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Abstract

Understanding and predicting turbulent flow phenomena remain a chal-
lenge for both theory and applications. The nonlinear and nonlocal
character of small-scale turbulence can be comprehensively described in
terms of the velocity gradients, which determine fundamental quantities
like dissipation, enstrophy, and the small-scale topology of turbulence. The
dynamical equation for the velocity gradient succinctly encapsulates the
nonlinear physics of turbulence; it offers an intuitive description of a host
of turbulence phenomena and enables establishing connections between
turbulent dynamics, statistics, and flow structure. The consideration of fil-
tered velocity gradients enriches this view to express the multiscale aspects
of nonlinearity and flow structure in a formulation directly applicable to
large-eddy simulations. Driven by theoretical advances together with grow-
ing computational and experimental capabilities, recent activities in this area
have elucidated key aspects of turbulence physics and advanced modeling
capabilities.
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Large-eddy
simulations (LES):
unsteady
computational fluid
dynamics performed
with a grid spacing
that resolves
larger-scale turbulent
motions but not
smaller-scale eddies
that need subgrid
modeling

Vortex stretching:
occurs when a vortex is
subjected to an
extensional strain rate
along its axis of
rotation, increasing the
vorticity magnitude

Direct numerical
simulation (DNS):
fully resolved
numerical solution of
the Navier-Stokes
equations
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1. INTRODUCTION

The phenomenon of turbulence arises in diverse scientific and engineering flows. As such, our
ability to understand, predict, or manipulate turbulent flows is a key challenge of critical pursuits
ranging from oceanography, atmospheric science, and climate to transportation, energy produc-
tion, and even epidemiology. Despite its evident variety of manifestations, turbulence tends to
produce salient and ubiquitous features, including (#) high rotationality, (#) enhanced kinetic en-
ergy dissipation rate, and (¢) intrinsic multiscale structure. As a tool to probe turbulence dynamics,
the velocity gradient tensor (VGT), together with its coarse-grained generalization, offers a unique
advantage in its potential to connect the statistics, dynamics, and coherent structures of turbulence
in a unified multiscale framework. The statistics of (coarse-grained) velocity gradients straight-
forwardly display the scaling and intermittency observed in both the inertial and viscous ranges
of scales. The dynamics of (coarse-grained) velocity gradients, from a Lagrangian perspective, en-
code many of the peculiar nonlinear features of turbulence, such as the geometrical alignment
tendencies that support self-amplification and the energy cascade to small scales. The multiscale
coherent structures of turbulence are intuitively described by (coarse-grained) velocity gradients
in terms of the fundamental rotational and dissipative nature of turbulence, for example, vortices
or strain sheets at various scales. Additionally, coarse-grained velocity gradients naturally emerge
as key aspects of turbulence modeling for large-eddy simulations (LES) because full computational
resolution of all scales is prohibitively expensive for most applications.

The description of the multiscale structure of turbulence in terms of rotational structures has
a long history that can be traced to Richardson’s (1922) famous rhyme that first described the
energy cascade as interactions between “big whirls,” “little whirls,” and “lesser whirls.” Taylor
(1938, p. 23) more explicitly connected vorticity dynamics with the enhancement of dissipation
by using the concept of vortex stretching:

It seems that the stretching of vortex filaments must be regarded as the principal mechanical cause of
the high rate of dissipation which is associated with turbulent motion.

It appears to be Onsager who first used the word “cascade” to describe this process (Eyink &
Sreenivasan 2006). Onsager (1949, p. 282) synthesized his cascade phenomenology with Taylor’s
vortex stretching mechanism:

Since the circulation of a vortex tube is conserved, the vorticity will increase whenever a vortex tube is
stretched. [...] This process tends to make the texture of the motion ever finer, and greatly accelerates
the viscous dissipation.

In Onsager’s view, the energy cascade is enabled by interactions of “velocity gradients which
belong to wave-numbers” (p. 285) over the range of scales present in the flow. Thus, early descrip-
tions of the energy cascade were often framed in terms of multiscale velocity gradient dynamics
and, more specifically, multiscale vortex stretching.

In retrospect, it may seem strange that the early understanding of enhanced dissipation rate
should have focused so much on vorticity dynamics as opposed to the full velocity gradient
dynamics. Nonetheless, the centrality of vortex stretching as the mechanism of the energy
cascade has been thoroughly ingrained in the minds of generations of turbulence researchers
by the collective impact of these luminaries and the influential textbook by Tennekes & Lumley
(1972). In fact, Betchov (1956) introduced two valuable statistical relations that more explicitly
relate vorticity and strain rate in homogeneous, divergence-free flows. While they are pervasive
influences on our understanding of turbulence, these works predate the emergence of powerful
digital computers for direct numerical simulations (DNS), as well as modern high-resolution
experimental measurements.
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Along with DNS, theoretical research by Vieillefosse (1982, 1984) helped ignite the modern
study of velocity gradients. He approximated their evolution along Lagrangian trajectories by
neglecting viscosity and pressure Hessian anisotropy, demonstrating peculiar topological features
that appear on the way to a finite-time singularity. Soon thereafter, the statistical footprint of these
features was observed in DNS (Ashurst et al. 1987) and experiments (Tsinober et al. 1992). The
advent of DNS also revealed the existence of coherent structures such as vortex tubes (e.g., Siggia
1981, She etal. 1990, Jiménez et al. 1993), reminiscent of analytical solutions to the Navier—Stokes
equations (NSEs; e.g., Burgers 1948, Townsend 1951, Lundgren 1982). Wallace (2009) provides
a helpful review of how DNS and experimental capabilities advanced our understanding of the
statistics and structure of velocity gradients.

Given their theoretical and practical importance, it comes as no surprise that velocity gra-
dient statistics have been subject to intense modeling efforts, first by Girimaji & Pope (1990).
The following two decades saw an increase in efforts to model Lagrangian velocity gradients, as
summarized by Meneveau (2011). Section 4 of this review highlights the significant progress in
Lagrangian velocity gradient models in the years since.

With the availability of detailed DNS and experimental data, the concept of strain-rate self-
amplification emerged as an alternative to vortex stretching for a mechanistic account of the
energy cascade. Whereas vortex stretching (Taylor 1938, Onsager 1949) produces enstrophy via
the interaction of vorticity with the strain rate, the strain-rate tensor also amplifies itself through
nonlinear self-advection, the details of which are explored in the textbook by Tsinober (2009).
Section 3 of this review shows how much has been learned about inertial-range physics in recent
years through the use of new theoretical tools such as filtered velocity gradients and continual
increases in Reynolds numbers available via DNS.

Before addressing filtered velocity gradients (Section 3) and Lagrangian modeling (Section 4),
in Section 2 we introduce the basic properties and behaviors of (unfiltered) velocity gradients while
summarizing recent progress in understanding their dynamics. Our review focuses specifically on
advances in the years since previous treatments of these topics (Tsinober 2009, Wallace 2009,
Meneveau 2011).

2. VELOCITY GRADIENTS: THE DISSIPATIVE SCALES
2.1. A Primer on Velocity Gradient Dynamics: Burgers Equation

A crucial aspect of velocity gradient dynamics is gradient self-amplification, whose essence can be
illustrated with the one-dimensional (1D) Burgers equation (for reviews, see Frisch & Bec 2002,
Bec & Khanin 2007):

B, 1) + ux, £)d,m(x, 1) = vdu(y,t). 1.

Here, u(x, 1) is the velocity field on the line and v denotes the kinematic viscosity. The invis-
cid case (v = 0) may be solved with the method of characteristics along Lagrangian trajectories
Yz, X) [with initial condition Y{#y, X) = X], which are governed by

d d
TVEX)=u@ X)) and  Tu (VX)) =0. 2.

