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In the preceding paper [1] we gave a regularization of the Tao-Mo exchange functional that
removes the order-of-limits problem in the original Tao-Mo form and also eliminates the unphysical
behavior introduced by an earlier regularization while essentially perserving compliance with the
second-order gradient expansion. The resulting simplified, regularized (sregTM) functional delivers
performance on standard molecular and solid state test sets equal to that of the earlier revised,
regularized Tao-Mo (rregTM) functional. Here we address de-orbitalization of that new sregTM
into a pure density functional. We summarize the failures of the Mejia-Rodriguez and Trickey de-
orbitalization strategy (Phys. Rev. A 96, 052512 (2017)) when used with both versions. We discuss
how those failures apparently arise in the so-called z’ indicator function and in substitutes for the
reduced density Laplacian in the parent functionals. Then we show that the sregTM functional can
be de-orbitalized somewhat well with a rather peculiarly parametrized version of the previously used
deorbitalizer. We discuss, briefly, a de-orbitalization that works in the sense of reproducing error
patterns but that apparently succeeds by cancellation of major qualitative errors associated with
the de-orbitalized indicator functions « and z, hence is not recommended. We suggest that the same
issue underlies the earlier finding of comparatively mediocre performance of the de-orbitalized TPSS
functional. Our work demonstrates that the intricacy of such two-indicator functionals magnifies
the errors introduced by the Mejia-Rodriguez and Trickey de-orbitalization approach in ways that
are extremely difficult to analyze and correct.

I. CONTEXT

Meta-generalized gradient approximations (meta-
GGAs) for the exchange-correlation energy in the Kohn-
Sham formulation of density functional theory depend
upon the electron number density n(r), its spatial gra-
dient Vn, and, in most cases, on the positive-definite
Kohn-Sham kinetic energy density

n =5 2 HIVP 0

written in its explicitly orbital- and occupation-number-
dependent form. The generic meta-GGA form is in terms
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of the exchange enhancement factor F:
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Corresponding dependencies, though not necessarily
written the same way, can and do occur in meta-GGA
correlation functionals E..

The explicit orbital dependence in Eq. (2) has a prac-
tical consequence that also is conceptually interesting. In
principle, the Kohn-Sham exchange potential can be ex-
tracted as the functional derivative v, [n] = SEMECG4 /on.
Doing so in practice is difficult because the functional
dependence of the orbitals upon the density ¢[n] is not
known explicitly, hence the optimized effective poten-



tial procedure must be used [2-4]. That procedure is
sufficiently burdensome computationally that the com-
mon practice with meta-GGAs is to use the general-
ized Kohn-Sham procedure instead, with the orbital-
dependent potential v,[{¢}] = §ET“%4/5p. Ordinary
KS and generalized-KS are the same for pure (i.e. orbital-
independent) functionals but not for explicitly orbital-

dependent ones [5].

That inequivalence is one motivation for pursuing
orbital-independent counterparts of orbital-dependent
meta-GGA functionals [6]. Having the KS (local) poten-
tial that is closely related to the g-KS oribtal-dependent
(non-local) potentials can provide insight into the work-
ings of the functional. Another motivation is the fact
that generalized-KS calculations are somewhat slower (at
best) compared to most KS calculations. For a small
number of calculations on modest sized systems, the
speed difference may not matter but in the context of ab
initio molecular dynamics on many (hundreds to thou-
sands) condensed phases of large molecules (hundreds
of electrons per molecule) the speed difference can be
prohibitive. The challenge in that regard is to develop
an orbital-independent meta-GGA functional which ac-
tually preserves that potential speed advantage.

Although one obviously could develop an orbital-
independent meta-GGA functional from constraints and
first principles, so far they actually have been developed
by de-orbitalization of an orbital-dependent form. De-
orbitalization replaces the 75 dependence with a pure
density functional dependent at most (for reasons of nu-
merical tractability) upon n(r), Vn, and V2n. The first
two examples of which we are aware were Refs. 7, 8. A
systematic scheme subsequently was put forth and ap-
plied by Mejia-Rodriguez and Trickey [6, 9, 10]. (Here-
after their approach is denoted “M-RT”.) They selected
some promising approximate kinetic energy density func-
tionals 7[n, Vn, V?n] ~ 74[n] and adjusted the parame-
ters in them so as to give a good approximation to the
iso-orbital indicator a widely used in meta-GGA X func-
tionals. It is

of{p}] = - (5)
TTF
O‘L[n’ an Vzn] ~ O‘[{@H (6)

The subscript “L” denotes a density-Laplacian depen-
dence throughout this paper. The reference KE densities

are Thomas-Fermi and von Weizsacker respectively

TTF ‘= CTF n5/3(r) (7)
CTp (— %(3W2)% (8)
_ 1|Vn(r)]

The chemical region indicator « has the important in-
terpretive property that it is the enhancement factor in
the expression for the Pauli contribution to the KS ki-
netic energy:

T[n] = T [n] + / o (10)
Fy[n] = afn] . (11)

In some meta-GGA X functionals, a second chemical
region indicator is used,

w op (12)

T T hp+3a

with p := s? and s given by Eq. (4). The fact that z is
dependent upon « and that it has an order of limits prob-
lem, lim, o[limy—0 2(c,p)] # lima_o[limy—o 2(e, p)],
turns out to be both the reason for modifications of var-
ious two-indicator X functionals and for at least part of
the problems with de-orbitalizing them.

