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The revised, regularized Tao-Mo (rregTM) exchange-correlation density functional approximation

(DFA) [J. Chem. Phys. 153, 184112 (2020); ibid. 155, 024103 (2021)] resolves the order-of-limits

problem in the original TM formulation while preserving its valuable essential behaviors. Those

include performance on standard thermochemistry and solid data sets that is competitive with that

of the most widely explored meta-GGA DFAs (SCAN and r2SCAN) while also providing superior

performance on elemental solid magnetization. Puzzlingly however, rregTM proved to be intractable

for de-orbitalization via the approach of Mej́ıa-Rodŕıguez and Trickey (Phys. Rev. A 96, 052512

(2017)). We report investigation that leads to diagnosis of how the regularization in rregTM of the

z indicator functions (z = the ratio of the von-Weizsäcker and Kohn-Sham kinetic energy densities)

leads to non-physical behavior. We propose a simpler regularization that eliminates those oddities

and that can be calibrated to reproduce the good error patterns of rregTM. We denote this version

as simplified, regularized Tao-Mo, sregTM. We also show that it is unnecessary to use rregTM

correlation with sregTM exchange: PBE correlation is sufficient. The subsequent paper shows how

sregTM enables some progress on de-orbitalization.

I. SETTING AND MOTIVATION

The Tao-Mo family [1–4] of meta-generalized-gradient-

approximation (meta-GGA) exchange-correlation (XC)

density functional approximations (DFAs) has attracted

interest for some time. That interest is motivated by

the TM DFAs being competitive with the most thor-

oughly examined meta-GGAs, SCAN [5, 6] and r2SCAN

[7] when tested against widely used thermochemical data

sets (G3X/99 for heats of formation [8, 9], T96-R [10, 11]

for bond lengths, and T82-F [10, 11] for harmonic vibra-

tional frequencies) and also against condensed phase data

sets (static-crystal lattice constants and cohesive energies

for 55 solids [12], bulk moduli for 44 solids [13], and band

gaps of 21 insulators and semiconductors [14]). Advan-

tageously, the TM functionals do not have the problem

of over-magnetization of elemental solids exhibited by

SCAN and r2SCAN. See Ref. 15 and references therein

regarding that problem. As a reminder, note that as
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is the case with essentially all DFAs, there are test sets

on which the advantage is reversed and r2SCAN perfor-

mance is better than the TM functionals. For two recent

examples see Refs 16, 17.

Given such interestingly broad applicability for the

TM functionals, it was obvious from our pursuit of de-

orbitalization [18–20] that the most-refined of the TM

family, rregTM, was a worthwhile target. To our sur-

prise and frustration, that de-orbitalization strategy did

not work. No simple version or refinement of the proce-

dures in Refs. 18–20 succeeded in reproducing the mean-

absolute-deviation error patterns of rregTM on the stan-

dard molecular and solid-state data sets just mentioned.

We discuss that issue in Part II (following paper [21]).

What is pertinent here is that the de-orbitalization failure

suggested the existence of something peculiar or unusual

in the rregTM DFA itself. In this paper, we diagnose a

source of the problem as being unphysical behavior intro-

duced by regularization of one of the chemical indicator

functions used in rregTM. We propose, as a remedy, a

simpler regularization and demonstrate, by comparison

of performance with the aforementioned test sets, that



the simpler version, denoted sregTM, performs as well as

the rregTM. In Part II (following paper) we show that

sregTM enables some progress on de-orbitalization.

In what follows, Sec. II provides the rather intricate

formulae for the three versions of TM with highlights of

the differences introduced by regularization and revision.

Then, in Section III we focus on the behavior of the two

local chemical behavior indicator functions α and z (defi-

nitions below) and the problematic changes in z induced

by its regularization in regTM and its use in rregTM.

Then a simplified regularization without those problems

is presented. Section IV discusses numerical implementa-

tion and results on the various test sets. In Section V we

discuss the effects of the simplified regularization upon

consistency with exact constraints, specifically the ho-

mogeneous electron gas limit. Section VI provides brief

additional observations.