Lagrangian particles simply stream with a constant velocity, Y{z, X) = X + u(X, to)(t — to), until
their trajectories intersect, causing a shock. Considering the velocity gradient 4 = 0,u along a
Lagrangian trajectory yields the following gradient self-amplification equation:

AX, 1)
1+AX, 1)t —to)

%A(Y(t,X),t):—A(Y(t,X),t)z, solved by AY (¢, X),t) =
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Finite-time
singularity: occurs
when a gradient
diverges after a finite
time, corresponding to
a discontinuity in a
field that evolved from
smooth initial
conditions

Strain-rate
self-amplification:
specific type of
gradient self-
amplification due to
nonlinear self-
advection in the NSE;
faster-moving fluid
particles tend to catch
up with slower-moving
ones in their path,
which naturally
increases the
magnitude of
compressive strain
rates
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Figure 1

(@) Velocity field u(x, ) and (b) velocity gradient field A(x, £) of a numerical solution to the viscous
one-dimensional Burgers equation (with v = 0.01) from an initial condition # = sinx. The black arrow
indicates increasing time. (Inset) Maximum negative gradient as a function of time (so/id /ine and dots)
compared with that of the inviscid gradient solution, A(¥(z, X), t) = A(X, 0)/(1 + A(X, 0)z) (Equation 3,
dashed line), which exhibits a finite-time singularity at # = 1.

An initially positive velocity gradient will decay, whereas an initially negative gradient will self-
amplify and eventually develop a singularity at finite time #* = ¢y — 1/A(X #,), corresponding to
the emergence of a shock.

Viscosity regularizes these finite-time singularities (Figure 1). Figure 14 illustrates the emer-
gence of a steep front from a sinusoidal initial condition. Figure 15 shows that the (negative)
gradient increases over time but does not diverge, since it is regularized by viscous diffusion.
Thus, the Burgers example presents the first indication that dynamical effects like viscous diffu-
sion may help regularize the otherwise singular dynamics of gradient self-amplification. Clearly,
the full velocity gradient dynamics in Navier-Stokes turbulence will be much richer because of
three-dimensionality and the additional effects of pressure.

2.2. Velocity Gradient Dynamics

Incompressible flows are described by a three-dimensional (3D) velocity field, u(x, #), satisfying
V - u = 0 and evolving according to the NSE
Dll,' ad p )
=L 4o+ f .
Dt ax; TV f” +
where D/Dt = 0/0t + u - V denotes the material derivative, p(x, ) is the pressure (divided by
density), and v is the kinematic viscosity. The dynamics of the VGT A4;; = 0u;/Ox; are obtained by
taking the gradient of the NSE. The result is (implied summation)
DA;; 3%p af;
Y= A A, — V2A;; - 5.
Dt ketky 8x,8x] v 4 + ax/
Gradient self-amplification/attenuation appears as the first term on the right-hand side, originat-
ing from the advection term in the NSE. It is the 3D equivalent of the —4? term in Equation 3.
The second term is the pressure Hessian (), and the third term results from the viscous term
in the NSE. The last term corresponds to the gradient of any external forcing term in the NSE.
Equation 5 can be interpreted as an equation for the rate of change of the velocity gradients along
Lagrangian trajectories.

The VGT can be decomposed into its symmetric part, the strain-rate tensor, and its
antisymmetric part, the rotation-rate tensor:
1

1
Aj =S+ Wy, Sy=5y+d),  Wy=5(dy— ). 6.
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The strain-rate tensor quantifies the deformation of a local fluid element due to stretching/
compression and determines the local dissipation rate, ¢ = 2vS;S;. The rotation-rate tensor is
directly related to the vorticity pseudovector, W; = —€;w;/2, and therefore to the local enstro-
phy, @ = —2W;;W;;. Alternative decompositions have been proposed; these include the Schur
decomposition (Keylock 2018), triple decomposition (Das & Girimaji 2020, Nagata et al. 2020),
and Rortex-based decomposition (Gao & Liu 2019).

Equation 5 can be decomposed into the dynamics of the vorticity and the strain-rate ten-
sor, from which we can see how their (squared) magnitudes (enstrophy and dissipation) change.
Neglecting the force, we find

D (ww;) 1 dw; 0w,

——— = ;S0 + vV | sww; ) — -, 7.
Dt @ ]w]‘l'l) <2ww> vax]- 8x]

S = 08,8 48k — =wiSijw; — 28 —— 4+ vV (S,;S;) — 2v—2L Y 8.
Dt #OkN T 3 OS] L Y (SiS) = 20 5 e

illustrating the mutual coupling of the two fields. The sum of Equations 7 and 8 gives the rate of
change of A;A;; = S;S; + w;w;/2.

Vortex stretching/tilting (S;w;), which underlies enstrophy production (w;Sjw;), can be best
understood in a frame in which the strain-rate tensor is initially diagonal. Since S; = 0 due to
incompressibility, the three real eigenvalues sum up to zero. Vorticity will then be amplified along
the direction of the largest eigenvalue. As a result, the vorticity vector tilts toward alignment with
the eigenvector of the largest eigenvalue. However, numerics and experiments show a somewhat
counterintuitive result: The vorticity aligns more often with the eigenvector corresponding to the
intermediate eigenvalue (Ashurst et al. 1987, Tsinober et al. 1992), and this preferential alignment
is even stronger for intense vorticity events (Buaria et al. 2020a). Xu et al. (2011) shed light on
this paradoxical observation by showing that the vorticity does tend to align with the eigenvector
corresponding to the largest eigenvalue when the vorticity is sampled at a time lag behind the
strain rate along a Lagrangian path. The physical picture behind this observation is quite intuitive:
While vorticity dynamically tends to align with the eigenvector of the largest eigenvalue, the
strain eigenframe continues to evolve in time. As a result, the dynamically expected alignment
can be detected under a time lag, whereas the instantaneous alignment shows the counterintuitive
preferential alignment with the intermediate eigenvector.

Furthermore, Ni et al. (2014) revealed that vorticity aligns with the eigenvector of the largest
eigenvalue of the (left) Cauchy—Green tensor (i.e., cumulative strain over a finite time along a
Lagrangian path; see the sidebar titled Velocity Gradients and Fluid Element Deformation). In
both of these observations, the Lagrangian timescale of dynamical relevance is the Kolmogorov
timescale, 7, = +/v/{¢). Providing more insight, Hamlington et al. (2008) and Buaria & Pumir
(2021) used a decomposition of the Biot—Savart integral that relates strain and vorticity to demon-
strate that vorticity aligns with the most extensional eigenvector when its self-induced (i.e., local)
strain rate is removed.

In addition to vortex stretching, the vorticity is subjected to viscous diffusion and the antisym-
metric part of the forcing. Viscous tilting of vorticity distinguishes cumulative vortex stretching
from cumulative material line stretching (Holzner et al. 2010, Johnson & Meneveau 2016b), an
important correction to Taylor (1938) and the naive use of Kelvin’s theorem for viscous flows. In-
terestingly, Constantin & Iyer (2008) have generalized Kelvin’s theorem to viscous flows by using
a stochastic representation.

The evolution equation for the strain-rate tensor features a strain self-amplification term
(—=SixSk), which gives rise to the dissipation production term (—25;S;S;;) in Equation 8. In
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Betchov constraints:

VELOCITY GRADIENTS AND FLUID ELEMENT DEFORMATION

The strain-rate tensor, S, describes the instantaneous rate of deformation of a fluid element. In contrast, the cu-
mulative deformation of a fluid element over a finite time contains information from Lagrangian history that is
valuable for analyzing and modeling turbulence physics. A Lagrangian trajectory, Y(z, X), starting from the location
X at time #) advances as dY(z, X)/dt = u(Y(z, X), 7). The gradient of the Lagrangian map is the deformation gradient
tensor, D;; = 0Y;/0X], and its evolution is determined by the velocity gradient along the Lagrangian trajectory:

d, _ 0% 0% _
e X,

Aikaj; with D,’j(l’o) = 51/ SBI1.

The deformation gradient tensor maps an initially spherical fluid element onto an ellipsoid based on the cumulative
rotation and deformation under the action of the Lagrangian velocity gradient over a finite time period. The real
eigenvalues and orthonormal eigenvectors of the (left) Cauchy—Green tensor, C; = D Dj, characterize the ellipsoid
of deformation. Its temporal evolution is given by

d
acij = AiCij + CaAjr, SB2.

and its formal solution may be written in terms of time-ordered exponentials of the time-integrated Lagrangian
VGT.

the strain-rate eigenframe, S3Sy; is diagonal and bears some resemblance to the quadratic self-

amplification in the 1D Burgers equation (Equation 3). Furthermore, vortex stretching locally
decreases the dissipation rate (Equation 8), as emphasized by Tsinober (2009). Finally, the pres-

sure Hessian, viscous diffusion, and the symmetric part of the forcing are acting, too, leading to

complex dynamics of the strain rate.