A suggestion of that de-orbitalization difficulty ap-
peared but was not investigated in Ref. 9. The two-
indicator functional TPSS [11, 12] did not de-orbitalize
very well with respect to standard molecular data set
error patterns compared to the performance of de-
orbitalized one-indicator meta-GGA X functionals.

The present work focuses on the most refined of the
Tao-Mo family [13-15] of meta-GGA functionals, namely
rregTM, [16] and our simplification of it, sregTM, pre-
sented in the preceding paper [1] (denoted hereafter as
I). Motivation for considering rregTM, hence also for de-
orbitalization of it, and the ensuing need for simplifica-
tion is given in I. We begin this presentation by sum-
II, the key quantities in M-RT de-
orbitalization and by giving a brief account of several

marizing, in Sec.

variations of that strategy that fail for rregTM. We iden-
tify one source of the problem as being difficulty in repro-
ducing z or its regularized modification z’ (defined below
and at Egs. (14) and (22) in I) with de-orbitalizers that
work for a. We trace that to the unphysical behavior
of /. Then, in Sec. IIT we apply the MR-T strategy in
original and internally consistent versions to the sregTM



version introduced in I and show that it is reasonably
successful except for molecular heats of formation. The
partial success is dependent upon the parametrization of
the deorbitalizer being done in a peculiar way, a matter
not entirely understood. Despite the rather poor mean
absolute deviation (MAD) for the molecular heat of for-
mation, peculiarly, the de-orbitalized form in fact is rea-
sonably successful in reproducing the MADs of the par-
ent, orbital-dependent functional for molecular total en-
ergies or for atomic total energies. The problem with the
molecular heat of formation MADs therefore is identified
as a failure to have the same beneficial cancellation of
error (between molecules and constituent atoms) in the
de-orbitalized case as in the parent case. Interpretations
and summary observations are in Sec. IV.

II. DIFFICULTIES DE-ORBITALIZING
rreg TAO MO

Tao-Mo exchange functionals have the generic en-

hancement factor form

FiM(p,2,0) = w(z) FPMP (p,a) + (1-w(2)) Fy4(p, 2, a) .

(13)
In r77egTM and sregTM the indicator z is replaced by
regularized forms, 2’ and z,., respectively. In all cases,
the switching function is
2 3
2443z
= 14
with z, 2/, or 2., as appropriate. The intricate details of
FPME(p o) and F2¢(p,z,a) are not needed for discus-
sion of de-orbitalization; see I for those details.

Because « and z (and its regularized forms) are not
independent, the M-RT approach de-orbitalizes «, then
uses the second form of Eq. (12) or its regularized coun-
terparts to generate the de-orbitalized z or regularized
counterparts. The approach is motivated by recent
progress in constructing Fp forms, Eq. (11) for use in
approximations in the Pauli kinetic energy in orbital-free

density functional theory [17].

The deorbitalizers that were found in Refs. 6, 9, 10
to be particularly useful were denoted PC,,:, CRopt, and
TFLope. Detailed expressions for them are in Appendix
A. Several aspects are relevant here. First, they all de-
pend upon both the dimensionless reduced density gra-

dient s and its square, p, [Eq. (4)] and upon the corre-

sponding reduced density Laplacian:

V2n

q:= 132238 (15)

Second, though all three deorbitalizers originated in the
context of approximations to the Pauli kinetic energy,
their original parametrizations do not satisfy Eq. (6)
In the original M-RT work that deficiency
was addressed by optimizing the parameters against the

very well.

al{y}] values generated from high-quality Hartree-Fock
data for the first eighteen neutral atoms (in the central
field approximation) [18, 19]. Those are the parameters
associated with the “opt” part of the deorbitalizer names,
e.g. PCype.

The M-RT procedure has had some notable successes
(see, e.g. Ref. 6), but one may consider modified strate-
gies. An internally consistent de-orbitalization, for ex-
ample, would be to use the central field neutral atom or-
bitals from the targeted exchange-correlation functional
(rather than Hartree-Fock orbitals).

To do that, code was written to generalize the Nelder-
Mead [20] algorithm used previously to handle numer-
ical orbitals. The internally consistent re-optimization
was done using densities calculated with the rregTM
exchange-correlation functional in NWChem-7.0.2 [21]
for the first 18 neutral atoms with a UGBS basis set
[22] and xfine grid setting as defined in that code. Er-
ror metrics on «y, such as Egs. (39), (40), and (41) in
Ref. 9, were used. Table I shows the original parame-
ters and the internally consistent ones for rregTM. The
new parameter values are rather insensitive to change in
a relatively rich basis.

