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Abstract

As hyperscalers such as Google, Microsoft, and Amazon play
an increasingly important role in today’s Internet, they are
also capable of manipulating probe packets that traverse
their privately owned and operated backbones. As a result,
standard traceroute-based measurement techniques are no
longer a reliable means for assessing network connectiv-
ity in these global-scale cloud provider infrastructures. In
response to these developments, we present a new empiri-
cal approach for elucidating connectivity in these private
backbone networks. Our approach relies on using only
“lightweight” (i.e., simple, easily interpretable, and readily
available) measurements, but requires applying “heavy-
weight” mathematical techniques for analyzing these mea-
surements. In particular, we describe a new method that
uses network latency measurements and relies on concepts
from Riemannian geometry (i.e., Ricci curvature) to assess
the characteristics of the connectivity fabric of a given net-
work infrastructure. We complement this method with a
visualization tool that generates a novel manifold view of a
network’s delay space. We demonstrate our approach by uti-
lizing latency measurements from available vantage points
and virtual machines running in datacenters of three large
cloud providers to study different aspects of connectivity in
their private backbones and show how our generated mani-
fold views enable us to expose and visualize critical aspects
of this connectivity.

1. INTRODUCTION
A salient feature of today’s Internet is that large cloud and
content providers, called “hyperscalers,” are building and
operating their own private global-scale infrastructures
(e.g., Google,' Amazon,* Microsoft,’ Facebook,'> Akamai,*
and Alibaba'). These private network infrastructures serve to
minimize the exposure of the traffic generated by their own
suite of applications and services to the types of uncertainty
and variability that their use of the “public” Internet (i.e.,
transit provider Internet) would entail. Accordingly, increas-
ing portions of the overall Internet traffic utilize these large
providers’ private network infrastructures and thus bypass
the public Internet.*

The growth and importance of these private infrastruc-
tures raise new questions, many of which call for empirical
study. Historically, the principal tool used by researchers to

understand Internet infrastructure has been traceroute.
Developed in the late 1980s as a troubleshooting tool for net-
work operators,'’ the Internet measurement community has
enthusiastically adopted and improved it to study the prop-
erties of the routes taken by packets and to infer connectiv-
ityin the underlying physical infrastructure as described, for
example, in Spring et al.**

While many of today’s Internet stakeholders continue to
support and use traceroute for purposes such as debug-
ging, the emergence of hyperscalers has made the generic
application of traceroute for network measurement
and analysis increasingly problematic. As documented
in online resources provided by, for example, Microsoft!®
and confirmed by our own measurements, some of today’s
hyperscalers can and do modify traceroute packets that
traverse their private backbones or even disallow those
packets altogether. When considered in conjunction with
the increasing network-wide deployment of devices (i.e.,
middleboxes) that tamper with t raceroute,’ this develop-
ment suggests that the utility of traceroute as a widely
available, easy-to-use, and reliable general-purpose tech-
nique for (large-scale) Internet measurement experiments
may be reaching a point of diminishing returns.

In this article, we posit that these trends are inevitable,
and will continue. Accordingly, we ask the following moti-
vating question: How can we obtain useful insight about net-
work structure when the basic mechanisms relied on by tools
such as traceroute are either unavailable or can no longer
be taken for granted?

In considering how to answer this question, we argue that
the increasing opacity of path internals in today’s Internet
calls for leveraging measurement techniques that are both
more lightweight and more universally available than tra-
ceroute, dovetailed with more heavyweight mathematical
analysis tools for extracting as much information as pos-
sible from these more limited information sources. To this
end, we consider the end-to-end round trip delay (RTT) along
an Internet path as an information source that is suitably

The original version of this paper was entitled
“Curvature-based Analysis of Network Connectivity in
Private Backbone Infrastructures,” and was published in
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lightweight and at the same time essentially universally
available. Moreover, RTT can in most cases of interest also
be readily augmented with metadata in the form of approxi-
mate geolocation of path endpoints. At the same time, our
analysis of the resulting measurements is informed by
mathematical concepts from Riemannian geometry (e.g.,
Ricci curvature and its extension to discrete graphs known
as Ollivier-Ricci curvature'®) and presented in the form of
specialized visualizations; that is, continuous manifolds
with embedded geo-information. This arguably heavy-
weight analysis tool only assumes that the “footprint” of a
given network’s physical infrastructure is specified in terms
of a set of geo-located nodes that represent vantage points
capable of performing the lightweight measurements of
interest.