II. TAO-MO VERSIONS

To provide a reasonably self-contained presentation

and set notation, we display the complicated equations

that define the various TM versions.

As usual in a meta-GGA, the exchange energy (in

Hartree atomic units) is written as an enhancement Fx

factor relative to the simple local density approximation

Ex[n] = cx

∫

drn4/3(r)Fx(s[n(r)], τs(r)) (1)

cx := −
3

4

(

3

π

)1/3

(2)

with the positive definite Kohn-Sham kinetic density [22]

τs =
1

2

∑

i

fi|∇ϕi(r)|
2 (3)

defined in terms of the Kohn-Sham occupations and or-

bitals. Two frequently used dimensionless functional

variables are

s :=
|∇n(r)|

2(3π2)1/3n4/3(r)
(4)

p := s2 (5)

All of the Tao-Mo variants [1–4] have the exchange

enhancement factor form

FTM
x (p, z, α) = wFDME

x + (1− w)F sc
x . (6)

The various ingredients in it are

FDME
x (p, α) =

1

f2
+

7R

9f4
, (7)

with

f = [1 + 10(70y/27) + βy2]1/10, (8)

and

R = 1+595(2λ−1)2
p

54
−[z3−3(λ2−λ+1/2)(z3−1−z2/9)] .

(9)

In turn, the constants are β = 79.873, λ = 0.6866 and

the auxiliary functions are

y := (2λ− 1)2p (10)

z2 := 5p/3 (11)

z3 := z2 + α . (12)

The two functions that detect and indicate chemically

different regimes, hence enable switching between ingre-

dient functional forms, are defined as

α :=
τs − τW
τTF

(13)

and

z :=
τW
τs

=
1

1 + 3α
5p

. (14)

The limiting kinetic energy densities involved are

Thomas-Fermi

τTF := cTF n5/3(r) ; cTF :=
3

10
(3π2)

2

3 (15)

and von Weizsäcker

τW :=
1

8

|∇n(r)|2

n(r)
. (16)

The other TM X ingredient functional is

F sc
x (p, α) :=
{

1 + 10

[(

10

81
+

50

729
p

)

p

+
146

2025
q̃2 −

73

405
q̃
3z

5
(1− z)

]}1/10

(17)

with the auxiliary quantity

q̃(α, p) :=
9

20
(α− 1) +

2

3
p . (18)
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Finally, the function that switches between F sc
x and

FDME
x is

w(z) :=
z2 + 3z3

(1 + z3)2
. (19)

The original TM X functional has an order-of-limits

problem. [23] It is straightforward to rewrite the X en-

hancement factor, Eq. (6) as a function of the variables

p and α, Eqs. (5) and (13) respectively. Then the order-

of-limits problem is

lim
p→0

[ lim
α→0

FTM
x (p, α)] 6= lim

α→0
[ lim
p→0

FTM
x (p, α)] . (20)

The regularized version of TM [3] regTM removed that

anomaly. In it, the X functional itself has essentially the

same analytical form as in original TM, as does the w

function given in Eq. (19). The X enhancement factor

of regTM is given by

F regTM
x (p, z, z′, α) = w′FDME

x + (1− w′)F sc
x , (21)

and the w function is relabeled as w′. The difference is

simply that the original w is evaluated with the variable

z′ so what is denoted in the original paper as w′(z′) is

simply w(z′).

The important change is the variable z′. It is a regu-

larized version of z given by

z′(α, p) =
1

1 + 3
5

[

α

p+ f1(α, p)

] , (22)

with the regularizer

f1(α, p) =
(1− α)3

(1 + (dα)2)3/2
e−cp . (23)

The original z, Eq. (14), is recovered by f1 → 0. In

f1(α, p) the constants are c = 3.0, d = 1.475. Note a

subtlety. In F regTM
x (p, z, z′, α), Eq. (21), z′ used solely

in w′, not in FDME
x nor F sc

x .

For clarity about the TM literature, note that in

chronological sequence there was a modification of the

original TM X functional called revised Tao-Mo, revTM

[2]. It is not relevant here. Similarly, the original TM cor-

relation energy functional, which is based on the TPSS

and PKZB functionals [24, 25], is not relevant to this

work.

