 0.75 0.62
𝐹 ≺ 𝑃 0.13 0.11 0.02
𝐹 ≺ 𝑋 0.74 0.33 0.61
𝐹 ≺ 𝐴 0.56 0.38 0.29
𝐷 ≺ 𝑃 0.13 0.04 0.10
𝐷 ≺ 𝑋 0.74 0.17 0.69
𝐷 ≺ 𝐴 0.56 0.19 0.46
𝑃 ≺ 𝐴 0.90 0.67 0.71
𝑋 ≺ 𝐴 0.39 0.50 -0.21

(5) (𝑋 ) Exploit public is determined again based on the same
dataset from prior work [44]. This work crawls available
web sources to find the earliest public data on CVEs.

(6) (𝐴) Attack is based on actual traffic from DScope [7]. Note
that this is representative of general exploit scans of public
cloud IPv4 addresses, though specific high-profile targets
may see exploits earlier.

While our techniques maximize coverage of the CVE lifecycle, there
are important limitations. For instance, while DScope traffic does
not necessarily establish the first use of an exploit anywhere, the
telescope’s vantage point on a public cloud provider makes dis-
covered attacks (or lack thereof) far more material to those actu-
ally deploying cloud services (an increasingly popular deployment
model). Likewise, deployed fixes are often available from other
channels (e.g., the original vendor) aside from IDS rule vendors.
After establishing CVE timelines for each studied vulnerability,
we evaluate desiderata. Based on events dates in the lifecycle, we
evaluate desiderata satisfaction for each CVE.

5.1 CVD Skill

Based on relative event orderings, we compute the skill associated
with each desideratum. Recall (Section 2.2) that the CERT model

computes baseline probabilities of desideratum satisfaction. The
skill associated with that desideratum is the increase in success
compared to that expected under the baseline model. Using this
CVD success metric has several desirable properties for our analy-
sis: (1) it allows comparison with initial results in prior work, (2)
a quantitative metric for success allows comparison with other
scenarios and metrics (Section 6).

Finding 3 - CVD shows skillful properties even when only considering

IDS vendors. Our results (Table 4), when compared with theoreti-
cal values from previous work [20] show that CVD outcomes are
skewed towards desirable compared to random sampling. In some
cases, results show a large degree of skill: under baseline random
behavior we would expect fix deployment to proceed public knowl-
edge only 3.7% of the time [19], but our results show this occurring
13% of the time. Mean skill across all desiderata is 0.37 (recall that 0
implies no skill and 1 implies perfect skill). This implies that CVD
as observed through the lens of IDS vendors is currently skillful.
Indeed, we see 8 of 9 desiderata satisfied more than expected under
the baseline model. Only one set of events (𝑋 ≺ 𝐴) shows success
rates lower than expected. This ordering represents the desirable
ordering that exploit proofs of concept be known publicly before
they are employed by adversaries. While this is posited as a desir-
able ordering in literature, it is weighed as relatively less important
than other orderings (e.g., 𝐷 ≺ 𝐴, fix deployed before attacks).

Finding 4 -CVD skill is lower than that found by prior work. While
our measurements imply some level of CVD skill, scores are far
lower than that observed in prior analysis [20] (finding a skill
of 0.969). This is not unexpected, as this previous study focused
specifically on 𝐹 ≺ 𝑃 skill in Microsoft software.

Takeaways. Our analysis demonstrates the effectiveness of CVD
broadly across our studied vulnerabilities. At the same time, it
establishes a baseline for measuring trends in future vulnerability
disclosure. While CVD outperforms expectations as modeled by
existing work, performance is relatively poorer when considering
the breadth of vendors and vulnerabilities. This shortfall also raises
the question of why CVD fails, what the impacts are, and how
failures could be prevented. To answer these, we next need to
improve modeling and measurement of CVD lifecycles.

6 IMPROVING CVD MODELING

While prior modeling examines event orderings, this is not suffi-
cient to understand risk to real systems. In this section, we explore
refinements of CERT’s model that consider the quantitative time-
line of CVD, as well as the relative exposure caused by suboptimal
CVD. Here, we hypothesize that the existing model does not suffi-
ciently consider these factors. Further, these adaptations also bring
more result explainability, as skill (or lack thereof) can be quanti-
fied in terms of actual risk to deployed systems. We posit two new
considerations in evaluating the effectiveness of CVD: (1) windows
of vulnerability with respect to the CVE lifecycle, and (2) actual
exposure of deployed systems to unmitigated exploitation.