2.3. Invariants of the Velocity Gradient Tensor

Enstrophy and dissipation are examples of invariants (i.e., scalar quantities characterizing the VGT

that are independent of the orientation of the coordinate system). A total of five invariants are
needed to fully characterize the VGT (Meneveau 2011). To simplify the discussion even further,
however, it is common to consider the second and third principal invariants of the VGT (the first

principal invariant is zero due to incompressibility):

1 1 1 1 1 1
Q = —EA,'kAk,' = —W;w; — =S S,'j, R= _gA'jAjkAIei = —§S,-J-Sjk$k,- - Zw,-S,-jwj. 9.

4 27

Q expresses the balance of enstrophy and strain-rate-squared magnitude (Figure 2), whereas

R expresses the balance between enstrophy production (vortex stretching) and dissipation pro-
duction (strain self-amplification) (Equations 7 and 8). Thus, a good deal of information about

statistical equalities for Figure 3a).

VGT invariants in
homogeneous
turbulence that are a
consequence of

incompressibility strain production is directly proportional to average enstrophy production. One consequence is
(ﬁsollj)midal velocity that the net (local and nonlocal) effect of vortex stretching is to enhance the global dissipation
€

the velocity gradient can be captured by its position in QR space (depicted schematically in
Both Q and R can be written as the divergences of a vector; therefore, their averages vanish

for homogeneous flows (Betchov 1956). In particular, (Q) = 0 has the consequence that average
enstrophy is equal to the average strain-rate-squared magnitude, and (R) = 0 means that average

rate (Carbone & Bragg 2020), even though it locally decreases it (as a sink in Equation 8)

(Tsinober 2009). While additional Betchov constraints have been sought for a long time,
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M Large enstrophy
| Large squared strain

Figure 2

(@) Visualization of large enstrophy (b/ue) and large squared strain (red) by means of the second invariant Q from a simulation of
homogeneous isotropic turbulence (Re; ~ 280). () Zoomed-in view of the boxed region in panel 4. Since these strong events are
spatially colocalized, their contribution to the pressure partially cancels (Equation 10). Abbreviation: PDEF, probability density function.
Figure provided by Cristian C. Lalescu.
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Figure 3

(#) Qualitative description of the QR space in terms of the dominant gradient amplification (or attenuation) mechanism in each
quadrant. (b)) QR-space trajectories of the restricted Euler system (Equation 14). (Almost) all initial conditions experience a finite-time
singularity dominated by strain-rate self-amplification in the lower-right quadrant. (¢) Joint PDF of Q and R from DNS of HIT at
Re;. ~ 420 (Li et al. 2008), whose asymmetry can be associated with the restricted Euler dynamics. Abbreviations: DNS, direct
numerical simulations; HI'T, homogeneous, isotropic turbulence; PDE, probability density function. Figure adapted with permission
from Johnson & Meneveau (2017a); copyright Cambridge University Press.
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Carbone & Wilczek (2022) recently suggested that the two Betchov constraints are the only
possible ones for homogeneous isotropic turbulence.

The Betchov constraints relate averages of enstrophy and dissipation, but the gradient
self-amplification mechanisms tend to generate intermittent extreme events. The related non-
Gaussianity increases with Reynolds number. Recent growth in computing power has led to
unprecedented access to extreme events (Ishihara et al. 2009, Yeung et al. 2015, Buaria et al. 2019,
Yeung & Ravikumar 2020), which appear to have their own peculiar features (see also Figure 2).
Some studies have identified real-space structures smaller than the Kolmogorov scale, while other
studies have used a spectral approach to examine the far-dissipation range of scales (Schumacher
2007, Khurshid et al. 2018, Buaria & Sreenivasan 2020, Buaria & Pumir 2022).

2.4. Relation to the Pressure Field

The trace of Equation 5 yields the pressure Poisson equation V?p = 2Q, so the trace of the pressure
Hessian can be expressed in terms of the local velocity gradient. Equation 9 shows that the local
pressure concavity can be further expressed in terms of the difference between the enstrophy and
the squared strain (Figure 2). For 3D unbounded domains, the pressure is then given by
1 't
sr)— L [ a0 Q60D

. 10.
2 |x — x/|

This relation suggests an analogy with electrostatics, where the electrostatic potential is deter-
mined by a (weighted) integration of the charge density over the whole space (e.g., Douady et al.
1991, Nelkin 1994, Pumir 1994). Contributions from (colocalized) positive and negative electric
charges can cancel in this integral, which can give rise to a screening effect like that observed,
for example, when adding a test charge to an otherwise neutral plasma (for a turbulence-related
discussion, see Davidson 2011 and references therein). From the Betchov constraints we know
that the enstrophy and the squared strain on average balance each other, suggesting that cancel-
lations of the two fields play a role in determining the pressure from the velocity gradient field.
"This idea was recently confirmed by Vlaykov & Wilczek (2019), who showed that, depending on
the local flow conditions, the velocity gradient contributions to the pressure may come from a
neighborhood that is more local than naively expected on the basis of the nonlocal expression in
Equation 10.

The nonlocality of the pressure complicates velocity gradient dynamics. One can regroup the
nonlinear and pressure terms in Equation 5 into local (velocity gradient self-amplification and
isotropic pressure effects) and nonlocal (deviatoric pressure effects) contributions:

?p 1 ?p 1
AiA i —_— = A,A '_7AmnAnm5i' _7VZ 81“ . 11.
kel + 8x13x] ( kel 3 ]) + (E)x,ax] 3 p ])
local nonlocal I'Nlij

The nonlocal (deviatoric) part of the pressure Hessian 17,7 can be obtained from taking second
spatial derivatives of Equation 10 (Ohkitani & Kishiba 1995):

Hyj(x,1) = 1 /l:vdX/ |: % 3 i = %) = xj)j| QX 1), 12.

x —x/|3 x —x|°

where P.V. denotes the principal value of the integral. Thus, the pressure Hessian at a single point
depends on the variation of Q around that point. Like the NSE, the velocity gradient equation is
therefore a nonlinear and nonlocal integro-differential equation. As we discuss in Section 4, the
nonlocal pressure Hessian contributions represent a key challenge in developing low-dimensional
stochastic models for velocity gradients.
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2.5. Restricted Euler

Analogous to the 1D inviscid Burgers equation, the restricted Euler equation introduced by
Vieillefosse (1982, 1984) provides a convenient conceptual model for exploring gradient self-
amplification in 3D solenoidal velocity fields. It is obtained by considering the VGT evolution
along Lagrangian trajectories and neglecting the viscous and nonlocal pressure Hessian terms in
Equation 5, leaving purely autonomous dynamics for the VGT on each path line:

1
3

d4;;
L = —Apdrj +

AmnAnm 81 . 13.
dt /

A remarkable property of the model is that its dynamics can be reduced to those of the two
principal invariants of the velocity gradient,

do _
de —

dR 2 ,

—3R, i gQ , 14.
which feature an integral of motion (27/4)R(£)* + Q(#)* = const. One can see from Equation 14
that R(z) is a strictly increasing function of time (for Q # 0), so the integral of motion indi-
cates that the system (generically) diverges over time in both variables. Vieillefosse (1982) showed
that this singularity occurs in a finite time, similar to the divergence of the 1D inviscid Burgers
equation outlined in Section 2.1. Empirically, velocity gradients in fluid turbulence do not diverge,
so the neglected pressure and viscous terms must be responsible for preventing singular behavior.
Many features that can be proven for restricted Euler (Vieillefosse 1982, 1984; Cantwell 1992)
can be qualitatively confirmed in statistical biases of real turbulent flows. Examples include two
positive strain-rate eigenvalues and one negative eigenvalue (Lund & Rogers 1994), alignment of
vorticity with the intermediate strain-rate eigenvector (Ashurst et al. 1987), and the tendency
to produce extreme velocity gradients lying along the R > 0 half of the manifold defined by
(27/49)R* + Q* = 0. The latter tendency is evident in the consistent asymmetrical teardrop shape
of the joint probability density function (PDF) of the Q and R invariants in both experimental and
numerical results (Figure 3). The restricted Euler equation thus provides a useful qualitative tool
for interpreting the impact of gradient self-amplification in turbulence.