Table II compares the molecular test results for de-
orbitalization of rregTM with both the internally consis-
tent optimized parameters (“PC,,..,” etc.) and the origi-
nal M-RT parameters (“PC,”, etc.). As usual, the tests
are heats of formation according to Curtiss et al. [23, 24]
for the 223 molecules of the G3X/99 test set, optimized
bond lengths tested against the T96-R set [25, 26] and
harmonic vibrational frequencies against the T82-F test
set [25, 26]). Relevevant molecular geometry informa-
tion is provided in the respective publications of those
test sets. To be clear, G3/99 test set results were calcu-
lated, as is conventional for that set, at the equilibrium
geometries for the BBLYP DFA and 6-31G(2df,p) basis
set and using B3LYP/6-31G(2df,p) zero-point energies
(and thermal enthalpy corrections in the case of Ay Hogg)
obtained with a frequency scale factor of 0.9854. Calcu-



TABLE I: Re-optimized (internally consistent from
rreg TM spherical densities) and original optimized
parameters, denoted “new” and “opt” respectively, for
the three M-RT deorbitalizers. Also shown are the
PC,.p, parameters determined with negative density
Laplacian cutoff as discussed in Sec. III.

Functional a b

PCopt 1.78472 0.25830

PChew 1.79676 0.26444

PCep 1.50440 0.61565

TFLopt -0.20350 2.51390

TFLpew 0.00677 2.19899

Functional a by bo
CRopt -0.29549 2.61574
CRpew 4 -0.31906 2.61057

lations were done in NWChem-7.0.2 as described in I
[1]. The calculations were self-consistent, pure KS for
the orbital-independent functionals and generalized-KS
for the orbital-dependent ones.

Compared to the original rregTM, the de-orbitalized
performance clearly is a failure. Mean absolute devia-
tions (MADs) for both heats of formation and frequencies
from the de-orbitalized versions are much larger than for
the original functional. While the internally consistent
parametrization TFL,.,,, provides notable reduction in
the MAD for heats of formation compared to TFLy; out-
comes, PC,¢yy and CRy,¢qp yvield no improvement for heats
of formation, bond lengths, or harmonic frequencies over
PCopt and TFL,p.

As an aside, we note that the results of both types of
MR-T de-orbitalization applied to both the original Tao-
Mo [13] and revised Tao-Mo [14] exchange-correlation
functional were, generally, much poorer than those just
shown for rregTM. We ascribe that worsened behavior to
the order-of-limits difficulties in those two variants, hence
did not pursue their de-orbitalization further. Similarly,
we now suspect that the order-of-limits problem in the
original TPSS functional contributed to the somewhat
disappointing de-orbitalization results found in Ref. 9
but have not investigated that suspicion.

Results for the solid test data bases used in I [27-29]
(from VASP calculations; technical details as in I and
symmetries as tabulated in Ref. 10) with these two de-
orbitalizations were essentially as poor as what is shown
in Table II for molecules.

Puzzled, we attempted several rather straightforward

refinements of optimization of the deorbitalizers and of
That included use of both
o and z or 7z’ in the optimization of the deorbitaliz-

the numerical techniques.

ers, changing the relative weights of the two in the
de-orbitalization metric, enriching basis sets, comparing
molecular data set results from our local implementation
of rregTM against the implementation in LibXC-5.1.7
[30], optimization of deorbitalizers based on energy dif-
ference metrics, e.g. |Egc,orig — Eze,deors| Or of a sepa-
rate deorbitalizer for exchange (with metric on 2z’) and
for correlation (with metric on «), etc. We also consid-
ered optimization of a de-orbitalized w(z’). To ascertain
that the molecular behavior was not, somehow, special,
we tried several of those de-orbitalization options on the
solid data sets [27-29] (symmetries as tabulated in Ref.
10 with VASP-5.4.4 [31], using both PAWs and ultra-
soft pseuodpotentials. (Procedural details for VASP are
in I.) There were only small differences compared to the
molecular studies. Qualitatively and quantitatively, the

outcomes uniformly were poor.

Painstaking analysis leads to the conclusion that the
failure stems mostly from a combination of three factors.
One is the unphysical behavior of 2z’ discussed in detail

(12))

but the regularization of z into z’ introduces spurious

in I. In summary, z > 0 by definition (see Eq.

negative behavior. The Supplemental Information [32]
provides plots for two molecules that are examples of that
behavior. In one of those examples (BeH), the unphysical
behavior of 2z’ is manifested explicitly in the deorbitalized

Second, z is not as simply related to the Pauli or Kohn-
Sham kinetic energy densities as is a. Recall that « is
intrinsically the Pauli KE enhancement factor, see Eq.
(11), whereas z is non-linearly related to it. The non-
linear dependence of 2z’ upon « is much more intricate
than for z. The practical consequence is that deorbital-
izer forms derived from orbital-free KE studies that can
be made to fit « reasonably well, nevertheless can intro-
duce important errors in deorbitalizing z or z’. We show
this for the cases of single and triple bonds in the two
molecules CoHy and C3Hy in Fig. 1 for « and its de-
orbitalization and Fig. 2 for 2z’ and its de-orbitalization.
(The C3H,4 geometry used is propyne, H3-C-C-C-H, as in
Ref. 33.) The dramatic difference in the fidelity of the
de-orbitalized « to its parent and the de-orbitalized 2’ is
obvious. The de-orbitalized 2’ has a strange jagged oscil-
lation along each C-H bond in CoHs and large, spurious
oscillations in the Cs single bond compared to relatively



TABLE II: Results of the de-orbitalized version, rregTM-L, of the rregTM XC functional using the re-optimized
parameters from Table I (upper half) vs. de-orbitalized with the original M-RT parameters (lower half). The
Def2-TZVPP basis and xfine grid setting were used in NWChem. Heat of formation errors (mean error = “ME”,

mean absolute deviation = MAD”) in kcal/mol, bond length errors in A, and frequency errors in cm L.

