MAXIMIZING THE SECOND ROBIN EIGENVALUE OF SIMPLY
CONNECTED CURVED MEMBRANES

JEFFREY J. LANGFORD AND RICHARD S. LAUGESEN

ABSTRACT. The second eigenvalue of the Robin Laplacian is shown to be maximal
for a spherical cap among simply connected Jordan domains on the 2-sphere, for
substantial intervals of positive and negative Robin parameters and areas. Geodesic
disks in the hyperbolic plane similarly maximize the eigenvalue on a natural interval
of negative Robin parameters. These theorems extend work of Freitas and Laugesen
from the Euclidean case (zero curvature) and the authors’ hyperbolic and spherical
results for Neumann eigenvalues (zero Robin parameter).

Complicating the picture is the numerically observed fact that the second Robin
eigenfunction on a large spherical cap is purely radial, with no angular dependence,
when the Robin parameter lies in a certain negative interval depending on the cap
aperture.

Dedicated to the memory of my friend and mentor Peter Duren, who generously shared
his knowledge of and fondness for special functions and conformal mappings. — R.S.L.

1. Introduction

Does the spherical cap maximize the second tone of vibration among membranes of
given area on the sphere, subject to elastic boundary constraints? To formulate the
problem mathematically, consider the second eigenvalue of the Laplacian under Robin
boundary conditions on a spherical domain of given area. We show for a substantial
range of areas and Robin parameters that the second eigenvalue is largest when the
domain is a spherical cap.

The analogous Euclidean result was proved by Freitas and Laugesen [18, 19], build-
ing on Neumann techniques of Szegé [32] and Weinberger [34].

The spherical situation in this paper is more difficult because the second Robin
eigenfunction need not have angular dependence — it can be purely radial. When the
eigenfunction does have angular dependence, its radial part need not be monotonic:
it can increase and then decrease and then increase once again. We handle such
complications by building on our proof for the second spherical Neumann eigenvalue
[26], where we showed that the spherical cap is the maximizer among simply connected
domains on the 2-sphere of given area provided the domain covers less than 16/17 ~
94% of the whole sphere. That Neumann theorem improved on the 50% result of
Bandle [5, 6], and thus required techniques applicable to caps beyond the hemisphere.
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2 MAXIMIZING THE SECOND ROBIN EIGENVALUE

The main theorem. A Jordan—Lipschitz surface is a simply-connected, bounded
planar domain €2 with Lipschitz boundary that is a Jordan curve, endowed with a
mass density or weight w € C2(Q) N C(Q) that is positive on Q. We write €, when
it is desirable to indicate the weight. The weight generates a metric w |dz|* with area

| :/wdA
Q

L, = Vwds.
o9

The curvature of the surface is less than or equal to a constant K if

and boundary length

_Alogw

< K.
2w T

For the Laplace-Beltrami operator w™'A, the Robin eigenvalue problem is
—Au = dwu in €,
0
_at av/wu on 09,
on
where 0/0n is the Euclidean normal derivative in the outward direction and o € R
is the Robin parameter. The eigenvalues satisfy
)\1(QUJ7Q) < )‘2<Qw705) S )\3(Qw7a> S e gl o}

with variational characterization

A, ) — min max Jo IVul? dA + a [, u* wds

1
L wel\{o0} Jou?wdA (1)

where £ ranges over k-dimensional subspaces of W2(£2). The Sobolev space imbeds
compactly into L?*(w dA) by the Lipschitz assumption, justifying discrete spectrum.
This paper aims to maximize the second eigenvalue \,. Write M for the complete
2-dimensional surface of constant curvature K, so that My can be identified with a
sphere when K > 0, the Euclidean plane when K = 0, and a hyperbolic or Poincaré
disk when K < 0. Their Laplace-Beltrami operators are recalled in Section 2.
Theorem 1.1 below says that a constant curvature disk maximizes the second Robin
eigenvalue if the curvature of the surface is bounded above and the area and the Robin
parameter lie in certain regions of parameter space: a “Bandle-Szegd” set BS and a
“front-loaded” set FL. These two-dimensional parameter regions are specified pre-
cisely in Section 3 and illustrated in Figure 1. They involve the horizontal coordinates:

ty = 4msin?(0,/2) ~ 10.081 (defined in Section 3),
ty = 4 sin®(37/8) = (2 + V/2)m ~ 10.726,
ty ~ 11.828 (approx. (16/17)4m, defined in Section 9).

The BS and FL sets lie to the left of t = 47 and above = —2m, so that the next
theorem implicitly imposes an area restriction |, |K < 47 and parameter restriction
B/L, > —27.
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FiGURE 1. Theorem 1.1 proves that the geodesic disk maximizes the
second Robin eigenvalue for parameters lying in BSUFL. Sets I-V lie in
BS by Theorem 3.1, although the plotting of V' requires some numerical
work. The conditions for FL are verified numerically too, as explained
in Section 9. Notes. Set I is the halfstrip (—oo,ts] x [=2m,0]. The
upper left boundary of V' is the graph of ¢(4m —t)/(2m —t), which hits
the rightmost point of set IV at coordinates t ~ 11.841 and 8 ~ —1.544,
before the graph continues to increase to the point (47, 0). The upper
boundary of FL intersects the horizontal axis at (¢4,0). Our method
is not applicable in the second quadrant, labelled NA, or in the red
region labelled R on the far right side, where the second eigenfunction
is found numerically to be purely radial (Figure 4 below).

Theorem 1.1 (Second Robin eigenvalue is maximal for constant curvature disk).
Assume K € R and €, is a Jordan—Lipschitz surface with curvature < K. If
(192,]K, B) € BSUFL then

)\Q(Qwaﬁ/Lw) S )\Q(DKaﬂ/LK)

where Dk s a geodesic disk in the constant curvature space Mg whose boundary
length is denoted Ly and whose area is chosen to equal |Q,|. If in addition § > —2m,
then equality holds if and only if €, is isometric to the constant curvature disk Dy .

Scaling the Robin parameter in the theorem by boundary length with o = §/L,
makes a natural choice, since the parameter « in the Robin boundary condition must
have dimension matching that of the normal derivative 9/9n, namely 1/length.

The proof is in Section 5. On the sets BS and FL, hypothesis (3) below ensures
that the second eigenvalue A\ of the geodesic disk is the lowest “angular” eigenvalue.
Thus the upper bound in the theorem is computable by separation of variables using
roots of associated Legendre functions (Appendix A). Level sets of the lowest angular
eigenvalue are shown in Figure 2, as a function of 5 and the signed area t = |Dg| K.
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FiGURE 2. Contour plot of the lowest “angular” eigenvalue of a ge-
odesic disk of radius ©, whose eigenfunction has the form ¢(6) cos ¢.
Positive ¢: unit sphere, area of spherical cap is t = 4 sin*(©/2), Robin
parameter « = (/2w sin ©. Negative ¢: hyperbolic plane, area of geo-
desic disk is —t = 47 sinh® ©/2, Robin parameter a = /27 sinh ©. The
eigenvalue increases as one moves upward in the figure. The horizontal
line at height —27 is the contour A = 0, corresponding to a Steklov
eigenvalue for the disk. The straight line through (27,0) is the contour
with eigenvalue 2, corresponding to the eigenfunction u = sinf cos ¢
(the first spherical harmonic, that is, the coordinate function z; in R?).
The contour touching the horizontal axis at ¢5 is the graph (S5(t) plotted
in the previous figure. For details on the construction see Section 9.

Open problems.

Problem 1 — spherical. In the first quadrant of Figure 1, for domains on the sphere
with positive Robin parameter, can a larger region be found on which Theorem 1.1
holds? The FL region gives a sufficient condition but is presumably not necessary.
We conjecture the theorem should hold on some larger region that attains a vertex at
(4m,0). If true, then the theorem would apply in particular to the second Neumann
eigenvalue on all simply connected spherical domains, with no restriction on the area.
We raised that Neumann conjecture earlier [26, Conjecture 1.2].

Does the cap maximize the second eigenvalue in the exceptional region of the fourth
quadrant in Figure 1, that is, for spherical domains with negative Robin parameter
whose second eigenfunction is radial?

Problem 2 — hyperbolic. Our theorem does not apply in the second quadrant, for
domains in hyperbolic space with positive Robin parameter. The obstacle resides in
the ratio-of-areas Lemma 4.2, which holds only with nonnegative curvature. Surely
the theorem itself continues to hold for a large part of the second quadrant?
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Prior work maximizing second eigenvalue for simply connected domains.
The original result of Szegé [32] corresponds to the origin in Figure 1, since he handled
simply connected Euclidean domains (K = 0) with Neumann boundary condition
(8 =0). Later developments by Bandle [5, 6] correspond to the interval (—oo, 27| on
the horizontal axis in Figure 1, that is, surfaces with Neumann boundary condition
and curvature bounded above by K and satisfying |{),|K < 2w. Most recently, our
paper [26] extended Bandle’s Neumann theorem to the larger interval (—oo, 4] on
the horizontal axis. The Freitas—Laugesen paper [18] handled the interval [—27, 27]
on the vertical axis in Figure 1, in other words, it handled Euclidean domains with
Robin parameter /L where |3| < 27.