6.1 CVD windows of vulnerability

When CVD desiderata are violated (e.g., 𝐴 ≺ 𝐷), the duration of
this violation is material to the actual severity of the risk. Likewise,
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even when a desirable ordering is achieved (e.g., 𝐹 ≺ 𝐴), a longer
duration between events offers organizations more time to evalu-
ate fixes and confidently deploy updates. As such, the time-series
distribution of events is as important as their relative ordering.
For each desideratum, we evaluate the actual time differences be-
tween events for each. We graph the CDF of these time distributions
across studied CVEs, which then gives insight into when and why
desiderata are violated.

Abbreviated results of this analysis are presented in Figure 5
(with additional results in Appendix D). These figures can be inter-
preted in two parallel ways:

(1) Relative impact of desideratum (non-)satisfaction. When a
desideratum is met (𝑑𝑖 𝑓 𝑓 > 0), the time between events can
be seen as a buffer (e.g., more time between publication and
attack traffic allows operators to respond). When a desidera-
tum is not met (𝑑𝑖 𝑓 𝑓 < 0), the negative duration can be seen
as a window of vulnerability during which systems are put
at risk.

(2) Hypothetical desiderata scenarios. The CDF at 𝑑𝑖 𝑓 𝑓 = 0 rep-
resents the proportion of CVEs where a desideratum was
unsatisfied. Shifting this CDF right by some 𝑥 days shows
a hypothetical scenario of performance across CVEs being
improved by 𝑥 days.

6.1.1 Defense Deployment. Arguably the most important compo-
nent of CVD is rapid deployment of mitigations to deployed systems.
By examining the distribution of this deployment 𝐷 over time (with
respect to public knowledge 𝑃 of the CVE). We begin by analyzing
the deployment of fixes with respect to adversarial exploitation
(Figure 5a). In comparing this distribution with publication-relative
deployment (Figure 5b), we also reach recommendations towards
improving CVD.

Finding 5 - Defense deployment often narrowly fails the 𝐷 ≺ 𝐴

desideratum. When attacks precede defenses (𝐴 − 𝐷 < 0 in Fig-
ure 5a), they often do so by a very brief period (only a few days).
While the Householder and Spring model classifies this as a failure,
it is not as severe as a longstanding vulnerability without deployed
mitigations. This brief window also implies that minor improve-
ments to the CVD process could yield outsize protection in practice.
To better understand how this brief shortfall occurs and possible im-
provements, we next examine the relationship between deployment
and public knowledge.

Finding 6 - Defense deployment very closely follows public availabil-

ity in many cases. Looking at Figure 5b, we see a large mass of
CVEs with IDS-based fixes published very shortly (within 10 days)
following public availability. This implies that IDS vendors are not
included in the private coordinated disclosure process, yet those
vendors are highly adept at creating fixes after a vulnerability is
known to them. Only 8 (13%) of the CVEs studied had IDS-based
fixes deployed before publication. 5 of these were vulnerabilities
discovered by an affiliate of the IDS vendor.

When deployment of fixes by IDS vendors very closely follows
publication, we posit that the IDS vendor acted in response to
publication, rather than privileged access to advance notice from
vendors. To analyze the effect of this, we consider hypothetical CVE
timelines where the IDS vendor would be included in disclosure.
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(a)𝐴 − 𝐷 (𝑃 (𝐷 ≺ 𝐴 = 0.56)). Attacks often closely (< 30 days) precede deploy-
ment of fixes (𝐴 − 𝐷 < 0), but more rarely closely follow (𝐴 − 𝐷 > 0).
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(b) 𝑃 − 𝐷 (𝑃 (𝐷 ≺ 𝑃 ) = 0.13) . Deployment of fixes rarely precedes public

awareness, though it often follows by only brief (< 10 days) periods.
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(c) 𝐴 − 𝑃 (𝑃 (𝑃 ≺ 𝐴 = 0.90)). Duration from publication to attack follows a

rough exponential distribution.

Figure 5: Time-series representation of desiderata. Each plot is a CDF

of the time difference between events.

For CVEs where IDS mitigation occurred within 30 days of public
announcement, we modify that date to be equal to publication
date (assuming that IDS rules would be published alongside this
announcement). This assumption is in-line with actual observed
disclosures that included IDS vendors, where rules were released
before vulnerability publication.