The relevant C functional is that proposed for use with

regTM, called regTPSS. In essence it is the PBE C func-

tional [26] but with the constant coefficient of the gra-

dient term replaced by a density-dependent coefficient.

Again, details are un-needed here; see discussion in Ref.

[27]. What is relevant for present purposes is the combi-

nation of the regTM X functional with the C functional

in rregTM [4]. The relevant equations are given in Sec-

tion I of the Supplemental Information.

III. REGULARIZATION RECONSIDERED

The most refined version of TM is rregTM, so we fo-

cus exclusively on it. In our multiple attempts to de-

orbitalize it, we found that a major barrier to use of the

strategy in Refs. 18, 19 was the z′ indicator. It has some

peculiar properties to which we turn.

The original definition of z is Eq. (14)

0 ≤ z :=
τW
τs

≤ 1 (24)

with τW the canonical von Weizsäcker KE density, Eq.

(16), and τs the Kohn-Sham KE density (in positive

semi-definite form). Thus, as shown, z is positive semi-

definite. That remains the case when rewritten in terms

of α as in the second equality of Eq. (14). As already

mentioned, that expression in terms of α exposes the

order-of-limits issue.

Though introduction of the regularization, Eqs. (22)

and (23), does remove the order-of-limits problem, it also

causes z′ to lose the positivity property of z. This follows

because f1(α) < 0 for α > 1. Fig. 1 shows the conse-

quences, namely z′ ≤ 0 for α ≥ 1 and p ≤ 0.1. (Ignore,

for the moment, the zrev curves.) Regularization with

Eq. (23) thus gives z′ that breaks the physical mean-

ing of z as a ratio of kinetic energy densities, hence also

introduces the possibility of unphysical chemical region

detection.
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FIG. 1. Comparison of z, z′, and zrev for various p values as
function of α.

A situation in which p ≈ 0, α ≈ 1 is a density that

locally at least is close to that of a homogeneous electron

gas. Examples include the mid-points of homonuclear

diatomic bonds. A bit more detailed insight comes from

considering α slightly greater than unity, α = 1 + δ, 0 <

δ ≪ 1 and p = 0. For that case, we have

f1(1 + δ, p = 0) =
(−δ)3

[1 + d2(1 + δ)2]3/2
(25)

z′(1 + δ, 0) =
1

1− 3
5δ3 [(1 + δ)(1 + d2)3/2]

, (26)

which exhibits the negative behavior. (Though there ap-

pears to be the possibility of a negative singularity in z′

for small δ, numerical evidence suggests that does not

occur.)

It seems impossible to know a priori whether the de-

viation of z′ from the positivity of z is consequential for

the practical use of rreg-TM. In the face of that uncer-

tainty, we deem it prudent not to rely upon an indicator

function that violates a constraint that was assumed as

an ingredient in constructing TM. The negative z′ arises

from the factor (1−α)3 in the numerator of f1(α, p), Eq.

(23). That obviously could be eliminated by changing

the numerator to (1 − α)2. The resulting modified z′mod

is shown in Fig. 2. While the negative region is removed,

the modification still spoils the interpretation of z′mod

as a chemical region indicator via the ratio of two KE

densities, since at fixed small p, z′mod is not monotonic-

decreasing with α. Because p ≈ 0 is the context of any

bond, it is quite desirable to have a one-to-one map of α

to any approximate z that is a candidate chemical region

indicator.

FIG. 2. Modified z′ (changed to quadratic numerator in f1)
shown for various p values as function of α.

In Ref. 3, the authors remarked on the design choice

inherent in regularization: “Note that any small positive

definite quantity or real number (greater than zero) can

remove the order of limit problem . . . ”. Here we take

advantage of that design flexibility by observing that a

comparatively featureless regularizer avoids the introduc-

tion of a modified z that is not positive definite. The

function zrev we propose thus is

zrev(α, p) =
5p+ ǫp

5p+ 3α+ ǫp
. (27)

We take 0 < ǫp < 1 with its precise value to be de-

termined by best match on standard test sets to rreg

TM results. We denote the X functional obtained from

rregTM by replacing z′ with zrev as the simplified, regu-

larized TM, sregTM.