The papers by Freitas—Laugesen [18] and Langford—Laugesen [26] relaxed the eigen-
function monotonicity assumption that was crucial to Bandle and Szeg6’s work, by
developing a modified functional that “front loads” the monotonicity requirement:
one allows the radial part of the eigenfunction to decrease after it has first increased
sufficiently. This behavior of the radial part distinguishes the two regions in Theo-
rem 1.1: BS covers situations where the radial part of the eigenfunction is monotonic,
and FL applies in many cases where it is not monotonic.

In order for our methods to work, the second Robin eigenfunction of the geodesic
disk must have angular dependence. That angularity requirement is built into the
definitions of BS and FL in Section 3. Perhaps surprisingly, the second eigenfunction
can fail to have angular dependence. Numerical work shows:

the second Robin eigenfunction on a spherical cap is purely radial (no
angular dependence) when the cap fills almost the full sphere and the
Robin parameter is negative and lies in a certain interval.

This exceptional region of parameter space is shown in red in Figure 1, based on the
underlying plot in Figure 4 later in the paper.

Prior work maximizing the second eigenvalue for arbitrary domains. A
parallel strand of research has aimed to maximize the second eigenvalue of the Lapla-
cian for domains in all dimensions, without requiring that the domains be simply
connected. Weinberger [34] showed in Euclidean space that the second Neumann
eigenvalue is maximal for the ball of the same volume. The analogous result holds
for subdomains of hyperbolic space by Chavel [13], [14, p. 94] (see also [3, 35]), and
for subdomains of the sphere that fill at most half the sphere and either contain no
antipodal point-pairs (Ashbaugh and Benguria [3, Theorem 5.1]) or else lie outside
a spherical cap of the same area (Bucur, Martinet and Nahon [12, Corollary 3]).
See also Wang [33] for a variable curvature result. Interestingly, the spherical cap
does not always maximize the second Neumann eigenvalue among domains in S? that
are permitted to have holes (not simply connected), as Martinet [31] has shown by
numerical counterexamples for domains having large enough area.

For the second Robin eigenvalue with a certain range of negative Robin parame-
ters, the geodesic ball is again the maximizer among Euclidean domains by Freitas
and Laugesen [19], whose method was extended to hyperbolic space for a smaller
parameter range by Li, Wang and Wu [30].



6 MAXIMIZING THE SECOND ROBIN EIGENVALUE

The Bandle-Szeg6 conformal mapping approach in this paper is better than the
Weinberger-type approach in two key respects, for Neumann and Robin eigenvalues on
simply connected subdomains of the 2-sphere: it can treat positive Robin parameters
and can handle domains with area greater than half that of the sphere.

Prior work extremizing first and third Robin eigenvalues. To place the cur-
rent paper in context, we remark that the first Robin eigenvalue too can be extremized.
When the Robin parameter is positive, the sensible question concerns minimization:
the geodesic ball provides the minimizer among arbitrary domains of given volume,
in spaces of constant curvature in every dimension. That result in Euclidean space
is due to Bossel [8] and Daners [16], and on spheres and hyperbolic space to Chen,
Cheng, and Li [15]. When the Robin parameter is negative, one asks whether the
ball now provides the maximizer. This Bareket conjecture on the first Robin eigen-
value was proved for small negative Robin parameters in the planar case by Freitas
ters. Recent work on Bareket problems includes results by Bucur, Ferone, Nitsch and
Trombetti [9] for convex domains with given perimeter, work of Khalile and Lotore-
ichik [24] on simply connected domains with curvature bounded above, again under a
perimeter constraint, and local optimality of the equilateral triangle among triangles

The third Robin eigenvalue is maximized by a disjoint union of disks (in a limiting
sense), among simply connected planar domains, as proved by Girouard and Lauge-
sen [21] for a range of negative Robin parameters. The maximizer among arbitrary
Euclidean domains is unknown, although numerical work does suggest it is connected
[1, Figure 4]. Maximizing domains in hyperbolic space or the sphere are not known.

Maximization of the third Neumann eigenvalue (zero Robin parameter) is much
better understood: the optimal shape is a disjoint union of two equal-sized geodesic
balls, as shown for simply connected planar domains by Girouard, Nadirashvili and
Polterovich [22, 23] and by Bucur and Henrot [11] for arbitrary Euclidean domains,
and for domains in hyperbolic space by Freitas and Laugesen [20] and on the sphere
by Bucur, Martinet and Nahon [12].

An excellent survey article on Robin spectral problems can be found in the work of
Bucur, Freitas and Kennedy [10], and a superb overview of geometric spectral theory
can be found in the monograph by Levitin, Mangoubi and Polterovich [29].

2. Laplacians on the hyperbolic space, plane and sphere

On 2-dimensional hyperbolic space H? with curvature —1, let # be the geodesic
distance from the origin and ¢ € (—m, 7] be the angle measured around the origin. In
the Euclidean plane, use polar coordinates with # being the radial variable and ¢ the
angle around the origin. On the unit sphere S? with curvature +1, write 6 € [0, 7]
for the angle measured from the positive z-axis, that is, the geodesic distance from
the north pole, and write ¢ € (—m, 7] for the longitudinal angle.
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After defining
sinf if K =41,
sngf =46 if K =0, (2)
sinhf if K = —1,

the Laplace-Beltrami operators for the hyperbolic (K = —1), Euclidean (K = 0) and
spherical (K = +1) situations can be written in the unified form

A _ 1 8_ n 9@ —l——l @
K= k000 """ 90 ) T sng 0)2 9¢2

We are particularly interested in eigenvalues of this operator on the geodesic disk
Dg(O) of constant curvature K and radius © > 0. That disk has area 4w (snx ©/2)%.
In the spherical situation (K = +1), the radius of the disk is restricted to © < .
The Robin boundary condition with parameter « says —du/00 = au at 6 = O.

Geodesic disks in hyperbolic space and the sphere are equivalent to Euclidean
disks with weight function wy and constant curvature K: the stereographic change
of variable can be found in [26, Section 2], and wy is stated later in (7). Thus just
as the competitor surface €2, in Theorem 1.1 is a Jordan-Lipschitz surface, so is the
geodesic disk Dy that provides the maximizer.

3. The BS and FL sets

Here we define the BS and FL regions on which Theorem 1.1 is valid, and develop
conditions for belonging to those sets.
Given K = —1,0,41 as in the preceding section, denote by

(0, ), k=1,2,3,...,
the k-th eigenvalue of Ak on a geodesic disk Dk (©) with Robin parameter a.

Definition of the BS set. The BS set consists of parameter values for which a
second eigenfunction on Dy (©) has angular dependence and monotonic radial part:

BS = {(47sin*(©/2),8) : —2r < 3 <0,0 < O < 7,and (3)-(4) hold for K = +1}
U{(0,8) : —2r < 5 <0,0 < © < 0o,and (3)-(4) hold for K = 0}
U{(—4nsinh?©/2,8) : =27 < 8 < 0,0 < © < co,and (3)-(4) hold for K = —1}.
Here the first coordinate 47 (sng ©/2)2K is the signed area of the disk Dy (0).

Angular condition

,(4
,(4

A second eigenfunction for eigenvalue A\2(0, 3/27snk ©) has the form g¢(0) cos ¢.
(3)
Monotonic condition
g and ¢’ are positive on (0, ©), (4)
except that ¢’ might vanish at one point in the interval. In the Euclidean case (K = 0),
if the angular condition (3) holds for some © then by scaling invariance it holds for
all ©, and similarly for the monotonic condition (4).
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92(0)
ax(©)

N |

E 0, TT -3
FIGURE 3. LEFT: radial part g(f) of the second Neumann eigen-
function for a spherical cap of aperture ©5. RIGHT: Robin parameter
az(0) = —g4(©)/92(0) for go, at arbitrary aperture ©.

Shape of the BS set. To state the next theorem, which provides sufficient condi-
tions for belonging to BS, we need some special functions. Define

@2 ~ 0.707

to be the unique aperture O of a geodesic disk D(0©) on the unit sphere for which the
second Neumann eigenvalue Ay (0, 0) equals csc? ©; see [26, Propositions 3.1, 4.2] and
[27, Theorem 1] for the construction of this number ©,. The corresponding Neumann
eigenfunctions on the cap of aperture Oy have the form g¢o(6) cos ¢ and ¢»(6) sin ¢,
where as shown in [26, Proposition 4.1(a)(c)], the radial part g, has positive derivative:
g5(0) > 0 for all # € (0,7) except at Og, where the Neumann condition requires
g5(02) = 0. For no other aperture is the radial part of the Neumann eigenfunction
increasing on the whole interval (0, ).

The graph of go on the left of Figure 3 is obtained from the explicit formula (see
Appendix A or [26, Proof of Proposition 4.2]) that

g2(0) = Pn_;(cos 0), 0 €10,7),

where P is the associated Legendre function and we choose m = —1 and take
n = ny such that g, has the required property of being positive except at one point
©,. Numerically, one finds
ny ~ 0.851187.
Define
a2(0) = —95(0)/92(0),

so that a2(©) is the Robin parameter for go(6) cos ¢ at the boundary of the cap of
aperture ©. In particular, the Neumann condition at aperture ©, says as(©,) = 0,
as seen on the right of Figure 3.

The area of a spherical cap of aperture © € (0, 7) is given by the strictly increasing
function ¢(0) = 47 sin*(0/2) € (0,47). Let

ty = t(Oy) = 4msin®(0,/2) ~ 10.081,

ty = t(3m/4) = 4rsin®(37/8) = (2 4+ V2)1 ~ 10.726,
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and define 5 : (0,47) — R by
Bo(t(O)) = (2msin ©) ax(O).