Finding 7 - Subtle shifts in the CVD timeline can lead to drastic

improvement in performance. As a result of this experiment, our
CVE shows substantial improvement in the 𝐷 ≺ 𝐴 desideratum
(recall that this refers to fix deployment predating attacks; this is ar-
guably the most important desideratum). Desideratum satisfaction
increases from 0.54 to 0.65, and associated skill value improves by
32%. Our new proposed model and associated findings demonstrate
the potential for improvement in the CVD process.

6.1.2 Attack timing. Finding 8 - Attack traffic closely follows pub-

lication. Figure 5c shows time differences between publication
and attack traffic. The few attacks in the dataset that precede publi-
cation do so by long durations, implying that attacks are performed
without vendor awareness, while those that follow publication
often do so closely. However, unlike prior work [5], which con-
cluded that 93% of vulnerabilities were exploited in the first week

 

243



The CVE Wayback Machine: Measuring CVD from Exploits against Two Years of Zero-Days IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Desideratum Satisfied Baseline Skill

𝑉 ≺ 𝐴 ≈ 1.00 0.75 0.99
𝐹 ≺ 𝑃 0.01 0.11 -0.11
𝐹 ≺ 𝑋 0.54 0.33 0.31
𝐹 ≺ 𝐴 0.95 0.38 0.92
𝐷 ≺ 𝑃 0.01 0.04 -0.02
𝐷 ≺ 𝑋 0.54 0.17 0.45
𝐷 ≺ 𝐴 0.95 0.19 0.94
𝑃 ≺ 𝐴 0.99 0.67 0.98
𝑋 ≺ 𝐴 0.95 0.50 0.91

Table 5: Rate of desideratum satisfaction on a per-exploit-event basis.

after publication, we saw a much shallower trend. We attribute
this to the different class of vulnerabilities (client-side malware
vs. network-based attacks) studied, both because malware tends
to target larger-scale deployments such as operating systems, and
because a network-based vantage point is limited by its footprint.

6.2 Quantitative System Exposure

While the baseline model assumes that each CVE event occurs at
a single point in time, this is often far from true in practice. Users
install patches on a delayed timescale [39], and individual exploit
events may not mean that all systems are rapidly compromised.
In this section, we compute CVD event orderings on a per-event
(instance of CVE-targeted traffic to a given IP address) basis, rather
than a per-CVE basis. In this way, we account for differences be-
tween first-exploitation and exploitation generally.

Finding 9 - CVE exploitation is concentrated after publication. Fig-
ure 6 shows the number of CVEs targeted in 5-day windows after
publication. CVEs are primarily targeted in the days and weeks
after publication, though others see sustained targeting over time.
This could be influenced by factors such as ease of updating vulner-
able systems and overall deployment size (both leading to potential
large residual unprotected populations), as well as re-exploitation
potential (i.e., whether systems are valuable targets for exploitation
after having already been exploited; Mirai is one such example
where reinfection targeting is valuable [2]).

Finding 10 - Considering actual exposure, CVD is highly effective.

Table 5 shows desideratum satisfaction rates on a per-event basis.
We see high effectiveness of 𝐷 ≺ 𝐴 (deployed fixes before attacks)
of 95%, compared to only 52% when aggregating across CVEs. This
implies that existing models understate the effectiveness of CVD in
practice.

6.2.1 Measuring mitigated exposure. We can also measure CVE
exposure by analyzing the distribution of mitigated and unmiti-
gated deployments. Here, we take all CVE exploit events, normalize
timestamps relative to public knowledge date, and segment traffic
by whether the targeted vulnerability had a deployed defense at
the time. We present this data in two ways: binned by unique CVE
and shown as a histogram (Figure 6), and as a CDF of overall events
(Figure 7). These allow reasoning about the diversity and intensity,
respectively, of CVE exposure and mitigation.

0 50 100 150 200
A P (days)

0

10

20

30

CV
Es

Has IDS Rule
No IDS Rule

Figure 6: Number of CVEs observed relative to publication time.

CVEs are separated based on whether an IDS rule is available during

that bin.
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Figure 7: CDF of overall CVE exploit events over time since pub-

lic disclosure, segmented by whether an IDS signature would have

blocked the traffic.

