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The revised, regularized Tao-Mo (rregTM) exchange-correlation density functional approximation
(DFA) [J. Chem. Phys. 153, 184112 (2020); sbid. 155, 024103 (2021)] resolves the order-of-limits
problem in the original TM formulation while preserving its valuable essential behaviors. Those
include performance on standard thermochemistry and solid data sets that is competitive with that
of the most widely explored meta-GGA DFAs (SCAN and r?SCAN) while also providing superior
performance on elemental solid magnetization. Puzzlingly however, rregTM proved to be intractable
for de-orbitalization via the approach of Mejia-Rodriguez and Trickey (Phys. Rev. A 96, 052512
(2017)). We report investigation that leads to diagnosis of how the regularization in rregTM of the
z indicator functions (z = the ratio of the von-Weizsécker and Kohn-Sham kinetic energy densities)
leads to non-physical behavior. We propose a simpler regularization that eliminates those oddities
and that can be calibrated to reproduce the good error patterns of rregTM. We denote this version
as simplified, regularized Tao-Mo, sregTM. We also show that it is unnecessary to use rregTM
correlation with sregTM exchange: PBE correlation is sufficient. The subsequent paper shows how
sregTM enables some progress on de-orbitalization.

I. SETTING AND MOTIVATION

The Tao-Mo family [1-4] of meta-generalized-gradient-
approximation (meta-GGA) exchange-correlation (XC)
density functional approximations (DFAs) has attracted
interest for some time. That interest is motivated by
the TM DFAs being competitive with the most thor-
oughly examined meta-GGAs, SCAN [5, 6] and r2’SCAN
[7] when tested against widely used thermochemical data
sets (G3X/99 for heats of formation [8, 9], T96-R [10, 11]
for bond lengths, and T82-F [10, 11] for harmonic vibra-
tional frequencies) and also against condensed phase data
sets (static-crystal lattice constants and cohesive energies
for 55 solids [12], bulk moduli for 44 solids [13], and band
gaps of 21 insulators and semiconductors [14]). Advan-
tageously, the TM functionals do not have the problem
of over-magnetization of elemental solids exhibited by
SCAN and r?SCAN. See Ref. 15 and references therein
regarding that problem. As a reminder, note that as
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is the case with essentially all DFAs, there are test sets
on which the advantage is reversed and r?’SCAN perfor-
mance is better than the TM functionals. For two recent
examples see Refs 16, 17.

Given such interestingly broad applicability for the
TM functionals, it was obvious from our pursuit of de-
orbitalization [18-20] that the most-refined of the TM
family, rregTM, was a worthwhile target. To our sur-
prise and frustration, that de-orbitalization strategy did
not work. No simple version or refinement of the proce-
dures in Refs. 18-20 succeeded in reproducing the mean-
absolute-deviation error patterns of rregTM on the stan-
dard molecular and solid-state data sets just mentioned.
We discuss that issue in Part II (following paper [21]).
What is pertinent here is that the de-orbitalization failure
suggested the existence of something peculiar or unusual
in the rregTM DFA itself. In this paper, we diagnose a
source of the problem as being unphysical behavior intro-
duced by regularization of one of the chemical indicator
functions used in rregTM. We propose, as a remedy, a
simpler regularization and demonstrate, by comparison

of performance with the aforementioned test sets, that



the simpler version, denoted sregTM, performs as well as
the rregTM. In Part II (following paper) we show that
sregTM enables some progress on de-orbitalization.

In what follows, Sec. II provides the rather intricate
formulae for the three versions of TM with highlights of
the differences introduced by regularization and revision.
Then, in Section IIT we focus on the behavior of the two
local chemical behavior indicator functions a and z (defi-
nitions below) and the problematic changes in z induced
by its regularization in regTM and its use in rregTM.
Then a simplified regularization without those problems
is presented. Section IV discusses numerical implementa-
tion and results on the various test sets. In Section V we
discuss the effects of the simplified regularization upon
consistency with exact constraints, specifically the ho-
mogeneous electron gas limit. Section VI provides brief
additional observations.

II. TAO-MO VERSIONS

To provide a reasonably self-contained presentation
and set notation, we display the complicated equations
that define the various TM versions.