Thus, as an answer to our motivating question, we
show that in a “post-traceroute” world, it is possible
to rely solely on RTT measurements among a set of geo-
located Internet nodes to elucidate important aspects of
network structure. In the process, we present three key
contributions:

(1) We describe a new methodology for assessing con-
nectivity in private backbone infrastructures. Our
approach offers third-party Internet researchers a
promising alternative to inferring important aspects
of network connectivity in these private infrastruc-
tures in a post-traceroute world.

(2) We assemble a set of newly-developed and existing
techniques into a coherent and original methodology
for illuminating important aspects of network struc-
ture—aspects that are either impossible or more dif-
ficult for traceroute to identify and discover as its
ability to discern path internalsin the Internet dimin-
ishes. This set of techniques includes a new specialized
visualization tool that fuses Riemannian geometry
with geographical maps to generate manifold views
of a network’s delay space.

(3) We demonstrate our methodology by inferring
known and novel aspects of existing connectivity
fabrics of the private backbones of three hyperscal-
ers (Google, Microsoft, and Amazon). By comparing
their inferred connectivity fabrics, we can highlight
common features and important differences, identify
“weak spots” in their existing connectivity, and hint
at new capabilities for examining what future infra-
structure changes would be most beneficial (or detri-
mental) for these large cloud providers.

In short, our proposed approach presents an exciting
alternative to traditional methods for Internet connectiv-
ity research and enables third-party Internet measurement
researchers to gain insight into the private backbone infra-
structures of the large cloud/content providers. Having
such insight is not only critical for independently verifying
claims by these providers about the characteristics and per-
formance of their network, but is also of practical impor-
tance for an industry that is expected to spend up to $150
billion on new fiber deployments in the U.S. alone.*
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2. BACKGROUND

Since the early 1990s, the preferred method for studying
Internet infrastructure has been to infer router-level topolo-
gies based on information gleaned from sufficiently many
traceroute measurements. The key idea behind tra-
ceroute is to elicit self-identifying responses from inter-
mediate routers along an end-to-end path. While many
ingenious strategies have been developed for making this
idea maximally informative® and efficient,” much can go
wrong when performing this inference task in practice (e.g.,
see Motamedi et al.'” and references therein).

2.1. The many problems with traceroute

Given that traceroute was originally designed as a debug-
ging tool for network operators, assessing the quality of
traceroute-based measurements when utilizing this
data for rigorous scientific studies has been problematic
for a number of reasons, including routers emitting their
response from a randomly chosen interface or not respond-
ing at all to correctly-formatted probe packets, ambiguities
in mapping interfaces to routers, and biases in the collected
data due to the choice of vantage points for launching
traceroute probes. Moreover, the increasing complex-
ity of the Internet has made traceroute less effective.
For example, the proliferation of underlying layer-2 tech-
nologies in today’s Internet and traceroute’s inability
to cope with them have reduced traceroute’s overall
utility as robust Internet measurement tool. Also, the fact
that the Internet has experienced a significant increase in
the number of deployed middleboxes (e.g., firewalls, net-
work address translation (NAT) boxes and proxies, and deep
packet inspection (DPI) boxes) that possess the ability to
drop packets carrying probe information renders tracer-
oute as a means for exploring a network’s infrastructure
largely useless.