Finding 11 - Deployed fixes cover the majority of targeted CVEs

within 5 days. Looking again at Figure 6 we see that of the di-
minishing number of unique CVEs targeted over time, the share
of vulnerabilities with mitigations rapidly increases. Beyond the
first 5-day bin IDS rules cover the majority of actively exploited
vulnerabilities. This effect does not hold in all later bins, suggesting
there may be adversarial adaptation towards targeting unmitigated
vulnerabilities.

Finding 12 - Unmitigated exploitation is concentrated after public

disclosure. While Finding 9 found some concentration of CVE
exploit events after publication, when segmenting for unmitigated

CVEs this concentration is more pronounced. Figure 7 shows the
cumulative count of overall mitigated and unmitigated CVE exploit
events. Notably, 50% of unmitigated exposure occurs in the first
30 days after publication. This quantitative-exposure result is also
consistent with that of Finding 7, suggesting that modeling CVEs
through windows of vulnerability and quantitative exposure yield
comparable and complementary results.

Takeaways. By analyzing CVD through the lenses of windows of
vulnerability and actual exposure, we observe parallel confirmation
of several significant trends. First, because the of the concentration
of unmitigated attacks directly after publication, deployment of
fixes is highly salient to CVD skill. Even a short delay in deploy-
ment can lead to substantial harm. We discuss implications on the
disclosure process in Section 8.
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Figure 8: CDF of Log4Shell TCP Sessions over time.

7 VALIDATION

While our results demonstrate new methods to evaluate CVD, they
raise a natural question: do aggregate analyses reach correct conclu-

sions with respect to individual CVEs? A key benefit of performing
CVE analysis on telescope data is the ability to look retrospectively.
We select two high-profile CVEs that occurred during our mea-
surement period for such a retrospective analysis. We evaluate the
Log4Shell vulnerability in Apache’s Log4J library, and perform a
parallel study of vulnerabilities in Atlassian’s Confluence in Ap-
pendix C. We examine whether trends are consistent with those
seen in the larger population. We additionally demonstrate how
DScope’s application-layer traffic collection enables fine-grained
characterization of vulnerabilities. We also compare results from
our collected data to an existing corpus of known exploited vulner-
abilities. In so doing, we highlight how each methodology leads to
complementary results.

7.1 Log4Shell (CVE-2021-44228)

Background. In November 2021, a security research group re-
ported a command injection vulnerability in Apache’s Log4J li-
brary [17]. This vulnerability, known as Log4Shell, allows user-
passed input to invoke escape sequences that can download and
execute arbitrary code from the Internet. While there have been
reports of small-scale attacks shortly after pull requests appeared
on the project’s GitHub repository, official public disclosure of the
vulnerability led to widespread Internet scanning and exploitation.
As noted in prior analysis [17], Log4J’s inclusion as a library in a
variety of other distributed applications makes the vulnerability
especially difficult to correct, as copies of the library have been
broadly distributed.

Analysis. Log4Shell’s diverse exploitation makes it a strong can-
didate for validating our results. We examine traffic for the CVE
generally, then look at specific vulnerability variants.

Finding 13 - Log4Shell shows rapid exploitation after public disclo-

sure, with reduced targeting over time. Figure 8 shows the number
of CVE exploit events against all Log4Shell vulnerabilities over time.
In many ways this distribution aligns with our broader measure-
ments: high event density occurs early on after exploitation, with
lower sustained density over time. Interestingly, we see a resurgence
in exploit events nearly a year after initial publication. Exploration
of this is beyond the scope of this work, but we hypothesize that the
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Figure 9: CDF of Log4Shell traffic variants over time during the

month of December, 2021. Each series is a group of IDS signatures

released at the same time (Table 6). Results show increased attack

sophistication and targeting over time.

intended targets have shifted from high-profile services (as in the
initial phases of Log4Shell [21]) to legacy services and embedded
systems that are more broadly distributed and unpatched.

Finding 14 - Log4Shell exploits showed increasing sophistication in

the days following public release. A somewhat unique quality of
the Log4Shell vulnerability is that it can be exploited through a
wide variety of channels. Because of Log4J’s use as a third-party
library, exploit payloads can reach the vulnerable code directly, or
through a set of preprocessing steps. Because of this, initial naive
attempts to create intrusion detection rules for Log4J vulnerabilities
were limited. Adversaries can take advantage of the preprocess-
ing step of programs to create exploit payloads that bypass naive
detection while still triggering vulnerabilities when decoded. Fig-
ure 9 depicts the distribution of exploit TCP sessions across exploit
variants. In the days following release, public knowledge of the
vulnerability allowed for rapid development of new exploit variants
that necessitated rapid response.