As usual in a meta-GGA, the exchange energy (in
Hartree atomic units) is written as an enhancement F,

factor relative to the simple local density approximation

Eyfn] = ¢ / drn () Fy(sn(0)] (@) (1)

= (f’;)/ 2)

with the positive definite Kohn-Sham kinetic density [22]
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All of the Tao-Mo variants [1-4] have the exchange

enhancement factor form

FyM(p,z,0) = wFPMP + (1-w)Epe. (6)

The various ingredients in it are
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with
f = [1+ 10(70/27) + fy2) /12, (®)

and

R= 1+595(2)\—1)2%—[Zg—3(>\2—)\+1/2)(23—1—22/9)} .

(9)
In turn, the constants are 8§ = 79.873, A = 0.6866 and

the auxiliary functions are
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The two functions that detect and indicate chemically
different regimes, hence enable switching between ingre-
dient functional forms, are defined as
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The limiting kinetic energy densities involved are
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with the auxiliary quantity
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Finally, the function that switches between F3;¢ and
FDME i
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The original TM X functional has an order-of-limits
problem. [23] It is straightforward to rewrite the X en-
hancement factor, Eq. (6) as a function of the variables
p and a, Eqgs. (5) and (13) respectively. Then the order-
of-limits problem is

lim [Tim F7 (p, )] # lim [lim F7 (p,0)] . (20)
p—0"a—0 a—0p—0
The regularized version of TM [3] regTM removed that
anomaly. In it, the X functional itself has essentially the
same analytical form as in original TM, as does the w
function given in Eq. (19). The X enhancement factor
of regTM is given by

Fpeot™(p, 2,2 a) = w'FPMP + (1-w)F, (21)

and the w function is relabeled as w’. The difference is
simply that the original w is evaluated with the variable
z' so what is denoted in the original paper as w’(z’) is
simply w(z’).

The important change is the variable z’. It is a regu-
larized version of z given by

1
Z(a,p) = ; (22)
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The original z, Eq. (14), is recovered by fi — 0. In
fi(a, p) the constants are ¢ = 3.0, d = 1.475. Note a
subtlety. In Ere9TM(p 2 2 ), Eq. (21), 2’ used solely
in w’, not in FPME nor F3°.

For clarity about the TM literature, note that in
chronological sequence there was a modification of the
original TM X functional called revised Tao-Mo, revTM
[2]. It is not relevant here. Similarly, the original TM cor-
relation energy functional, which is based on the TPSS
and PKZB functionals [24, 25|, is not relevant to this
work.

The relevant C functional is that proposed for use with
regTM, called regTPSS. In essence it is the PBE C func-

tional [26] but with the constant coefficient of the gra-
dient term replaced by a density-dependent coefficient.
Again, details are un-needed here; see discussion in Ref.
[27]. What is relevant for present purposes is the combi-
nation of the regTM X functional with the C functional
in rregTM [4]. The relevant equations are given in Sec-
tion I of the Supplemental Information.

III. REGULARIZATION RECONSIDERED

The most refined version of TM is rregTM, so we fo-
cus exclusively on it. In our multiple attempts to de-
orbitalize it, we found that a major barrier to use of the
strategy in Refs. 18, 19 was the 2’ indicator. It has some

peculiar properties to which we turn.

The original definition of z is Eq. (14)

0<z:=" < (24)
Ts

with 7y the canonical von Weizsacker KE density, Eq.
(16), and 75 the Kohn-Sham KE density (in positive
semi-definite form). Thus, as shown, z is positive semi-
definite. That remains the case when rewritten in terms
of « as in the second equality of Eq. (14). As already
mentioned, that expression in terms of « exposes the
order-of-limits issue.

Though introduction of the regularization, Eqs. (22)
and (23), does remove the order-of-limits problem, it also
causes 2’ to lose the positivity property of z. This follows
because fi(a) < 0 for a > 1. Fig. 1 shows the conse-
quences, namely z’ < 0 for a« > 1 and p < 0.1. (Ignore,
for the moment, the z.., curves.) Regularization with
Eq. (23) thus gives 2’ that breaks the physical mean-
ing of z as a ratio of kinetic energy densities, hence also
introduces the possibility of unphysical chemical region
detection.
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FIG. 1. Comparison of z, z’, and ze, for various p values as
function of «a.

A situation in which p ~ 0, @ ~ 1 is a density that
locally at least is close to that of a homogeneous electron
gas. Examples include the mid-points of homonuclear
diatomic bonds. A bit more detailed insight comes from
considering « slightly greater than unity, « =149, 0 <
0 < 1 and p = 0. For that case, we have
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fil+6,p=0) = (25)

2'(1+6,0) = (26)
which exhibits the negative behavior. (Though there ap-
pears to be the possibility of a negative singularity in 2’
for small §, numerical evidence suggests that does not
occur.)