It is straightforward to verify that zrev causes no order-

of-limits problem of regardless of the value of ǫp:

lim
p→0

[ lim
α→0

[F sregTM
x (p, α)]] = 1.1132 (28)

lim
α→0

[ lim
p→0

[F sregTM
x (p, α)]] = 1.1132 (29)

The rather featureless behavior of zrev for various choices

of ǫp and values of p is shown in Fig. 3.

In addition to determining ǫp, another design choice

remains. One option is to use zrev only to evaluate w(z),

i.e. w(z) → w(zrev). We denoted that as v1-sregTM.
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FIG. 3. zrev function using different values of ǫp and p.

That prescription parallels the use of both z′ and z in

regTM. The other option is to use zrev to evaluate both

the w and the F sc
x function. We denoted that variant

as v2-sregTM. Since the second variant is simpler and

slightly better in overall performance, we focus on it. For

thoroughness, counterpart results for performance of v1-

sregTM are in Sec. II of the Supplemental Information.

In the work with TM and rregTM that stimulated

this investigation, we had not experienced any signifi-

cant anomalies with the rregTM C functional. There-

fore, to explore the effects of the fewest changes, as one

option we retained rregTM correlation. Along the way,

we had learned that original PBE correlation (with the

parameter β fixed as in Ref. 26) also works quite well in

combination with rregTM exchange. That motivated ex-

amination of the combination of sregTM X variants with

original PBE C.

IV. IMPLEMENTATION AND NUMERICAL

RESULTS

A. Implementation

The two sregTM X functional variants were coded in

NWChem-7.0.2 [28] to test the molecular test sets and

in VASP-5.4.4 [29] for the solid test sets. In NWChem-

7.0.2, the calculations were done using a Def2-TZVPP

basis set [30] and xfine grid settings. Molecular heats

of formation were computed according to the procedure

established by Curtiss et al. [8, 9] for the 223 molecules

of the G3X/99 test set. The T96-R test set [10, 11] was

used to study the optimized bond lengths and the T82-F

test set [10, 11] for the harmonic vibrational frequencies.

For VASP-5.4.4, the computations used PAW pseu-

dopotentials that correspond to the PBE DFA. The de-

fault energy cutoff was overridden and set to 800 eV.

The precision parameter in VASP was set to accurate

(PREC=A) and the minimization algorithm used the

conjugate gradient method (ALGO=A). Also, approx-

imate thermal smearing of Gaussian type was used

with a width of 0.01 eV. Non-spherical contributions

within the PAW spheres were included self-consistently

(LASPH=.TRUE.). Brillouin zone integrations were per-

formed on a (17 × 17 × 17) Γ-centered, symmetry-

reduced Monkhorst-Pack k-mesh using the tetrahedron

method with Blöchl corrections. The ideal c/a ratio was

used for hexagonal close-packed structures.

The crystalline symmetries used were the same as in

Table II in Ref. 19. The equilibrium lattice constants a0
and bulk moduli B0 at T = 0◦K were determined by

calculating the total energy per unit cell in the range of

V0 ± 10%, where V0 is the equilibrium unit cell volume.

A twelve-point series of values was fitted to the stabilized

jellium equation of state (SJEOS) [31]. Static-crystal lat-

tice constants and cohesive energies were calculated for

55 solids [12] and bulk moduli for 44 solids [13], as were

Kohn-Sham band gaps of 21 insulators and semiconduc-

tors [14]. All the values were compared with the exper-

imental values. For cohesive energy determination, the

isolated atom energies were approximated by use of a 14

× 15 × 16 Å unit cell and Gamma-point Brillouin zone

sampling.

Regarding computational technique, it is important to

mention that the derivative of the original function z,

Eq. (14) with respect to the α and p variables can exhibit

some numerical problems when those variables go to zero

simultaneously. To a lesser extent, that also is true with

zrev. To address those numerical problems, the condition

was imposed that if both those derivatives are less than

1 × 10−10 at a grid point, then both derivatives are set

to zero there.