Takeaways. Analysis of Log4Shell conforms to our broader con-
clusions over studied CVEs. Software vendors should be aware that,
when publicly releasing information on novel vulnerabilities, ex-
ploitation will advance rapidly following release. Tiered disclosure
to privileged participants can improve the probability of rapidly
deployable fixes being available to affected parties before active
exploitation occurs.

Results also suggest a seemingly fundamental limitation of IDS
signatures. While signatures aim to detect the semantics of a vul-
nerability rather than just a specific instance, interactions between
vulnerable software and other dependent components can lead
to unpredictable phenomena. In Log4Shell, increasing adversarial
sophistication thwarts IDS-based defenses when they target the
symptom of a vulnerability rather than the underlying issue. This
is a complex problem to solve, as broader matching for exploits can
lead to false positives.

7.2 Comparison with Existing Attack Data

We next compare results seen by DScope with CISA’s Known Ex-
ploited Vulnerability (KEV) catalog [22]. This database contains

 

245



The CVE Wayback Machine: Measuring CVD from Exploits against Two Years of Zero-Days IMC ’23, October 24–26, 2023, Montreal, QC, Canada

400 200 0 200 400 600
A P (days)

0.0

0.5

1.0

CV
Es

 (C
DF

)

Study CVEs
KEV

Figure 10: 𝐴 − 𝑃 for Known Exploited Vulnerabilities.
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Figure 11: Difference between earliest exploitation as seen in our

study vs. documented in CISA KEV. Negative values indicateDScope-

observed exploitation before CISA KEV; positive values indicate a

delay in DScope-observed exploitation.

vulnerabilities that are known to be actively targeted by attacks.
KEV was initially started part-way through the study period in
November 2021. While the primary purpose of this is to priori-
tize and set expectations for remediations by organizations, we
can also leverage these results to analyze CVE lifecycle trends. We
filter KEVs to those matching CVEs published during the study
period to allow for direct comparison. A total of 424 such CVEs are
considered.

Finding 15 - CISA KEV shows similar bias towards high-impact

vulnerabilities. Figure 2 shows distributions of CVEs from KEV,
DScope, and the overall population. KEV shows bias towards high-
impact vulnerabilities, but not as strong of a bias as that seen by
DScope.

Next, we compare the lifecycles of CVEs seen in KEV and our
dataset. Because available data on KEV is limited, we focus on the
relation between CVE publication and known attacks. A vulnera-
bility is considered published when the CVE is available on NVD,
and exploited when its entry was added to KEV. We compare both
the overall distribution (Figure 10) and 𝑃 ≺ 𝐴 desideratum between
the two datasets.

Finding 16 - Telescope-based CVE characterization sees a higher

incidence of attacks long before publication. While DScope saw a
lower rate of exploitation before publication (𝐴 ≺ 𝑃 ) than KEV (10%
vs. 18%), we observe that DScope sees a higher rate of CVEs being
exploited a long duration (i.e., hundreds of days) before publication.
We attribute this to two factors: (a) CVEs that are inadvertently
exploited by adversaries targeting other software (as in Appendix C)
and (b) earlier instances where unsophisticated vendors failed to
respond in a timely fashion to ongoing exploitation.

Validating cloud-based characterization of 𝐴. We next compare
dates of exploitation as seen by our study with those recorded
in CISA’s KEV. Of the 63 CVEs in our study, 44 (70% were also
present in KEV. The other 30% were observed by DScope but not
known-exploited in existing data. For CVEs seen in both datasets,
we compute the difference between first exploitation times (earli-
est traffic time in our study vs. date added in KEV) and plot the
distribution (Figure 11).

Finding 17 - DScope finds evidence of exploitation before exist-

ing data sources. Because CISA KEV aggregates actual reports
from many parties, we expectedly see a delay from CISA KEV to
telescope-observed exploitation in some (41%) cases. Perhaps more
notable, however, is the sizable share (26, or 59%) of CVEs that are
seen in the cloud setting first. In fact, 50% of CVEs are observed by
DScope over 30 days before they are added to KEV. We attribute
these both to (a) vulnerabilities exploited before publication (𝐴 ≺ 𝑃 ),
(b) administrative delays in updating KEV based on reports, (c) lack
of available data on exploitation. We see CISA’s manual report and
our traffic-driven approach as complementary tools for characteriz-
ing known exploited vulnerabilities and recommend increased use
of automated traffic analysis in studying CVE trends.