3. FILTERED VELOCITY GRADIENTS: INTERMEDIATE SCALES
3.1. Properties of Filtered Velocity Gradients
Unfiltered, the velocity gradient highlights the smallest scales of motion. The filtered velocity

field and its gradient are defined using a localized spatial average (Germano 1992),

*® i
7; (x) = // G (r) wi(x 4 r)dr, 4 o, 15.

= b
v ax‘]‘

where G| is the filter kernel function with characteristic width £. Defined this way, filtered velocity
gradients capture the spirit of Richardson’s “big, little, and lesser whirls” and Onsager’s “velocity
gradients which belong to wave-numbers,” providing a scalewise characterization of flow topology,
with adjustable length scale ¢, that maintains a spatial description of the fluid physics. For example,
whirls or vortices at any intermediate scale can be identified using the second invariant of the
filtered VGT, Q¢ = —222;/2 (Figure 44). In addition, filtered velocity gradients can be used
to investigate turbulence dynamics in a formulation directly applicable to LES, an increasingly
popular turbulence modeling framework (Meneveau & Katz 2000, Moser et al. 2021).
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(@) Visualization of smaller vortices interacting with a larger vortex in HIT at Re;, ~ 420 (Li et al. 2008) using an isosurface of the
second invariant of the unfiltered (red/bronze) and filtered (gray) velocity gradient tensor. The reader is encouraged to watch the entire
video provided by Biirger et al. (2012) to appreciate the beauty of multiscale velocity gradient interactions. () Out-of-plane vorticity on
a 2D slice of a 3D HIT simulation at Re; ~ 400, both unfiltered (7)) and filtered using a Gaussian kernel width of 2¢ = 247 (ii) and 2¢ =
96n (iii). The extent of the three images is the same, but the axis labels are changed to show the filter scale; the factor of 2 in 2¢ comes
from the relation to velocity increments (Equation SB3). Abbreviation: HIT, homogeneous, isotropic turbulence. Panel # reproduced
with permission from Biirger et al. (2012).

3.2. Dynamics of Filtered Velocity Gradients and Kinetic Energy
The gradient of the filtered NSE describes the evolution of filtered velocity gradients,

[— _ —¢
DA; _ 71?,(2[- 37 VT 3% T4 N af; 6.
Dr R B A T P
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where D/Dt = 3/3t + W' - V is the material derivative featuring the filtered velocity field. The sec-

ond derivative of t; = w;"

- ﬁfﬁf, the residual stress tensor, captures how smaller-scale motions
affect the filtered gradient. The other terms in Equation 16 correspond to those in the unfiltered
gradient dynamics in Equation 5. In particular, gradient self-amplification (vortex stretching and
strain-rate self-amplification) is an important aspect of filtered dynamics.

Spatial filtering conveniently separates a flow’s total kinetic energy into large-scale energy (that
which is resolved at scale €), K* = %% /2, and small-scale energy (that which is removed by the
filter), ¥ = 7;;/2. The dynamical equations for K* and k* are straightforwardly derived from the
NSE:

EY GRL JR— S—, ¢
Tt TEL o BES, - 7
ok 0¢;

B e = @ ) =27 (S5:8,) + 1T 18.

where @} and ¢} represent their respective net-zero spatial fluxes and the notation for the gener-

alized second moment is t(a, b) = b -3 (for details, see, e.g., Germano 1992, Johnson 2021).
The local exchange rate between large- and small-scale kinetic energy,
¢

¢ _ s
In° = —r,-jSl]-,

19.
quantifies the kinetic energy cascade rate across scale £ at position x and time #. Equation 19 may be
interpreted as the work done by the larger-scale strain rate on the smaller-scale motions (Tennekes
& Lumley 1972, Ballouz & Ouellette 2018).

In the inertial range of scales, n < ¢ < L, assuming approximate local homogeneity,
(ITY) ~ (¢). This relation between an inertial-range quantity and the dissipation rate stands in
close analogy to the Kolmogorov (1941a) four-fifths law, namely —5/(47)((8u,)’) ~ (&), where
8u, denotes the longitudinal velocity increment over scale 7. Following Kolmogorov’s arguments
(commonly abbreviated as K41), the magnitude of filtered velocity gradients may be estimated

as ||KZ | ~ €72/ (for more details, see the sidebar titled Structure Functions, Energy Spectra, and
Velocity Gradients).

3.3. Scale Dependence of Filtered Velocity Gradients

The prominent effects of filtering velocity gradients at scale £ can mostly be accounted for by

12 0253 especially if one sep-

arately considers the viscous and inertial ranges. Scaled in this way, the characteristic teardrop

. . . —t
rescaling according to a scale-dependent timescale, 7, = (||A ||2>

shape of probability in the QR plane changes very little as a function of filter width within the
inertial range (Lozano-Durin et al. 2016, Danish & Meneveau 2018; earlier evidence is given in
Borue & Orszag 1998, van der Bos et al. 2002). The asymmetric shape of the QR PDF is lost as the
filtered velocity gradients become Gaussian near the integral length scale (Naso & Pumir 2005).
Between the viscous and inertial scales, the forces responsible for determining the details change
significantly, as the influence of viscosity fades for £ > n and is largely replaced by the residual
stress term, 927}, /dx;9x;. The effects of the viscous and residual forces on the dynamics projected
to the QR plane are largely similar, with some slight differences (Danish & Meneveau 2018). As
in the unfiltered case (e.g., Figure 3), gradient self-amplification remains a salient influence on
filtered velocity gradient dynamics in the inertial range. The scalewise differences in filtered ve-
locity gradient statistics are most evident in terms of skewness and intermittency in higher-order
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STRUCTURE FUNCTIONS, ENERGY SPECTRA, AND VELOCITY GRADIENTS

Kolmogorov (1941b) used velocity increments, 8u;(r; x) = #;(x + r) — u,(x), to express his similarity hypotheses. A
major focus of turbulence theory has been the determination of inertial-range scaling exponents, ¢, for pth-order
structure functions that scale as ((8u)?) ~ |r|* (Frisch 1995). Filtered velocity gradients are actually local averages

of velocity increments (Eyink 1995):
_ © 9%
A0 = — / f / 3Gt ) suye, x) dr. SB3.
—x 87"]'

Filtered velocity gradients have the added benefit of smoothing out the influence of scales much smaller than £.
A rigorous inequality based on Equation SB3 implies that (||Ke [|7) ~ %=, When this relation is combined with
inequalities for the residual stress, it follows that (IT¢) ~ ¢4 -1, which, together with (I1°) ~ (¢), leads to ¢3 = 1, the
same result as the Kolmogorov (1941a) four-fifths law (Eyink 2007; see also Dubrulle 2019).

The filtered velocity gradient variance can be written in terms of the energy spectrum,

(1&17) =2 /0 T RE®ER) dk, SB4.

where G is proportional to the filter kernel’s Fourier transform. G, =1for kt < 1and rapidly decreases to zero
for k¢ > 1, so the filtered velocity gradient variance is dominated by wave numbers near k# = £~! according to the
inertial-range estimate E(k) ~ k=°/3. Therefore, (llK‘Z 1) ~ £=%3; in other words, £, ~ 2/3. Thus, the filtered velocity
gradient is intimately connected to classical tools such as structure functions and their related theories and results.

moments, which increase with decreasing scale—qualitatively similar to the effect of Reynolds

number on unfiltered gradients. Tom et al. (2021) provide a comprehensive analysis of the scale
dependency of the terms involved in the filtered velocity gradient evolution (Equation 16) written

in the filtered strain-rate eigenframe.

3.4. Vortex Stretching and the Cascade

The strain rate at scale £ will amplify (stretch) vorticity at another scale £’ more than it will atten-

< . . L. .
uate (compress) it if <wf/S,-jw§ ) > 0, which depends on the alignment of the vorticity vector with

strain-rate eigenvectors and the associated eigenvalues. As mentioned above, at the smallest scales

(¢ = ¢’ < n), vorticity preferentially aligns with the eigenvector of the intermediate eigenvalue,
which tends to be positive more than negative (Ashurst et al. 1987, Lund & Rogers 1994). Even
though not statistically well aligned, the largest positive strain-rate eigenvalue is responsible for

the largest share of enstrophy production (Gulitski et al. 2007). This is also true at intermediate

scales, when vorticity and strain rate are filtered at the same scale, £’ = € > n (Fiscaletti et al. 2016,

Doan et al. 2018).