It seems impossible to know a priori whether the de-
viation of 2’ from the positivity of z is consequential for
the practical use of rreg-TM. In the face of that uncer-
tainty, we deem it prudent not to rely upon an indicator
function that violates a constraint that was assumed as
an ingredient in constructing TM. The negative 2’ arises
from the factor (1 —a)? in the numerator of f1(a, p), Eq.
(23). That obviously could be eliminated by changing
the numerator to (1 — a)?. The resulting modified 2/, _,

is shown in Fig. 2. While the negative region is removed,

!

the modification still spoils the interpretation of z; ,

as a chemical region indicator via the ratio of two KE
densities, since at fixed small p, 2/, ; is not monotonic-
decreasing with a. Because p =~ 0 is the context of any
bond, it is quite desirable to have a one-to-one map of «

to any approximate z that is a candidate chemical region
indicator.
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FIG. 2. Modified 2’ (changed to quadratic numerator in f1)
shown for various p values as function of a.

In Ref. 3, the authors remarked on the design choice
inherent in regularization: “Note that any small positive
definite quantity or real number (greater than zero) can

”

remove the order of limit problem ... Here we take
advantage of that design flexibility by observing that a
comparatively featureless regularizer avoids the introduc-
tion of a modified z that is not positive definite. The

function z,.., we propose thus is

op + €p
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Zrev(Qt, ) =
We take 0 < ¢, < 1 with its precise value to be de-
termined by best match on standard test sets to rreg
TM results. We denote the X functional obtained from
rregTM by replacing 2z’ with z,., as the simplified, regu-
larized TM, sreg'TM.
It is straightforward to verify that z;.., causes no order-
of-limits problem of regardless of the value of ¢,:

lim [lim [F27e9T™ (p, a)]] = 1.1132 (28)
p—0 a—0
lim [lim [F579TM (p, o)]] = 1.1132 (29)
a—0p—0

The rather featureless behavior of z,.., for various choices
of €, and values of p is shown in Fig. 3.

In addition to determining €,, another design choice
remains. One option is to use z,., only to evaluate w(z),
ie. w(z) = w(zrev). We denoted that as v1-sregTM.
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FIG. 3. zreo function using different values of ¢, and p.

That prescription parallels the use of both 2z’ and z in
reg TM. The other option is to use z,¢, to evaluate both
the w and the FJ¢ function. We denoted that variant
as v2-sregTM. Since the second variant is simpler and
slightly better in overall performance, we focus on it. For
thoroughness, counterpart results for performance of v1-
sregTM are in Sec. II of the Supplemental Information.

In the work with TM and rregTM that stimulated
this investigation, we had not experienced any signifi-
There-
fore, to explore the effects of the fewest changes, as one

cant anomalies with the rregTM C functional.

option we retained rregTM correlation. Along the way,
we had learned that original PBE correlation (with the
parameter (8 fixed as in Ref. 26) also works quite well in
combination with rregTM exchange. That motivated ex-
amination of the combination of sregTM X variants with
original PBE C.

IV. IMPLEMENTATION AND NUMERICAL
RESULTS

A. Implementation

The two sregTM X functional variants were coded in
NWChem-7.0.2 [28] to test the molecular test sets and
in VASP-5.4.4 [29] for the solid test sets. In NWChem-
7.0.2, the calculations were done using a Def2-TZVPP
basis set [30] and xfine grid settings. Molecular heats
of formation were computed according to the procedure
established by Curtiss et al. [8, 9] for the 223 molecules
of the G3X/99 test set. The T96-R test set [10, 11] was

used to study the optimized bond lengths and the T82-F
test set [10, 11] for the harmonic vibrational frequencies.

For VASP-5.4.4, the computations used PAW pseu-
dopotentials that correspond to the PBE DFA. The de-
fault energy cutoff was overridden and set to 800 eV.
The precision parameter in VASP was set to accurate
(PREC=A) and the minimization algorithm used the
conjugate gradient method (ALGO=A). Also, approx-
imate thermal smearing of Gaussian type was used
with a width of 0.01 eV. Non-spherical contributions
within the PAW spheres were included self-consistently
(LASPH=.TRUE.). Brillouin zone integrations were per-
formed on a (17 x 17 x 17) T'-centered, symmetry-
reduced Monkhorst-Pack k-mesh using the tetrahedron
method with Bléchl corrections. The ideal ¢/a ratio was
used for hexagonal close-packed structures.