Note this definition has the same form “a = /L” as appears in Theorem 1.1, since
the cap of aperture © has boundary length 27 sin ©.

Theorem 3.1 (Shape of the BS region). The BS region contains the following sets:
I={(t,p): —0o <t <ty —2r<B<0}
I ={(t,B) :ta <t <ts,—2m < B < Ba(t)},

o1 = {(t,p) : t3 <t < 4w, =271 < <27 — t},
§5§52(t)}7

4 —t

W:{(t,ﬁ):t3<t<47r,t2

™=t
A — ¢t
2r —t

V= {(t,ﬁ) ity <t <dm2m —t < [ < min (t ,52(t)> and (3) holds} :

These sets are shown in Figure 1. The theorem is proved in Section 7.

Definition of the FL set. The FL set comprises those parameter values for which
the second eigenfunction has angular dependence and its radial part increases and
then decreases in a “front-loaded” way with more increase than decrease, according
to a certain integral criterion:

FL = {(47sin*(©/2),8) : =27 < < 00,0 < © < 7,and (3), (5), (6) hold for K = +1}
U{(0,8) : =27 < f < 00,0 < © < o0, and (3), (5), (6) hold for K = 0}

where the angular condition (3) was stated above and the new conditions are as
follows.
Up-Down-(Up) condition

g>0on (0,0], ¢ >0o0n (0,04), 9 <0on (Onaz,Omin), d >0 on (Opin,®) (5)

for some numbers 0 < 6,00 < Opin < O,

(If Oppinn < O then g goes up-down-up, while if 6,,;,, = © then the third interval
(Omin, ©) is empty and g goes only up-down.)
Front-Loaded condition

/ " 4(0)d0) (s g) a9 >0 (6)

The FL set lies in the right halfplane, relating to the spherical case in the first and
fourth quadrants and the Euclidean case on the vertical axis. The third quadrant,
meaning hyperbolic with negative Robin parameter, is handled already by the BS
region, thanks to the set I in Theorem 3.1.

In the second quadrant, that is, for the hyperbolic case with positive Robin param-
eter (t < 0,5 > 0), we can offer no result. The obstacle is that the radial part g of
the second eigenfunction is non-monotonic due to the positive Robin parameter, while
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our tool for handling non-monotonicity (Lemma 4.2) applies only to the Euclidean
and spherical cases.

Shape of the FL set. The FL set extends downward from each point it contains,
as seen graphically in Figure 1.

Proposition 3.2 (Dropping downward in the FL set). Suppose —27 < < f,.

(i) Let K =0 and © > 0. If (0, 8.) € FL then (0, 3) € BSUFL provided the angular
condition (3) holds for this [3.

(ii) Let K = +1 and 0 < © < w. If (47 sin*(©/2), B.) € FL then (47 sin?(©/2), B) €
BSUFL provided (3) holds for this 8 and ©.

The proposition is proved in Section 8. The angular condition (3) holds in particular
when § > 0, by applying Proposition 6.1 later in the paper with a > 0.

Some points belonging to the FL set can be established rigorously. For example,
the BS set contains the line segment with 0 < t < ¢5 and § = 0, and the FL set
contains its continuation with t, < ¢t < ¢4 and g = 0, by our work in the Neumann
case [26, Theorem 1.1]. Further, the FL set contains the vertical line segment with
t =0and 0 < 8 < 27 by a result of Freitas and Laugesen [18, Theorem B| in the
Euclidean case. Additional first-quadrant regions in the FL set can be determined
rigorously with the help of Proposition 3.2, if desired, as explained in Section 9.

4. Curvature assumptions imply area comparisons

The proof of Theorem 1.1 relies on area growth inequalities that follow from the
upper curvature bound. The first inequality is due to Bandle and addresses a differ-
ence of areas. The second inequality appeared in a recent paper of ours and deals
with the ratio of areas.

The planar weight representing the sphere, Euclidean plane or hyperbolic plane is

ﬁ, 0<r<oo, when K =+41,
wr(r) =41, 0 <7< oo, when K =0, (7)
4 0<r<1, when K =-1.

=y

One checks that the curvature — (A log wg ) /2wk equals K in each case. The weighted
area of the Euclidean disk D(r) is

A(r) = |D(r)w,| =27 /OT w(s)sds

dn? ) < r < o0 when K = +1,

T+r2
=<2, 0<7r<oo, when K =0, (8)
ff:i, 0<r<1, when K =-1.
Notice the area A(r) can take any value between 0 and oo when K = —1,0, and any

value between 0 and 47 when K = +1.
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Suppose K = —1,0,+1. Given a surface (2 with weight w as in Theorem 1.1, choose
a radius R > 0 such that

A(R) = |01,
noting in the case K = +1 that such an R exists because the assumptions in the
theorem ensure |2, | < 47. Take F': D(R) — Q to be a conformal mapping onto the
simply connected domain 2. The w-weighted area of the image of the subdisk D(r)
is

B() = 1P| = [

F

wdA:/ (wo F)|F'|*dA. (9)
(D(r)) D(r)

Since Q = F(D(R)), we have the endpoint condition
B(R) = [9,] = A(R). (10)

Lemma 4.1 (Difference of areas; Bandle [6, pages 44, 119], or see [26, Lemma 6.1]).
The constant curvature disk has larger area: A(r) > B(r) for 0 < r < R. Equality
holds for all v if and only if (wo F)|F'|* = wk.

Lemma 4.2 (Ratio of areas; Langford and Laugesen [26, Lemma 6.3]). If K = 0,1,
then the area ratio B(r)/A(r) is increasing. This area ratio is constant if and only if
(wo F)|F'|? = wg.

5. Proof of Theorem 1.1 — second Robin eigenvalue maximal for
constant curvature disk

We follow the construction of trial functions from the Neumann case by Szeg6 [32]
and Bandle [5, 6]. In the hyperbolic Robin situation we can employ their method of
estimating the Rayleigh quotient, under the monotonicity condition (4). The spherical
situation is handled under either (4) on the BS set or else the new and distinctly
weaker Front-Loaded condition (6) on the FL set, which enables a certain integration
by parts step to be adapted from [18, 26].

Without loss of generality, we may assume the upper bound K on the curvature
equals —1,0 or +1, since multiplying the metric by a positive constant ¢ causes the
area and boundary length to change by factors of ¢ and +/c, while the curvature and
eigenvalue in the theorem change by 1/¢, as is clear from the Rayleigh quotient (1).

Constructing trial functions. Assume (|Q,|K, ) € BSUFL. The constant curva-
ture geodesic disk Dy whose area equals [€2,] lies in either the hyperbolic space of cur-
vature K = —1, in Euclidean space (K = 0), or in the unit sphere (curvature K = +1,
noting such a spherical cap Dy exists since |Q,| < 47 by hypothesis). Write © for the
radius of that geodesic disk. Second eigenfunctions of —Axv = Av on Dg = Dk (O)
with Robin parameter /2msni © can be taken in the form vy = ¢(f)cos¢ and
v3 = g(0) sin ¢ by the angular hypothesis (3) in the BS and FL sets, noting that since
cosine gives an eigenfunction, so must sine.

Transform the radial variable by r = tanh 6/2 (hyperbolic) or r = 6 (Euclidean)
or r = tan /2 (spherical), and similarly define R in terms of © in each case. (In the
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hyperbolic case, note that R = tanh ©/2 < 1.) Writing
h(r) = g(0),

one calculates (see for example [26, Section 2|) that the transformed eigenfunctions

fa=h(r)cos¢,  fs=h(r)sing,

are second eigenfunctions of —Af = Awg f on the Euclidean disk D(R) having the
Robin parameter 3/2mRy/wg (R), where the weight wy was defined in the previous
section. Here A is the Euclidean Laplacian. The radial part h is smooth, and has
h(0) = 0 since eigenfunctions are continuous at the origin.

This change of variable also implies that the weighted disk has the same area as the
geodesic disk, |D(R)y, | = 47 (snx ©/2)* = |Dg(O)|, and hence by our construction
has the same area as Q with weight w, that is, A(R) = || in the notation of
Section 4. Hence A(R) = B(R) by formula (10).

Take a conformal mapping F' : D(R) — € onto the simply connected domain.
Conformally transplant f, and f3 to 2 by letting

2= fao F7' and 3= fs0F L.