In contrast, smaller-scale vorticity aligns with the most extensional eigenvector of the larger-
scale strain rate, that is, when ¢ < ¢ (Leung et al. 2012, Fiscaletti et al. 2016, Lozano-Duréin et al.
2016). Presumably, this alignment is related to the observation by Xu et al. (2011) that (unfiltered)
vorticity tends to align with the most extensional (unfiltered) strain-rate eigenvector of the time-

delayed strain-rate tensor, and the observation by Hamlington et al. (2008) and Buaria & Pumir

(2021) that vorticity preferentially aligns with the most extensional eigenvector of the nonlocal
strain rate determined by the Biot-Savart integral. The larger-scale strain rate evolves on a slower
timescale, so the smaller-scale vorticity has time to catch up to its most extensional eigenvalue, un-

like the single-scale dynamics described by Xu et al. (2011). Furthermore, the larger-scale strain
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rate will tend to include much more of the nonlocal strain rate compared with small-scale vorticity
and, thus, should inherit the alignment statistics observed by Hamlington et al. (2008) and Buaria
& Pumir (2021). Therefore, vortex stretching is more prevalent than compression at all interme-
diate scales of turbulence, and alignments of smaller-scale vorticity are even more biased toward
the stretching direction of the larger-scale strain rate. In fact, Doan et al. (2018) found that the
predominant vortex stretching interactions in turbulence were due to a strain rate at a scale three
to five times larger than the vorticity filter width (i.e., £ = 3-5¢').

The precise relationship between the cascade rate across scale £ (T1° in Equation 19) and the
filtered VGT at various scales is of considerable interest for connecting known velocity gra-
dient behaviors with energy dynamics. The filtered strain rate at scale £ appears explicitly in
Equation 19, but the connection between the residual stress tensor and filtered velocity gradients

is also required. The nonlinear gradient model of Clark et al. (1979), z/; ~ cZZkagf-k, represents
the first term in an infinite series expansion and is highly correlated with the actual residual stress
(Borue & Orszag 1998). The implied energy cascade rate is

¢ =~ cf? (%wf?iaf - gi@ﬁ,j;) + higher-order terms, 20.
where the leading term is due to this model, in which ¢ is a coefficient determined by the specific
shape of the filter kernel. The leading-order term in this infinite series expansion of the cascade
rate is a sum of enstrophy production (vortex stretching) and dissipation production (strain-rate
self-amplification). The importance of strain-rate self-amplification for the energy cascade has
been more widely recognized in recent decades (Tsinober 2009). Just as the strain rate tends to
amplify vorticity, it also undergoes a self-amplification (or self-attenuation) process due to nonlin-
ear advection, as discussed above in reference to Equation 8. The basic phenomenon of strain-rate
self-amplification can be appreciated by considering again the 1D Burgers equation (Equation 1),
which amplifies negative gradients (i.e., compressive strain rate; see Equation 3). The same ba-
sic effect happens in Navier-Stokes turbulence, leading to a scalewise energy transfer similar to
vortex stretching (Figure 5).

The Betchov constraint (R*) = 0 shows that (wf?f]af) /4= _<§fj§jk§ii> /3 for locally homoge-

neous turbulence at scale £. Thus, to first-order approximation, the cascade rate can be attributed
mostly to strain-rate self-amplification (75%); the contribution of vortex stretching appears

a b

= |\ost positive eigenvalue
== lost negative eigenvalue
Intermediate eigenvalue

Figure 5

Schematic visualization of vortex stretching and strain self-amplification. (#) Vorticity (indicated by a yellow fluid element), which is
aligned with the eigenframe of the strain-rate tensor, is stretched along the direction of the eigenvector corresponding to the most
positive eigenvalue (red) and is compressed in the two other directions [i.e., eigenvectors corresponding to the most negative eigenvalue
(blue) and the intermediate eigenvalue (green)]. (b) In a straining region, the negative eigenvalue self-amplifies similarly to the gradient
in the 1D Burgers equation, accompanied by a compression of a fluid element (yellow) in the corresponding direction. Both dynamical
effects contribute to scalewise energy transfer by generating smaller-scale structures. Figure provided by Lukas Bentkamp.
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weaker (25%) in this approximation. Eyink (2006) built a multiscale gradient expansion model
for the residual stress based on band-pass filtering that generalized Equation 20, with leading-
order terms showing the same three-to-one ratio of strain self-amplification to vortex stretching
in terms of contributions to the energy cascade. More recently, Carbone & Bragg (2020) used the
equation for velocity increment dynamics (de Karman & Howarth 1938, Hill 2001), with trun-
cation of an infinite series, to arrive at an equation very similar to Equation 20. They similarly
concluded that 75% of the cascade rate is due to strain self-amplification and only 25% is due
to vortex stretching. The fundamental agreement between filtering-based and increment-based
methods again highlights the analogy between filtered gradients and velocity increments. How-
ever, the common reliance on truncating an infinite series expansion leaves some room for doubt
as to the role of higher-order terms.

To this end, Johnson (2020, 2021) demonstrated that the residual stress tensor for Gaussian
filters with scale £ can be written in terms of filtered velocity gradients at £ and all smaller scales
¢’ < £ without the need to truncate an infinite series expansion. This result provides an exact
relationship between the energy cascade rate across scale £ and multiscale velocity gradients at
£ < £.Thus, the cascade rate can be written as the sum of five terms: T1* = T, + IT¢, + M5 +

<ot =t . . ;
1Y, + 14, Here, 14, = —¢2S;,S,S,; quantifies the cascade rate due to single-scale strain-rate self-

ij
amplification at ¢, and 1}, = ezaﬁfjaﬁ. /4 represents the cascade rate from single-scale vortex
stretching at £. The remaining three terms represent multiscale interactions. The strain rate at
scale £ amplifies the strain rate and vorticity at scale £’ < ¢, giving rise to the I1;; and I1,,; portions
of the cascade rate. The final term, I1,;, can be thought of as a cascade rate due to vortex thinning by
larger-scale strain rate. Vortex thinning (I15) has a negligible contribution to the average cascade
rate in three dimensions for ¢ in the inertial range (Johnson 2020). However, it is the only one of
the five terms that does not vanish for two dimensions—so it must represent the mechanism of
the two-dimensional 2D) inverse energy cascade (Johnson 2021). The energy cascade is therefore
directly expressed as the sum of multiscale strain self-amplification and vortex stretching, with the
former (T4, + %) providing ~5/8 and the latter (T1¢| + I1¢,) supplying the remaining ~3/8 on
the basis of DNS evidence. The contribution of vortex stretching is predominantly from multiscale
interactions (I1%,) rather than the single-scale term (I1,,), consistent with evidence from Doan
et al. (2018). Yang et al. (2023) built on Johnson’s (2020, 2021) analysis by using a generalized
multiscale Betchov relation to provide analytical arguments for (T, + IT) > (I, + I1,,).

Note that this line of research mostly describes the average cascade. Carbone & Bragg (2020)
found that vortex stretching plays a stronger role in fluctuations and intermittency in the cas-
cade. The use of conditional statistics (e.g., Buaria et al. 2020b) may prove fruitful for further
examination of cascade fluctuations.

3.5. Efficiency of the Cascade

Ballouz & Ouellette (2018) pointed out that Equation 19 is an inner product of two symmetric ten-
sors, so the energy cascade rate depends not only on the magnitude of the strain-rate and stress ten-
sors but also on the relative alignment of their (orthogonal) eigenvectors. In fact, analyses of DNS
data demonstrate that the average energy cascade efficiency of such alignment is less than 50%
(Ballouz & Ouellette 2018, Ballouz et al. 2020). Johnson (2021) computed the efficiency of each of
the five terms in the exact decomposition of the cascade rate. The cascade efficiency of single-scale
mechanisms, I, and I , is even lower than the total cascade efficiency. However, the multi-
scale versions of strain-rate self-amplification and vortex stretching show efficiencies above 70%,
consistent with previous observations that smaller-scale vorticity better aligns with the largest
eigenvalue of larger-scale strain rate (Leung et al. 2012, Fiscaletti et al. 2016). Thus, while filtered
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velocity gradient dynamics at a given scale £ lead to relatively inefficient alignments, smaller-scale
velocity gradients align with larger-scale strain rate much more efficiently for energy transfer.