The crystalline symmetries used were the same as in
Table IT in Ref. 19. The equilibrium lattice constants ag
and bulk moduli By at T = 0°K were determined by
calculating the total energy per unit cell in the range of
Vo + 10%, where Vj is the equilibrium unit cell volume.
A twelve-point series of values was fitted to the stabilized
jellium equation of state (STEOS) [31]. Static-crystal lat-
tice constants and cohesive energies were calculated for
55 solids [12] and bulk moduli for 44 solids [13], as were
Kohn-Sham band gaps of 21 insulators and semiconduc-
tors [14]. All the values were compared with the exper-
imental values. For cohesive energy determination, the
isolated atom energies were approximated by use of a 14
x 15 x 16 A unit cell and Gamma-point Brillouin zone
sampling.

Regarding computational technique, it is important to
mention that the derivative of the original function z,
Eq. (14) with respect to the « and p variables can exhibit
some numerical problems when those variables go to zero
simultaneously. To a lesser extent, that also is true with
Zrew- To address those numerical problems, the condition
was imposed that if both those derivatives are less than
1 x 10710 at a grid point, then both derivatives are set
to zero there.

B. Computed results - test sets

The initial computational task was to determine the
most appropriate value for ¢, in the z,.., function. Since
our objective was to reproduce the real-system results
from rregTM as closely as possible, we did calculations on
the molecular test sets with a range of €, values for each



TABLE I. Molecular test set results for the v2-sregTM exchange functional combined with the rregTM correlation functional

for different values of €,. Heat of formation errors in kcal/mol, bond length errors in A, and frequency errors in cm L.

1

v2-sregTM X + rregTM C

& 0.01 0.1 0.2 0.3 0.4 0.5 o5 T9IMXC
Hents of Formation  _ME 3200 1769 0275  -1.103  -2364 -3512 -4.554 -3.790
MAD 8689  7.633  6.779  6.211 5903  5.895  6.183 5.612
Bonds ME 0015 0015 0.014 0014 0013 0013  0.011 0.012
S MAD  0.018  0.017 0017 0016  0.016 0015  0.014 0.014
Froatenci ME  -25.934 -24.61 -23.225 -21.847 -20.524 -19.275 -18.165  -21.011
equences MAD  36.647 35.986 35.429  35.000 34.562  34.272  34.054 35.578

TABLE II. Summary of molecular test set results for the v2-sregTM exchange functional (with €, = 0.5) combined with the
rreg TM correlation functional and also with PBE C, versus rregTM X corn:bined with PBE C, all compared with PBE XC and
r’SCAN XC. Heat of formation errors in kcal/mol, bond length errors in A, and frequency errors in em™".

X rregTM  v2-sregTM  rregTM  v2-sregTM  12SCAN  PBE

C rregTM  rregTM PBE PBE r’SCAN  PBE

Heats of Formation ME -3.79 -3.512 -2.208 -1.520 -3.145  -20.878
MAD 5.612 5.895 5.452 5.354 4.488  21.385

Bonds ME 0.012 0.013 0.008 0.008 0.005 0.018
MAD 0.014 0.015 0.011 0.011 0.010 0.018

Frequencies ME  -21.011 -19.275 -4.667 -2.865 11.336  -33.781
4 MAD 35.578 34.272 25.183 24.138 30.899  43.613

variant: €, = 0.01,0.1,0.2,0.3,0.4,0.5,0.6. In Fig. 3,
one can see the behavior of the z,., function for different
values of €, and p, while Fig. 1 displays a comparison
between the z,..,, function and the 2z’ and z functions.