Observe o, 03 € H'(Q) by boundedness of h and by conformal invariance, which
yields equality and finiteness of the Dirichlet integrals:

/ Veoldd= [ (VhPdA= [ |VfPdA— / Vs 2 dA.
Q D(R) ) Q

D(R

By a “center of mass” argument that goes back to Szegé [32] (see, for example, [18,
Lemma 5]), we may assume after precomposing the conformal map F' with a suitable
Mobius self-map of the disk that ¢y and @3 are each orthogonal in L?(wdA) to the
eigenfunction u; for the eigenvalue A;(2,, 5/L,), meaning

/¢2U1wdA=/<p3u1wdA:0.
Q Q

Substituting into the Rayleigh quotient. Applying the variational characteriza-
tion for the second eigenvalue, restricted to the space {¢ € H'(Q) : [, pus wdA = 0}
of functions orthogonal to the first eigenfunction, one obtains using the trial functions
o and 3 that

Jo IV@i? dA+ (B/Ly) [pq 03/w ds
JopiwdA

Recall here that L, = fQ Vw ds is the weighted length of the boundary.
Clearing the denominators and summing over ¢ = 2, 3 yields that
Jo (Ve2|* + [Vips|?) dA + Bh(R)?
Jo(93 +¢3) wdA

)\Q(Qun B/Lw) S

i=2,3. (11)

/\Q(Qwa B/Lw) S
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where we used that on 9, one has @3 + p3 = h(R)? by the definitions. Hence
Fo (VA1 + [V 1) dA + Sh(R)?
Jory (f2 + f3) w(F)| F'|> dA

by pulling the integrals back to D(R) via the conformal map F. After substituting
fo = h(r)cos¢ and f3 = h(r)sin ¢, we find

)\Q(Qwa ﬁ/lm;) S

Joe) 2+ r‘2h(r)2) dA + Bh(R)?
M) € e
Equality holds in (11) when Q = D(R),w =wg, F(z) = z,¢; = f;, and so
A(D(R)ur /L) = Jow (F()* + 17°h(r)*) dA + Bh(R) 13)

fD(R) h(r)*wg(r) dA

Nonnegativity of the numerators. The numerators in (12) and (13) are identical.
We show they are positive, except in a borderline case where they equal zero. The
underlying reason is that the first nonzero Steklov eigenvalue of the Fuclidean disk of
radius R equals 1/R; rather than relying on that interpretation, for simplicity’s sake
we estimate the numerator explicitly:

/ (W (r)* +r72h(r)?) dA > / 20 (1) 'h(r)dA  since a® + b> > 2ab
D(R) D(R)

= 21h(R)? > —Bh(R)?

because h(0) = 0 and f > —27 in the BS and FL parameter sets. Thus the numerator
in (12) and (13) is nonnegative. Equivalently, the second eigenvalue of the disk is
nonnegative: Ag(D(R)w,, B/ Lwy) > 0.

The numerator equals zero if and only if 5 = —27, as we now explain. Note that
h(R) = g(©) > 0 by hypothesis (4) for the BS set or (5) for the FL set. Hence from
the inequalities in the argument above we deduce that if the numerator equals zero
then 3 = —27 and A/(r) = r~'h(r), so that h(r) = ar for all r, where a > 0 is a
constant. In the reverse direction, if § = —2x then the disk has second eigenvalue
M (D(R)wy s =27/ Ly, ) < 0, since u = rcos ¢ is a sign-changing eigenfunction with
eigenvalue zero: Au = 0 and at r = R the Robin condition Ou/0r— (27 / Ly, )\/Wku =
0 holds. Hence the numerator of (13) equals 0.

Numerators positive. Suppose § > —2m, so that the numerators of (12) and (13)
are positive. To complete the proof, it is enough to compare denominators and show

/ h(r)2w(F (re'®))|F'(re'®)|? dA — / h(r)?wg(r)dA >0 (14)
D(R) D(R)

with equality if and only if w(F(2))|F'(2)|? = wk(z). (Regarding the equality state-
ment in the theorem, notice (w o F)|F'|? = wyg means the surface  with met-

ric w(z)|dz|* is isometric via the conformal map F to the disk D(R) with metric
wg (2)|dz|?, while in the other direction, if the two surfaces are isometric then their
eigenvalues are the same and so equality holds in the theorem.)
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Recalling the definitions of the area functionals A and B in (8) and (9), the left
side of (14) equals

_ /0 h(r)2 (A'(r) — B'(r)) dr = /0 h(r) () (A(r) — B(r)) dr

after an integration by parts, where the boundary terms vanish because A(0) =
B(0) = 0 and also A(R) = B(R) by the area normalization (10). Therefore the task
for (14) is to show

R
/ Sh()H(r) (A(r) — B(r))dr > 0
0
with equality if and only if (wo F))|F'|*> = wg. We convert back to the geodesic radial
variable € by substituting h(r) = g(#), so that the goal becomes to show

O
| 264~ Byav =0 (15)
0
with equality if and only if (w o F)|F'|* = wg. Here the areas A and B are regarded
as functions of 6. Explicitly, one computes A = 47 (sng 0/2)? by substituting r =
tanh 6/2 or r = 6 or r = tan 0/2, respectively, into the area formula (8).

BS case. In the hyperbolic case (K = —1) the hypotheses on the BS region ensure
that (3) and (4) hold, so that g and ¢’ are positive (except that ¢’ might vanish at
one point). We know A — B > 0 by Lemma 4.1, with equality for all § if and only
if (wo F)|F'|> = wg. Inequality (15) and its equality statement follow immediately.
The same holds in the Euclidean and spherical cases.

FL case. Consider now the Euclidean and spherical cases assuming the FL set hy-
potheses (3), (5), (6). Define

P
Gw) = / 29(0)'(6) A d

and note G(0) = 0. The left side of inequality (15) can be rewritten in terms of G by
first pulling out a factor of A, obtaining

/06 29(0)9'(6)A (1 - g) do — /Oe () (1 - g) d

_ /0 ’ G(@)% (g) o,

where the final step uses integration by parts and the normalization that B/A =
1 when § = O, by (10). The area ratio is increasing, with (d/df)(B/A) > 0 by
Lemma 4.2, remembering that the lemma needs K = 0,+1; equality holds for all 6
if and only if (wo F)|F'|? = wg. Thus to prove (15), it suffices to show G(6) > 0 for
all 0 € (0,0) except perhaps at one 6 value.

Since G'(0) = 2¢g(0)g'(0)A, the Up-Down-Up hypothesis (5) implies G is strictly
increasing for 0 < 6 < 0,42, strictly decreasing for 0,,,, < 0 < 6,,,, and strictly
increasing for 0,,;, < 0 < ©. Because G(0) = 0 by construction and G(0,,:,) > 0 by
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the Front-Loaded hypothesis (6), it follows that G > 0 on the interval (0,0) except
perhaps at 6,,;,, which completes the proof.

Numerators equal zero. Lastly, if the numerators of (12) and (13) equal zero then
those formulas imply

A28, B/ L) <0 = Xo(D(R)uwyer B/ Ly ), (16)
so that the second eigenvalue is maximal for the constant curvature disk. Further,
h(r) = ar for all r, as shown above, and § = —27.

Remark. The theorem asserts no equality statement when g = —27. Equality obvi-

ously holds in (16) “if” €, is isometric to the constant curvature disk D(R),,., but
we do not assert “only if”. An equality statement can be developed, though, in terms
of the conformal map F. For suppose equality holds in the eigenvalue inequality
(16). By imposing equality in the variational principle (11), we find that the trial
functions 2 and ¢3 must be Robin eigenfunctions on 2, with eigenvalue 0. The

weak formulation of the eigenfunction equation for ¢y, with f = —27 and eigenvalue
0, says
- 2 - -
/V@Q-Vgodx——ﬂ P/ wds = 0, € H'(Q).
Q L Jaq

Adapting an argument of Freitas and Laugesen [18, p. 1038-1039] for Jordan—Lipschitz
domains, one deduces that

Vo PR F(Re)| = 522 (17)

for almost every ¢ € [0, 27|, and that log | F’| equals the Poisson integral of its bound-
ary values. By (17), the boundary function is log (L, /27 R+/(w o F)(Re*)), which
depends continuously on ¢. Hence the harmonic function log|F’| extends continu-
ously to the closed disk, and so we have proved that when § = —27 and equality
holds in the theorem, the product (w o F)|F’|> extends continuously to the closure
of the disk and equals a constant on the boundary. But that information does not

determine its values in the interior of the disk, as happened in the equality case when
£ > —2m.

6. Robin eigenfunctions on disks with constant curvature

Angular dependence of the second Robin eigenfunction on constant curvature disks
is established in this section for most (but not all) parameter values, along with
monotonicity of the radial part in some (but not all) parameter regimes.

The hyperbolic and Euclidean situations are relatively straightforward. The spher-
ical case is not. Proofs are given later in this section and the results are subsequently
applied in Section 7 to establish subsets of BS, for Theorem 3.1.
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Angular dependence of the second eigenfunction: mostly but not always.
Recall that A\x(©, a) is the k-th eigenvalue of Ax on a geodesic disk Dg(©), under a
Robin boundary condition with parameter «. In geometric terms, when K = +1 the
geodesic disk is the spherical cap {(z1, 72, 23) € S* : x3 > cos O} having aperture or
geodesic radius 0 < © < 7.

Proposition 6.1 (Second eigenfunction has angular dependence in most cases).
Let o € R. If:

(a) [Hyperbolic] K = —1 and © > 0, or

(b) [Euclidean] K =0 and © > 0, or

(c¢) [Spherical] K = +1, and either 0 < © < 3m/4 or else

3n/4 <O <7 and a ¢ (cot O, tan ©),

then the second eigenspace of —Agu = \u on the geodesic disk Dy (©) with Robin
parameter « is spanned by two functions of the form

g(0) cos ¢ and g(0) sin ¢,
where the radial part g is smooth and satisfies the Robin boundary condition
9(0) +ag(©) = 0.

The hyperbolic and Euclidean cases of the proposition include all real Robin pa-
rameters «, and the spherical case includes all nonnegative parameters o > 0, since if
371/4 < © < 7 then the excluded interval from cot © to tan © contains only negative
numbers.