3.6. Lagrangian Nature of the Cascade

The energy cascade at scale € occurs in the context of a flow with stronger larger-scale motions
that sweep smaller-scale features (Drivas et al. 2017). This Lagrangian nature of the cascade was
demonstrated by Wan et al. (2010), who computed the correlation coefficient of the energy dissi-
pation rate with the energy cascade rate at an earlier time along a Lagrangian trajectory. Their key
result demonstrated that the correlation peaks for a finite time lag Atn,, ~ €%/?,in agreement with
K41 scaling, if the correlation is calculated along Lagrangian trajectories, whereas the equivalent
Eulerian time correlation showed monotonic decay with increasing time lag. This finding comple-
mented a study by Meneveau & Lund (1994), who demonstrated a similar Lagrangian correlation
effect for scalewise kinetic energies.

The Lagrangian nature of the cascade was further highlighted by Ballouz et al. (2020). Building
on the insight obtained by Ni et al. (2014) that vorticity alignment improves with cumulative
Lagrangian strain over a finite time (the Cauchy-Green tensor), these authors showed that the
efficiency of the cascade improves when considered in a fully Lagrangian way (using the Piola—
Kirchoff stress tensor). In particular, they found that the efficiency for I1* calculated in this way
peaks for a time interval that scales with K41 scaling, At;n,, ~ ¢2/°.

3.7. Irreversibility of the Cascade

Cascade dynamics at intermediate scales are assumed to be independent of viscosity, and the
Euler equations are formally time reversible. Nonetheless, inertial dynamics can establish irre-
versibility in the statistical sense, even in the absence of viscosity (see section 3.1.3 of Davidson
2015). Vela-Martin & Jiménez (2021) numerically established an inverse energy cascade (from
small to large scales) via specialized initial conditions, namely, reversing a velocity field obtained
from decaying isotropic turbulence while using a time-reversible stress model. Averaging over
an ensemble of simulations, they showed that the specialized initial condition can lead to a sus-
tained inverse energy cascade, associated with vortex compression and strain-rate self-attenuation,
revealing a mirrored teardrop shape in the QR PDF (Figure 6). However, with any slight pertur-
bation from the specialized initial conditions, the dynamics quickly diverged from the inverse
cascade to reestablish a forward cascade with strain self-amplification and vortex stretching. The
results showed that the transition from inverse to forward cascade occurred simultaneously with
the change in asymmetry of the QR PDF to the standard teardrop orientation (Figure 6). The

Piola-Kirchoff stress:
a representation of the
force per unit area
according to a
reference state, back in
time along a
Lagrangian path

(4 ol,11)

Figure 6
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Isocontours of the QR probability density function from the filtered velocity gradient for four sequential times with perturbed
time-reversed initial conditions. The QR space is colored at each time by the conditionally averaged cascade rate, (I1¢|Q, R).

Figure adapted with permission from Vela-Martin & Jiménez (2021) (CC BY 4.0).
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asymmetry is most noticeable in the lower half of the QR plane, where the strain rate is dominant.
These results are strong evidence that the direction of the energy cascade is set not by viscous
dissipation but rather by inertial dynamics, predominantly strain-rate self-amplification. Viscosity
allows for a stationary energy cascade by removing energy (preventing equipartition).

3.8. Implications for Large-Eddy Simulation Modeling

LES requires an approximation for t;, typically as a function of the local resolved VGT, A Eddy
viscosity models are common in practice (Meneveau & Katz 2000, Moser et al. 2021), but they
assume instantaneous alignment between the strain-rate and residual stress eigenvectors as well as
proportionality of their eigenvalues. The low cascade efficiency reported by Ballouz & Ouellette
(2018) contradicts this assumption and concisely demonstrates the physical flaws of an eddy vis-
cosity model. However, the higher efficiencies of multiscale interactions (I1; and I1,;,) shown by
Johnson (2021) present physical evidence in support of a mixed model consisting of a nonlinear
gradient component that exactly represents the single-scale stresses (Il and IT,;) plus an eddy
viscosity component that approximates stresses arising from multiscale interactions.

The dynamic procedure presented by Germano et al. (1991) and Lilly (1992) is a popular LES
strategy for determining model coefficients using a test filter with width £’ > £ together with the
Germano (1992) identity via assumed scale similarity. The theory developed by Johnson (2020,
2021) for energy cascade analysis also offers an alternative dynamic model that can be used to find
coefficients by pen and paper, avoiding the need for a test filter calculation (Johnson 2022).

Finally, Vela-Martin (2022) devised a clever optimization scheme to demonstrate that a
modified stress tensor with almost zero backscatter (i.e., local events of IT° < 0) can be formed
with identical divergence as ;. Therefore, the filtered NSE is unchanged by the near elimination
of backscatter, implying that the incorporation of backscatter is not a necessary feature of accurate
LES models.

4. LAGRANGIAN VELOCITY GRADIENT MODELS

Equation 5 (and its multiscale generalization in Equation 16) constitutes an attractive starting
point for modeling because one of the main dynamical effects, gradient self-amplification, appears
in closed form. The pressure Hessian and viscous diffusion, however, represent unclosed terms
which need modeling in this framework.

4.1. A Brief Summary of Velocity Gradient Modeling Prior to 2010

"To establish the necessary background for a review of more recent progress, this section provides
an abridged account of velocity gradient modeling in the years prior to Meneveau’s (2011) re-
view, which presents a more thorough treatment. The simplest approach, neglecting the nonlocal
pressure Hessian and viscous term, gives the restricted Euler model, which results in a finite-time
singularity (see Section 2.5) (Vieillefosse 1982, 1984; Cantwell 1992). To obtain nonsingular dy-
namics that compare quantitatively with turbulence data, modeling of the unclosed pressure and
viscous terms is evidently unavoidable.

One of the most influential works in the early development of Lagrangian velocity gradient
models (Chertkov et al. 1999) was not based on the unfiltered (viscous range) velocity gradient
equation (Equation 5). Chertkov et al. (1999) as well as Naso & Pumir (2005) modeled the dis-
persion of a tetrad of Lagrangian trajectories from which a perceived coarse-grained VGT can be
inferred, providing insights into the multiscale gradient structure of turbulence.

Many other studies focused more explicitly on modeling the gradient of the NSE via
Equation 5. Martin et al. (1998) attempted a linear damping model for the viscous Laplacian
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Figure 7

(@) Visualization of a sling event in a turbulent flow. The red and blue volume rendering shows the Q field (see Figure 2). The middle
trajectory was taken from a direct numerical simulation, whereas the two accompanying trajectories were obtained by solving the
linearized particle dynamics around that trajectory. (b) A sling event corresponds to the crossing of trajectories, which corresponds to a
caustic in the particle velocity field v(x, 7) not unlike a Burgers shock (see Equations 1 and 3). Figure provided by Tobias Bitge (see also

Bitge et al. 2023).

and neglected the nonlocal pressure Hessian, but it proved insufficient for regularizing the
finite-time singularity for larger gradients. Interestingly, this analysis provides some insight
into the behavior of inertial particles in turbulence, where finite-time singularities correspond
to caustics in the particle velocity field (Figure 7) (see the sidebar titled Velocity Gradients in
Particle-Laden Turbulence). Nonetheless, for models of the fluid VGT, nonlinear relaxation is
needed. To this end, Jeong & Girimaji (2003) introduced the use of the Cauchy—Green tensor to
encode Lagrangian deformation in the closure of the viscous term, successfully regularizing the
finite-time singularity while still entirely neglecting the nonlocal pressure Hessian.