B. Computed results - test sets

The initial computational task was to determine the

most appropriate value for ǫp in the zrev function. Since

our objective was to reproduce the real-system results

from rregTM as closely as possible, we did calculations on

the molecular test sets with a range of ǫp values for each
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TABLE I. Molecular test set results for the v2-sregTM exchange functional combined with the rregTM correlation functional
for different values of ǫp. Heat of formation errors in kcal/mol, bond length errors in Å, and frequency errors in cm−1.

v2-sregTM X + rregTM C
rregTM XC

ǫp 0.01 0.1 0.2 0.3 0.4 0.5 0.6

Heats of Formation
ME 3.200 1.769 0.275 -1.103 -2.364 -3.512 -4.554 -3.790

MAD 8.689 7.633 6.779 6.211 5.903 5.895 6.183 5.612

Bonds
ME 0.015 0.015 0.014 0.014 0.013 0.013 0.011 0.012

MAD 0.018 0.017 0.017 0.016 0.016 0.015 0.014 0.014

Frequencies
ME -25.934 -24.61 -23.225 -21.847 -20.524 -19.275 -18.165 -21.011

MAD 36.647 35.986 35.429 35.000 34.562 34.272 34.054 35.578

TABLE II. Summary of molecular test set results for the v2-sregTM exchange functional (with ǫp = 0.5) combined with the
rregTM correlation functional and also with PBE C, versus rregTM X combined with PBE C, all compared with PBE XC and
r2SCAN XC. Heat of formation errors in kcal/mol, bond length errors in Å, and frequency errors in cm−1.

X rregTM v2-sregTM rregTM v2-sregTM r2SCAN PBE
C rregTM rregTM PBE PBE r2SCAN PBE

Heats of Formation
ME -3.79 -3.512 -2.208 -1.520 -3.145 -20.878
MAD 5.612 5.895 5.452 5.354 4.488 21.385

Bonds
ME 0.012 0.013 0.008 0.008 0.005 0.018
MAD 0.014 0.015 0.011 0.011 0.010 0.018

Frequencies
ME -21.011 -19.275 -4.667 -2.865 11.336 -33.781
MAD 35.578 34.272 25.183 24.138 30.899 43.613

variant: ǫp = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. In Fig. 3,

one can see the behavior of the zrev function for different

values of ǫp and p, while Fig. 1 displays a comparison

between the zrev function and the z′ and z functions.

For the v2-sregTM X functional in combination with

the rregTM C functional, Table I shows that as ǫp grows,

the errors on the three test sets decrease, until the er-

ror on the G3X/99 set increases again at ǫp = 0.6. Be-

cause the object is to match the behavior of rregTM on

the test sets, we selected among those values following

the strategy used earlier in de-orbitalization [18]. Thus

we picked the ǫp value that gave MAD results on the

three molecular test sets closest to those from rregTM,

based upon semi-quantitative comparison by inspection.

Because heats of formation are variational and because

bond length and frequency MADs tend to be compara-

tively insensitive, we prioritized heat of formation MAD.

With ǫp = 0.5 , the MAD error pattern on the molecu-

lar test sets is essentially indistinguishable from the er-

ror pattern for the rregTM XC functional. (Note that

the individual molecule results are tabulated in the Sup-

plemental Information [32]). Then we confirmed that

choice from behavior on the solid test sets. Well after we

had chosen ǫp = 0.5 for detailed further study, we found

(from fitting the results in Table I) that the minimum

heat of formation MAD actually is at ǫp = 0.452. How-

ever, preservation of the second-order gradient expansion

(see Section V) is at ǫp = 0.58658, so 0.5 ends up being

an unexpectedly useful compromise value.

In Table II we show the effect of combining sregTM

with rregTM correlation and, alternatively, with ordi-

nary PBE correlation (fixed β value). One can see that

on all three molecular tests, v2-sregTM X with either

rregTM C or PBE C, is as good or better than the orig-

inal rregTM X with the corresponding C functional. Ei-

ther combination is almost as good as r2SCAN on heat

of formation, as good on bond lengths, and better on

harmonic frequencies.