8 DISCUSSION AND FUTUREWORK

As new vantage points (such as DScope) increase the granularity
of data collection, the community has the opportunity to leverage
these to achieve practical improvement in the security of deployed
systems. We foresee improvements in two concrete areas: (1) ex-
pectations for reporting vulnerabilities, (2) data collection to enable
future evaluation of CVD.

8.1 Improving CVD

A key finding of our work is the importance of remediation around
public disclosure. When vendors control publication, this should
be carefully coordinated–both with customers and other parties
such as IDS vendors–to maximize deployment of fixes relative to
public knowledge. In some cases, however, organizations have no
choice in the timing of public disclosure. Both malicious actors and
good faith security research can also pose risks. Many measurement
and security venues establish standards for vulnerability disclosure
timelines, including delayed publication, but when vendors are un-
sophisticated these timelines may be too tight to ensure a successful
outcome.

In the context of lack of vendor sophistication [17] and delayed
deployment of security updates by system administrators and end
users [39], our analysis suggests that vendor-based disclosure on
its own may not be sufficient to minimize harm. Our data rather
suggest that IDS vendors in particular are well-suited to provide
defenses. Signature-based IDS is as beneficial as ever (though now
often repackaged in the form of offerings such as web application
firewalls). Researchers disclosing vulnerabilities should consider
vendor sophistication, and how additional parties could be included
in the disclosure process to achieve the best possible outcome.

Our recommendations also apply to the expectations set by aca-
demic venues. Although calls-for-papers of major security and
measurement venues largely have expectations of responsible dis-
closure [37], the implementation of this disclosure is only vaguely
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described. Venues should incorporate prescriptive expectations on
the form and scope of disclosure to ensure that discovered vulnera-
bilities minimize harm.

8.2 Improving measurement of CVD

Empirical characterization of CVE timelines has been historically
limited by available data, especially with respect to the internal
disclosure process and deployment of mitigations. While our work
makes promising steps in maximizing coverage, these limitations
still prevent complete characterization.

Here, we see an opportunity for security researchers to improve
not only the impact of their disclosure process on deployed systems,
but also to contribute to the community’s understanding of the
CVD process. Just as implementation artifacts have increasingly
become preferred from published papers, researchers should release
disclosure artifacts: data (ideally in machine readable form) that
summarizes the steps taken during the disclosure process. We see
the following data as being most critical to future characterization
of CVD:

• (𝑉 ) Disclosure date(s).When and to whom initial disclosure
was made, e.g., software/hardware vendors, operating sys-
tems, IDS rule vendors, governments, etc.

• (𝐹 ) Fix development. For each disclosure party, timeline for
development of fixes. Data should describe the scope of fixes
(e.g., software vendors can directly fix issues, library vendors
may be more limited).

• (𝐷) Deployment. Fine-grained data on fix deployment would
aid in assessing risk. In some cases (e.g., hosted software),
an exact characterization of deployment can be provided. In
others (e.g., operating systems and web browsers), charac-
terization may be possible using vantage points such as web
analytics.

• (𝐴)Known exploitation.Current known attack data (e.g., CISA
KEV) only trackswhen attacks are reported, which also limits
tracking to published CVEs. When attacks are known before
publication or retrospectively, adjusted timing and impact
should be reported.

We foresee tracking of these disclosure artifacts being managed
by existing organizations, such as the CERT Coordination Center
(CERT/CC) [12]. While CERT/CC tracks and releases information
on the observed status of vulnerabilities, sharing this additional
data from the security researcher’s perspective would augment this
data and make it more useful for analysis. We see security and
measurement venues playing a role here by setting expectations.
In addition to encouraging authors to maximize the beneficence
of their disclosure process, calls-for-papers should encourage stan-
dardized submission of CVE metadata to coordinating authorities.