We do not understand rigorously what happens in the spherical case when 37 /4 <
© < mand a € (cot ©,tan ©). According to numerical work, the second eigenfunction
has angular dependence for a subset of that parameter region but the eigenfunction
is instead radial for some parameter values, specifically when the cap fills almost the
whole sphere (O close to 7) and the Robin parameter lies in a certain negative range.
Figure 4 illustrates the proposition and our numerical findings.

Regions D and E in the figure are found by numerically computing the lowest
angular mode and lowest two radial modes on a spherical cap in order to determine
where the second eigenfunction has angular dependence and where it is radial. The
red region labeled “E” in the figure is the exceptional parameter set where the second
eigenfunction is radial. It yields the red region in Figure 1, after transforming the
horizontal and vertical parameters to t = 47 sin?(©/2) and 3 = (27 sin ©)a.

A different proof for the Euclidean part (b) of the proposition was given by Freitas
and Laugesen [18], using Bessel functions.

Monotonicity in the radial direction for the first angular eigenfunction.
Next we aim for monotonicity properties of the radial part g of the lowest eigen-
function having angular dependence. This eigenfunction has the form u = ¢(#) cos ¢
or g(f)sin ¢, since functions of the form ¢(f)cosm¢p, m > 2, would generate larger
eigenvalues; see Step 5 in the proof of Proposition 6.1. Importantly, the next results
do not assume that this lowest angular eigenfunction gives the second eigenfunction.



MAXIMIZING THE SECOND ROBIN EIGENVALUE 17

€]
37T
-4 0 7 TT

©

10

A -1a

B

LR

FiGURE 4. Consider K = —1,0,+1. The second Robin eigenfunction
of the geodesic disk Dy (©) with Robin parameter a has angular depen-
dence in parameter regions A, B, C, D, by Proposition 6.1. The left side
corresponds to hyperbolic disks (K = —1) and the right side to spher-
ical caps (K = +1). For spherical caps with aperture 37/4 < © < T,
region B is where a < cot © and region C'is where a > tan ©. Angular
dependence continues to hold in parameter region D (see the comments
on numerical work in Section 9). In the exceptional region F, which
corresponds to large spherical caps with suitably negative Robin pa-
rameter, the second Robin eigenfunction is not angular but instead
(according to our numerical work) is radial.

Proposition 6.2 (Monotonicity of first angular eigenfunction: hyperbolic/Euclidean).
Suppose K = —1 or K =0, and let © > 0 and o € R.

If g(0) cos ¢ is a first angular eigenfunction of Ak on a geodesic disk Dy (0©) with
Robin parameter «, then one may take g to be positive: 0 = g(0) < g(0) whenever
6 € (0,8]. Furthermore:

If o <0 then g(0) is strictly increasing for 6 € (0,0), with ¢ > 0 there.

If & > 0 then g(0) first strictly increases and then strictly decreases: a maximum
POint Opay exists such that g > 0 on (0, 0ppes) and g <0 on (Opmax, ©).

The spherical case exhibits more complicated behavior, when the Robin parameter
a is negative in part (iii) of the next proposition. Recall the aperture ©5 ~ 0.707
and the function a,(©) that were defined before Theorem 3.1. Again we study the
first angular mode, which is not necessarily the second eigenfunction.

Proposition 6.3 (Monotonicity of first angular eigenfunction: spherical). Let K =
+1 and take © € (0,7) and a € R.

If g(0) cos ¢ is a first angular eigenfunction of Ay on a spherical cap of aperture
© with Robin parameter «, then one may take g to be positive: 0 = g(0) < g(0)
whenever 6 € (0, O].

Furthermore, the behavior of g depends on the sign of a as follows:

(i) If a > 0 then g(0) first strictly increases and then strictly decreases: a mazimum
POint Opay exists such that g > 0 on (0, 0ppes) and g <0 on (Opmax, ©).
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a

FIGURE 5. The regions for Proposition 6.3 parts (i)—(iv).

(i) If « =0 and 0 < © < Oy then g(0) is strictly increasing, with g > 0 on (0, 0).
If o =0 and ©y < © < m then g(0) first strictly increases and then strictly decreases:
a mazimum point Op,q, exists such that ¢ >0 on (0, 0pm4.) and ¢ <0 on (Omaz, O).
(111) If a2(©) <« < 0 and 0 < O < O, or if @ < ay(O) and 0 < © < 7, then g(f)
is strictly increasing for 6 € (0, 0] with ¢’ > 0 on that interval (except ¢’ vanishes at
0 = Oy when a = ax(0) and Oy < O < 7).

(v) If a2(©) < a < 0 and Oy < © < m, then g(0) first strictly increases and then
strictly decreases and then strictly increases again: a local mazimum point 0., and
local minimum point O,,;, exist such that ' > 0 on (0, Opnaz) and ¢ < 0 on (Omaz, Omin)
and g > 0 on (O, O].

Figure 5 illustrates the regions in the proposition.

Relevant literature on the form of the eigenfunction. The Neumann and
Dirichlet cases of the preceding propositions are known in all three constant cur-
vature situations, by work of Bandle [6, pp.122-124], Ashbaugh and Benguria [3,
Section 3], Ashbaugh and Benguria [2, p. 562|, [4, Section 3], Benguria and Linde
[7, Section 3]. See the summary by Langford and Laugesen [26], who completed the
Neumann case by handling spherical caps larger than a hemisphere.

The Robin case in curvature zero (Proposition 6.1 for disks in Euclidean space) was
treated by Freitas and Laugesen [18, Section 5], [19, Section 5], using explicit formulas
for Bessel functions. For geodesic disks in hyperbolic space with a € [—01(0),0), see
Li, Wang and Wu [30, Propositions 3.1 and 3.2]; here o1 (0©) is the first positive Steklov
eigenvalue.

For spherical caps, we know of no prior work identifying properties of the second
Robin eigenfunction or of the first angular Robin eigenfunction.

The proofs below avoid special functions and instead rely on qualitative properties
determined by the eigenfunction equation.

Proof of Proposition 6.1. The first Robin eigenfunction is positive and hence by
separation of variables it must be radial. Suppose f(6) is a radial eigenfunction on
the geodesic disk Dx(©) that is not the first eigenfunction, so that f satisfies

—Axf=pf  [(©)+af(0)=0,
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for some eigenvalue p, and f changes sign since it is L?-orthogonal to the first eigen-
function. The first four steps of this proof will show p > \y(©, @) under the hypotheses
of the proposition, so that the second Robin eigenfunction is definitely not radial.

Step 1. Observe f'(0) = 0 since the radial eigenfunction f is smooth at the origin.
Let

v = f"(0)cos ¢
and notice v # 0 since f is nonconstant. This v satisfies the eigenfunction equation
—Agv = pv with eigenvalue p, because

A= (A f)eosé = pf (O) cosd = pr,

where the first equality relies on direct calculation and the Pythagorean identity
(sng’)? —sngsng” = 1.

Step 2. Suppose f’(g) = 0 for some 0 € (0,0], so that v satisfies a Dirichlet
condition on the boundary of the disk Dg(#). Because v changes sign (due to the
factor cos ¢), it cannot be the first Dirichlet eigenfunction of Ag on that disk and so p

must be a second or higher Dirichlet eigenvalue there. Hence by domain monotonicity
for Dirichlet eigenvalues,

P 2 >\2(57 OO) Z AQ(@,OO)
> )\2(@,0&),

where the final inequality relies on strict monotonicity of the spectrum with respect
to the Robin parameter. Thus p > A\2(0, ), as desired.

Step 3. Suppose next that f' # 0 on (0, ©], which means [’ does not change sign.
We may take f’ > 0, so that the sign-changing property of f implies f(0) < 0 < f(©).
The Robin condition therefore implies

/
)
o= — 1) < 0.
f(©)
Further, since f(6y) = 0 for some 6y € (0,0) we know f is a Dirichlet eigenfunction
on the disk Dg(6y) and so its eigenvalue must be positive:

p > 0.

Let us determine the Robin condition satisfied by v. The eigenfunction equation

Agf+ pf =0 gives that
sng’
f”+( i +,oi/) 7 =0.
SNk f
Evaluating at the boundary and using the Robin condition for f shows that

f1(©)+~f(©)=0

where the constant is
v =ctg O — i
«
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and we defined
cotd if K =+1,

ctg 0 = =<1 if K =0,
cothf if K = —1.

Thus v is a sign-changing Robin eigenfunction on Dy (©) with parameter ~ and
eigenvalue p. It follows that

p=22(0,7).
We want to show v > «a, because then p > A\ (0, ).
In the hyperbolic and Euclidean cases we have ctx © > 0. The same holds in the
spherical case when 0 < © < 7/2. Thus in these cases, the proof that the second
Robin eigenfunction is nonradial is complete, because v > —p/a > 0 > a.

Step 4. Consider now the spherical case (K = +1) with 7/2 < © < 7. Recall from
the beginning of Step 3 that we are assuming f’ # 0 on (0, ©].

If a < cot © then since v > cot © we have v > «, as needed.

If tan® < a < 0 then p > 2, as follows. The radial eigenfunction f satisfies
—Ay1f = pf with eigenvalue p and Robin parameter a at § = O, and the radial

function ¢(f) = — cos 0 satisfies the eigenfunction equation —A, ¢ = 2¢ with eigen-
value 2 and its Robin parameter at 6 = O is
¢(©)
— = tan ©.
c(©)

This Robin parameter is less than or equal to @ by assumption and so the eigenvalue
2 of ¢ is less than or equal to the eigenvalue p of f, as we now justify.