At the same time, the global Internet ecosystem itself
has been changing in ways that question the use of trac-
eroute as a reliable Internet measurement technique. In
particular, the well-documented flattening of the Internet
is the result of large multinational technology companies
(i.e., “hyperscalers”) building out private global-scale infra-
structures that often carry traffic from where it is gener-
ated all the way to where it is consumed. However, these
increasingly dominant infrastructures are opaque to tra-
ceroute. Global-scale cloud providers that serve as hosts
for third parties are equally problematic. To be able to
perform relevant measurements, third-party researchers
have to become customers of such a provider, by purchas-
ing resources in the form of virtual machines (VMs) and
must adhere to the terms and conditions imposed by the
provider that often prevent them from running tools such
traceroute at will. And even if performing experiments
such as running massive traceroute campaigns is tech-
nically permitted, it is completely up to each provider to
determine how traceroute probes are handled within
their own domain.>

As a result of these and similar challenges and trends,
currently inferred connectivity infrastructures such as
Internet router-level topologies are of largely unknown



quality (e.g., different degrees of completeness and/or accu-
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We expand on the connection between our approach
and continuous manifolds in Section 3 where we describe
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how our methodology enables both local and global char-
acterizations of a network’s infrastructure. In particular, we
show that our proposed method is ideally suited for provid-
ing insights into network connectivity in a post-tracer-
oute worldwhere traceroute probes have to be assumed
to be either blocked or manipulated or result in measure-
ments that are difficult to interpret.

3. METHODOLOGY

A schematic overview of our methodology is shown in Figure 1.
In what follows, we describe the different steps that com-
prise our approach and are illustrated in Figure 1.

3.1. A step-by-step description

Step 1—Measurement and data reduction (Panel #1)
The starting point of our methodology is a collection of all-
pairs latency measurements among a set of nodes (shown
as thin black lines in the graph at the top of the panel). We
allow for a small portion of missing measurements, and
the unknown physical connectivity fabric is highlighted
with thick black lines. For each pair of nodes with latency
measurements, we determine the great circle latency, which
we define to be the great circle distance (GCD) between the
nodes divided by %¢, which is the speed of light through
fiber.® Then, for each node pair, we compute the residual
latency, which we define to be the measured latency (0.5
* minRTT) minus the great circle latency. Note that while
residual latency can be influenced by a number of factors
including physical paths, logical connectivity defined by
routing, and congestion, our focus on private infrastructure
and measured latency largely obviates the latter two issues.
The resulting matrix X of residual latencies is shown on
the left of the panel, with black squares indicating missing
observations. We then use X to identify node pairs that are
connected by nearly straight edges. By “straight” we mean
following a great circle (geodesic), and by “nearly” we mean
that the total deviation from the great circle is bounded.
We formalize this notion by establishing a threshold ¢ on
residual latencies; since it measures how close a measured
latency is to its theoretical optimal, we call ¢ the perfor-
mance threshold. This aspect of our methodology is cap-
tured on the right side of the panel, where we show the CDF
of residual latencies along with two different performance
threshold values (i.e., € = 30, 80).

Step 2—Graph construction (Panel #2) For any given ¢,
the set of node pairs that are connected via “nearly straight”
edges defines a graph. This graph is defined as the set of
edges that have residual latency < ¢, and the panel shows
two examples of such graphs, one for each of the two dif-
ferent values of the performance threshold ¢ highlighted in
the CDF plot shown in Panel#1. A lower threshold defines
a graph with fewer edges, and the edges in the graph on the
left are a subset of the edges in the graph on the right that
results from applying the larger of the two thresholds. The
low-threshold graph reveals structure locally that allows us
to infer the underlying physical connectivity fabric of the
various disconnected components. The more localized the
target area of study, the more precise the latency measure-
ments should be for our methodology to make accurate
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inferences. However, low-threshold graphs say nothing
about how the resulting islands of connectivity are linked
physically as part of the overall graph. That information can
be inferred from what higher-threshold scenarios reveal in
terms of important links that are on many shortest paths
between nodes in the different local “regions” of the overall
infrastructure.