9 CONCLUSION

By leveraging DScope’s perspective, combined with time-series
modeling of CVE lifecycles, we provide new insights on the disclo-
sure process. We evaluate two new empirical models for evaluating
the efficacy of CVD, and as a result offer recommendations for
improving the disclosure processes of security researchers and
academic venues. We anticipate that our collection methodology

will offer continued value over time, and plan to make interac-
tive telescope-based analysis of emergent threats publicly available.
We anticipate that ongoing improvements to empirical results in
CVD will inform best practices to provide practical protection to
deployed systems.
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A ETHICS

Because our work measures the behavior of malicious Internet
scanners, as well as publicly available repositories such as NVD, it
is explicitly not human subjects research under HHS guidelines [18]
and therefore falls out of scope of our institutional governance
structures. With that said, any interactive measurement and data
acquisition could have negative impacts on production systems,
and analysis of vulnerabilities could lead to disclosure of vulnerable
parties (e.g., scanner source IPs signal infected machines). We took
steps in experimental design and analysis to mitigate such risks.

A.1 Traffic Collection

DScope is designed to operate with minimal interactivity to collect
study endpoint data, and its behavior is a subset of what might be
expected from benign services hosted on cloud IPs. While some
data (such as IP addresses) could be used in conjunction with other
sources to identify individuals, we did not perform such analysis
and ensure the published paper does not contain such identifiable
information. In addition to factors of DScope’s design that mitigate
personal data collection, we treat all data collected using DScope
as sensitive and implement controls at the institutional level to
prevent unauthorized access.

We also considered several other factors in the design of DScope
to minimize potential harms:

(1) Impact on clients. DScope performs TCP handshakes but
does not send application-layer payloads. In this sense it
emulates a service that is unresponsive at the application
layer, a plausible scenario under benign behavior.

(2) Preventing IP Starvation. DScope limits allocation of new IP
addresses to minimize impact on the AWS IP pool.

(3) Preventing compute starvation. DScope uses preemptible
(spot) instances that are reclaimable by AWS for capacity
reasons, preventing impact on other tenants.

(4) Network amplification. We evaluated DScope to ensure that
it does not amplify traffic for use in DDoS attacks.

Ethical considerations of DScope’s collection are discussed fur-
ther in the associated paper [7].
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Group 𝐷 − 𝑃 SID 𝐴 − 𝐷 Context Match Adaptation

A 0d 9h

58722 0d 4h HTTP URI jndi
58723 -0d 6h HTTP Header jndi
58724 0d 22h HTTP Header lower
58725 105d 5h HTTP URI lower
58727 4d 14h HTTP Body jndi
58731 8d 21h HTTP Header upper
300057 21d 10h HTTP Cookie jndi

B 0d 17h 58738 11d 7h HTTP Header upper Escape sequence for $
58739 8d 12h HTTP Header lower Escape sequence for $

C 1d 15h

58741 136d 16h HTTP Body jndi Escape sequence for jndi
58742 5d 0h HTTP Header jndi Escape sequence for jndi
58744 4d 19h HTTP URI jndi Escape sequence for jndi
300058 5d 0h HTTP Cookie jndi Escape sequence for jndi

D 3d 11h 58751 -3d 8h SMTP jndi/lower/upper Extraneous ignored text before jndi
E 90d 3h 59246 -88d 22h HTTP Request Method jndi

Table 6: Log4Shell Mitigation Variants. IDS Signature sets reveal increasingly-sophisticated attempts by attackers to thwart defenses and exploit

more niche services.

A.2 Other Data Sources

All other data sources used in this work are publicly available.
In some cases, this data was not in a consolidated or machine-
readable format (e.g., announcements of Snort rule availability). In
these cases, web pages were crawled and parsed to obtain relevant
information. This crawling was performed with low rate to reduce
platform impact, and complied with all relevant licenses, terms of
service, and service limits (e.g., rate limiting).

B LOG4SHELL EXPLOIT VARIANTS

Table 6 contains information on the Log4Shell variants detected
by Cisco IDS signature groups. "SID" refers to the Snort signature
ID. "Match" refers to the Log4J command injection targeted, and
"Adaptation" reflects additional adversarial adaptations that are
addressed in the signature.
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Figure 12: CDF of CVE-2022-26134 targeted TCP sessions over time.