Chevillard & Meneveau (2006) developed the recent fluid deformation (RFD) model, which
uses a short-time approximation of the Cauchy—Green tensor to approximate both the viscous
Laplacian and the nonlocal pressure Hessian in a consistent manner. The RFD model also fea-
tures an additive stochastic forcing which takes into account the forcing of the flow along with
fluctuations not contained in the deterministic closure. The resulting model equations take the
nondimensional form

—1
i 1
l] 71
dd;; = | —ApAy; + _C—lAlmAml - §Ckk Ay | dt +dE,, ’1.
kk
pressure Hessian ~ Y15€0US damping

where dFj is the increment of a tensorial Wiener process featuring a covariance that com-
plies with incompressibility, homogeneity, and isotropy (Chevillard et al. 2008). The pressure
Hessian model bears the marks of inspiration from the tetrad model of Chertkov et al. (1999),
with the Cauchy-Green tensor taking the place of the tetrad’s moment of inertia tensor. The
viscous model resembles that of Jeong & Girimaji (2003). In RFD, however, the Cauchy—Green
tensor is evaluated at a fixed short time, so that Equation 21 constitutes a closed stochastic model
for the evolution of velocity gradients along Lagrangian trajectories. Chevillard & Meneveau
(2011) showed that the RFD model qualitatively captures the pirouette effect of Xu et al. (2011).
Figure 8 depicts the QR PDF from the RFD model along with a comparison to DNS data and
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Fokker-Planck

VELOCITY GRADIENTS IN PARTICLE-LADEN TURBULENCE

Velocity gradients play an important role in particle-laden turbulent flows, causing (heavy) particles to preferentially
concentrate in flow regions where Q is negative (Maxey 1987, Eaton & Fessler 1994, Esmaily-Moghadam & Mani
2016), which can dramatically affect particle collision rates (Sundaram & Collins 1997). Enhanced collision rates
are facilitated by the so-called sling effect, which can generate trajectory crossings, or caustics (Falkovich et al. 2002,
Wilkinson & Mehlig 2005, Bewley et al. 2013) (Figure 7). Using the Stokes drag law for the particle velocity v,
dv;/dt = (u; — v;)/7,, where 7, is the particle relaxation timescale and #; is the fluid velocity encountered by the
particle, one can describe the relative motion of nearby particles by using a particle velocity gradient, P; = 0v;/0x;.
Along particle trajectories,

T A=y — PuPyj. SBS.

dr T

Here, Aj; is the fluid VGT evaluated at the particle location. The particle VGT relaxes toward the fluid VGT
but is also subject to gradient self-amplification. It is known from the VGT modeling literature (Martin et al.
1998) that linear relaxation removes finite-time singularities only for relatively small values of the VGT. Thus,
finite-time singularities of the particle VGT corresponding to caustic formation are not averted by Stokes drag.
Johnson & Meneveau (2017a) extended the restricted Euler model to the fluid VGT dynamics along inertial particle
trajectories.

Meibohm et al. (2023) recently used a fixed-point analysis to derive a characteristic threshold in QR-invariant
space that marks the onset of a sling event using the fluid VGT. Independently, Bitge et al. (2023) derived a simple
criterion for predicting caustics, which showed evidence that trajectory crossing events are controlled by the most
negative eigenvalue of the fluid VGT. Bec et al. (2024) present a broader review of the topic in this volume.

other models discussed below. While it captures the asymmetric teardrop shape, quantitative dif-

ferences compared to the QR PDF from DNS are apparent. Recently, Apolindrio et al. (2019)

further investigated the statistical properties of the RFD model using field-theoretic methods.
Equation 21 illustrates how stochastic differential equations naturally occur in the con-

text of velocity gradient modeling. In fact, the connection between stochastic modeling of

Lagrangian velocity gradients and PDF methods had already been established by Girimaji &

Pope (1990). They derived a Fokker-Planck equation for the PDF of velocity gradients and pro-
posed a closure model that imposes constraints on the moments to yield log-normal dissipation

statistics.

4.2. Recent Developments in Velocity Gradient Modeling

More recently, using PDF methods (Pope 2000), Wilczek & Meneveau (2014) considered the

which takes the form

equation:

a partial differential
equation for the

T pan=- iﬂ_ ([— (A,-kAkj () s,,.) ([, A) + (vva,,|A>] FA; t>>

evolution of the PDF
in sample space for a 1 a9 _
stochastic process + 2 Qiju(0) 9 A DA f(AD). 22.

described by a

Langevin equation

Here, f(A; ) denotes the single-point, single-time PDF of the velocity gradient with the sample-

exact Fokker—Planck equation for the velocity gradient statistics of a stochastically forced NSE,

space variable A. The drift term in this Fokker-Planck equation consists of the restricted Euler

term (see Equation 13), which appears in closed form, and two unclosed terms. The unclosed
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Figure 8

Comparison of the QR probability density function from various velocity gradient models and direct numerical simulations (DNS).
(@) Recent fluid deformation (RFD) model (Chevillard & Meneveau 2006). (4) Enhanced Gaussian closure (EGC) model (Wilczek &
Meneveau 2014). (¢) Recent fluid deformation from Gaussian fields (RDGF) model (Johnson & Meneveau 2016a). (d) Multiscale model

(Johnson & Meneveau 2017b). (¢) DNS (Li et al. 2008).

terms take the form of conditional averages involving information not contained in a single-point
description; (ﬁ,] |.A) is the conditional mean nonlocal pressure Hessian given a velocity gradient A,
and (vV24;;].A) is the conditional mean viscous Laplacian of the velocity gradient. The diffusion
term depends on the covariance of the stochastic force, Q.

The Fokker—Planck equation for the velocity gradient PDF corresponds to the Langevin

equation (Wilczek & Meneveau 2014)

dAj; = [— (A,-,(Akj - %Tr (A%) 3,-]-) — (H;|.A) + (UVZA,-]-|A>] dr + dF;, 23.
whose realizations match the VGT single-time statistics. This equation is conceptually very similar
to the phenomenologically derived Langevin equation of the RFD model (Equation 21), which
aims to directly model the VGT evolution along individual Lagrangian trajectories. In this sense,
Equation 23 highlights the connection between the inherently statistical approach from Girimaji
& Pope (1990) with physics-based modeling from RFD and its precursors.

Using the statistical framework of the Lundgren (1967)-Monin (1967)-Novikov (1967) hier-
archy (for a review, see, e.g., Friedrich et al. 2012), the nonlocal information contained in these
terms can be made explicit in terms of two-point statistics of the velocity gradient field. As a clo-
sure approximation, Wilczek & Meneveau (2014) evaluated the conditional averages for isotropic
Gaussian velocity fields, which are fully characterized by the energy spectrum. The viscous term
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result is

JdkE* E(k)
JdRR2E(k)
This result resembles the linear diffusion model of Martin et al. (1998); § is an inverse timescale

determined by the energy spectrum, E(k). For the nonlocal pressure Hessian, the Gaussian closure
yields

(vWAJA)=8A, with §=—v 24.

(H]A) = o [sz - ;Tr (sz)] +B [WZ - ;Tr (wz)] +y (SW-WS). 25.

Here I is the identity tensor, and S and W denote the sample-space variables for the strain-rate
and rotation-rate tensors, respectively. The coefficients @ = —2/7 and 8 = —2/5 are independent
of the energy spectrum of the Gaussian fields, whereas y depends on the energy spectrum.

Wilczek & Meneveau (2014) observed that the Gaussian field closure for the conditional
Laplacian term (Equation 24) and the conditional pressure Hessian term (Equation 25) is not
sufficient to regularize the modeled velocity gradient dynamics. To mitigate this problem,
they proposed the enhanced Gaussian closure (EGC) model, in which the structure of the
tensorial terms is maintained but the coefficients of the model terms are estimated from DNS
data. The estimated values of o and 8 from DNS were larger in magnitude than those of
the Gaussian calculation. Use of the EGC model prevented singularity and led to stationary
statistics.

Figure 8 illustrates the QR PDF from the EGC model. Compared with the RFD model, this
model generates much larger velocity gradients. In comparison to DNS data, though, it is evident
that the frequency of vorticity-dominated events (Q > 0) is overemphasized, highlighting the
conceptual difficulty of enforcing global constraints such as the Betchov (1956) relations when
modeling at a single-point or single-particle level. Similar to Girimaji & Pope (1990), Johnson &
Meneveau (2016a) as well as Leppin & Wilczek (2020) demonstrated that such constraints can be
imposed at the level of an ensemble of stochastic trajectories and used to reduce the number of
free parameters in the model.

In their recent fluid deformation from Gaussian fields (RDGF) closure, Johnson & Meneveau
(2016a) combined the RFD closure model with the Gaussian field closure by assuming initially
Gaussian fields that are then subject to recent fluid deformation as modeled by the RFD mapping.
For example, the pressure Hessian closure becomes

-1 -1

C- -
(H;|A) = —C’fl Tr (AY) + G — C'—flTr (G), 26.
kk

ke

where G is the nonlocal Gaussian pressure Hessian closure (Equation 25), subject to recent de-
formation mapping. In this way, anisotropic pressure Hessian contributions previously neglected
in the RFD closure can be naturally included. If the Cauchy—Green tensor is taken as the identity
tensor in RDGF (corresponding to removal of the deformation mapping), then the Gaussian field
closure is recovered. Alternatively, if the nonlocal Gaussian pressure Hessian is removed, G = 0,
then RDGF simplifies to the RFD model. The RDGF model thus leverages the strengths of both
previous models to incorporate both nonlocal pressure information and Lagrangian history effects
while avoiding the need to adjust the Gaussian field coefficients using DNS. The resulting RDGF
model shows improved quantitative agreement with DNS for various velocity gradient statistics
such as PDFs of velocity gradient components, the QR PDF (Figure 8), and alignment statistics
between the vorticity and the principal axes of strain.