Given the fidelity of v2-sregTM X to rregTM X for the

error pattern on the three molecular test sets, we turn to

the solid test sets. Table III shows that the behavior of

v2-sregTM variant is consistent with that for molecular

test sets. For the solids, v2-sreg TM X in combination

with rregTM C behaves very much like the rregTM XC

functional. For both lattice constants and cohesive ener-

gies, v2-sregTM X plus rregTM C is better than r2SCAN

6



TABLE III. Comparison of solid system errors for DFA combinations as in Table II for four solid test sets. Equilibrium lattice
constant errors in Å, cohesive energy errors in eV/atom, bulk modulus errors in GPa, and Kohn-Sham band gap errors in eV .

X rregTM v2-sregTM rregTM v2-sregTM r2SCAN PBE
C rregTM rregTM PBE PBE r2SCAN PBE

Lattice constants
ME 0.000 0.004 -0.006 -0.002 0.026 0.046
MAD 0.029 0.031 0.028 0.029 0.037 0.053

Cohesive energies
ME 0.212 0.159 0.248 0.199 -0.134 -0.070
MAD 0.251 0.216 0.288 0.251 0.238 0.252

Bulk moduli
ME 1.856 0.223 4.375 2.732 1.367 -9.704
MAD 6.740 6.602 7.200 6.542 5.963 11.022

Band Gaps
ME -1.52 -1.53 -1.42 -1.44 -1.20 -1.69
MAD 1.52 1.53 1.42 1.44 1.20 1.69

and a bit worse on bulk moduli and Kohn-Sham band

gaps. The combination v2-sregTM X with PBE C is as

good (but no better) on cohesive energies than rregTM

XC but better than rregTM X + PBE C. Otherwise v2-

sregTM X with PBE C is essentially indistinguishable

from v2-sregTM X plus rregTM C. Use of v1-sregTM X

instead of v2-sregTM X degrades bulk modulus perfor-

mance for solids, but otherwise is comparable with the

second variant. Since, however, the second variant is sim-

pler and slightly better in overall performance, we prefer

it. (Again, all of the individual solid results are tabulated

in the Supplemental Information [32]).

C. Computed results - elemental magnetization

The reported experimental magnetic moments of ele-

mental bcc Fe, fcc Co, and fcc Ni are 2.22, 1.72, and, 0.62

µB respectively [33, 34]. It has been known for a long

time that these values are not easy to match at calcu-

lated equilibrium lattice parameters with a simple DFA.

LDA was a failure. More recently it was found that the

SCAN DFA over-magnetizes some elemental transition

metals [35–40]. A summary discussion and diagnosis of

the cause is in Ref. 15. It also is known that rregTM does

not have this problem [4]. As we remarked at the outset,

that distinction was one of the original motivations for

our investigation.

Thus, we calculated the saturation magnetization of

bcc Fe, fcc Co, and fcc Ni at the calculated equilibrium

lattice constants for each of the relevant XC DFAs. The

results (from calculations at 50 fixed moments) are dis-

played in Table IV. For bcc Fe, the functionals PBE and

v2-sregTM X + PBE C provide the most realistic satu-

ration magnetization values with a difference of 0.04 µB

relative to the experimental values. The v2-sregTM X

+ rregTM C, which provided generally good results on

the molecular and solid test sets, also provides an essen-

tially indistinguishable result from v2-sregTM X + PBE

C for the bcc Fe magnetization. Consistent with previous

findings, the least accurate result is from r2SCAN XC.

For fcc Co, magnetization results from the DFAs rregTM

XC, v3-sregTM X + rregTM C (discussed below), and

rregTM X + PBE C are indistinguishable from the ex-

perimental value. Clearly, the DFAs that use sregTM

exchange give essentially indistinguishable results for Co,

while r2SCAN XC is the least accurate. For fcc Ni, the

results from all the DFAs are grouped tightly, but again

with the r2SCAN XC error the largest.