1

PChew TFLpew CRew rreg TM
Heats of Formation ME 14.106 16.165 20.089 -3.790
MAD 16.964 18.843 922.777 5.612
Bond ME 0.020 0.021 0.022 0.012
onas MAD 0.022 0.022 0.024 0.014
Frocioncies ME -49.684 -46.570 -50.159 -21.011
q MAD 55.942 51.950 55.224 35.578
PCop: TF Loy CRopt
Heate of Formation ME 14.527 21.270 19.527 -3.790
MAD 17.385 923.656 922.259 5.612
Bond ME 0.020 0.021 0.021 0.012
onas MAD 0.022 0.024 0.024 0.014
Frocmoncies ME -50.152 -49.321 -49.652 -21.011
requenct MAD 56.391 55.528 55.519 35.578

accurate behavior at the center of the Cy triple bond in
C3H,. The equally spurious jagged oscillation along the
C-H bond shows up again. We do not worry too much
about the misbehavior well beyond the molecular ends
because of the density decay, but the misbehaviors in
critical bonding regions are unignorable signs of trouble.

To show the consequences, Fig. 3 gives an example of
the original w(z") compared to evaluation with a typical
de-orbitalization of z’. Unsurprisingly, all of the defi-
ciencies of the de-orbitalized z’ persist in w(z’). What is
evident is that a deorbitalizer for 2’ together with o must
have greater flexibility in its form than for o alone. The
challenge of devising such a form is made more severe by

the nonlinear character of w(z).

Third is a bit of unintended nearly circular reasoning
in the de-orbitalization of some meta-GGA X functionals
including the TM family. The reduced density Laplacian
q diverges at nuclear sites if the density has a true Kato
cusp and very spiky behavior if the cusp is approximated
in a finite Gaussian basis. To avoid that, the rregTM X
replaces ¢ with an orbital-dependent approximation,

2

Gonp) = e —1) + 2p.

20 3 (16)

See Eq.(18) in I. This yields a smoothly vaying function
which approaches ¢ in the limit of slowly varying density.

But M-RT deorbitalization uses an approximation to
G(a, p) generated from a g-dependent approximation to

«, namEIY aL(pa q)
in an expression built intentionally to remove q. The

Thus it reintroduces g-dependence

full consequences of that reintroduction are not easy to
discern.

Figure 4 illustrates the issue. It shows ¢ and ¢(«,p)
for CoHy and Cs3Hy. For both, the most significant dif-
ference between these quantities lies in the atomic nuclei
region, where g exhibits sharp negative peaks of consid-
erable magnitude. By design, those peaks do not appear
in ¢, which shows slightly negative regions there. In the
bonding regions, both functions are relatively close in
value.

Implicit in this is a challenge for the M-RT deorbital-
ization. Its parametrization of o must be such that ¢,
reproduces ¢, not ¢. That includes smoothing such that
the spikes from the g-variable do not appear in ¢;,. More-
over, the weakly varying limit of the de-orbitalized quan-
tity, ¢r(p,q) — ¢ must be preserved in the face of com-
plicated nonlinear dependence on q itself through the de-
orbitalized «. Note that the figure shows that near bond
centers, where p — 0, ¢; seems to meet that behavior
rather well. Of course, the deorbitalized ¢; also must
reproduce ¢ (not ¢) for larger values of p.

The difficulty that is hard to analyze is the effect
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FIG. 1: Orbital-dependent « and its de-orbitalized
approximation from PC,,.,, for distinct bonding types,
CoHy (upper) and CsHy (lower). The piots are along
the molecular axis.

of these competing requirements upon parametrization,
which is done on «, not on g. We have some evidence that
these competing requirements are a signifcant contribu-
tor to the limitations on de-orbitalization performance
already presented. See discussion in Sec. IV regarding
a changed parametrization, called PC,., that is strongly
affected by the structure of q. Further on, we have some
discussion on parametrization of the deorbitalizer that
works for molecules but breaks compliance with the gra-
dient expansion in the slowly varying limit. ¢ does not
go to ¢ in that case.
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FIG. 2: As in Fig. 1 for orbital-dependent 2’ and its
de-orbitalized approximation from PC,,,,.

IIT. DE-ORBITALIZING SIMPLIFIED
REGULARIZED TAO-MO sreg TM

Motivated by the misbehavior just discussed (as well
as other issues), in I we presented a simplified regular-
ization of Tao-Mo exchange, sregTM FE,. Distinct from
the rregTM functional, sregTM has a regularized z vari-
able that is properly positive semi-definite, z.., > 0, and
that has a simple regularization constant rather than the
function used in rregTM. We showed in I that sregTM E,
works well with the rregTM correlation (which is a refine-
ment of SCAN correlation [34, 35]) on standard test sets
and about as well with original PBE correlation (with
fixed § parameter) [36]. The second combination is in-
teresting because it simplifies the correlation term to a
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FIG. 3: As in Fig. 1 for orbital-dependent w(z’) and its
de-orbitalized approximation from PC,, ...