Step 3—Ricci curvature (Panel #3) To assess the impor-
tance of each edge in a given graph, we use the notion of
Ollivier-Ricci curvature of an edge® (Ricci curvature, or cur-
vature, for short). Intuitively, the curvature of a graph edge
can be thought of as a type of local “betweenness” measure,
but rather than counting paths, it measures the “optimal
transport” of mass from the neighbors of one edge node to
the neighbors of the other edge node and can be formally
defined using the earth mover’s distance, a well-known dis-
tance measure between two probability distributions. In
particular, negatively curved edges tend to be traversed by
many of the local shortest paths; that is, paths that originate
in the neighborhood of one end node of a negatively curved
edge and connect to nodes in the neighborhood of the node
at the other end of that edge. Conversely, positively curved
edges tend to be traversed by only a few shortest paths in
a local region. Building on this intuition, it is easy to show
mathematically that while for graphs that are trees, all
edges have negative curvature, the edges in grid-like graphs
have approximately zero curvature and the edges in graphs
that are cliques all have positive curvature. For each of the
two threshold graphs depicted in Panel #2, we use different
colors to annotate each edge with its computed curvature
and show these annotated graphs at the top of Panel #3,
followed by a plot of the histogram of computed edge cur-
vatures for each graph in the middle of the panel. Finally,
to obtain a macroscopic view of the system under study and
develop an understanding of how the graphs derived from
the available measurements evolve as we relax the con-
straint implied by using “nearly straight” edges, we repeat
the graph construction and curvature computation steps
for awide range of performance thresholds and summarize
the resulting distributions of computed edge curvature val-
ues in a series of boxplots (one per considered threshold)
shown at the bottom of the panel.

Step 4—Characterization of edge behavior (Panel
#4) To augment our picture of the system under study,
we characterize how edges contribute to the connectivity
of the system by examining the evolution of the threshold-
dependent curvature-annotated graphs as the performance
threshold increases. To this end, we study the properties of
an edge at the threshold where the edge first emerges (i.e.,
the lowest € = the edge’s residual latency). We define two
metrics for each edge, namely importance and performance.
We consider an edge’s importance to be defined in terms
of its impact on network robustness—how much disrup-
tion (i.e., affecting locally shortest paths) would occur were
this edge not present—and use Ricci curvature as our met-
ric, with lower (more negative) Ricci curvature indicative of
greater edge importance. For edge performance, we use its
residual latency—the value of e at which the edge appears in
the graph. Here, higher values indicate poorer-performing



edges, i.e., edges whose latencies are more inflated with
respect to the optimal. We summarize the information pro-
vided by these two edge metrics by means of heatmaps as
shown in Panel #4. For edge importance (Ricci curvature),
key network edges appear as very negative (red) in the heat-
map on the left; for edge performance, well-performing
edges are the ones that have the lowest values (white or yel-
low) in the heatmap on the right. In each case, we use black
boxes where no per-edge measurements are available.

Step 5—Characterization of node behavior (Panel
#5) To further complete our understanding of the system
under study, we use a Sankey diagram as shown in Panel
#5 to illustrate how the nodes that comprise the thresh-
old-dependent curvature-annotated graphs cluster as the
performance threshold increases. This plot gives a macro-
scopic view of how these graphs evolve as the performance
threshold increases from left to right. In particular, it shows
which nodes form well-performing clusters at low-perfor-
mance thresholds (left side of the Sankey diagram), which
nodes form larger connected components at higher perfor-
mance thresholds (right side of the Sankey diagram), and
how the different clusters merge or split as we vary the per-
formance threshold from low to high or vice versa. The plot
also shows that at small thresholds, we typically deal with
a disconnected graph—only node pairs with very “straight”
edges are connected. As the threshold increases and addi-
tional edges are added, at some point the graph becomes
connected. Importantly, negatively curved edges play the
role of “bottlenecks” or “bridges”; that is, representing crit-
ical connectivity in the sense that their removal will either
disconnect the graph or drastically lengthen the graph’s
local shortest paths.