Background. During the study period, multiple CVEs were pub-
lished regarding vulnerabilities in Atlassian’s Confluence product.
These CVEs related to injection vulnerabilities against the Open
Graph Navigation Library (OGNL), wherein an adversary could
cause undesired parsing of inputs in a trusted context and trigger re-
mote code execution. While each of these critical vulnerabilities led
to broad exploitation, we focus specifically on CVE-2022-26134 (the
Confluence CVE) for its interesting properties and large effect size.
The Confluence CVE, given a CVSS score of 9.8 (Critical), allows
adversaries to obtain complete access to data stored within the ap-
plication, but also enables arbitrary executables to be downloaded
and run on the host server. It has seen extensive exploitation in the
wild for cryptocurrency mining [4] and data theft [11]. The Conflu-
ence CVE consists of improper processing of OGNL escape codes
in HTTP the HTTP request path, causing them to be parsed by
the application in a privileged context. Scanners can craft payloads
containing java source expressions and download/run arbitrary
code in a privileged context.

Analysis. While existing post-mortems have shown evidence of
this CVE being exploited in the aftermath of public disclosure, our
approach allows us to analyze traffic leading up to CVE publication.
Through this, we examine how the Confluence CVE conforms to our
broader findings about the CVE lifecycle, as well as vulnerability-
specific insights obtainable through our vantage point.

C.1 CVE lifecycle

We begin by examining time-series targeting of the Confluence
CVE. Note that for case studies of high-rate exploits we use TCP
sessions instead of exploit events to capture the large amount of
initial exploitation seen by DScope. We plot the CDF of exploit TCP
sessions in Figure 12.

Finding 18 - The Confluence CVE confirms patterns of early ex-

ploitation after publication, following by steady targeting of legacy

installs. As in our broader results, Figure 12 shows an initial spike
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in exploitation after initial public disclosure. Despite this, IDS-based
mitigations are largely effective on post-publication instances of
this CVE, with IDS defense deployment occurring only 23 h after
public disclosure. As a result, an above-average 99.6% of exploit
sessions are mitigated by deployed defenses. Interestingly, this CVE
shows increasing rate of exploit sessions to date, implying that
adversaries see value in targeting legacy software installations.

C.2 Untargeted Exploitation

In our collected data on the Confluence CVE, we additionally see
traffic from the beginning of the study period that matches the
associated IDS signature. In most cases in our dataset, this lead-
ing traffic was an indicator of imprecision from the IDS signature.
However, during manual analysis of the Confluence CVE we did
not see such evidence. This traffic did not specifically target the
Confluence-specific TCP port (8090), implying that scanners were
not searching for vulnerabilities in Confluence specifically. Rather,
the traffic is consistent with scanning for OGNL vulnerabilities
generally, of which the Confluence CVE is an instantiation.

Finding 19 - Adversaries can trigger novel vulnerabilities through

general-purpose vulnerability scanning. Manual analysis of lead-
ing payloads confirms that, although they were not targeted at
Confluence, these payloads would lead to remote code execution
on vulnerable confluence instances. Because OGNL injection is
not a vulnerability in OGNL itself, there was limited publicity and
proactive defense against such attacks (e.g., an IDS rule). However,
the common structure of OGNL across applications makes injection
vulnerabilities (due to unintended OGNL processing of user inputs)
highly likely to follow a common structure in practice.

Our data suggest that some exploits show transferability to other
systems using similar deployments or libraries. We anticipate that
future work could use this transferability to identify novel vulnera-
bilities to existing exploits (and variants thereof) towards securing
deployed software.

Takeaways. As with Log4Shell, the Confluence CVE confirms
our findings that (a) exploitation closely follows publication, and
(b) rapid deployment of mitigations is effective in preventing the
majority of impact from vulnerabilities. In addition, measurement
of this CVE’s specific timeline allows us to observe evidence of
early exploitation. This phenomenon can inform future work to
proactively discover and remediate vulnerabilities.
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Figure 13: 𝐴 − 𝑉 (𝑃 (𝑉 ≺ 𝐴 = 0.90)).
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Figure 14: 𝑃 − 𝐹 (𝑃 (𝐹 ≺ 𝑃 = 0.13)).
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Figure 15: 𝑋 − 𝐹 (𝑃 (𝐹 ≺ 𝑋 = 0.74)).
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Figure 16: 𝐴 − 𝐹 (𝑃 (𝐹 ≺ 𝐴 = 0.56)).
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Figure 17: 𝑋 − 𝐷 (𝑃 (𝐷 ≺ 𝑋 = 0.74)).
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Figure 18: 𝐴 − 𝑋 (𝑃 (𝑋 ≺ 𝐴 = 0.39)).
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