It is not just the saturation magnetization that is dif-

ferent. Figs. 4, 5, and 6 show that the r2SCAN descrip-

tion of the energetic behavior with respect to magnetiza-

tion is qualitatively different from that provided by the

TM DFAs or by PBE. The distinction in depth of en-

ergy minima is about a factor of two for bcc Fe and fcc

Co, but even for fcc Ni it is about 11.5%. Details are

tabulated in the Supplemental Information. Note also

that the r2SCAN energy wells are broader and shaped

differently from those of the other DFAs.

V. IMPACT OF SIMPLIFICATION:

SLOWLY-VARYING ELECTRON GAS

Replacement of the regularized z′, Eq. (22) in rregTM

with the much simpler regularized zrev, Eq. (27) is not

without a cost. Specifically, the removed regularizer, f1
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TABLE IV. Saturation magnetic moments in µB for some 3d solids with v2-sregTM X functional (with ǫp = 0.5) combined
with the rregTM correlation functional, as well as with PBE C versus rregTM X combined with PBE C, all compared with
PBE XC and r2SCAN XC. “Exp.” denotes the experimental saturation magnetization.

Exp.
X rregTM v2-sregTM rregTM v2-sregTM r2SCAN PBE
C rregTM rregTM PBE PBE r2SCAN PBE

Fe 2.22 2.10 2.17 2.10 2.18 2.64 2.18

Co 1.72 1.72 1.73 1.72 1.74 1.83 1.64

Ni 0.62 0.68 0.66 0.68 0.66 0.72 0.63

FIG. 4. Fixed spin moment energy for bcc Fe at the calculated
equilibrium lattice parameter, on a per-atom basis for PBE
XC, v2-sregTM X + rregTM C, rregTM XC, and r2SCAN.
“Exptl.” denotes the experimental saturation magnetization.

Eq. (23), was designed to retain gradient expansion sat-

isfaction. Thus it remains to assess the impact of its

removal. The most obvious case of concern is the limit

of the slowly varying electron gas, defined by p, |q| ≪ 1,

where q := ∇2n/4k2Fn (kF := (3π2n)1/3) is the reduced

Laplacian of the density. In that regime, the factor

δ = α − 1 also ≪ 1, and has the gradient expansion

20q/9 − 40p/27. The homogeneous electron gas limit is

characterized by p = q = δ = 0.

As noted above, it is in this regime that the strange

kink in z′ and the transition to negative z′ occurs, both

caused by the numerator δ3 of f1(α, p). This choice guar-

antees that as p and α tend to zero, the changes made

going from z to z′, and subsequently w to w′ and thus to

the X enhancement factor FTM
x [1] going to F regTM

x [3],

are at most third order in the variables p and q, hence

sixth order in the gradient expansion of exchange. The

FIG. 5. As in Fig. 4 for fcc Co.

rregTM form of z′ thus preserves the constraint of return-

ing the exact gradient expansion for exchange through

fourth-order that is a feature of the original TM X.

This is no longer the case with zrev. With the value

of ǫp = 0.5 determined pragmatically (recall above), the

homogeneous electron gas limit of zrev(p=0, α=1) = 1/7

[Eq. (27)] rather than the correct limit of zero. This leads

to a value of w′(0, 1) ≡ w(zrev(0, 1)) = 0.02899, rather

than the design limit of 0.

However the impact of these discrepancies is fortu-

nately small. In the homogeneous electron gas limit,

FDME
x = 1 and F sc

x = 1 so that the overall value for

the enhancement factor in this limit [Eq. (21)] is trivially

unity, regardless of the value of w′. Thus all variants

of sregTM return the correct homogeneous electron gas

limit.

The next step is compliance with the second-order gra-

dient expansion for the slowly-varying electron gas. For

8



FIG. 6. As in Fig. 4 for fcc Ni.

exchange, it is given by

Fx → F (2)
x = 1 +

10

81
p, p → 0. (30)

There are two sources of error introduced by the improper

value zrev(p = 0, α = 1) 6= 0 in the slowly-varying limit.