3.2. The manifold view

The graphs that result from applying our methodology to a
given system under study represent paths between physical
vantage points situated in geographical space. Their analysis
shows that deep insights into the underlying system can be
obtained by providing a basic understanding of the relation-
ship between the curvature of edges in our graphs and the
properties of the underlying geographical space. However,
while the notion of curvature is more intuitive for continu-
ous (Riemannian) surfaces than it is for discrete graphs,
the problem of representing combinatorial objects such as
graphs using smooth topological spaces such as manifolds
is notoriously difficult.

We deal with this problem by appealing to a well-known
relationship between the Ollivier-Ricci curvature and the
standard Ricci curvature.' In particular, we leverage this
relationship to complement our methodology with a key
visualization component in the form of a representation
that we refer to as the manifold view. While a formal deriva-
tion of this manifold view is beyond the scope of this chapter
and will be presented in future work, the basic idea behind
realizing this novel visualization component in practice is
simple. In particular, to generate this manifold view, we
start from a “flat” (2D) geographical map and a geographi-
cally embedded graph, where the graph’s edges are anno-
tated with their edge curvature value. We then produce a

Figure 2. A manifold view of the example network used in Figure 1.

new (3D) surface whose local Gaussian curvature in each
region approximates the Ricci curvature of the edges that
“pass near” that region. Technical difficulties that arise in
this context and require effective and efficient algorithmic
solutions include constructing suitable triangulations of
the 3D surface we seek to generate, ensuring the smooth-
ness of the triangulated surface for more refined triangu-
lations, and guaranteeing convergence of the curvature of
the triangulated surface to the desired graph curvature. In
general, these and other requirements can be satisfied by
formulating manifold view generation as an optimization
problem with appropriately chosen objective functions.

Figure 2 uses the example network from Figure 1 to illus-
trate the idea behind the proposed manifold view. It shows
that while the positively curved edges in the graph (e.g.,
edges connecting nodes A-F, or nodes G-J) induce two pos-
itively curved peaks in the resulting manifold representa-
tion, the negatively curved edge (e.g., F-H) induces a saddle
point-shaped contour. Recalling the informal description
of edge curvature in Step 3 above, a negatively curved edge
arises when local paths in the graph tend to make heavy use
of that edge; that is, shortest paths are “attracted” to that
edge and may be thus “lengthened” as a result of local con-
nectivity properties. This intuition transfers directly to the
manifold view (where geodesics define shortest paths) and
gives the manifold view a useful interpretation. In regions
of negative curvature on the manifold, paths also tend to
curve inward toward each other, which in turn attracts the
paths toward each other and lengthens them (compared,
e.g., to shortest paths on a flat surface with zero curvature).
Similar statements apply when viewing positively curved
edges from the manifold representation perspective,
except that in this case, geodesics tend to curve outward
away from each other and thus “shorten” shortest paths on
the manifold.

The net result is that a network’s manifold view provides
a concise, visually intelligible representation of how paths
tend to be elongated or shortened by the underlying con-
nectivity of the system under study. The strength of the
manifold view is that it visualizes a large number of net-
work measurements in a single representation (i.e., “delay
space”), one that combines an easy-to-grasp, conventional
geographical component with a more-complex set of all-
pairs latency measurements.
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4. ANEW LOOK AT HYPERSCALERS

Many of today’s large cloud/content providers are busily
expanding their private backbone networks, but at the same
time, they often consider detailed information about their
physical infrastructure to be proprietary and have become
reticent to share the details publicly. These developments
beg the question: as access to data about the physical infra-
structures of the backbones of these hyperscalers is harder
to come by while at the same time the importance of these
Internet stakeholders increases, is it possible to study the
pertinent characteristics of these private backbones without
having detailed knowledge of their connectivity fabrics (i.e.,
existence and/or locations of fiber optic cable conduits)?
We answer this question in the affirmative by applying the
methodology described in Section 3 to examine the critical
features of three hyperscalers: Microsoft (Azure), Amazon
(AWS), and Google (GC).