Suppose first that f has its zero at some radius 6 € [7/2,0). Then on the annulus
between 6 and © the function f is a positive eigenfunction satisfying a Dirichlet
condition (Robin parameter +oc) at the inner boundary and a Robin condition at
radius © with parameter a, while on the same annulus, ¢ is a positive eigenfunction
whose Robin parameter at © is less than or equal to «; since positive eigenfunctions
are automatically ground states, monotonicity of the spectrum with respect to the
Robin parameter on each boundary portion implies that the eigenvalue of ¢ is less
than or equal to that of f, meaning 2 < p.

Suppose next that f has its zero at some radius 6 € (0,7/2). Then on the disk of
radius #, the function f is a negative eigenfunction satisfying a Dirichlet condition
while ¢ is a negative radial eigenfunction satisfying some Robin condition at the
boundary; hence again the eigenvalue of ¢ is less than or equal to that of f, giving
2 < p in this case too.

By our assumption that o > tan © and the fact that p > 2, we obtain that

fyzcot@—ﬁzl—z>0>a.
aa o
Thus again v > «, as we wanted.
Lastly, the assumption in Proposition 6.1(c) that o ¢ (cot ©, tan ©) is needed only
when 37/4 < © < 7, because if /2 < © < 37/4 then tan © < cot © and the excluded

interval is empty.
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Step 5. By a standard argument with separation of variables in the Rayleigh quo-
tient, one finds that a second eigenfunction is a linear combination of some functions
g(0) cos ¢ and g(0)sin ¢. (Angular factors cos m¢ and sinme¢ with m > 2 would give
larger eigenvalues.) The Robin condition then says ¢'(0) 4+ ag(©) = 0.

Proof of Proposition 6.2 (Hyperbolic/Euclidean). Let K = —1 or 0. The
proposition concerns the first angular eigenfunction, which has the form of a radial
function g(f) multiplied by the angular part cos ¢ or sin ¢. Continuity of the eigen-
function at the origin demands that g(0) = 0. Write \,,4(0, a) for this first angular
eigenvalue.

We begin by showing that after multiplying by —1 if necessary, one must have
g(0) > 0 when 0 < 8 < ©. For suppose g(fy) = 0 for some 6y € (0,0]. Then v =
g(0) cos ¢ is a Dirichlet eigenfunction with angular dependence on the disk Dy (6y),
having eigenvalue Ay,4(©, ). Hence

Aang (0, ) > Agpg(©,00) > Aang (0, @),

where the first inequality holds by domain monotonicity of Dirichlet eigenvalues as we

enlarge the disk Dg(6y) to Dg(©), and the second inequality holds by monotonicity

of the eigenvalue with respect to the Robin parameter. This contradiction shows that

g(0o) # 0. Since 6 was arbitrary, we see g vanishes only at the origin, and so after

replacing g with —g if necessary, we obtain that g(f) > 0 whenever 0 < § < ©.

Next, applying the eigenfunction equation —Agu = Aypg(©, a)u to the eigenfunc-
tion u = g(0) cos ¢ gives
1

sny 0

((SHK 9) g’)/ + mg = )\ang(@, a)g.

This equation holds for all # > 0, since the ordinary differential equation is linear and
so its solution extends to all positive 6.
Changing variable with

log(tanh 6/2) if K = —1,
S =
log 0 if K =0,

we find that
d*qg B
d82 - qg
for —o00 < s < oo where
q(0) =1 — Xang(O, @) (sng 0)>.

Notice ¢ is positive for small § and so g is a strictly convex function of s near —oo.
Further, g — ¢(0) = 0 as s — —oo and so g must be increasing when s is near —oc.
If Aang(©, ) <0, then ¢(#) > 1 for all . In particular, g remains a strictly convex,
strictly increasing function of s all the way to the boundary, so that ¢’(6) > 0 on
(0,0]. Note that ¢’(©) > 0 implies a < 0.
If A\ong(©, ) > 0 then ¢(6) is positive until § becomes large enough such that ¢(6)
changes sign and is thereafter negative. Thus g is a strictly convex function of s until
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it changes to become strictly concave, after which g continues to be strictly concave
for as long as it is positive. Thus either dg/ds stays positive for the whole interval
6 € (0,0) or else dg/ds is first positive and then changes sign to remain negative
through to the endpoint § = ©. That is, either ¢'(#) > 0 for § € (0,0), or else ¢’ > 0
on (0,0,4,) and ¢’ < 0 on (0,42, ©]. The first case has ¢'(0©) > 0 and so a < 0, while
the second case has ¢'(©) < 0 and hence o > 0.

Proof of Proposition 6.3 (Spherical). The proof that g(0) = 0 and g is posi-
tive on (0, ©] proceeds exactly as for the hyperbolic/Euclidean case in the proof of
Proposition 6.2, and adapting that proof shows that d?g/ds? = qg where now

s = log(tan#/2) € (—o0, o)

and
q(0) =1 — Aang(©, ) sin? 6.

Again ¢ is positive for small # and so g is a strictly convex function of s near —oo,
with ¢ — ¢(0) = 0 as s = —o0, and so g must be increasing when s is near —oo.

Proposition 6.3 parts (i) and (ii). If a > 0 then the Robin boundary condition
forces dg/ds to be nonpositive at the right endpoint s(©), and so at some point g
must switch from convex to concave. That is, ¢(f) must change sign at least once
on the interval (0,0). Noting that sin®§ increases from zero before decreasing again
to zero on (0,7), we deduce ¢ has two roots 61 satisfying 0 < - < 7/2 < 0, <7
and that the smaller root f_ must lie in (0,0). Write sy = s(f+) for the s-values
corresponding to the roots, so that

—00< s <0<sy <00

and s_ < s(©) = logtan(0/2).

Suppose first that Agn,,(©,a)sin?© > 1, so that ¢(©) < 0. Hence g is positive
on (0,60_) and negative on (6_,0). The preceding paragraph shows that g is strictly
convex as a function of s € (—o0, s_) and strictly concave for s € (s_, s(0)). If « >0
then dg/ds < 0 at the endpoint s(O) and so we deduce that g reaches a maximum at
some point 6,4, such that ¢’ > 0 on (0,0,,4,) and ¢’ < 0 on (0,44, ©]. If @ = 0 then
dg/ds = 0 at the endpoint s(©) and so we deduce that g is strictly increasing, with
g >0on (0,0).

Suppose next that A, (0, a)sin?© < 1, so that ¢(©) > 0 and so 0, < O, with ¢
being positive on (0, 6_), negative on (6_, 0, ) and positive on (6,, ). Our work above
implies that g is strictly convex as a function of s on (—o0,s_), strictly concave on
(s_, s;) and strictly convex on (s, s(0)). Recalling that the slope dg/ds is positive
when s is near —oo and is nonpositive at s = s(©), we deduce that for some number
Smaz € (—00,8(0)) one has dg/ds > 0 on (—00, Symar) and dg/ds < 0 on (Spaz, S(0)).
Determining 6,,,, from the relation s,,4, = $(0naz), We see ¢'(0) is positive on (0, 0,42
and negative on (0,,4., ©).

Parts (i) and (ii) are now proved, noting for part (ii) in the proof above that the crit-
ical aperture O, is defined so that Ay, (2, 0)sin® Oy = 1, with A\.py(6,0)sin”© > 1
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when © € (0,05) and A,y (0,0)sin? © < 1 when © € (O, 7), using here [26, Proposi-
tion 3.1] and the fact that A,,, = A2 in the Neumann case ov = 0 (by Proposition 6.1).

Proposition 6.3 parts (iii) and (iv). Suppose @ < 0 and 0 < © < 7. Note ¢'(©) > 0
since the Robin parameter « is negative.

Recall from Section 3 that the second Neumann eigenfunction g¢o(#)cos ¢ on the
cap of aperture O, is also a Robin eigenfunction on the cap of aperture © € (0, 7),
with Robin parameter ay(©), and that g5 > 0 except at ©y where g} vanishes.

First suppose a < a3(0), so that ¢}/g2 < ¢'/g at § = ©. Lemma B.1 says that
the same inequality must hold for all § € (0,©], and so in particular 0 < ¢’(f). Next
suppose a = a3(0) < 0. Then ¢4/g = ¢’'/g at € = © and so the equality statement
in the lemma implies that g must be a positive multiple of g and so ¢'(#) > 0 for all
0 except 6 = O,.

Now suppose a3(0) < a < 0 and 0 < © < ©. Further suppose ¢’ vanishes at some
6 < ©. It follows that g must change from convex (as a function of s) to concave
in order for ¢’ to vanish, and then must change again to convex in order for ¢’ to
become positive at the endpoint ©. Since ¢ can change sign at most twice, we deduce
¢ must remain convex on [0, ) and hence also positive and strictly increasing there.
In particular, ¢’(©s) > 0. The assumption ay(©) < « means that g5/g, > ¢'/g at
0O, and so Lemma B.1 implies that the same inequality must hold at ©,, giving the
contradiction ¢5(©2) > 0. Therefore ¢’ cannot vanish as we supposed, and hence
g’ > 0 on the whole interval (0, ©].

Finally, suppose a2(©) < a < 0 and Oy < © < 7. The inequality a2(0) < «
means that g5/go > ¢’/g at ©, which by Lemma B.1 implies the same inequality at
O,, giving ¢'(©3) < 0. Hence g must change from strictly convex (as a function of
s) to strictly concave in order for ¢’ to be negative at O, after which g must change
back to strictly convex in order to ensure ¢’ is positive at the endpoint ©. It follows
easily now that g(0) first strictly increases and then strictly decreases and then strictly
increases again, as claimed in part (iv) of the proposition.