For the v2-sregTM X functional in combination with
the rregTM C functional, Table I shows that as €, grows,
the errors on the three test sets decrease, until the er-
ror on the G3X/99 set increases again at ¢, = 0.6. Be-
cause the object is to match the behavior of rregTM on
the test sets, we selected among those values following
the strategy used earlier in de-orbitalization [18]. Thus
we picked the €, value that gave MAD results on the
three molecular test sets closest to those from rregTM,
based upon semi-quantitative comparison by inspection.
Because heats of formation are variational and because
bond length and frequency MADs tend to be compara-
tively insensitive, we prioritized heat of formation MAD.
With e, = 0.5 , the MAD error pattern on the molecu-
lar test sets is essentially indistinguishable from the er-
ror pattern for the rregTM XC functional. (Note that
the individual molecule results are tabulated in the Sup-
plemental Information [32]). Then we confirmed that
choice from behavior on the solid test sets. Well after we

had chosen €, = 0.5 for detailed further study, we found
(from fitting the results in Table I) that the minimum
heat of formation MAD actually is at €, = 0.452. How-
ever, preservation of the second-order gradient expansion
(see Section V) is at €, = 0.58658, so 0.5 ends up being
an unexpectedly useful compromise value.

In Table II we show the effect of combining sregTM
with 7regTM correlation and, alternatively, with ordi-
nary PBE correlation (fixed 8 value). One can see that
on all three molecular tests, v2-sregTM X with either
rregTM C or PBE C, is as good or better than the orig-
inal rregTM X with the corresponding C functional. Fi-
ther combination is almost as good as r2SCAN on heat
of formation, as good on bond lengths, and better on
harmonic frequencies.

Given the fidelity of v2-sregTM X to rregTM X for the
error pattern on the three molecular test sets, we turn to
the solid test sets. Table III shows that the behavior of
v2-sregTM variant is consistent with that for molecular
test sets. For the solids, v2-sreg TM X in combination
with rregTM C behaves very much like the rregTM XC
functional. For both lattice constants and cohesive ener-
gies, v2-sregTM X plus rregTM C is better than r?’SCAN



TABLE III. Comparison of solid system errors for DFA combinations as in Table II for four solid test sets. Equilibrium lattice
constant errors in A, cohesive energy errors in eV /atom, bulk modulus errors in GPa, and Kohn-Sham band gap errors in eV'.

X rregTM  v2-sregTM  rregTM  v2-sregTM  12SCAN  PBE

C rregTM  rregTM PBE PBE r’SCAN  PBE

Lattice constants ME 0.000 0.004 -0.006 -0.002 0.026 0.046
MAD  0.029 0.031 0.028 0.029 0.037 0.053

Cohesive encraies ME 0.212 0.159 0.248 0.199 -0.134  -0.070
& MAD 0.251 0.216 0.288 0.251 0.238 0.252

Bulk moduli ME 1.856 0.223 4.375 2.732 1.367 -9.704
MAD  6.740 6.602 7.200 6.542 5.963 11.022

Band G ME -1.52 -1.53 -1.42 -1.44 -1.20 -1.69
and Laaps MAD  1.52 1.53 1.42 1.44 120 1.69

and a bit worse on bulk moduli and Kohn-Sham band
gaps. The combination v2-sregTM X with PBE C is as
good (but no better) on cohesive energies than rregTM
XC but better than rregTM X + PBE C. Otherwise v2-
sregTM X with PBE C is essentially indistinguishable
from v2-sregTM X plus rregTM C. Use of v1-sregTM X
instead of v2-sregTM X degrades bulk modulus perfor-
mance for solids, but otherwise is comparable with the
second variant. Since, however, the second variant is sim-
pler and slightly better in overall performance, we prefer
it. (Again, all of the individual solid results are tabulated
in the Supplemental Information [32]).

C. Computed results - elemental magnetization

The reported experimental magnetic moments of ele-
mental bee Fe, fce Co, and fce Ni are 2.22; 1.72; and, 0.62
up respectively [33, 34]. It has been known for a long
time that these values are not easy to match at calcu-
lated equilibrium lattice parameters with a simple DFA.
LDA was a failure. More recently it was found that the
SCAN DFA over-magnetizes some elemental transition
metals [35-40]. A summary discussion and diagnosis of
the cause is in Ref. 15. It also is known that rregTM does
not have this problem [4]. As we remarked at the outset,
that distinction was one of the original motivations for
our investigation.

Thus, we calculated the saturation magnetization of
bee Fe, fce Co, and fece Ni at the calculated equilibrium
lattice constants for each of the relevant XC DFAs. The
results (from calculations at 50 fixed moments) are dis-
played in Table IV. For bcc Fe, the functionals PBE and

v2-sregTM X + PBE C provide the most realistic satu-
ration magnetization values with a difference of 0.04 up
relative to the experimental values. The v2-sregTM X
+ rregTM C, which provided generally good results on
the molecular and solid test sets, also provides an essen-
tially indistinguishable result from v2-sregTM X + PBE
C for the bee Fe magnetization. Consistent with previous
findings, the least accurate result is from r?SCAN XC.
For fce Co, magnetization results from the DFAs rregTM
XC, v3-sregTM X + rregTM C (discussed below), and
rregTM X + PBE C are indistinguishable from the ex-
Clearly, the DFAs that use sregTM
exchange give essentially indistinguishable results for Co,
while 12SCAN XC is the least accurate. For fcc Ni, the
results from all the DFAs are grouped tightly, but again
with the r2SCAN XC error the largest.