A major drawback of the recent models discussed above is that they cannot account for the
increase in active spatiotemporal scales and intermittency with Reynolds number in a robust
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manner (e.g., Martins Afonso & Meneveau 2010). Biferale et al. (2007) made the first attempt to
address this issue by building a multiscale velocity gradient shell model. More recently, Johnson &
Meneveau (2017b) generalized the RDGF to a hierarchical model featuring multiple timescales.
This model draws on the structure of the filtered velocity gradient dynamics (Equation 16) and
considers the action of filtered, larger-scale velocity gradients on smaller-scale velocity gradients
by imposing a local timescale determined by the larger scales, 7,(z), such that

ij Im* “ml ij

— () == L=m—=m Ldo,—m |~ o

n

where Z,(-;) is the velocity gradient filtered at the nth level and b,(-;)

for the pressure Hessian, viscous Laplacian, and residual stress terms. Increasing the Reynolds

represents a closure model

number corresponds to including additional velocity gradient levels representing successively
smaller scales. The modulation of the timescales by larger-scale motion leads to more rapid and
intense fluctuations of the smaller-scale gradients, accurately reproducing intermittency scaling
of phenomenological cascade models such as the p model (Meneveau & Sreenivasan 1987),
the log-normal model (Oboukhov 1962, Kolmogorov 1962), and the She-Lévéque model (She
& Lévéque 1994). Meanwhile, the velocity gradient statistics at any given Reynolds number
produced improved realism (e.g., as shown for the QR PDF in Figure 8). Luo et al. (2022)
showed that the multiscale RDGF model can be simplified using convolution techniques. In-
dependently, Pereira et al. (2018) built on the approach of Girimaji & Pope (1990) to construct
a model constrained to match desired multifractal statistics with realistic Reynolds number
trends.

Johnson & Meneveau (2018) used the timescale coupling of Johnson & Meneveau (2017b) as a
basis for coupling Lagrangian velocity gradients with LES to enrich the filtered field with small-
scale dynamics. By coupling the RDGF model to resolved velocity gradients from channel flow
LES, excellent agreement with velocity gradient statistics from fully resolved DNS was achieved
at a fraction of the cost. Johnson & Meneveau (2018) also highlighted the possibility of using this
approach to model unresolved droplet deformation in LES.

4.3. Insights from Experiments and Direct Numerical Simulations for Modeling

Experiments and DNS provide important insights to inform models. For example, Lawson &
Dawson (2015) obtained the conditionally averaged field of the second invariant Q from a von
Karman swirling-flow experiment using particle image velocimetry (Lawson & Dawson 2014) as
well as from DNS data (Li et al. 2008). Their results showed how well-known features of tur-
bulent fields (e.g., the fact that intense vorticity is accompanied by neighboring regions of strain;
Figure 2) translate into conditional Q statistics, which are necessary to close the nonlocal pressure
Hessian in Equation 22 (see also Equation 12). They also highlighted the connection between the
EGC and stochastic estimation (e.g., Adrian 1994). Additionally, Lawson & Dawson (2015) ob-
tained interesting alignment statistics of the pressure Hessian, which may be used as a benchmark
for velocity gradient models. Carbone et al. (2020) studied the velocity gradient dynamics in the
strain eigenframe, thereby revealing an interesting symmetry reduction property of the pressure
Hessian that might be useful for improving pressure Hessian models. Leppin & Wilczek (2020)
made a similar observation, showing that the y term in Equation 25 leaves the single-time statis-
tics invariant and can be used to tune the time correlations of the velocity gradient model. Das &
Girimaji (2019) showed that, compared with the full VGT, the VGT normalized by its magnitude
varies little with Reynolds number. On this basis, Das & Girimaji (2023) modeled the normal-
ized VGT separately from the VGT magnitude. Recent conditional enstrophy, dissipation, and
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pressure Hessian statistics from DNS at high-Reynolds number turbulence (Buaria et al. 2020a,
2022; Buaria & Pumir 2023) offer additional reference points for future improvements of velocity
gradient models.

4.4. Data-Driven Modeling

As in many areas of fluid dynamics, machine learning has spurred new developments in model-
ing the unclosed terms for Lagrangian velocity gradient evolution. Since the nonlocal pressure
Hessian is traceless and symmetric, it shares formal similarities with the deviatoric part of the
Reynolds stress tensor needed for Reynolds-averaged Navier-Stokes (RANS) modeling. In the
RANS context, Ling et al. (2016) proposed a machine learning framework using so-called tensor-
based neural networks (TBNNs), which built the essential invariance properties into the network
design. Various researchers have adapted this approach to Lagrangian velocity gradient model-
ing. Using a TBNN approach, Parashar et al. (2020) demonstrated improved pressure Hessian
modeling compared with the RFD model. Tian et al. (2021) used the TBNN approach to build
a stochastic Lagrangian model that exhibits improvements over previous modeling approaches.
Furthermore, they successfully extended the approach to the modeling of coarse-grained veloc-
ity gradients. The latest results by Buaria & Sreenivasan (2023) show that such approaches could
even be used to predict velocity gradient statistics at Reynolds numbers that exceed those of the
training data sets.

1. Investigations of fundamental turbulence physics at small and intermediate scales have
seen significant progress in recent years through the study of velocity gradient statistics,
dynamics, and structure.

2. The dual challenge of nonlinearity and nonlocality in turbulence has long flum-
moxed theoreticians and modelers alike. A Lagrangian perspective on velocity gradients
efficiently expresses the nonlinearity of Navier—Stokes dynamics as gradient self-
amplification, and recent research has leveraged this framework to build a deeper
understanding of nonlocality such as pressure effects.

3. The energy cascade has long been understood qualitatively in terms of multiscale inter-
actions between rotational and straining fluid motions. Recent theoretical innovations
and continued advances in direct numerical simulations (DNS) have placed this under-
standing on a firm quantitative footing while illuminating the importance of strain-rate
self-amplification, with implications for large-eddy simulation (LES) models.

4. Lagrangian velocity gradient models naturally incorporate nonlinear effects at low cost,
and their ability to accurately represent the (unclosed) multiscale and nonlocal ef-
fects of turbulence has significantly improved. In addition to vital theoretical tools for
understanding fundamental turbulence physics, Lagrangian velocity gradient models
have shown some evidence of practical applicability for predicting particle-laden and
multiphase flows.

5. Muldscale velocity gradients have provided a common mathematical framework for
theory and modeling efforts to interact seamlessly. This confluence promises fur-
ther progress in years to come, both on the fundamental side and with respect to
applications.
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1. The incorporation of fundamental advances in nonlocal physics into (affordable)
Lagrangian velocity gradient closure models is very much a work in progress. Remaining
challenges include generation of more accurate conditional and multipoint/multitime
statistics, increased realism of multiscale interactions, quantitative prediction of inter-
mittency at high Reynolds numbers, and increased fidelity for particle-laden flows.

2. Machine learning has emerged as a potentially powerful tool that could accelerate fu-
ture advances in Lagrangian modeling. The low dimensionality, nonlinear dynamics, and
non-Gaussian statistics of velocity gradients promise to be beneficial for understanding
turbulence physics and machine learning algorithm development alike.

3. Further development in the hybridization of (multiscale) Lagrangian velocity gradient
models with LES could open up new areas of application.

4. Multiscale velocity gradients have proven to be a valuable framework for a unified sta-
tistical, dynamical, and structural understanding of classical turbulence theory, focusing
mostly on the flow regime corresponding to Kolmogorov’s similarity hypotheses. Given
the practical importance of more complex flow regimes, such as near-wall or multiphase
turbulence, innovative extensions of this framework could have a far-reaching impact on
the study and prediction of turbulent flows.
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