GGA, which can help both computational speed and sta-
bility.

For the de-orbitalization we focused on the v2-sregTM
variant (recall I). We chose it rather than v1-sregTM be-
cause v2-sreg TM uses only a and z;.¢,, whereas v1-sregTM
also uses the original z. The two variants yield essentially
indistinguishable test results, so we chose the simpler one.
As shown in Part I, that consistent use of z,.., in v2-
sregTM also leads to its near compliance with the second-
order gradient expansion in the limit of a slowly varying
density. Inconsistency in vi-sregTM leads to poorer be-
havior in that limit.

Because sregTM exchange has a different regulariza-
tion of z than rregTM, it seemed opportune to re-

visit the de-orbitalization parameters. In addition to
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FIG. 4: p and q from v2-sregTM densities along with ¢
and its deorbitalized approximation ¢z, from PC,., with
their respective densities for CoHy (upper) and CsHy
(lower). The plots are along the molecular axis. The
insets compare ¢ and ¢y, around the C atoms for CoHs
and the leftmost two C atoms for C3Hy.

the reparametrization discussed in Sect. I therefore,
we also did a distinctly different one. We considered
PC(s,qH(q)), where the notation indicates that the
Perdew-Constantin form was used with the variable ¢
restricted to positive values by multiplication with the
Heaviside unit step function H(g). This constraint was
introduced in the parametrization (only) for numerical
investigation of the consequences of ¢ < 0. Pragmat-
ically, it turns out to be a useful parametrization con-

straint; see brief discussion below. This reparametriza-
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The parameter re-optimization was done as before,
using densities calculated with the combination X-v2-
sreg TM+C-rregTM in NWChem-7.0.2 for the first 18
neutral atoms with the xfine grid setting as defined
in that code. Testing showed that we did not need the
very large basis set used in the work reported above, so
we reverted to the Def2-TZVPP basis [37]. The result-
ing parametrization, named PC,.,, has parameter values
a = 1.50440 and b = 0.61565. Observe that these are sub-
stantially different from the values for PC,,: and PC,,c,,
shown in Table I.

Figures 5 and 6 display the X enhancement factor be-
havior of the sregTM functional and its corresponding
deorbitalized version v2-sregTM-L with PC,., for C,H,
and C3H,. The de-orbitalized enhancement factors align
reasonably closely with those of the parent counterpart
except for some modest oscillations in the bonding re-
gions. Comparable behavior is evident in the X enhance-
ment factors for rregTM and rreg TM-L(PC,,¢y); see the
Supplementary Information.
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FIG. 5: Enhancement factor F'x for v2-sregTM and
v2-sregTM-L (PC,.,) functionals for the CyH,
molecule.

Next we give performance statistics for the de-
orbitalization of the v2-sregTM variant (recall I and dis-
We did the de-orbitalization in con-

junction with regTM correlation.

cussion above).
(For results of de-

C3Hy
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120 v2-sregTM-L —-—-

1.05

1.00 . . e : :
4.0 2.0 0.0 2.0 4.0
Internuclear axis(a.u)

FIG. 6: As in Fig. 5, but for the C3H, molecule.

orbitalization of v2-sregTM-L X plus PBE C with PC,..,
de-orbitalization, and brief discussion see the Supplemen-
tal Information.)

As before, we used NWChem 7.0.2 and VASP-5.4.4
with the procedures and parameter choices as in 1. To
assess the fidelity of de-orbitalization relative to wv2-
sregTM, again we used the same molecular and solid-
state test sets as in Part I.

Detailed results are tabulated in the Supplemental In-
formation [32]. Tables IIT and IV respectively show the
performance against the molecular and solid data sets
for the de-orbitalized combination of v2-sregTM with
rreg TM correlation. Observe that the deorbitalizer com-
mon to both Tables is PC,.p. (As an aside, note that
the poor performance of CR and TFL variants in de-
orbitalizing rregTM discussed above persists in the case
of de-orbitalizing v2-sregTM, so we do not report those
results.) For the molecular tests only, however, we also
show the results of straightforward M-RT deorbitaliza-
tion of v2-sregTM, that is, with PC,,,. Comparison with
the results of original M-RT deorbitalization presented in
Table I shows that in going from 2z’ in T7egTM tO 2,y
in v2-sregTM the M-RT deorbitalization actually wors-
ened. Then the shift in parameters to PC,., makes a
dramatic improvement in molecular heats of formation
error. Even so, that version of v2-sregTM-L is not as
good as its parent functional on heat of formation MAD,
about the same on bond length MAD, and better on har-
monic frequencies. The heat of formation performance
again is somewhat reminiscent of what was found with



the M-RT de-orbitalization of TPSS [9].