Properties of the radial part for aperture ©;. As above, gy is the radial part
of the second Neumann eigenfunction for the spherical cap of aperture ©,, and g
extends to a positive, increasing function on the whole interval (0, ), as graphed in
Figure 3. The next section needs the following facts about ax(0) = —g4(0)/g2(0).

Lemma 6.4. For © € [Oy,7) one has az(0) > cot ©. Hence when t € [ty,47) one
has B5(t) > 2w —t, and also [a(t) — =27 ast — 4.

The lemma helps explain Figure 1, where the graph of 55(t) lies above the upper
boundary of region III and approaches height —27 in the bottom right corner.

Proof. By applying the eigenfunction equation A 1(g2(60) cos @) = —A3(O2,0)go(6) cos ¢

with Robin parameter o = 0 (for the Neumann boundary condition), one finds after

some reorganization that

1 1 ! 0
(55 (9:(0)51n0)") = =xa(6n, 0)42?)

sin @ \sin 6 sin

<0
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when 0 < # < m, and so

d? ,

@(gg(ﬁ) Sin 9) <0
where the new variable t = t(f) = 4msin?(0/2) satisfies dt/df) = 27sinf. Thus
g2(0)sin @ is a strictly concave function of ¢. Its first f-derivative at § = ©5 equals

G5(02) sin Oy + ¢2(O3) cos Oy < 0

since g5(©3) = 0 by the Neumann boundary condition and ©, is larger than 7/2 by
definition in Section 3. Hence the first t-derivative is negative at to = t(03), and so
by concavity the t-derivative remains negative for all ¢ € [ty,47), which means the
first O-derivative is negative for all § € [©q, 7). That is,

g5(0) sin B + go(0) cos 6 < 0,

which is equivalent to cot 8 < ay(f), as claimed in the lemma.

Next, if t € [to, 47) then t = 47 sin®(0/2) for some 6 € [O,, 7). Multiplying the pre-
ceding inequality by 27sin @ gives (2msinf) cot 6 < (27 sin 0)ay(f), which simplifies
to 2 — ¢t = 2w cos @ < Pa(t), giving the desired lower bound on (5. Letting ¢t — 4
implies —27 < liminf; 4, Ba2(t).

To get an upper bound on the limsup, let 0 < § < ¢ < 1. By the proof of
Proposition 6.3 above (choosing there the aperture © = O, and Robin parameter
a = 0), we have q(f) — 1 > €? as § — 7 and hence d?gy/ds* > &%g, for all 0
near 7, where we recall that s = log(tan/2) and d/ds = (sinf)d/df. Writing
y(s) = (1/g2)dg2/ds > 0, we deduce that

Y(s) +y(s)* > &

for all large s. Fix so to be such a large number. If 0 < y(so) < J then the
differential inequality for y(s) forces its derivative to exceed a positive constant:
y'(s) > &2 — 0% > 0, with this inequality holding not only at s = sy but on the
whole open interval to the right of sq on which the value of y(s) remains below .
Thus y(s) must eventually exceed § in value, after which its value remains above 6,
by invoking the differential inequality once more. Hence y(s) > ¢ for all large s,
which means (sin)(1/g2)dga/df > 6 for all § near = and hence [2(t) < —2mé for
all ¢t near 47. Hence limsup,_,,, f2(t) < —2md. Since § < 1 was arbitrary, we have
limsup,_,,, f2(t) < —27 as desired, so that lim; 4, 52(t) = —27. O

7. Proof of Theorem 3.1 — shape of the BS region
Set I. The portion of set I lying in the left halfplane is the semi-infinite strip
(—00,0) x [—27,0] = {(—47sinh®*©/2,8) : © > 0, —27 < 3 < 0},

where we have expressed t as 47 sinh? ©/2. To satisfy the definition of the BS region,
we show that (3) and (4) hold in the hyperbolic case (K = —1) on a geodesic disk
of radius ©® > 0 with Robin parameter a = 3/(27rsinh®) < 0. Indeed, for (3) the
angular form ¢(#) cos ¢ for the second eigenfunction holds by Proposition 6.1(a) while
the positivity of g and ¢’ on (0, 0) was shown in Proposition 6.2.
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The part of I on the vertical axis is the interval {(0,5) : =27 < 5 < 0}. Let © > 0
and note that (3) and (4) hold in the Euclidean case (K = 0) on a disk of radius ©
with Robin parameter a = /270 < 0 by Proposition 6.1(b) and Proposition 6.2.

For the remainder of the proof we deal with sets in the open right halfplane. Take
K = +1 from now on. The portion of set I lying in the right halfplane can be
expressed as the strip

{(47sin*(©/2),8) : 0 < © < Oy, 27 < B <0}

after writing ¢ = 47 sin?(©/2). For such © and f3 values, we see condition (3) holds by
Proposition 6.1(c) since ©y < 0.717 < 37/4 by [26, Proposition 4.2], while condition
(4) holds by Proposition 6.3(ii)(iii).

Set II. This set lies in the right halfplane. Converting ¢ to ©, the set can be written
as

I = {(47sin?*(0/2),8) : O, < © < 37/4, —21 < B < (27msin O)ay(O)}.

The angular form of the second eigenfunction for (3), on a spherical cap of aperture
© with Robin parameter o = /(2w sin ©) < a»(0), holds by Proposition 6.1(c) since
© < 3w/4. Positivity of g and of ¢’ on (0,0) (except perhaps at one point, for ¢')
follows from Proposition 6.3(iii).

Set III. This set may be written as
III = {(47sin*(0/2),p) : 3n/4 < © < 71, 27 < < 2mcos O}

since 27 cos © = 27(1 — 2sin*(©/2)) = 27 — t. The angular form of the second eigen-
function on a spherical cap of aperture © with Robin parameter a = /(27 sin ©) <
cot © holds by Proposition 6.1(c). Positivity of g and ¢’ on (0, ©) follows from Propo-
sition 6.3(iii) since a < cot © < a(O) by Lemma 6.4.

Set IV. With ¢ = 47 sin*(©/2), this final region in the right halfplane becomes
IV = {(4rsin*(©/2),8) : 37/4 < © < 7,tan © < B/(27sin ©) < a»(O)}
where we used the definition of f5(t) in terms of ay(©) and used also that

A7 — ¢
2m —t

4m(1 — sin®*(0/2))

t
21 cos ©

= 47 sin*(©/2) = 27 sin O tan O©.

By Proposition 6.1(c), the second eigenfunction has angular form as in (3) on a spher-
ical cap of aperture © with Robin parameter a = /(27 sin ©) > tan ©. Positivity of
g and ¢’ on (0,0) follows from Proposition 6.3(iii) since a < aq(0), except that ¢’
might vanish at one point.

Set V. The angular condition (3) holds by definition of set V', while the monotonic
condition (4) holds by Proposition 6.3(iii) since set V' lies below the curve fy(t).
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8. Proof of Proposition 3.2 — dropping downward in the FL set

According to the angular hypothesis (3), we may write g and g, respectively, for
the radial parts of the second eigenfunctions on the disk of radius © corresponding
to Robin parameters o = 8/(2msng ©) and a, = B,./(27sng ©). Both g and g, are
positive on (0, ©], by Proposition 6.2 and Proposition 6.3.

If the monotonicity condition (4) holds then ¢'(©) > 0 and so 5 < 0 by the Robin
boundary condition; recall also that § > —2m by hypothesis in this proposition.
Hence by the definition of the BS set, (0, 3) € BS if K = 0 or (47sin*(0/2),3) € BS
if K = +1, so that the proposition is proved. Thus from now on we may suppose (4)
does not hold, so that ¢’ changes sign and hence by Proposition 6.3, the Up-Down-
(Up) condition (5) holds.

To finish the proof, we must verify the remaining criterion for belonging to the
set FL, which is condition (6). Normalize g by a multiplicative constant so that the
value at its local minimum point 6,,;, equals the value of g, at that point, meaning
9(Omin) = gx(Omin). At the right endpoint # = O, the Robin boundary condition and
the assumption § < (. yield that

Hence Lemma B.1 implies ¢./g. < ¢'/g for all § € (0,0], so that ¢, < ¢’ at every
point where g, = ¢g. In particular ¢, < ¢ at 0,,;,, and so by a short argument one
concludes that g, > ¢ on the interval (0, 0,,,).

Integrating the left side of (6) by parts yields that

/ " 040 (snK 2)2 d

em?n
/ Ormin) g(Q)Q)SnKQdO

»-lklk—k .J>|»—~

/ mm - 9*(9)2) SN g 0df since g« > g > 0

- [ (snK g) @

by parts again. By the Up-Down-(Up) hypothesis (5) for g, we know ¢, is positive
until the local maximum 6,,,,, of g., then negative until the local minimum #6,,,;,,
and then positive again. Hence the last displayed integral is greater than or equal to
0if Orin < Osppan, and if 6., > 0., then the integral is greater than or equal to the
integral over (0, f4,,:,), which is nonnegative by the FL hypothesis (6) for g.. Thus in
either case the last displayed integral is nonnegative. Hence, as we needed to prove,
condition (6) holds for g.
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9. Construction of Figure 1 and Figure 2

Readers are encouraged to download a Mathematica notebook [28] in order to
follow along with the explanations below of how the figures were created.