It is not just the saturation magnetization that is dif-
ferent. Figs. 4, 5, and 6 show that the r?SCAN descrip-
tion of the energetic behavior with respect to magnetiza-

perimental value.

tion is qualitatively different from that provided by the
TM DFAs or by PBE. The distinction in depth of en-
ergy minima is about a factor of two for bec Fe and fec
Co, but even for fcc Ni it is about 11.5%. Details are
tabulated in the Supplemental Information. Note also
that the r2SCAN energy wells are broader and shaped

differently from those of the other DFAs.

V. IMPACT OF SIMPLIFICATION:
SLOWLY-VARYING ELECTRON GAS

Replacement of the regularized z’, Eq. (22) in rregTM
with the much simpler regularized z,¢,, Eq. (27) is not
without a cost. Specifically, the removed regularizer, f;



TABLE IV. Saturation magnetic moments in pp for some 3d solids with v2-sregTM X functional (with ¢, = 0.5) combined
with the rregTM correlation functional, as well as with PBE C versus rregTM X combined with PBE C, all compared with
PBE XC and r>SCAN XC. “Exp.” denotes the experimental saturation magnetization.

Ex X  rregTM  v2-sregTM  rregTM  v2-sregTM  r?SCAN  PBE
P 0 pregTM  rregTM PBE PBE 12SCAN  PBE
Fe 222 2.10 2.17 2.10 2.18 2.64 2.18
Co 1.72 1.72 1.73 1.72 1.74 1.83 1.64
Ni 0.62 0.68 0.66 0.68 0.66 0.72 0.63
Fe Co
08 [
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FIG. 4. Fixed spin moment energy for bec Fe at the calculated
equilibrium lattice parameter, on a per-atom basis for PBE
XC, v2-sregTM X + rregTM C, rregTM XC, and r?SCAN.
“Exptl.” denotes the experimental saturation magnetization.

Eq. (23), was designed to retain gradient expansion sat-
isfaction. Thus it remains to assess the impact of its
removal. The most obvious case of concern is the limit
of the slowly varying electron gas, defined by p, |q| < 1,
where ¢ := V?n/4kin (kp := (37%n)'/3) is the reduced
Laplacian of the density. In that regime, the factor
0 = a—1 also < 1, and has the gradient expansion
20¢q/9 — 40p/27. The homogeneous electron gas limit is
characterized by p=¢ =9 = 0.

As noted above, it is in this regime that the strange
kink in 2z’ and the transition to negative z’ occurs, both
caused by the numerator §2 of fi(«a, p). This choice guar-
antees that as p and « tend to zero, the changes made
going from z to 2/, and subsequently w to w’ and thus to
the X enhancement factor FZM [1] going to Fre9T™M [3],
are at most third order in the variables p and ¢, hence

sixth order in the gradient expansion of exchange. The

m ( Ug /atom)

FIG. 5. As in Fig. 4 for fcc Co.

rregTM form of 2’ thus preserves the constraint of return-
ing the exact gradient expansion for exchange through
fourth-order that is a feature of the original TM X.

This is no longer the case with z,..,. With the value
of ¢, = 0.5 determined pragmatically (recall above), the
homogeneous electron gas limit of 2., (p=0,a=1) = 1/7
[Eq. (27)] rather than the correct limit of zero. This leads
to a value of w'(0,1) = w(2rer(0,1)) = 0.02899, rather
than the design limit of 0.

However the impact of these discrepancies is fortu-
nately small. In the homogeneous electron gas limit,
FPME — 1 and F2¢ = 1 so that the overall value for
the enhancement factor in this limit [Eq. (21)] is trivially
unity, regardless of the value of w’. Thus all variants
of sregTM return the correct homogeneous electron gas
limit.