The improvement on going from PC,,: to PC,p
parametrization is not as dramatic in the case of the
solids. Nevertheless, v2-sregTM-L outperforms rregTM-
L on them. In detail, the MADs for lattice constants and
bulk moduli from v2-sregTM-L are not as good as for the
parent v2-sregTM. Unlike the molecular case, the cohe-
sive energy MADs are essentially identical. The KS band
gap MAD is worse but that is expected. For v2-sregTM-
L what is shown is a true KS band gap (local potential)
whereas it is not for v2-sregTM (generalized KS).

Clearly the molecular heat of formation error induced
by de-orbitalization is large, with the MAD for the de-
orbitalized functional about twice that for the parent.
This is striking in light of the fact that the solid cohesive
energy MADs for the parent and de-orbitalized function-
als are essentially identical. The difference can be diag-
nosed as a difference of cancellation of errors. For the
G3 molecular data set, the mean absolute relative error
(MARE: ), |[E; — Er ;]/E;|, with E; the relevant molec-
ular energy from the parent functional and E;; from
the de-orbitalized functional) for the molecular total en-
ergy from v2-sregTM-L is 0.06554 while from r2SCAN-
L it is 0.09195 [6]. For the G3 atomic total energies,
the comparison is 0.00514 versus 0.00905. From these,
one might expect that v2-sregTM-L atomization energy
MARE (thus, also for heat of formation) also would be
superior to the r?SCAN-L result. Yet in reality, the sit-
uation is reversed for the G3 atomization energies. The
MARE for v2-sregTM-L is 4.2303 while for r2SCAN-L
it is 2.6444. Apparently, the v2-sregTM-L error pat-
tern on the G3 molecules differs significantly from that
on the constituent atoms, so that the kind of beneficial
cancellation that often comes with DFAs, including with
r?SCAN-L, does not occur.

This is consistent with what we find in the solid cohe-
sive energies which have very good MAD. That data set
is dominated by elemental solids with a few diatomics,
whereas the G3/99 set is light to medium inorganic and
organic molecules. The diagnosis of limited error can-
cellation also is consistent with a test in which we recal-
culated the G3/99 heats of formation using a large unit
cell and PAWs in VASP. That did not alter the G3/99
heat of formation MAD shift from parent v2-sregTM to
Yet the two
calculations are quite different, all-electron versus plane-

de-orbitalized v2-sregTM-L meaningfully.

wave with PAW cores. One expects core-state cancella-
tion to be strong in both cases, so the deduction that the

valence energetics error pattern from v2-sregTM-L in the
molecules differs substantively from that in the atoms is
supported.

The MAD data in Tables III and IV suggest that the
electronic forces on the nuclei near equilibrium may be
less sensitive to de-orbitalization than the other quan-
tities.  Though the molecular bond length and lat-
tice constant MADs increase by about 33% upon de-
orbitalization by PC,..p,, those are shifts in small absolute
They are significantly better than PBE length
MADs (see data in I). In contrast, the MAD shifts upon

de-orbitalization in heats of formation, cohesive energy,

€rrors.

frequencies, etc. are similarly large fractions of rather
large errors. This comparative insensitivity suggests that
the electronic forces from the de-orbitalized v2-sreg TM-L
are reasonable.

The Supplementary information provides tabulations
showing that the total number of NWChem SCF steps
required for each of the three molecular test sets for
both parent and de-orbitalized versions of v2-sregTM and
rreg TM. The two parent functionals are essentially iden-
tical. In both cases, v2-sregTM versus v2-sreg TM-L and
for rregTM versus rregTM-L the step count is higher for
the deorbitalized versions than the parent functionals.
This outcome is not wholly surprising given experience
with numerical instabilities caused by the density Lapla-
cian. For the heat of formation, the increment is about
11%. Thus, any improvement in time per step for the de-
orbitalized case relative to the original gKS case greater
than 10% would give a net gain in performance.

The remaining comparison is magnetization. Figs. 7,
8, and 9 show the fixed spin moment energy as a func-
tion of magnetization for bcc Fe, fcc Co, and fcc Ni
as calculated from the PBE, rregTM, v2-sregTM, and
v2-sreg TM-L functionals. Table V gives the saturation
magnetizations. Generally the de-orbitalization from v2-
sregTM to v2-sregTM-L sustains or slightly alters the
saturation magnetization. For Fe, it is a small under-
estimate, but there are small overestimates for Co and
Ni. Details of the magnetization energetics are tabu-
lated in the Supplemental Information. Gratifyingly, the
v2-sreg TM-L preserves the good elemental magnetiza-
tion properties of both its parent v2-sregTM and its an-
tecedent, rregTM.



TABLE III: Molecular test results summary for the de-orbitalized version, v2-sregTM-L, with the PC,.,
deorbitalizer, of the v2-sregTM XC functional. For comparison, results from original M-RT type de-orbitalization
with PC,: are shown. The Def2-TZVPP basis and xfine grid setting were used in NWChem. Heat of formation

errors in kcal/mol, bond length errors in A, and frequency errors in em ™.