To obtain the necessary datasets, we scheduled measure-
ments in each of the datacenters that these providers oper-
ate in their respective availability zones across the globe.
Availability zones can be associated with the physical nodes
of these providers’ global-scale private backbones whose
connectivity fabrics we attempt to elucidate, and we approx-
imated the nodes’ physical location by using the geographic
center of the city where the datacenter is situated. All mea-
surements were collected in late 2019. We used RIPE Atlas,?*
an open, distributed Internet measurement platform, to
collect the measurements for AWS. Since GC and Azure did
not host RIPE anchors in their datacenters at the time when
we performed our measurement campaigns (GC has since
started hosting RIPE Atlas Anchors in most of its locations),
we configured virtual machines on servers in their datacen-
ters around the world. Separately for each provider, we used
ping to perform all-pairs latency measurements among
the respective set of nodes, annotated each (logical) edge
between them with the corresponding measured minRTT
value, and computed the physical distance between them
based on GCD.

Relying on these datasets as main input, we obtain
the analogs of the latency-annotated graph, the residual
latency matrix, and residual latency CDF shown in Panel #1
in Figure 1 for each of the three hyperscaler. We then use
these artifacts as a starting point for applying our overall
methodology described in Section 3 to AWS, Azure, and GC,
respectively. In particular, we consider the private backbone
infrastructures of these hyperscalers to highlight the kind
of empirical findings that we can derive from the proposed
step-by-step curvature-based analysis as well as the type of
features that become evident when examining the resulting
manifold views. However, for brevity, we only discuss here
the curvature-based analysis results for a single hyperscaler
(i.e., Microsoft Azure) and limit a comparative study of the
three hyperscalers to a description of the key features of
their manifold views that result from selecting a particular
threshold value (i.e., e = 90).

4.1. Through the lens of Ricci curvature
The main results of applying our curvature-based analysis to

Azure’s private backbone network are shown in the middle
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column in Figure 3. Panel (a) in the Azure column shows
that there is a broad spectrum of performance thresholds,
mainly due to the inclusion of submarine cables that result
in residual latencies that tend to be significantly larger
than those encountered in a strictly intra-continental set-
ting. The threshold value of 60 results in the first edges
with negative curvature and Azure’s connectivity structure
at that threshold is shown in panel (c). It clearly identifies
the existence of two geographically meaningful connected
components. One of these connected components appears
as a pronounced North America-Europe cluster within
which Azure operates a richly connected physical infra-
structure—all intra-North America edges have positive cur-
vature as do all intra-Europe edges. The formation of this
cluster is due to three edges that connect Virginia, US, and
the UK-Ireland. Consulting the Azure global network map*’
confirms the existence of direct under-sea cables between
Ashburn, VA, and London, and between Boydton, VA, and
Dublin. The other connected component is an easily dis-
cernible Asia-Pacific cluster with a more unbalanced inter-
nal connectivity compared to the North America-Europe
cluster. In particular, while Mumbai is only connected to
Singapore, there exists rich connectivity among the other
four intra-cluster cities Singapore, Hong Kong, Seoul, and
Tokyo. This intra-cluster structure suggests the existence
of an undersea cable between Mumbai and Singapore.
However, since this edge’s curvature is not negative, we can
conclude that its role is not critical for connectivity within
the Asia-Pacific cluster.