The next step is compliance with the second-order gra-
dient expansion for the slowly-varying electron gas. For
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FIG. 6. As in Fig. 4 for fcc Ni.

exchange, it is given by

10
F, - F?® =1+ g P20 (30)
There are two sources of error introduced by the improper
value zpey(p = 0, = 1) # 0 in the slowly-varying limit.

FPME makes

First, as w’ does not tend to zero properly,
a spurious contribution to the gradient expansion. This
creates an error in the slowly varying limit for both vari-
ants of sregTM we have studied here. But for v2 only,
there is a second error, from the use of 2., in F2¢. As
shown in the Supplemental Information, the net effect of
these two contributions for any given ¢, is to produce an

error in the second-order gradient expansion, 6F£2), of

10
sC SC
SF = 65 q+wy [(5,?ME — 81) p+ (8PME —659) ¢
(31)
where
73 €
e P
= __ P _ 2
% 225 (3 + €p)? (32)
sPME = 0.32739 (33)
§PMP = —0.25155 (34)

are coefficients deriving from FS¢ and FPME respec-
tively, and further,

wo(ep) = wlzo(€p)), (35)

€p
. 36
sl )

20(ep) = Zrev(p =0, =1) =

Equation 31 can be simplified further by noting that an
enhancement factor linear in the the reduced Laplacian
variable ¢ yields the same exchange energy as one linear
in p/3, via integration by parts [41]. The terms in p and
q therefore may be combined to produce a single error
function with respect to p alone. As 65 ¢ is negative and
the second term in this equation is net positive, one thus
may search for an €, value for which the two contributions
cancel. A numerical solution yields ¢, = 0.58568, which
is happily close to the value of 0.5 chosen pragmatically.
This error cancellation only occurs for v2-sregTM. For
vi-sregTM, ;¢ = 0 and the net error is positive for any
value of €,. This provides another reason, therefore, to
prefer v2-sregTM.

Clearly this result also can be used to define a v3-
sregTM which is second-order gradient expansion com-
pliant, simply by replacing €, = 0.5 with the gradient-
expansion-compliant value of 0.58568. We have tested
this variant against the molecular and solid-state test
sets already mentioned. Detailed tabulations are in
the Supplemental Information. The gradient-expansion-
compliant v3-sregTM gets heat of formation MAD that
are about 4% worse than those of v2-sregTM, namely
6.128 kcal /mol versus 5.895. That is not surprising, since
v2-sreg TM was chosen to optimize this measure, and the
optimum €, value for least heat-of-formation MAD is
around 0.45. Recall IV B. There is almost no difference
on the bond distance and frequency MADs. However, v3-
sregTM improves over v2-sregTM for solids, which are
closer to the GE limit. It is slightly less than 3% bet-
ter on solid cohesive energy and 2.5% on bulk modulus.
So a small violation of second-order gradient expansion
in v2-sregTM provides a slightly more balanced overall
treatment of molecules and solids than does satisfaction
of the second-order gradient expansion in v3-sregTM.

VI. CONCLUDING REMARKS

We have presented an analysis of the rregTM X func-
tional that shows that its regularization introduces pe-
culiar behavior in the z iso-orbital indicator. We have
argued that the regularization employed in regTM is un-
physical, a fact that justifies exploitation of a simplified
regularization. Further, we have shown that the simpli-
fied regularization is just as effective on standard molecu-
lar and crystalline data sets as the rregTM regularization
and that both the vi-sregTM and v2-sregTM exchange
with rregTM correlation retains the realistic handling of



3d elemental solid magnetism given by rregTM.

We also have demonstrated a further simplification.
Namely, PBE correlation is essentially as good a choice
for use with our sregTM functionals as is rregTM corre-
lation, with the benefit that the required computational
effort is reduced (at least slightly) by such use of a GGA
instead of a meta-GGA correlation term. In sum, sregTM
appears to embody the full capabilities of the original TM
DFA without the drawbacks of subsequent efforts to re-
move its limitations. The price paid is a small violation
of one of the basic constraints of non-empirical DFAs, an
illustration of the difficult design choices imposed by the
confrontation of rigorous constraints with experimental
data.

VII. SUPPLEMENTARY MATERIAL

The Supplemental Information [32] provides equations
for the rregTM correlation functional, details of the anal-
ysis of the weakly varying limit and compliance with the
gradient expanision of the new regularization, full com-
parative numerical results for the vi-sregTM version of
the new regularization, detailed magnetization results,
and system-by-system tabulation of results for each of
the molecular and crystalline test sets.
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