1

rreg TM v2-sregTM v2-sreg TM-L (PCopt) v2-sregTM-L (PC,.p)
Heats of Formation ME -3.790 -3.512 23.328 8.675
MAD 5.612 5.895 23.956 11471
Bonds ME 0.012 0.013 0.020 0.014
MAD 0.014 0.015 0.021 0.017
Frequencies ME -21.011 -19.275 -36.060 -32.277
au MAD 35.578 34.272 43.934 43.499

TABLE IV: As in Table III for solid test results for v2-sregTM-L done with PC,..p,. Equilibrium lattice constant
errors in A, cohesive energy errors in eV/atom, bulk modulus errors in GPa, and Kohn-Sham band gap errors in eV

rreg TM v2-sreg TM v2-s1eg TM-L(PC,.p)
. ME 0.000 0.004 0.018
Lattice Constants — y 0.029 0.031 0.041
Cohesive Enered ME 0.212 0.159 0.010
Ohestve Energles MAD 0.251 0.216 0.205
. ME 1.856 0.223 -3.265
Bulk Moduli MAD 6.740 6.602 8.747
ME -1.52 -1.53 -1.73
KS Band Gaps MAD 1.52 1.53 1.73

TABLE V: Magnetic moments in pup for three elemental
3d solids as determined from different XC functionals.
Exp. refers to the experimental data [38, 39].

Exp. rregTM  v2-sregTM  v2-sregTM-L  PBE
(Pcrep)

Fe 2.22 2.10 2.17 2.15 2.18

Co 1.72 1.72 1.73 1.75 1.64

Ni 0.62 0.68 0.66 0.69 0.63

IV. CONCLUDING REMARKS

To summarize, exhaustive study of procedural and
technical variations shows convincingly that straight-
forward use of the M-RT de-orbitalization strategy on
rreg TM and sregTM does not work. The complicated
dependence of the rregTM and sregTM X functionals
upon two indicator functions that are not independent
makes diagnosis of the cause (or causes) of that failure
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very difficult. Numerical exploration and visualization
therefore become more helpful than they would be in a
less opaque context.

It is worth re-emphasizing a particular kind of struc-
tural complexity that occurs in the TM family of X func-
tionals (and some other meta-GGAs as well) that we have
mentioned already but that is a previously undiscussed
difficulty for M-RT de-orbitalization. The issue is elimi-
nation of the reduced density Laplacian ¢ (that arises in
the gradient expansion) in any part of the X functional.
The motivation is to remove the spikiness discussed al-
ready and to avoid fourth spatial derivatives in the X
potential. As discussed above, in rregTM, the ingredient
enhancement factor F2°(p,a) (see Part I, Eq. (17)) by
replaces ¢ with is ¢(«, p) in Eq. (16). The explicit orbital
dependence re-introduced by a then must be removed in
de-orbitalization by use of an approximate, orbital-free
Qapprox|Ds q]- In essence

q — Qapprox [a>p] — Qapprox [aapp’roa: LP, Q}ap] . (18)
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FIG. 8: As in Fig. 7 for fcc Co.

This provides the basis for a plausible interpretation of
the success of the p,¢H(q)) re-parametrization, PCl.p.
The reasoning is that as long as ar (p, q) is well-behaved,
the ensuing G(p, ar) will be also, with the spikiness from ¢
suppressed. Given that smoothness, one then can exempt
the parametrization from having to include ¢ < 0 con-
tributions, which changes the parametrization error min-
imization qualitatively The result is apparent. The pa-
rameter values change dramatically, PC,., (a = 1.50440,
b = 0.61565), compared to the internally consistent
version of the M-RT procedure, PC,..,, (a = 1.79676,
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FIG. 9: As in Fig. 7 for fcc Ni.

b = 0.26444; recall Table I). These make a substan-
tial improvement in the performance of de-orbitalized v2-
sreg TM-L relative to what is obtained from use of PC,,¢,.

Recall Table 1.

For diagnosis, we did, in fact, try an even more bru-
tal approximation than the ¢ < 0 cutoff used in de-
termining PC,..,, namely to use that constraint in the
Note that we do
not recommend this brutal approximation. Numerically

molecular and solid calculations also.

the heat of formation MAD results are improved quite
a bit.
Zrev and w(zpe,) shows that they are drastically and

But visualization of the v2-sregTM-L functions

strangely different from the corresponding functions for
the parent functional. The differences are so gross that
the orbital-independent functional is better understood
as being a separate, quite peculiar construction, not a
de-orbitalization. The improvement in G3/99 heat of
formation MAD (relative to v2-sregTM-L) that it gives
apparently comes from very uneven redistribution of er-
ror in the a function: modest for atoms, and dramatic,
particularly for covalent bonds and near hydrogens, in
molecules. Thus there is fortuitous error cancellation
that is missing from ordinary M-RT de-orbitalization,
and what may be a clue for constructing a more disci-
plined post-deorbitalization functional.

Also note that if we were to use the pure PC form,
then by construction the resulting ¢r would reduce to ¢
in the slowly varying limit. It is the reparemetrizations
used in PC,,: and likely PC,., that are problematical

in this limit. They produce models of « that do not



comply with its gradient expansion for small p and ¢
[40].
for practical success in real systems.