Construction of Figure 1. BS set. The sets [-IV appearing in Figure 1 are
specified in Theorem 3.1 and can be plotted straightforwardly in Mathematica. The
curves 5 and 4 and the set V require some explanation.

The curve f2(t) = —(27sin©) g4(0)/g2(0) that forms the upper boundary for
sets II, IV, V is defined prior to the statement of Theorem 3.1, with ¢ and © related
by t = 47sin*(©/2) and with go(f) = P,.!(cosf) defined in terms of an associated
Legendre function. The parameter n, for the Legendre function is known theoretically
to exist and be the unique value such that g, increases until some aperture ©, at which
gy = 0, and go continues to increase thereafter. Thus the curve fy(t) is negative
until ¢o, where it equals 0, after which (5(¢) becomes negative again. An exact
formula for ny is not known, but by numerical experimentation one finds an accurate
approximation to be ny ~ 0.851187, which is the value used to plot fs(t) in the figure.

The curve S4(t) is constructed analogously to 3a(t), except with g4(6) = P, '(cos 6)
where ny = 0.908729. This parameter choice is an approximation to the largest n
for which the Front-Loaded condition (6) holds with g = 0; for explanation, see our
Neumann result [26, proof of Theorem 1.1]. The curve f4(t) crosses the horizontal
axis at £, ~ 11.828. Note our earlier Neumann result used the slightly smaller number
(16/17)4m in order to obtain a rigorous result.

To plot the set V' in Figure 1, we needed to identify the parameter values (¢, 5) at
which the angular condition (3) holds, that is, at which the first eigenvalue among
angular modes is smaller than the second eigenvalue among radial modes. These
eigenvalues were computed numerically in Mathematica with the NDEigenvalues com-
mand, after substituting g(f) = p(0#)h(0) for a suitably chosen weight p in order to
convert the Robin condition on g into a Neumann condition on h, at § = ©.

FL set. To determine the set FL, one must verify the angular condition (3), Up-
Down(-Up) condition (5), and Front-Loaded condition (6). In the first quadrant,
where ¢ > 0 and § > 0, the angular condition holds by Proposition 6.1 and the Up-
Down condition with 6,,;, = © holds by Proposition 6.2 and Proposition 6.3(i). Thus
only the Front-Loaded condition need be checked. To avoid numerical differentiation,
first integrate by parts in (6). Then given a t value, evaluate the corresponding © and
apply a numerical bisection method to find the largest n value for which (6) holds for
g(0) = P (cosf) with 60,,;, = ©. This n value and © determine 3 from the Robin
boundary condition 3/(2rsin©) = —¢'(©)/g(©). By Proposition 3.2(ii), the FL set
contains the segment dropping down from the point (¢, 3) to the horizontal axis, and
so (t,5) lies on the upper boundary of the FL set. Performing this procedure for
60 reasonably-spaced t-values between 0 and ¢, and then joining the resulting points
yields an accurate representation of the FL set in the first quadrant in Figure 1.

Next we handle the part of the FL set in the fourth quadrant. The region above
the curve [5(t) and to the right of ¢y satisfies the Up-Down-Up condition by Propo-
sition 6.3(ii)(iv). Points on the curve [,(t) satisfy the Front-Loaded condition by the
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choice of ny, and satisfy the angular condition too provided we stay above the graph
of t(4m —t)/(2m —t). Thus the region in the fourth quadrant bounded by that graph,
the horizontal axis and the graphs of 85 and (4 belongs to FL, by dropping downward
from the graph of §; via Proposition 3.2(ii). Finally, the same reasoning also applies
below the graph of t(4r — t) /(27 — t) provided the angular condition can be verified
numerically, thus obtaining the additional small piece of the FL set in Figure 1.

Which aspects above required numerical work? In the FL region, numerics were needed
primarily to verify the Front-Loaded condition, while in the BS region for set V/,
numerics were needed to verify that the second mode is angular.

Remark. The Front-Loaded condition (6) holds for g4 at (t4,0), as mentioned above
for the Neumann condition. Hence the Front-Loaded condition holds at (¢, 54(t)) for
all ¢ < t4 (smaller apertures) because the integral in (6) would include less negative
contribution than when ¢ = ¢, and it holds for all ¢; < ¢t < 7 (larger apertures)
because the integral would include more positive contributions. Similar reasoning
can be applied on other curves constructed like 54 but with different values of n.
By combining this approach with Proposition 3.2(ii), one may justify large parts of
the FL set by evaluating the integral in (6) at just finitely many points (¢, 5) in the
first quadrant. In this sense, the derivation of the FL set shown in Figure 1 can be
regarded as partly numerical and partly rigorous.

Construction of Figure 2: contour plot of the lowest angular eigenvalue.
The first angular mode on a spherical cap has the form u = g(f) cos ¢ (see Section 6)
where g(0) = P, (cosf) (see Appendix A) with an analogous formula in the hyper-
bolic case. Recalling that ¢ = 47 sin*(©/2), we see that each point (¢, 3(¢)) along the
graph of B(t) = —(27sin ©) ¢'(©)/g(O) corresponds to a spherical cap with aperture
© € (0,7) and Robin parameter a(0) = —¢'(0)/g(0). The Robin eigenvalue is the
same on each of these caps, namely A = n(n+1) by Appendix A, since the underlying
eigenfunction wu is the same for each cap. Thus the graph (¢, 5(¢)) is a level curve or
contour for the eigenvalue of the first angular mode.

ApPPENDIX A. Legendre functions — radial and angular modes

Separation of variables yields eigenfunctions as stated below on the 2-dimensional
sphere and hyperbolic space, in terms of the radial variable # and angular variable
¢. The eigenfunction equation —Agu = Au (see Section 2) can be verified straight-
forwardly for the functions below, using the associated Legendre ODE for y = P, ™
(see [36, eq. 14.2.2]):

(1 —22)y"(x) — 229/ (x) + (n(n +1)— N T$2) y(x) = 0.
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Spherical eigenfunctions (K = +1).
uw= P, ™(cosf)e™?, m=20,1,2,...,

\ (n+ 1) —i—kz Whenn:—%—i-ik with & > 0,
= Nn\n =
—1+k* whenn=—3+Fk with k > 0.

For radial modes one takes m = 0, while m = 1 yields the first angular mode. The
eigenvalue A is determined (implicitly) when a boundary condition is imposed on wu.

Hyperbolic eigenfunctions (K = —1).
u=i""P;™(cosh§)e™?, m=0,1,2,...,

A= n(n 1) = i+l{;2 Whenn:—%—l—ikWitthO,
- B [ Whenn:—%—i—k‘withkzo.

4

Steklov case A\ = 0. The Steklov spectrum on a surface consists of the (negatives
of the) Robin parameters whose corresponding eigenvalues equal 0.
In the spherical case, making the choice n = 0 (so that A = 0) yields

, 1 o\" .
u = PO_m(COS 9)61m¢ = % (tan 5) ezm(f)’

which is analogous to the usual Steklov eigenfunction r™e?™? in the Euclidean case.
In particular, when m = 1 the eigenfunction (tanf/2)e’ has Robin parameter o =
—(tan6/2)'/(tanf/2) = —1/sin © at aperture § = O.

Similarly, the hyperbolic case yields a Steklov eigenfunction

. 1 o\ .
w =i " P;™(cosh )™’ = — (tanh 5) eme,

m.

and when m = 1 the Robin parameter at geodesic radius © is & = —1/sinh ©.

APPENDIX B. A lemma relating eigenvalues and endpoint values

The next lemma relates the eigenvalues to the endpoint values of the eigenfunctions,
for the lowest “angular” mode. Recall the function sng 6 defined earlier in (2).

Lemma B.1. Fiz K = —1,0,+1 and \, A\, € R. Assume © > 0, and further suppose
when K = +1 that 0 < © < w. Suppose g, g. € C*0,0)] satisfy

/

_SnK 0 ((SnK 9)9’(9)) - (Sni 0)? 9(8) = Ag(0),
_Sni 0 ((smc 0)gL(0))" + m 9+(0) = Agu(0),

when 6 € (0,0). If g and g. are positive on (0,0)] then

sign (% - %) = sign(A — \) on (0,0].
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Thus if g./g. < ¢'/g for some 0 € (0,0] then that inequality holds for all 0, and if
g./g« = g'/g for some 8 € (0, 0] then equality holds for all § and hence g, = (const.)g.

Results of this kind are well known. We include a short proof for the reader’s
convenience.

Proof. Multiply the differential equation for g by (sng 6)g.(6) and multiply the dif-
ferential equation for g, by (sng 0)g(#), and then subtract and integrate from 0 to 7,
for an arbitrary 7 < ©. Hence

| (50) (0 0)520)) = 9.(6) (sm )5/ 0)) )6 = (A= 1) [ (0)g.0)suc 8

On the right side, the integral is positive since g and g, are positive, recalling also
when K = 41 that 7 < © < m. Thus the sign of the right side equals sign(A — \,).
The left side evaluates by the fundamental theorem of calculus to
9. ¢
9(0) om0 0) ~ 5.0)sns O O] = Gsne gl (r) (2 = L))

T

0 G g
Since sng 7,9(7) and g.(7) are positive, the sign of this side equals sign(g./g. —
g'/9)(7). The remaining statements in the lemma follow easily. O
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