Next, examining Azure’s connectivity structure at
threshold 90 in panel (d), we notice that the entire North
America-Europe cluster now consists exclusively of posi-
tively curved edges, which implies the existence of rich fiber
connectivity linking the two continents by means of trans-
atlantic cables with a diverse set of landing points. As for
the Asia-Pacific cluster at this threshold, we observe that it
now also includes Sydney. Its intra-cluster connection fab-
ric is also positively curved but is far more sparse than that
of the North America-Europe cluster. Importantly, at this
threshold, a single negatively curved edge emerges between
Tokyo and Quincy, WA (shown in red) that connects the
North America-Europe and Asia-Pacific clusters. However,
itis only at threshold 120 (see panel (e)) that South America
merges with the fused North America-Europe and Asia-
Pacific cluster, and South Africa does not merge with the
rest of the graph until a threshold beyond 120. Only at that
point does the resulting graph represent the global-scale
infrastructure of Azure as a single connected component.

These observations are further refined by examining the
edge importance and edge performance heatmaps in pan-
els (f) and (g). To illustrate, we focus on the dark red cell
corresponding to the edge between Mumbai-London. As
mentioned earlier, this edge first emerges between thresh-
olds 90 and 120. While the appearance of light-red colored
cells surrounding the Mumbai-London link indicates the
emergence of more connectivity for transporting traffic
between Europe and Asia, a look at the performance heat-
map shows that these alternative routes all have similar
suboptimal performance (for reasons that become clear



Figure 3. Curvature-based analysis results for AWS (left), Azure (middle), and GC (right): (a) Boxplots of curvature values for different
thresholds; (b)—-(e): threshold-based graphs projected onto a world map for thresholds ¢ = 30, 60, 90, and 120; (f ) Edge importance (Ricci
curvature) heatmaps; (g) Edge performance (residual latency) heatmaps; and (h) Sankey diagrams.
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research highlights

when discussing the manifold view in Section 4.2). More
generally, the performance heatmap in panel (g) reveals
four distinct aspects. First, we see the emergence of three
separate well-performing regions: North America (upper
left), Europe (center), and the Asia-Pacific region (lower
right). Second, South America (Sao-Paulo) and Africa
(Johannesburg) are only weakly connected to the rest of
the network and experience therefore overall sub-par per-
formance. Third, while the Europe and North America
clusters are composed of uniformly light-colored cells, the
cells that make up the Asia-Pacific cluster are colored in dif-
ferent shades of green, indicating that the different cities
in this cluster connect via links that vary in performance.
Fourth, the links between North America (or Europe) and
the Asia-Pacific area emerge in a rather homogeneous man-
ner, indicating overall consistent performance.

Finally, the Sankey diagram in panel (h) shows how the
different regions that make up Azure’s global-scale infra-
structure merge to form a single connected component
as the performance threshold increases. It summarizes
in a single visual the above-mentioned key observations
we derived from our curvature-based analysis of Azure’s
infrastructure, including (1) the Europe and North

Figure 4. Manifold view of AWS (top), Azure (middle), and GC
(bottom) at threshold 90. The corresponding graph representations
are shown in Figure 3, row (d).
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America clusters form early on at low thresholds, (2) the
Asia-Pacific cluster forms at higher thresholds, (3) the inte-
gration of Johannesburg and Sao-Paulo into a connected
graph representing the Azure global network takes place
at yet higher thresholds, and (4) the emergence of the
Tokyo-Quincy, London-Mumbai, Dublin-Boydton, and
London-Ashburn links as critical connections in Azure’s
global-scale infrastructure.

4.2. With the help of manifold views

We complement our curvature-based analysis of the net-
work infrastructure of the three hyperscalers with a depic-
tion of their manifold views. Figure 4 shows their manifold
views for threshold 90, with each sub-figure depicting both
a 2D graph of network connectivity embedded in the surface
for reference and a manifold projected onto a map (where
edges that stop at one side of the boundary of the surface
wrap around the earth and continue on the other side of the
surface’s boundary). We select this threshold because the
resulting manifold views allow for an informative compari-
son of the hyperscalers’ connectivity structures.