First, as w′ does not tend to zero properly, FDME
x makes

a spurious contribution to the gradient expansion. This

creates an error in the slowly varying limit for both vari-

ants of sregTM we have studied here. But for v2 only,

there is a second error, from the use of zrev in FSC
x . As

shown in the Supplemental Information, the net effect of

these two contributions for any given ǫp is to produce an

error in the second-order gradient expansion, δF
(2)
x , of

δF (2)
x = δSC

q q+w0

[(

δDME
p −

10

81

)

p+
(

δDME
q − δSC

q

)

q

]

(31)

where

δSC
q = −

73

225

ǫp
(3 + ǫp)2

(32)

δDME
p = 0.32739 (33)

δDME
q = −0.25155 (34)

are coefficients deriving from FSC
x and FDME

x respec-

tively, and further,

w0(ǫp) := w(z0(ǫp)), (35)

z0(ǫp) := zrev(p = 0, α = 1) =
ǫp

3 + ǫp
. (36)

Equation 31 can be simplified further by noting that an

enhancement factor linear in the the reduced Laplacian

variable q yields the same exchange energy as one linear

in p/3, via integration by parts [41]. The terms in p and

q therefore may be combined to produce a single error

function with respect to p alone. As δSC
q is negative and

the second term in this equation is net positive, one thus

may search for an ǫp value for which the two contributions

cancel. A numerical solution yields ǫp = 0.58568, which

is happily close to the value of 0.5 chosen pragmatically.

This error cancellation only occurs for v2-sregTM. For

v1-sregTM, δscq = 0 and the net error is positive for any

value of ǫp. This provides another reason, therefore, to

prefer v2-sregTM.

Clearly this result also can be used to define a v3-

sregTM which is second-order gradient expansion com-

pliant, simply by replacing ǫp = 0.5 with the gradient-

expansion-compliant value of 0.58568. We have tested

this variant against the molecular and solid-state test

sets already mentioned. Detailed tabulations are in

the Supplemental Information. The gradient-expansion-

compliant v3-sregTM gets heat of formation MAD that

are about 4% worse than those of v2-sregTM, namely

6.128 kcal/mol versus 5.895. That is not surprising, since

v2-sregTM was chosen to optimize this measure, and the

optimum ǫp value for least heat-of-formation MAD is

around 0.45. Recall IVB. There is almost no difference

on the bond distance and frequency MADs. However, v3-

sregTM improves over v2-sregTM for solids, which are

closer to the GE limit. It is slightly less than 3% bet-

ter on solid cohesive energy and 2.5% on bulk modulus.

So a small violation of second-order gradient expansion

in v2-sregTM provides a slightly more balanced overall

treatment of molecules and solids than does satisfaction

of the second-order gradient expansion in v3-sregTM.

VI. CONCLUDING REMARKS

We have presented an analysis of the rregTM X func-

tional that shows that its regularization introduces pe-

culiar behavior in the z iso-orbital indicator. We have

argued that the regularization employed in regTM is un-

physical, a fact that justifies exploitation of a simplified

regularization. Further, we have shown that the simpli-

fied regularization is just as effective on standard molecu-

lar and crystalline data sets as the rregTM regularization

and that both the v1-sregTM and v2-sregTM exchange

with rregTM correlation retains the realistic handling of

9



3d elemental solid magnetism given by rregTM.

We also have demonstrated a further simplification.

Namely, PBE correlation is essentially as good a choice

for use with our sregTM functionals as is rregTM corre-

lation, with the benefit that the required computational

effort is reduced (at least slightly) by such use of a GGA

instead of a meta-GGA correlation term. In sum, sregTM

appears to embody the full capabilities of the original TM

DFA without the drawbacks of subsequent efforts to re-

move its limitations. The price paid is a small violation

of one of the basic constraints of non-empirical DFAs, an

illustration of the difficult design choices imposed by the

confrontation of rigorous constraints with experimental

data.

VII. SUPPLEMENTARY MATERIAL

The Supplemental Information [32] provides equations

for the rregTM correlation functional, details of the anal-

ysis of the weakly varying limit and compliance with the

gradient expanision of the new regularization, full com-

parative numerical results for the v1-sregTM version of

the new regularization, detailed magnetization results,

and system-by-system tabulation of results for each of

the molecular and crystalline test sets.
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