However, these reparametrizations are necessary

The circularity in ¢ does not show up in functionals
such as MVS [41], SCAN [34, 35], or r2SCAN because
they depend only on o and that dependence is only in the
switching function between two X functionals. The inde-
pendence of the component exchange functionals from «
and its use only in switching suggests an alternative ap-
proach to the M-RT scheme, albeit a quite different one.
It would be to build a new version of Tao-Mo exchange
that included reproduction of the behavior of G(a, p) with
a function of p and ¢. This would include reducing to ¢
itself in the slowly varying limit. As discussed at the out-
set, such an approach is really the construction of orbital-
free functionals from the outset, not de-orbitalization, so
it is outside the scope of the present work.

Whether there are even better parameters within the
M-RT approach is not easy to discern. No systematic
way to make a more effective search using atomic calcu-
lations only (to avoid all fitting to any bonded system)
is apparent. Better de-orbitalizer forms also are hard to
construct.

The issue may be compounded by the nature of 2’ diag-
nosed in I. There we noticed (Fig. 1) that 2’ for rregTM
is a peculiarly complicated function in the limit p ~ 0
typical of covalent bonds. In particular, in order to ac-
commodate z/ = 1 for a single-orbital system (o = 0)
1),
the function 2’ varies sharply as a function of a. And

~
~

and z’ = 0 for the homogeneous electron gas («
a < 1, as well as p small, is the signature of covalent
bonding. Thus errors of the sort discussed above in «
become amplified in 2z’ in a way that is not easy to re-
move for energetically important situations. Switching
to the regularization in z,., mitigates this difficulty.

A related aspect of the reparametrization has been ev-
ident since the first M-RT paper [9]. An expression that
works well as a de-orbitalizer does not necessarily work
well as the integrand of a kinetic energy density func-
tional (and conversely). The problem is the gauge ambi-
guity of any KEDF 7,: Ti[n| = [ dr(7s[n(r)] + Dn(r)])
for all D[n(r)] such that [ drD[n(r)] = 0 on the relevant
domain. This is one reason for reparametrization. Since
KEDF development is not the focus of this research we
have not investigated whether, for example, PC,,, is a
good KEDF. Conversely, KEDF progress does not nec-
essarily translate into a better de-orbitalizer.

Finally, the PC,., de-orbitalization of v2-sregTM does
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provide a reasonable comparison of molecular total en-
ergies relative to one another but not heats of forma-
tion. On bond lengths it is reasonable and, like other
de-orbitalized meta-GGAs [6, 9] fair on molecular fre-
quencies. For solids it is as good on standard data sets
relative to its parents as other de-orbitalized meta-GGAs
[6, 10] The good magnetization behavior of the parent
orbital-dependent functional v2-sregTM is preserved in
v2-sregTM-L, unlike the de-orbitalizations of SCAN and
r?SCAN that actually perform better than their parents
6, 42],

V. SUPPLEMENTARY MATERIAL

The Supplemental Information [32] provides MAD
results for use of PBE correlation with v2-sregTM-L,
graphical comparisons of X enhancment factors for orig-
inal and de-orbitalized versions of rregTM in the C,H,
and C3H, molecules, atomic X potentials for two dif-
ferent de-orbitalizations, plots of two cases in which the
earlier regularization 2’ has unphysical behavior (2’ < 0),
detailed results on 3d elememtal magnetiztion, and com-
parative information on the number of SCF steps. There
also is system-by-system tabulation of results for each of
the molecular and crystalline test sets.
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Appendix A: Deorbitalizers
PCopt

The original PC' kinetic energy density functional [§]
is based on a modified fourth-order gradient expansion
(MGEA4) that has the enhancement function form

F? + F® + FyY

FBJV[GE4 — (Al)
4
VI IED /0 + B2
The ingredient quantities are
F”:=1 (A2)
FQ(Q) =25+ 2yg (A3)
FY = 2 - LPq+ 58t (A4)
B =342, (A5)

PC and PC, interpolate between the MGE4 form and
the von Weizséacker lower bound, FOW ,

0, §<0
oo b
Orc(€) =1 [0 25] o<é<a  (AQ)
1a g >a
The PC form thus is
FQPC = FQVV + 2PC Opc (ZPC) (A7)

with

ZPC _ FQMGE4 o FQVV )

(A8)
The original PC' parameter values are a = 0.5389, b = 3.
The PC,p values are a = 1.784720, b = 0.258304 [9].
CR,p:

The CR mGGA enhancement function [33, 43] is

F§R =1+ F)V +¢“ROocg (€9F) (A9)
with
¢OR = pgEATTL g 1, (A10)
FOEARTL — 1 1 b7 + bag (A11)
and the interpolation function
Ocr(§) = {1 —exp [-1/|¢[] 1 - HE}" . (A12)

Here H(£) is the Heaviside unit step function.

The original parameter values were a = 4 and (from
the gradient expansion) b; = 2—57, by = % The CRopt
values are a = 4, by = —0.295491, by = 2.615740 [9].

TFL,,;

The
hancement function [44] is the combination of

regularized Thomas-Fermi-plus-Laplacian en-

=142 (A13)

and the constraint to satisfy the von Weizsacker lower
bound

FPEe9 — max (FTFL W) (A14)

For T'F Ly, the parameters to be optimized were the
coeflicients of the second-order gradient expansion, yield-
ing

TF Lopt
Fyooop

=14as’+bq, (A15)

with a = —0.203519 and b = 2.513880.
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