The positively curved peaks above the plane qualitatively
confirm and precisely delineate three regions of rich con-
nectivity at the global level for each of the hyperscalers:
North America, Europe, and Asia/Australia. However, the
boundaries of the richly connected regions and the nature
of the connectivity between them vary considerably for the
three networks. For example, GC’s connectivity fabric in
the Asia/Australia region is more efficient (i.e., has a higher
degree of positive curvature) compared to that of Azure or
AWS. Representing a comparatively compactregion, Europe
appears as the most positively curved region for each of the
three hyperscalers. In contrast, North America shows two
positively curved peaks, one for the West coast region and
a more pronounced one for the Northeastern region of the
US. Of the three networks, AWS shows the most consistent
positive curvature overall for North America.

As far as inter-region connectivity is concerned, each
of the positively curved regions is connected to two others
by approximately east-west pathways generating negative
curvature. However, while for all three hyperscalers, trans-
Atlantic connectivity between Europe and North America is
in general fairly efficient, with multiple high-performance
edges, their Europe-Asia connectivity is overall poor, except
for AWS whose manifold view also shows transpacific paths
with neutral curvature (in contrast to GC and Azure’s mani-
fold views that show only negatively curved transpacific
edges). This manifold view-derived observation further
qualifies our curvature analysis-based findings about a gen-
eral lack of connectivity between Europe and Asia/Australia.
In particular, the manifold view can be used to identify
areas of geopolitical tension that cause sub-optimal routes
or examine the impact of particular topographical features
(e.g., mountain ranges). For example, placing the earlier-
mentioned Mumbai-London edge on a geographic map (as
in the case of AWS) shows that any shortest path cable route
would have to cross Iran and the Black Sea. However, exist-
ing geopolitical tensions afflicting those regions prevent
most hyperscalers from targeting these areas for new cable



deployments, requiring them to instead use alternative
suboptimal routes, at least in the foreseeable future.

5. CONCLUSION AND OUTLOOK

This article is motivated by recent developments that
make it more onerous for third-party researchers to obtain
data or study the connectivity of the increasingly impor-
tant private infrastructures of today’s hyperscalers. Our
main contribution is a newly proposed methodology for
elucidating connectivity in known or inaccessible network
infrastructures by leveraging lightweight and readily avail-
able latency measurements and demonstrating the use of
mathematical techniques from the field of Riemannian
geometry for analyzing these measurements. Specifically,
our approach is based on the application of Ricci curva-
ture, which allows for encoding of a composite view of
underlying physical infrastructure and deployed routing
configurations into weighted graph representations of a
set of measured network latencies. We illustrate our cur-
vature-based analysis with examples of three hyperscalers
and demonstrate its ability to expose critical aspects of
their private connectivity fabrics.

The different threshold-based graph structures gener-
ated from a collection of simple pairwise latency measure-
ments between nodes in a network allow for a geometric
representation of the data as a complex topological space
in the form of an idealized smooth manifold. Such mani-
folds offer unprecedented opportunities for character-
izing a network’s underlay that gave rise to the measured
latencies in the first place. Unraveling the presumed met-
ric space structure of this complex geometric object and
leveraging it to identify pertinent and otherwise hard-to-
detect features of a given network’s connectivity fabric and
exploiting them in practice looms as a promising avenue
for future work.

Our generated manifold views are the first foray into this
largely uncharted territory of using manifold representa-
tions of network measurements to visualize a network’s
performance or behavior in novel and informative ways.
In particular, for the latency measurements considered in
this work, the generated manifolds distill the main findings
from our curvature-based analysis of each of the considered
hyperscalers’ connectivity fabric into a single view. This
view provides a snapshot of that hyperscaler’s delay space
where the measured latency between any pair of embed-
ded geolocated nodes is realized as geodesic distance. We
hope that our work encourages further efforts on this topic,
including the development of animations suitable for visu-
alizing the results of a longitudinal study of a network’s
delay space or for using the network’s delay space to under-
stand the effects of real-world or artificially-induced infra-
structure failure events (e.g., earthquakes, the addition of
particular links); the use of metrics other than latency (e.g.,
throughput, packet loss); and applications to non-private
network infrastructures such as the public Internet.
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